
A REMARK ON THE RIGIDITY OF DELAUNAY TRIANGULATED PLANE

SONG DAI1

Abstract. In [22], under the uniformly acute condition, Wu showed the rigidity of the geodesic
triangulated plane under Luo’s discrete conformality. In this article, by modifying Wu’s proof,
we improve this result by weakening the uniformly acute condition to the uniformly Delaunay
condition.

1. Introduction

Let T = (V,E,F ) be a triangulation of a surface S with or without boundary. Denote ∣T ∣ as the
underlying space of the complex T . A PL (piecewise linear) metric on T is a function, l ∶ E → R+

such that for every ijk ∈ F , ijk forms a Euclidean triangle under the length l, denoted as △ijk. In
[10], Luo introduced the notion of the discrete conformality. Let l, l′ be two PL metrics on T . We
call l is discrete conformal to l′ if there exists a function u ∶ V → R such that

lij = e(ui+uj)/2l′ij ,

denoted as l′ = u ∗ l. The function u is called the conformal factor.
In recent years, the theory of Luo’s discrete conformality has developed in many directions,

such as the prescribed curvature problems, the rigidity, the convergence, the numerical methods in
computing conformal geometry and so on. One may refer to [1, 2, 3, 4, 5, 6, 7, 9, 12, 13, 18, 19,
20, 21, 22, 23, 24]. In this article, we focus on the rigidity of the triangulated plane.

For a triangle △ijk, denote θijk as the angle of ∠jik. A PL metric l is called

(1) uniformly nondegenerate if there is a constant ε > 0 such that θijk ≥ ε for every triangle △ijk ∈ F ;

(2) Delaunay if θkij + θlij ≤ π for every adjacent triangles △ikj,△ilj ∈ F sharing the edge ij ∈ E;

(3) uniformly Delaunay if there is a constant ε > 0 such that θkij + θlij ≤ π − ε for every adjacent
triangles △ikj,△ilj ∈ F sharing the edge ij ∈ E;
(4) uniformly acute if there is a constant ε > 0 such that θijk ≤ π

2 − ε for every triangle △ijk ∈ F .

Remark 1.1. The Delaunay condition is equivalent to that for every adjacent triangles △ijk,△ijl ∈
F isometric embedding in C, then l ∉ int(C), where int(C) is the interior of the circumscribed circle
of △ijk.

Remark 1.2. It is clear that under the uniformly nondegenerate condition with constant ε > 0,
deg i are uniformly bounded, deg i ≤ 2π

ε ,∀i ∈ V.

Denote ∣T ∣o and ∂∣T ∣ be the interior and the boundary of ∣T ∣ respectively. Denote V o = V ∩ ∣T ∣o,
∂V = V ∩ ∂∣T ∣. Let l be a PL metric on T . For i ∈ V o, denote Ri as the 1-ring neighborhood of i,
that is the subcomplex generated by i and j for every ij ∈ E. We abuse the notation Ri also as the
underlying space ∣Ri∣ and the set of vertices V (Ri). The curvature at i is defined as

Ki = 2π − ∑
△ijk∈F

θijk,

which only depends on the restriction of l on Ri. Let l′ = u∗l be also a PL metric discrete conformal
to l. Then Ki(u) ∶ Rdeg i+1 → R is smooth with respect to u. From the direct calculation or [10],
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one have
dKi = − ∑

j∶ij∈E

ηij(duj − dui),

where

ηij = ηij(u) =
1

2
(cot θkij(u) + cot θlij(u))

for adjacent triangles △kij,△lij ∈ F sharing the edge ij ∈ E. It is clear that under the Delaunay
condition η ≥ 0, and under the uniformly Delaunay condition η ≥ ε > 0. We call l is flat if Ki = 0 for
every i ∈ V .

Remark 1.3. For i ∈ ∂V , the curvature is defined as Ki = π − ∑
jk∶△ijk∈F

θijk. It is clear that K is

invariant under dilation, i.e. u being a constant.

A map φ ∶ ∣T ∣ → C is called a geodesic embedding if for every ij ∈ E, φ maps ij to a segment
connecting φ(i) and φ(j), and φ maps ∣T ∣ homeomorphically to its image. If further φ is surjective,
we call φ is a geodesic homeomorphism or a geodesic triangulated plane. It is clear that a geodesic
embedding φ gives a flat PL metric l(φ), or l for short, by using the Euclidean distance.

Let φ,φ′ be two geodesic triangulated planes with PL metric l, l′. Suppose l, l′ are discrete
conformal, l′ = u ∗ l. The conformal factor u being a constant is clearly a solution. The rigidity
problem is that whether u must be a constant. In [20], Wu-Gu-Sun first gave an affirmative answer
to this problem under the condition T being the standard hexagonal triangulation of the plane
with l ≡ 1 and l′ satisfying the uniformly acute condition. They also gave a counter-example for
the case l′ being flat but not a geodesic triangulated plane. In [9] Luo-Sun-Wu improved the result
above by showing that the rigidity of the standard hexagonal geodesic triangulated plane holds
under the condition l′ satisfying the Delaunay condition. Dai-Ge-Ma also showed this result in [3]
independently. Recently, Wu in [22] made a breakthrough to release the special case of the geodesic
triangulated plane to general cases under certain conditions.

Theorem 1.4. (Theorem 1.2 in [22]) Let T be a triangulated plane. Let φ ∶ ∣T ∣ → C be a geodesic
homeomorphism with the induced PL metric l. Let φ′ ∶ ∣T ∣ → C be a geodesic embedding with
the induced PL metric l′. Suppose both l, l′ satisfy the uniformly nondegenerate condition and the
uniformly acute condition. If l and l′ are discrete conformal, l′ = u ∗ l, then u is a constant.

In this article, we modify Wu’s proof in [22] to improve this result by weakening the uniformly
acute condition to the uniformly Delaunay condition.

Theorem 1.5. Let T be a triangulated plane. Let φ ∶ ∣T ∣ → C be a geodesic homeomorphism
with the induced PL metric l. Suppose l satisfies the uniformly nondegenerate condition and the
uniformly Delaunay condition. Let φ′ ∶ ∣T ∣ → C be a geodesic embedding with the induced PL metric
l′. Suppose l′ satisfies the uniformly nondegenerate condition and the Delaunay condition. If l and
l′ are discrete conformal, l′ = u ∗ l, then u is a constant.

Remark 1.6. In [1], Bobenko-Pinkall-Springborn observed the relation between Luo’s discrete con-
formality and the hyperbolic polyhedra in H3. In fact the rigidity problem in this article corresponds
to the Cauchy rigidity of the ideal hyperbolic polyhedra and the Delaunay condition corresponds to
the convexity of the hyperbolic polyhedra. One may also refer to [3].

For the study of geodesic triangulations of other surfaces, one may refer to [11, 14, 15, 16, 17].
The article is organized as follows. In Section 2, we study the hyperbolic discrete conformality.

In Section 3, we show some useful maximum principles in the discrete conformal geometry. In
Section 4, we modify Wu’s proof to show the main result Theorem 1.5.
Acknowledgement: The author would like to thank Tianqi Wu and Huabin Ge. The author is
supported by NSF of China (No.11871283, No.11971244 and No.12071338).
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2. Hyperbolic discrete conformality

The notion of the hyperbolic discrete conformality was first introduced by Bobenko-Pinkall-
Springborn in [1]. A hyperbolic PL metric on T is a function, lh ∶ E → R+ such that for every
ijk ∈ F , ijk forms a hyperbolic triangle under the length lh. Let lh, lh′ be two hyperbolic PL
metrics on T . We call lh is hyperbolic discrete conformal to lh′ if there exists a function uh ∶ V → R
such that

sinh
lhij

2
= e(uhi +uhj )/2 sinh

lh′ij

2
,

denoted as lh′ = uh ∗h lh. The function uh is called the hyperbolic conformal factor. A hyperbolic
PL metric is called Delaunay if for every adjacent hyperbolic triangles △ijk,△ijl ∈ F isometric
embedding in the Poincaré disc D, then l ∉ int(C), where int(C) is the interior of the circumscribed
circle of △ijk in the Euclidean sense. The curvature is similarly defined by using the hyperbolic
metric. A map φh ∶ ∣T ∣ → C is called a hyperbolic geodesic embedding if for every ij ∈ E, φh maps ij
to a hyperbolic geodesic segment connecting φh(i) and φh(j), and φh maps ∣T ∣ homeomorphically
to its image. It is clear that a hyperbolic geodesic embedding φh gives a flat hyperbolic PL metric
lh(φh), or lh for short, by using the hyperbolic distance dh, lhij = dh(φh(i), φh(j)).

Let i ∈ V o and Ri be its 1-ring neighborhood. Denote D as the unit disc with the Euclidean metric
and D as the unit disc with the hyperbolic metric. Let φ ∶ Ri → D ⊂ C be a geodesic embedding.
It seems that φ also induces a hyperbolic geodesic embedding φh ∶ Ri → D by connecting the edges
by the hyperbolic segments of D and mapping the faces homeomorphically to its image. It is not
true in general, whose reason will be clarified in the proof of the following lemma, while it indeed
holds under certain conditions.

Lemma 2.1. Let φ ∶ Ri → D ⊂ C be a geodesic embedding such that θkij ≥ ε for all △ijk ∈ Ri, for
some constant ε > 0. Suppose

lij < (1 − ∣φ(i)∣2) sin ε, for every ij ∈ E.
Then φ induces a hyperbolic geodesic embedding φh ∶ Ri → D such that φh coincides with φ on the
set of vertices, maps the edges to the hyperbolic segments and maps the faces homeomorphically to
its image.

Proof. Let deg i = m. Let zk = φ(jk), jk ∈ Ri ∖ {i}, k = 1,⋯,m, be anti-clockwise on φ(Ri), and
z0 = φ(i). Let expz0 be the exponential map of the hyperbolic metric at z0. Identifying Tz0D with

C by translating z0 to the origin, then for z ∈ D, denote v(z) = exp−1z0 z ∈ C. Then we only need to
show the following claims.

(1) arg(v(zk+1)
v(zk)

) ∈ (0, π), k = 1,⋯,m,

and

(2)
m

∑
k=1

arg (v(zk+1)
v(zk)

) = 2π,

where zm+1 = z1. Fix k ∈ {1,⋯,m}, denote

P = {z ∈ C ∶ arg( z − z0
zk − z0

) ∈ (0, π)},

and

Ph = {z ∈ D ∶ arg( v(z)
v(zk)

) ∈ (0, π)}.

We first show the claim (1). Since φ is a geodesic embedding into D, we have zk+1 ∈ P . But if
3



zk+1 ∈ P ∖ Ph, then φh fails to be a hyperbolic geodesic embedding. So we need to rule out this
possibility.

Let γh be the entire geodesic connecting z0 and zk with respect to the hyperbolic metric. If γh
is a straight line, then zk+1 ∈ Ph. Suppose γh is a circle, which is orthogonal to the boundary of the
unit disc D. We denote z∗ as its Euclidean center and R as its Euclidean radius. Then

R2 + 1 = ∣z∗∣2 ≤ (∣z0∣ +R)2.
So

1 − ∣z0∣2 ≤ 2R∣z0∣ ≤ 2R.

Then

sin
∠z0z∗zk

2
= lijk

2R
< (1 − ∣z0∣

2) sin ε
2R

≤ sin ε.

So

∠z0zk+1zk ≥ ε >
1

2
∠z0z∗zk,

and

∠z0zk+1zk ≤ π − ε < π −
1

2
∠z0z∗zk.

Then from the knowledge of the plane geometry, we see zk ∈ Ph. We finish the proof of claim (1).
Next we show the claim (2). We have

(3) arg (v(zk+1)
v(zk)

) + arg ( v(zk)
zk − z0

) = arg (zk+1 − z0
zk − z0

) + arg ( v(zk+1)
zk+1 − z0

) + 2nπ,

for some integer n. Notice that

arg ( v(zk)
zk − z0

) ∈ (−π
2
,
π

2
).

Then together with the claim (1), both the right hand side and the left hand side of the Equation
(3) lies in (−π2 ,

3π
2 ), so n = 0. Then we obtain

m

∑
k=1

arg (v(zk+1)
v(zk)

) =
m

∑
k=1

arg (zk+1 − z0
zk − z0

) = 2π.

We finish the proof. �

Remark 2.2. In [22], Wu showed that the acute condition also ensures that φh is a hyperbolic
geodesic embedding.
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The discrete conformality and the hyperbolic discrete conformality are related as follows. One
may refer to Lemma 5.1 in [22] for the proof.

Lemma 2.3. Let φ,φ′ ∶ ∣T ∣ → D ⊂ C be two geodesic embeddings with the induced PL metric l, l′

respectively. Suppose both φ,φ′ induce hyperbolic geodesic embeddings φh, φh′ ∶ ∣T ∣ → D with the
induced hyperbolic PL metric lh, lh′ respectively. Then l and l′ are discrete conformal l′ = u∗ l with
the conformal factor u if and only if l and l′ are hyperbolic discrete conformal lh′ = uh ∗h lh with
the hyperbolic conformal factor uh, where u and uh are related by

uhi = ui + log
1 − ∣zi∣2
1 − ∣z′i∣2

,

for zi = φ(i), z′i = φ′(i).

Remark 2.4. In fact the assumption that φ,φ′ induce hyperbolic geodesic embeddings is unnecessary
if we consider the generalized (hyperbolic) PL metric.

3. Maximum principles

Maximum principle plays a very important role in partial differential equations and geometric
analysis. For the discrete conformal geometry, the curvature K, which is clearly nonlinear as an
operator on functions on the set of vertices, also satisfies the maximum principle. The following
lemma is a corollary of Theorem 3.1 in [9]. In [3], there is another proof of the maximum principle
for a special case.

Lemma 3.1. Let i ∈ V o and Ri be its 1-ring neighborhood. Let φ,φ′ ∶ Ri → C be two Delaunay geo-
desic embeddings with induced PL metric l, l′ respectively. Suppose φ and φ′ are discrete conformal,
l′ = u ∗ l. Then

max
j∈Ri

∣uj ∣ ≤ max
j∈∂Ri

∣uj ∣.

Furthermore if ∣ui∣ = max
j∈Ri

∣uj ∣, then u is a constant on Ri.

As a direct corollary, we have the following maximum principle.

Lemma 3.2. Let T = (V,E,F ) be a triangulation of a closed surface with boundary. Let φ,φ′ ∶
∣T ∣ → C be two Delaunay geodesic embeddings with induced PL metric l, l′ respectively. Suppose φ
and φ′ are discrete conformal, l′ = u ∗ l. Then

max
j∈V
∣uj ∣ ≤ max

j∈∂V
∣uj ∣.

Furthermore if max
j∈V o
∣uj ∣ = max

j∈V
∣uj ∣, then u is a constant on V .

For the hyperbolic setting, the minimum principle holds, even though we still call it “maximum
principle”. The proof is in fact from Lemma 5.3 in [22]. We give a proof here to mention that the
uniformly acute condition in Lemma 5.3 in [22] is just to ensure the hyperbolic geodesic embedding.

Lemma 3.3. Let i ∈ V o and Ri be its 1-ring neighborhood. Let φh, φh′ ∶ Ri → D be two Delaunay
hyperbolic geodesic embeddings with induced hyperbolic PL metric lh, lh′ respectively. Suppose φh

and φh′ are hyperbolic discrete conformal, lh′ = uh ∗h lh. Then

min
j∈Ri

{uhj ,0} ≥ min
j∈∂Ri

{uhj ,0}.

Furthermore if uhi = min
j∈Ri

{uhj ,0}, then uh is identically 0 on Ri.

5



Proof. Since the hyperbolic discrete conformality and conformal factor are invariant under the
hyperbolic isometric group, we may assume φh(i) = 0, φh′(i) = 0. Then φ,φ′ induce geodesic
embeddings into D ⊂ C with PL metric l, l′ respectively. Notice that the hyperbolic isometric
group preserves circles, so l, l′ are also Delaunay. From Lemma 2.3, since lh′ = uh ∗h lh, we have l
and l′ are also discrete conformal, l′ = u ∗ l for

uj = uhj − log
1 − ∣zj ∣2
1 − ∣z′j ∣2

.

In particular ui = uhi . From the maximum principle Lemma 3.1, we obtain there exists j0 ∈ ∂Ri
such that uj0 ≤ ui. Suppose uhi ≤ 0. Then

∣z′j0 ∣ = l
′

ij0 = e
(ui+uj0)/2lij0 ≤ lij0 = ∣zj0 ∣.

Therefore

uhj0 = uj0 + log
1 − ∣zj0 ∣2
1 − ∣z′j0 ∣2

≤ ui + log
1 − ∣zj0 ∣2
1 − ∣z′j0 ∣2

≤ ui = uhi .

So
min
j∈Ri

{uhj ,0} ≥ min
j∈∂Ri

{uhj ,0}.

Furthermore if uhi = min
j∈Ri

{uhj ,0}, then uhi = ui ≤ 0 and uhi = uhj0 for some j0 ∈ ∂Ri. Keep track the

inequalities in the discussion above, from Lemma 3.1 we see u ≡ 0 and then uh ≡ 0 on Ri. �

As a direct corollary, we have

Lemma 3.4. Let T = (V,E,F ) be a triangulation of a closed surface with boundary. Let φh, φh′ ∶
∣T ∣ → D be two Delaunay hyperbolic geodesic embeddings with induced hyperbolic PL metric lh, lh′

respectively. Suppose φh and φh′ are hyperbolic discrete conformal, lh′ = uh ∗h lh. Then

min
j∈V
{uhj ,0} ≥ min

j∈∂V
{uhj ,0}.

Furthermore if min
j∈V o
{uhj ,0} = min

j∈V
{uhj ,0}, then uh is identically 0 on V .

4. Modification of Wu’s Proof

In [22], Wu showed Theorem 1.4 under the uniformly acute condition. Wu followed the strategy
of He’s proof in his celebrated work [8], where he showed the rigidity of infinite disc patterns. The
proof has two steps, first to show the conformal factor u is bounded, second to show u is a constant.

In Section 3.1 of [22], Wu showed the rigidity under the assumption of the boundedness of u,
which is the following lemma.

Lemma 4.1. Let T be a triangulated plane. Let φ ∶ ∣T ∣ → C be a geodesic homeomorphism with the
induced PL metric l. Suppose l satisfies the uniformly nondegenerate condition and the uniformly
Delaunay condition. Let φ′ ∶ ∣T ∣ → C be a geodesic embedding with the induced PL metric l′.
Suppose l′ satisfies the Delaunay condition. If l and l′ are discrete conformal, l′ = u ∗ l, with
bounded conformal factor u, then u is a constant.

Notice that in Section 3.1 of [22], the uniformly acute condition only plays the role to ensure
that a small perturbation of l preserves the Delaunay condition. So the uniformly acute condition
can be replaced by the uniformly Delaunay condition in Lemma 4.1.

To show u is bounded, the following lemma plays a key role. In [22], it is Lemma 2.9 except
the uniformly acute condition is replaced by the uniformly Delaunay condition. For r > 0, denote
Dr = {z ∈ C ∶ ∣z∣ < r} be the open disc of radius r.

6



Lemma 4.2. Let T = (V,E,F ) be a triangulated plane. Let φ,φ′ ∶ ∣T ∣ → C be two geodesic embed-
dings with the induced PL metric l, l′ respectively. Suppose both l, l′ satisfy the uniformly nonde-
generate condition with constant ε > 0 and the Delaunay condition. Suppose l and l′ are discrete
conformal, l′ = u ∗ l. Let r, r′ > 0. Let T0 be a subcomplex of T . Suppose

φ(∣T0∣) ⊂Dr, Dr′ ⊂ φ′(∣T0∣).

Then there is a constant M =M(ε) > 0 such that for every i ∈ V0 satisfying φ′(i) ∈Dr′/2, we have

ui ≥ log
r′

r
−M.

We follow the idea of Wu’s proof in Section 5 of [22], and modify the proof by an observation
that the condition in Lemma 2.1 also implies the hyperbolic geodesic embedding. Before the proof
of Lemma 4.2, we show some basic estimates under the uniformly degenerate condition.

Lemma 4.3. For a triangle △ijk satisfying the uniformly nondegenerate condition with constant

ε > 0, then the length ratio is uniformly bounded, sin ε ≤ lij
lik

≤ sin−1 ε. As a corollary, for two PL

metric on a triangle ijk satisfying the uniformly nondegenerate condition with constant ε > 0, which
are discrete conformal with conformal factor u, then u has the gradient estimate ∣ui−uj ∣ ≤ 4 log sin ε.

Proof. For a triangle △ijk, by the sine law, we have
lij
lik

= sin∠θkij

sin∠θj
ik

≥ sin∠θkij ≥ sin ε. Let l, l′ be two

PL metric on a triangle ijk satisfying the uniformly nondegenerate condition with constant ε > 0,
and l′ = u ∗ l. Then

e(ui−uj)/2 = e
(ui+uk)/2

e(uj+uk)/2
= l

′

ik

lik

ljk

l′jk
≤ sin2 ε.

So ui − uj ≤ 4 log sin ε. �

Now we prove the key estimate Lemma 4.2.

Proof. By approaching Dr′ by Dr′−δ, we may assume Dr′ ⊂ φ′(∣T0∣). By scaling, we may assume

r = sin3 ε
4 ≤ 1

4 and r′ = 1. Consider V1 = {i ∈ V ∶ φ′(i) ∈D =D1} and T1 as the subcomplex generated
by V1. Then φ,φ′ map ∣T1∣ into D. We notice that V1 is finite. In fact if V1 is infinite, then there
exists {vn}n=1,2,⋯ ∈ V1 such that vn → v∞ ∈D. Since v∞ lies in a triangle and the degree of a vertex
is finite, it gives a contradiction. Let zi = φ(i), z′i = φ′(i). Denote

uhi = ui + log
1 − ∣zi∣2
1 − ∣z′i∣2

.

We claim uhi ≥ 0 for every i ∈ V1. Let i0 attain the minimum of u in V1.
(1) If i0 ∈ V o

1 and l′i0j < (1 − ∣z′i0 ∣
2) sin ε, for every i0j ∈ E, then from Lemma 2.1, φ′ induces

a hyperbolic geodesic embedding φh′ from the 1-ring neighborhood Ri0 of i0 into D. Since φ′

is Delaunay, φh′ is also Delaunay. Since φ(∣V1∣) ⊂ Dsin3 ε/4, for the same reason φ also induces

a Delaunay hyperbolic geodesic embedding φh from Ri0 into D. Then the hyperbolic maximum
principle Lemma 3.3 implies uhi0 ≥ 0.

(2) If i0 ∈ V o
1 and there exists j0 ∈ V1, i0j0 ∈ E such that l′i0j0 ≥ (1 − ∣z

′

i0
∣2) sin ε, then from Lemma

7



4.3

e
uhi0 = eui0 ⋅ 1 − ∣zi0 ∣2

1 − ∣z′i0 ∣2

=
l′i0j0
li0j0

⋅ e(ui0−uj0)/2 ⋅ 1 − ∣zi0 ∣2
1 − ∣z′i0 ∣2

≥
l′i0j0
li0j0

⋅ sin2 ε ⋅ 1 − ∣zi0 ∣2
1 − ∣z′i0 ∣2

≥ sin3 ε ⋅ 1 − ∣zi0 ∣2
li0j0

≥ sin3 ε ⋅ 1/2
2r

= 1.

(3) If i0 ∈ ∂V1, then there exists j1 ∈ V such that j1 ∉ D. Then l′i0j1 ≥ 1 − ∣z′i0 ∣. As the estimates

above, assume sin ε ≤ 1
2 , we have

e
uhi0 ≥

l′i0j1
li0j1

⋅ sin2 ε ⋅ 1 − ∣zi0 ∣2
1 − ∣z′i0 ∣2

≥ 1

li0j1
⋅ sin2 ε ⋅ 1 − ∣zi0 ∣2

1 + ∣z′i0 ∣
≥ sin3 ε ⋅ 1/2

2r
= 1.

So we show uhi ≥ 0 for every i ∈ V1. Then for i ∈ V0 satisfying φ′(i) ∈Dr′/2, set M = − log sin3 ε
2 , we

have

ui = uhi − log
1 − ∣zi∣2
1 − ∣z′i∣2

≥ − log
1 − ∣zi∣2
1 − ∣z′i∣2

≥ log(1 − ∣z′i∣2) ≥ log
1

2
= log

r′

r
−M.

�

By using the estimate Lemma 4.2 and the conformal modulus, Wu showed the boundedness of
u in Section 3.2 of [22], which is the following lemma.

Lemma 4.4. Let T be a triangulated plane. Let φ ∶ ∣T ∣ → C be a geodesic homeomorphism with
the induced PL metric l. Let φ′ ∶ ∣T ∣ → C be a geodesic embedding with the induced PL metric
l′. Suppose both l, l′ satisfy the uniformly nondegenerate condition with constant ε > 0 and the
Delaunay condition. Suppose l and l′ are discrete conformal, l′ = u ∗ l. Then u is bounded.

Together with Lemma 4.4 and Lemma 4.1, we finish the proof of Theorem 1.5.
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