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Abstract

This paper presents a Fourier integral pseudospectral (FIPS) method for a general class of nonlinear, periodic op-

timal control (OC) problems with equality and/or inequality constraints and sufficiently smooth solutions. In this

scheme, the integral form of the problem is collocated at an equispaced set of nodes, and all necessary integrals are

approximated using highly accurate Fourier integration matrices (FIMs). The proposed method leads to a nonlin-

ear programming problem (NLP) with algebraic constraints, which is solved using a direct numerical optimization

method. Sharp convergence and error estimates are derived for Fourier series, interpolants, and quadratures used

for smooth and continuous periodic functions. Two nonlinear examples are considered to show the accuracy and

efficiency of the numerical scheme.

Keywords: Fourier interpolation; Integral reformulation; Integration matrix; Periodic optimal control;

Pseudospectral method.

1. Introduction

The improvements in performances and efficiency induced by periodic operations and controls have been increas-

ingly valuable in the current world. The optimization of periodic processes and phenomena leads naturally to periodic

optimal control (OC) problems, which has been the subject of several studies and applications such as computing pe-

riodic orbits for space systems, flight enhancements and optimal mission planning, automobile test-driving, reduction

of railway noise and vibration effects in mechanical systems, reduction of energy demand of continuous distillation

processes, controlling periodic adsorbers and reactors, the design of walking robots, production planning, sustainable

harvesting of ecological, biological, and energy resources, determining fast switching periodic protocols for COVID-

19; cf. [1–27]. For autonomous problems, optimal periodic controls that improve the steady-state solution exist and

can be derived using the π-test ; cf. [3, 28].

Several methods were presented in the literature to solve periodic OC problems. The maximum principle was

perhaps the standard approach to solve periodic OC problems in the 1970s and 1980s; cf. [29–37]. More recent

applications of the maximum principle for solving periodic OC problems can be found in [38–45]. Other methods

include a describing function approach [46], Fourier series expansions [47–49], Hermite collocation [50], asymptotic

expansions [51–54], shooting methods [6, 14, 55–57], finite-difference schemes [26, 55, 58], Fourier pseudospectral

(PS) method [59], Hermite-Simpson, Hermite-Legendre-Gauss-Lobatto, Chebyshev-Legendre, and Jacobi-PS meth-

ods [58], value iteration method [60], Markov chain and symplectic methods [61], multiharmonic finite element

(FEM) approximations [62–64], preconditioning techniques [65], adaptive dynamic programming [66], modified Q-

Learning method [67], etc. For periodic problems with smooth solutions, however, the series expansion and function

classes that have proven to be the most successful by far are Fourier series expansions and Fourier interpolant functions

for many reasons including, but not limited to: (i) both classes converge exponentially fast with increasing expansion
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terms faster than any polynomial rates [68–72], (ii) the periodicity conditions are satisfied automatically when the

solution is represented by any of the two classes without additional constraints, (iii) the coefficients of differenti-

ated/integrated Fourier expansions/spectral interpolants are easily obtained [71], (iv) the conversion between Fourier

coefficients and the function values at the collocation/interpolation nodes is very fast through the FFT algorithm, (v)

Fourier basis functions can represent a wider range of frequencies than Chebyshev and Legendre basis functions of-

ten used in common direct PS methods for solving OC problems, which means that they can capture more detail in

the solution, leading to greater accuracy, (vi) Legendre basis functions are only defined on a finite interval, which

makes them less appealing for problems with periodic boundary conditions, as they can introduce discontinuities at

the boundaries, (vii) for large expansion terms, the derivative of Fourier interpolants can be efficiently computed us-

ing the FFT in just O(N log2 N) operations, where N is the number of terms of Fourier approximation [73], (viii) the

Fourier differentiation matrix for the first derivative is skew-symmetric, which ensures stability of discretization for

evolutionary, linear PDEs with time-varying coefficients [74], (ix) although the Fourier integration matrix (FIM) is a

dense matrix, its first row is a zero row and the remaining rows form “a row-wise element-twins matrix” in the sense

that each element in each row has exactly one twin element in the same row allowing for faster computations [75], and

(x) the FIM constructed using equi-spaced nodes on any finite interval of length T can be normalized and generated

efficiently using a T -invariant constant “basic/principle/generating/natural” FIM, which can be constructed and stored

offline and invoked later when running the solver codes [76]. These reasons and more furnish little incentives to seek

alternative bases than Fourier basis functions for periodic OC problems.

In this work, we propose to solve generally nonlinear, periodic OC problems exhibiting sufficiently smooth solu-

tions using an integral PS (IPS) method1 based on Fourier basis functions. Although PS methods are known for being

easier, more flexible to implement, and computationally more efficient than the alternative Galerkin and tau approxi-

mations, especially in the presence of nonlinearities, variable coefficients, and boundary conditions; cf. [77–79], IPS

methods have the additional advantage of reformulating the dynamical system equations into their integral form first

as a prerequisite before the collocation step starts; thus, avoids the usual ill-conditioning associated with numerical

differentiation processes. One may perform the integral reformulation by either a direct integration of the dynamical

system equations in the presence of constant coefficients, or by representing the highest-order derivative of the so-

lution involved in the problem by a nodal finite series in terms of its grid point values and then solve for those grid

point values before successively integrating back to obtain the sought solution grid point values in a stable manner.

Our proposed method follows the former approach and enjoys all of the aforesaid merits; in addition, it (i) can be

easily programmed, (ii) can straightforwardly handle inequality constraints on the state- and control-variables, (iii)

dispenses the need to solve for the adjoint variables associated with the maximum principle, which often require pre-

cise initial guesses, and runs without sophisticated transversality conditions, and (iv) directly discretizes the periodic

OC problem on any time interval [0, T ], for T > 0, without the necessity to transform the domain first into the interval

[0, 2π] as applied earlier in [59]. To the best of our knowledge, the present paper introduces the first direct Fourier

IPS (FIPS) method to date for solving periodic OC problems exhibiting smooth solutions in which the OC problem is

discretized into a nonlinear programming problem (NLP) in conjuction with FIMs by means of FIPS methods and the

solution is sought in the physical space. For periodic OC problems exhibiting bang-bang solutions, the reader may

consult our recent works in [27, 76] in which the solutions can be recovered within excellent accuracies using an FIPS

method and an adaptive h-IPS method2 composed through a predictor-corrector algorithm. For periodic fractional

OC problems in which the system dynamics are described by fractional derivatives that preserve the periodicity of

periodic functions, the reader may consult our recent works in [80, 81]. The reader may consult further [82] for a

list of the advantages of direct IPS methods compared with other common methods for solving OC problems, such as

indirect and parameterization methods.

The organization of the paper is as follows. In the next section, we give some preliminary notations that we adopt

throughout the paper. Section 3 contains a statement of the periodic OC problem. Section 4 presents the necessary

tools we shall use to discretize the OC problem. Section 5 presents a rigorous study and sharp estimates on the

convergence rates and errors of Fourier series, interpolants, and quadratures for smooth T -periodic functions. Section

1An IPS method is a robust variant of a PS method that is aka as a PS integration method.
2An adaptive h-IPS method has the ability to recover the discontinuous/non-smooth solutions with high accuracy via the decomposition of the

solution interval into smaller mesh intervals or elements (h-refinement), and approximating the restricted solution on each element with a finite,

nodal expansion series in terms of the solution grid point values by means of interpolation [27].
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6 outlines the method of approach. Numerical results on two test problems are contained in Section 7 followed by

some concluding remarks in Section 8 and a future work in Section 9.

2. Preliminary Notations

Logical Symbols. ∀, ∀a , ∀e , and ∀s stand for the phrases “for all,” “for any,” “for each,” and “for some,” respectively.

Set and List Notations. The symbols C and F denote the sets of all complex-valued functions and all real-valued

functions; moreover, Z0,Z
+,Z+

0
,Z+e , and R+

0
denote the sets of non-zero integers, positive integers, non-negative in-

tegers, positive even integers, and non-negative real numbers, respectively. The notations i : j : k or i( j)k indicate

a list of numbers from i to k with increment j between numbers, unless the increment equals one where we use the

simplified notation i : k. For example, 0 : 0.5 : 2 simply means the list of numbers 0, 0.5, 1, 1.5, and 2, while 0 : 2

means 0, 1, and 2. The set of any numbers y1, y2, . . . , yn is represented by {y1:n}. We define Jn = {0 : n − 1} and

J′n = Jn\{0} ∀a n ∈ Z+; moreover, KN = {−N/2 : N/2} and K′
N
= K\{N/2} ∀a N ∈ Z+e . Also, Sn = {t0:n−1} is the set of

n equally-spaced points such that t j = T j/n∀ j ∈ Jn.

Function Notations. For convenience, we shall denote g(tn) by gn ∀a g ∈ C, unless stated otherwise.

Space Notations. TT is the space of T -periodic, univariate functions ∀a T ∈ R+. Ck(Ω) is the space of k times con-

tinuously differentiable functions on Ω∀k ∈ Z+
0

.

Vector Notations. We shall use the shorthand notation tN (or tt
0:N−1

) to stand for the column vector [t0, t1, . . . , tN−1]t.

g0:N−1 and g(0:n) denote the column vector [g0, g1, . . . , gN−1]t and the column vector of derivatives [g, g′, . . . , g(n)]t ∀n ∈
Z+

0
in respective order. In general, ∀a h ∈ F and row/column vector y whose ith-element is yi ∈ R, the notation

h(y) stands for a vector of the same size and structure of y such that h(yi) is the ith element of h(y). Moreover, by

h(y) or h1:m[y] with a stroke through the square brackets, we mean [h1(y), . . . , hm(y)]t ∀a m-dimensional column vec-

tor function h, with the realization that the definition of each array hi(y) follows the former notation rule ∀e i. If y

is a vector function, say y = y(t), then we write h(y(tN)) and h(y(tN)) to denote [h(y(t0)), h(y(t1)), . . . , h(y(tN−1))]t

and [h(y(t0)), h(y(t1)), . . . , h(y(tN−1))]t in respective order. One can naturally extend these notations into higher di-

mensions; for instance, h(y(tN), tN) and h(y(tN), tN) simply means the column vector [h(y(t0), t0), h(y(t1), t1), . . . ,

h(y(tN−1), tN−1)]t and the N × m matrix [h(y(t0), t0), h(y(t1), t1), . . . , h(y(tN−1), tN−1)]t, respectively, and so on.

Interval Notations. The specific interval [0, c] is denoted by Ωc ∀c > 0. For example, [0, tn] is denoted by Ωtn ;

moreover,Ωt0:N−1
stands for the list of intervalsΩt0 ,Ωt1 , . . . ,ΩtN−1

.

Integral Notations. By closely following the convention for writing definite integrals introduced in [75], we denote
∫ tl

0
h(t) dt by I(t)

tl
h∀a integrable h ∈ TT . If the integrand function h is to be evaluated at any other expression of t, say

u(t), we express
∫ tl

0
h(u(t)) dt with a stroke through the square brackets as I(t)

tl
h[u(t)]. We adopt the notation I(t)

tN
h to

denote the Nth-dimensional column vector
[

I(t)
t0

h,I(t)
t1

h, . . . ,I(t)
tN−1

h
]t

. Furthermore, we write I(t)
tN

h to denote the N ×m

matrix
[

I(t)
t0

h,I(t)
t1

h, . . . , I(t)
tN−1

h
]t ∀a m-dimensional vector function h.

Matrix Notations. On, 1n, and In stand for the zero, all ones, and the identity matrices of size n. Cn,m indicates that

C is a rectangular matrix of size n × m; moreover, Cn denotes a row vector whose elements are the nth-row elements

of C, except when Cn = On, 1n, or In, where it denotes the size of the matrix. For convenience, a vector is represented

in print by a bold italicized symbol while a two-dimensional matrix is represented by a bold symbol, except for a

row vector whose elements form a certain row of a matrix where we represent it in bold symbol as stated earlier.

For example, 1n and 0n denote the n-dimensional all ones- and zeros- column vectors, while 1n and On denote the

all ones- and zeros- matrices of size n, respectively. Finally, the notations [.; .] and vec(.) denote the usual vertical

concatenation and vectorization of a matrix, respectively.

3. Problem Statement

Let m, n, p ∈ Z+, T ∈ R+,U = {u : R+
0
→ Rm s.t. u is a T -periodic, smooth vector function}, and consider the

dynamical system model

ẋ(t) = f (x(t), u(t), t) , ∀t ∈ ΩT , (3.1a)

3



subject to the periodic boundary conditions

x(0) = x(T ), (3.1b)

and the inequality path constraints

c(x(t), u(t), t) ≤ 0p, (3.1c)

where x : R+
0
→ Rn, u ∈ U, f = ( fi)1≤i≤n : Rn × Rm × R+

0
→ Rn, and c = (ci)1≤i≤p : Rn × Rm × R+

0
→ Rp with

fi, ci ∈ Ck(R+
0
) ∀s k ≥ 1. For a given time period T , we aim to find the optimal T -periodic waveforms x∗ : R+

0
→ Rn

and u∗ ∈ U, which satisfy Conditions (3.1a)-(3.1c) and minimize the performance index functional

J(u) =
1

T
I(t)

T
g[x(t), u(t), t],

where g : Rn × Rm × R+
0
→ R such that g ∈ Ck(R+

0
) ∀s k ≥ 1. We refer to this problem by Problem P. Such a

problem is a periodic, finite-horizon OC problem in Lagrange form where x and u are the state and control variables,

respectively. We assume that both g and f are T -periodic. If we integrate both sides of Eq. (3.1a) over the time

intervalΩt ∀s t ∈ ΩT\{0}, we transform the OC problem into its integral form where the same performance index J is

minimized subject to the integral equation

x(t) = x(0) + I(τ)
t f [x(τ), u(τ), τ],

and Conditions (3.1b) and (3.1c). We refer to this integral form of Problem P by Problem IP. Although Problems P
and IP are mathematically equivalent, they are not necessarily numerically equivalent in floating-point arithmetic. In

particular, ProblemIP often admits better approximate solutions in practice due to the well-conditioning of numerical

integration operators in general; cf. see [83–88] and the Refs. therein.

4. FPS Interpolation and Integration Matrices

Let v∗ be the complex conjugate of v ∀a v ∈ C,N ∈ Z+e , t j ∈ SN ∀ j ∈ JN , f j = f (t j) ∀a f ∈ TT , and consider the

N/2-degree, T -periodic Fourier interpolant, IN f , such that (IN f )0:N−1 = f0:N−1 so that

IN f (t) =
∑′

|k|≤N/2

f̃keiωkt, (4.1)

where ωα =
2πα

T
∀α ∈ R, f̃k is the discrete Fourier interpolation coefficient given by

f̃k =
1

N

N−1
∑

j=0

f je
−iωk t j , ∀k ∈ KN ,

and the primed sigma denotes a summation in which the last term is omitted. Notice that f̃N/2 = f̃−N/2, and the DFT

pair is defined by










































f̃ k =
1

N

N−1
∑

j=0

f je
−iωkt j =

1

N

N−1
∑

j=0

f je
−iω̂ jk , k ∈ K′N ,

f j =
∑′

|k|≤N/2

f̃ keiωkt j =
∑′

|k|≤N/2

f̃ keiω̂ jk , ∀ j ∈ JN ,

(4.2a)

where ω̂k = 2πk/N ∀k. Substituting Eq. (4.2a) into Eq. (4.1), and then swapping the order of the summations, express

the interpolant in terms of the following function grid point values form

IN f (t) =

N−1
∑

j=0

f jF j(t), (4.3)
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where F j(t) is the N/2-degree, T -periodic trigonometric Lagrange interpolating polynomial given by

F j(t) =
1

N

∑′

|k|≤N/2

eiωk(t−t j) =

[

1

N
sin

(

πN

T

(

t − t j

)

)

cot

(

π

T

(

t − t j

)

)

]

t,t j

,

∀ j ∈ JN . Notice that F j(tl) = δ j,l ∀ j, l ∈ JN , where δ j,l is the kronecker delta function of variables j and l. The Fourier

PS interpolation operator IN f defined by (4.3) is an orthogonal projection on the space span
{

eiωkt : k ∈ K′
N

}

with the

discrete L2 inner product

(u, v)N =
T

N

N−1
∑

j=0

u jv
∗
j , ∀a u, v ∈ C.

Integrating IN f over the intervalΩtl yields

I(t)
tl

(IN f ) =

N−1
∑

j=0

θl, j f j, ∀l ∈ JN , (4.4)

where

θl, j =
1

N



























tl +
Ti

2π

∑′

|k|≤N/2
k,0

1

k
e−iωkt j

(

1 − eiωk tl
)



























, ∀l, j ∈ JN ,

are the entries of the first-order square FIM, Θ, of size N; cf. [27]. The definite integrals of IN f over the intervals

Ωy0:M−1
∀s M-random set of points {y0:M−1} ⊂ ΩT\{0} : yl < SN∀M ∈ Z+, l ∈ JM are given by

I(t)
yl

(IN f ) =

N−1
∑

j=0

θ̂l, j f j, ∀l ∈ JM , (4.5)

where

θ̂l, j = I(t)
yl
F j =

1

N



























yl +
Ti

2π

∑′

|k|≤N/2
k,0

1

k
e−iωkt j

(

1 − eiωkyl

)



























, (4.6)

∀l ∈ JM, j ∈ JN , are the elements formulas of the associated rectangular FIM, Θ̂ =
(

θ̂l, j
)

: l ∈ JM, j ∈ JN . One can

further write Formulas (4.4) and (4.5) in matrix notation as

I(t)
tN

(IN f ) = Θ f0:N−1 and I(t)
yM

(IN f ) = Θ̂ f0:N−1,

respectively. In the special case when yl = T , Formula (4.6) reduces to θ̂l, j = T/N ∀ j ∈ JN . For convenience, we

denote θ̂l, j by θN, j in this particular case and define ΘN =
T
N

1t
N so that

I(t)

T
(IN f ) = ΘN f0:N−1 =

T

N

(

1t
N f0:N−1

)

. (4.7)

Further information about the peculiar structure, characteristics, and algorithmic construction of FIMs can be found

in [27, 75].

5. Errors and Convergence Rate for Smooth, T-Periodic Functions

In this section, we study the convergence rate for smooth T -periodic functions and the error analysis of their

truncated Fourier series, interpolation operators, and integration operators. Let β = [−β, β]∀β > 0,

CT,β = {x + iy : x ∈ ΩT , y ∈ β} , ∀β > 0,

5



and Lp(ΩT ) be the Banach space of measurable functions u defined on ΩT such that ‖u‖Lp =
(IΩT
|u|p)1/p < ∞. Let

also

H s(ΩT ) =
{

u ∈ Lloc(ΩT ), Dαu ∈ L2(ΩT ), |α| ≤ s
}

, ∀s ∈ Z+0 ,

be the inner product space with the inner product (u, v)s =
∑

|α|≤s
I(x)

ΩT
(Dαu Dαv), where Lloc(ΩT ) is the space of locally integrable functions onΩT and Dαu denotes any deriva-

tive of u with multi-index α. Define

H s
T =
{

u ∈ H s(ΩT ), u(s) ∈ BV, u(0:s−1)(0) = u(0:s−1)(T )
}

,

where BV =
{

u ∈ L1(ΩT ) : ‖u‖BV < ∞
}

with the norm ‖u‖BV =

sup
{

I(x)

T
(uφ′), φ ∈ D(ΩT ), ‖φ‖L∞ ≤ 1

}

such that

D(ΩT ) =
{

u ∈ C∞(ΩT ) : supp(u) is a compact subsect of ΩT

}

.

Define also

AT,β = {u ∈ H∞T : u is analytic in some open set containing CT,β},
with the norm ‖u‖AT,β

= ‖u‖L∞(CT,β). For convenience of writing, we shall denote ‖·‖L2(ΩT ) and eiωk x by ‖·‖ and φk(x)∀k,

respectively, and call a function u ∈ AT,β “a β-analytic function” if u is analytic on CT,∞ and lim
β→∞

‖u‖AT,β

eωβ
= 0.

Theorem 5.1 (Decay of Fourier Series Coefficients for analytic, T -periodic functions). Suppose that f ∈ AT,β ∀s β > 0,

is approximated by the N/2-degree, T -periodic truncated Fourier series

ΠN f (x) =
∑

|k|≤N/2

f̂ kφk(x), ∀N ∈ Z+e , (5.1)

where f̂−N/2:N/2 is the Fourier series coefficients vector of f , then

∣

∣

∣ f̂ k

∣

∣

∣ = O
(

e−ω|k|β
)

, as |k| → ∞. (5.2)

Proof. Notice first that the set of complex exponentials {φk}N/2k=−N/2
is orthogonal on ΩT with respect to the weight

function w(x) = 1∀x ∈ ΩT such that (φn, φm) = I(x)

T

(

φn φ
∗
m

)

= Tδn,m, where δn,m is the Kronecker delta function

defined by

δn,m =































1, n = m,

0, n , m.

Therefore, (φn, φn) = I(x)

T

(

φn φ
∗
n

)

= I(x)

T

(

|φn|2
)

= ‖φn‖2 = T . Fourier coefficients, f̂k, of f can thus be determined via

the orthogonal projection ( f , φk), which produces

f̂k =
1

T
( f , φk) =

1

T
I(x)

T
( f φ−k)

=































1
T
I(x)

T
( f [x − iβ]φ−k[x − iβ]) ∀k ≥ 0,

1
T
I(x)

T
( f [x + iβ]φ−k[x + iβ]) ∀k < 0

=































e
−ωkβ

T
I(x)

T
( f [x − iβ]φ−k) ∀k ≥ 0,

e
−ω−kβ

T
I(x)

T
( f [x + iβ]φ−k) ∀k < 0.
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Therefore,
∣

∣

∣ f̂ k

∣

∣

∣ ≤ ‖ f ‖AT,β
e−ω|k|β ∀k ∈ KN , (5.3)

from which the Asymptotic Formula (5.2) follows.

Theorem 5.1 enables us to measure the decay rate of the error in approximating an analytic, T -periodic function

by a truncated Fourier series.

Theorem 5.2 (Fourier truncation error for analytic, T -periodic functions). Suppose that f ∈ AT,β ∀s β > 0, is approx-

imated by the N/2-degree, T -periodic truncated Fourier series (5.1), then

‖ f − ΠN f ‖ = O
(

e−ωNβ/2
)

, as N → ∞. (5.4a)

Moreover, if f is β-analytic, then

‖ f − ΠN f ‖ = 0, ∀N ∈ Z+e , (5.4b)

i.e., f ∈ span
{

φ−N/2:N/2

}

.

Proof. Observe first that

‖ f − ΠN f ‖2 = I(x)

T

















∑

|k|>N/2

f̂ kφk

∑

|l|>N/2

f̂ ∗l φ−l

















=
∑

|k|>N/2

∑

|l|>N/2

f̂ k f̂ ∗l I
(x)

T
φk−l =

∑

|k|>N/2

∑

|l|>N/2

f̂ k f̂ ∗l (φk, φl)

= T
∑

|k|>N/2

∣

∣

∣ f̂ k

∣

∣

∣

2
.

The above equation together with Ineq. (5.3) yield

‖ f − ΠN f ‖2 ≤ T ‖ f ‖2AT,β

∑

|k|>N/2

e−2ω|k|β =
2T ‖ f ‖2AT,β

e−ωNβ

e2ωβ − 1

⇒ ‖ f − ΠN f ‖ ≤
√

2T

e2ωβ − 1
‖ f ‖AT,β

e−ωNβ/2 ,

from which Formulas (5.4a) and (5.4b) are derived.

FPSI methods often introduce aliasing errors. The following theorem shows that the aliasing error, for analytic,

T -periodic functions, decays faster than N−s ∀a s ∈ Z+; in fact, the aliasing error has the same order of convergence of

Fourier truncation error.

Theorem 5.3 (Fourier aliasing error for analytic, T -periodic functions). Suppose that f ∈ AT,β ∀s β > 0, then

‖EN f ‖ = O
(

e−ωNβ/2
)

, as N → ∞, (5.5a)

where EN f (x) = (ΠN f − IN f ) (x) is the aliasing error in approximating f by the T-periodic Fourier interpolant

IN f , ∀N ∈ Z+e . Moreover, if f is analytic on CT,∞, then

‖EN f ‖ = 0, ∀N ∈ Z+e . (5.5b)
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Proof. Replacing f in (4.2a) by its Fourier series yields

f̃k =
1

N

N−1
∑

j=0















∑

l∈Z
f̂ l φl(x j)















φ−k(x j) =
∑

l∈Z
f̂ l

















1

N

N−1
∑

j=0

φl−k(x j)

















=















∑

l∈Z
f̂ lδl−k,pN















|p|∈Z+
0

= f̂k +
∑

p∈Z0

f̂ k+pN , ∀k ∈ K′N . (5.6)

Formulas (5.3), (5.6), and the Triangle Difference Ineq. imply that

∣

∣

∣‖EN f ‖ −
∥

∥

∥ f̂ N/2φN/2

∥

∥

∥

∣

∣

∣

2 ≤
∥

∥

∥EN f − f̂ N/2φN/2

∥

∥

∥

2

= I(x)

T



















∑′

|k|≤N/2

∑

p∈Z0

f̂ k+pNφk ·
∑′

|l|≤N/2

∑

p∈Z0

f̂ ∗l+pNφ−l



















=
∑′

|k|≤N/2

∑′

|l|≤N/2

∑

p∈Z0

f̂ k+pN

∑

p∈Z0

f̂ ∗l+pNI
(x)

T
φk−l =

∑′

|k|≤N/2

∣

∣

∣

∣

∣

∣

∣

∣

∑

p∈Z0

f̂ k+pN

∣

∣

∣

∣

∣

∣

∣

∣

2

‖φk‖2

= T
∑′

|k|≤N/2

∣

∣

∣

∣

∣

∣

∣

∣

∑

p∈Z0

f̂ k+pN

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ T
∑′

|k|≤N/2

∑

p∈Z0

∣

∣

∣ f̂ k+pN

∣

∣

∣

2

≤ T ‖ f ‖2AT,β

∑′

|k|≤N/2

∑

p∈Z0

e−2ω|k+pN|β

= T ‖ f ‖2AT,β



















2

N/2
∑

k=0

∑

p∈Z0

e−2ω|k+pN |β −
∑

p∈Z0

(

e−2ω|pN|β + e−2ω|N/2+pN|β
)



















= T ‖ f ‖2AT,β

















2

N/2
∑

k=0

















e−2ωkβ

∑

p≥1

e−2ωpNβ + e−2ω−kβ

∑

p≥1

e−2ωpNβ

















− 2
(

1 + cosh(ωNβ)
)
∑

p≥1

e−2ωpNβ

















= T ‖ f ‖2AT,β

















4

N/2
∑

k=0

















cosh(2ωkβ)
∑

p≥1

e−2ωpNβ

















− e−ωNβ coth(ωNβ/2)

















= T ‖ f ‖2AT,β

















4

e2ωNβ − 1

N/2
∑

k=0

cosh(2ωkβ) − e−ωNβ coth(ωNβ/2)

















= T coth(ωβ) ‖ f ‖2AT,β
e−ωNβ .

⇒
∥

∥

∥EN f − f̂ N/2φN/2

∥

∥

∥ ≤
√

T coth(ωβ) ‖ f ‖AT,β
e−ωNβ/2 .
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Since
∥

∥

∥ f̂ N/2φN/2

∥

∥

∥ =
√

T
∣

∣

∣ f̂ N/2

∣

∣

∣ =
√

T ‖ f ‖AT,β
e−ωNβ/2 by Eq. (5.3), then

‖EN f ‖ ≤
∥

∥

∥ f̂ N/2φN/2

∥

∥

∥ +
∥

∥

∥EN f − f̂ N/2φN/2

∥

∥

∥

≤
√

T

(

1 +

√

coth(ωβ)

)

‖ f ‖AT,β
e−ωNβ/2 ,

from which Formulas (5.5a) and (5.5b) are derived.

Now we are ready to state the following two main results of this section: the Fourier interpolation and quadrature

errors for analytic, T -periodic functions.

Corollary 5.1 (Fourier interpolation error for analytic, T -periodic functions). Let N ∈ Z+e and suppose that f ∈
AT,β ∀s β > 0, then

‖ f − IN f ‖ = O
(

e−ωNβ/2
)

, as N → ∞.
Moreover, if f is β-analytic, then

‖ f − IN f ‖ = 0.

Proof. The proof is established from the fact that the aliasing error is orthogonal to the truncation error f − ΠN f in

the L2 sense:

‖ f − IN f ‖2 = ‖ f − ΠN f ‖2 + ‖EN f ‖2

≤ T

[

2

e2ωβ − 1
+

(√

coth(ωβ) + 1

)2
]

‖ f ‖2AT,β
e−ωNβ

⇒ ‖ f − IN f ‖ ≤ µT,β ‖ f ‖AT,β
e−ωNβ/2 ,

where µT,β =

√

2T

(√

coth(ωβ) + coth(ωβ)

)

. The upper bound collapses to zero if f is β-analytic as proved by Theo-

rems 5.2 and 5.3.

We conclude this section with some useful convergence results on the error of Fourier PS quadrature (FPSQ)

constructed through the FPSI matrix.

Corollary 5.2 (FPSQ error for analytic, T -periodic functions). Let N ∈ Z+e and suppose that f ∈ AT,β ∀s β > 0, then

∣

∣

∣I(x)
xN

f −Θ f0:N−1

∣

∣

∣ = O
(

e−ωNβ/2 1N

)

, as N → ∞.

Moreover, if f is β-analytic, then
∣

∣

∣I(x)
xN

f −Θ f0:N−1

∣

∣

∣ = 0N .

Proof. The proof is established through Corollary 5.1, the Triangle Ineq., and Schwarz’s Ineq. by realizing that

∣

∣

∣I(x)
xN

f −Θ f0:N−1

∣

∣

∣ =
∣

∣

∣I(x)
xN

f − I(x)
xN

(IN f ) + I(x)
xN

(IN f ) −Θ f0:N−1

∣

∣

∣

≤
∣

∣

∣I(x)
xN

f − I(x)
xN

(IN f )
∣

∣

∣ +
∣

∣

∣I(x)
xN

(IN f ) −Θ f0:N−1

∣

∣

∣≤ ‖ f − IN f ‖ √xN ≤ µT,β ‖ f ‖AT,β
e−ωNβ/2

√
xN ,

which decay to zero if f is β-analytic.

Corollary 5.2 shows that
∥

∥

∥I(x)
xN

f −Θ f0:N−1

∥

∥

∥

2
≤ µT,β ‖ f ‖AT,β

e−ωNβ/2

∥

∥

∥

√
xN

∥

∥

∥

2
, (5.9)

∀N ∈ Z+e , f ∈ AT,β : β > 0, where ‖·‖2 is the Euclidean norm for vectors. We refer to the upper bound (5.9) by

the “FPSQ error upper bound for analytic, T -periodic functions,” or shortly by the “FPSQ-ATP error upper bound.”

9



10 20 30 40 50 60 70 80 90 100

5

6

7

8

In
fin

ity
-N

or
m

10-16

10 20 30 40 50 60 70 80 90 100

1.5

2

2.5

E
uc

lid
ea

n-
N

or
m

10-15

10 20 30 40 50 60 70 80 90 100

10-14

10-12

10-10

10-8

10-6

10-4

In
fin

ity
-N

or
m

10 20 30 40 50 60 70 80 90 100

10-22

10-17

10-12

10-7

10-2

E
uc

lid
ea

n-
N

or
m

10 20 30 40 50 60 70 80 90 100

10-16

10-15

10-14

10-13

In
fin

ity
-N

or
m

10 20 30 40 50 60 70 80 90 100

10-75

10-58

10-42

10-25

10-9

E
uc

lid
ea

n-
N

or
m

 FPSQ Error  FPSQ-ATP Error Upper Bound

Figure 1: The figure shows the infinity- and Euclidean- error norms in the FPSQ approximation of the three functions f1(t) = 2 sin(3t − 1) + 1 (left

upper and lower plots), f2(t) =
1

2 − cos t
(middle upper and lower plots), and f3(t) =

1

sin2t + 16
(right upper and lower plots), for N = 10 : 10 : 100.

Notice that the factor µT,β is a monotonically decreasing function for increasing values of β, since

µ′T,β = −
π

(

2

√

coth
(

ωβ
)

+ 1

)

csch2
(

ωβ
)

√
2

√

coth
(

ωβ
)

√

T

(

coth
(

ωβ
)

+

√

coth
(

ωβ
)

)

< 0,

∀β > 0 with limβ→∞µT,β = 2
√

T . In fact, µT,β → 2
√

T exponentially fast, since coth(ωβ) exponentially converge to

1 as β → ∞. Therefore, the larger the β-value, the much faster the error convergence rate, as both factors µT,β and

e−ωNβ/2 decay exponentially fast with β. We therefore say that Fourier quadrature approximation has “an infinite order

accuracy.”

Figure 1 shows the infinity- and Euclidean- error norms in the FPSQ approximation of the three functions f1(t) =

2 sin(3t − 1) + 1 ∈ A2π/3,∞, f2(t) =
1

2 − cos t
∈ A2π,[Im(cos−1(2))]

− , and f3(t) =
1

sin2t + 16
∈ A

π,[sinh−1(4)]
− , for N = 10 :

10 : 100, where Im(z) denotes the imaginary part of a complex number z and a− means a number sufficiently close to

a and less than a∀a a ∈ R. Since f1 is β-analytic, Corollary 5.2 indicates that the Euclidean-error of the FPSQ is zero

using exact-arithmetic. However, in double-precision arithmetic, where numbers are represented in 15 significant

figures, we would expect the errors to immediately plateau at an O
(

10−15
)

level and cease to decrease but instead

bounce around randomly, as seen in the lower left plot of the figure. This plateau is the result of the accumulation of

round-off error in the FPSQ computation. Observe also that the present algorithm produces generally smaller errors

compared to [75, Algorithm 3.1] due to the slight reduction in computational cost as argued in [27]. On the other

hand, the function f2 is analytic on Ω2π but not entire, since it has poles at 2πn ± cos−1(2)∀n ∈ Z in the complex

plane. Also, the function f3 is analytic on Ωπ but not entire, since it has poles at 2πn ± i sinh−1(4)∀n ∈ Z. Therefore,

f3 has a radius of analyticity that is larger than that of f2 by about 60%. Combining this data with the fact that the

FPSQ-ATP error upper bound decays exponentially fast as β grows larger, we foresee that the quadrature errors of f3
will collapse and reach the plateau level much faster than the quadrature errors of f2, for increasing values of N. This

is clearly observed in the figure where the errors rapidly decay for f3 and plateaus very early near N = 20 compared

with the quadrature errors associated with f2 which cease to decrease at around N = 50. Notice in both cases that the

FPSQ-ATP error upper bound is larger than the observed quadrature errors until the plateau is reached, in agreement

with the theoretical results of Corollary 5.2.
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6. The FIPS Method

In this section we demonstrate the FIPS approach to discretize Problem IP. Using Formula (4.7) and following

the writing convention introduced in Section (2), we can approximate the performance index by the following formula:

J ≈ JN =
1

T
ΘN g(x(tN), u(tN), tN) =

1

N
1t

N g(x(tN), u(tN), tN). (6.1)

Next, let F = [F1,N , F2,N , . . . , Fn,N] : Fi,N = fi,0:N−1 and fi, j = fi(x(t j), u(t j), t j)∀i ∈ J′n, j ∈ JN , where fi is the

ith-element of f ∀i. Then

I(τ)
ti

f [x(τ), u(τ), τ] ≈ [ΘiF1,N ,ΘiF2,N , . . . ,ΘiFn,N]t = (ΘiF)t,

∀i ∈ JN . Therefore,

I(τ)
tN

f [x(τ), u(τ), τ] ≈ [(Θ0F)t, (Θ1F)t, . . . , (ΘN−1F)t]t = ΘF. (6.2)

Since

F = [F1,N , F2,N , . . . , Fn,N] = [Ft
1,N ; Ft

2,N ; . . . ; Ft
n,N]t

= f (x(tN), u(tN), tN), (6.3)

then Eqs. (6.2) and (6.3) imply

I(τ)
tN

f [x(τ), u(τ), τ] ≈ Θ f (x(tN), u(tN), tN).

Hence, collocating the system dynamics in integral form (4.4) at the Fourier nodes set SN yields the following system

of algebraic equations:

x(tN) ≈ x(0) ⊗ 1N + vec (Θ f (x(tN), u(tN), tN)) . (6.4)

Finally, the inequality path constraints at SN reads

c(x(tN), u(tN), tN) ≤ ON,p. (6.5)

Problem IP is now converted into a constrained NLP in which the goal is to minimize the discrete performance index

(6.1) subject to the equality constraints (6.4) and the inequality constraints (6.5). The constrained NLP can be solved

using well-developed optimization software for the unknowns x(tN) and u(tN ), and the approximate optimal state and

control variables can then be calculated at any point t ∈ ΩT through the Fourier PS expansions

x(t) = x
(

tt
N

)

F N(t) and u(t) = u
(

tt
N

)

F N(t),

where F N(t) = F0:N−1[t]. In this work, we shall use MATLAB fmincon solver employing the “interior-point” algo-

rithm, considered to be one of the most efficient algorithms in numerical optimization, to solve the constrained NLP.

We refer to the FIPS method applied together with the above NLP solver by the FIPS-fmincon method; moreover, the

approximate optimal state- and control-variables obtained by this method are denoted by by x̃∗ and ũ∗, respectively.

Notice here that all integrals involved in Problem IP were efficiently computed using matrix vector multiplication

without the need for the FFT, since the FIM can provide nearly exact integrals with exponential rates of convergence

using relatively coarse mesh grids as proven in Section 5. This also shows that the FIPS method converges exponen-

tially fast to the smooth, T -periodic solutions of Problem P, since the quadrature errors induced by the FIM are the

main source of errors in the NLP described by (6.1), (6.4), and (6.5), which decay with exponential rates by Corollary

(5.2) and remarkably vanish for β-analytic integrand functions.

7. Computational Results

In this section we apply the developed FIPS-fmincon method on two test problems well studied in the literature.

The first problem has no inequality constraints on the state and control variables, while the second problem has lower

bounds on the states and controls. Both test problems are instances of Problem P. All computations were carried
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Figure 2: The profiles of the approximate optimal state- and control-variables and the ADFEs obtained at the collocated nodes set S12 for Problem

1 using the FIPS-fmincon method. Here n = 2, N = 12, and the plots of the state and control variables were generated using 100 linearly spaced

nodes in Ω4.431736 .

out using MATLAB R2022a software installed on a personal laptop equipped with a 2.9 GHz AMD Ryzen 7 4800H

CPU and 16 GB memory running on a 64-bit Windows 11 operating system. The fmincon solver was performed with

initial guesses of all ones and was stopped whenever

∥

∥

∥x(k+1) − x(k)
∥

∥

∥

2
< 10−15 or

∥

∥

∥J
(k+1)

N
− J

(k)

N

∥

∥

∥

2
< 10−15,

where x(k) and J
(k)

N
denote the approximate minimizer and optimal cost function value at the kth iteration, respec-

tively. The quality of the approximations are measured using the absolute discrete feasibility error (ADFE) 3,

EN = (Ei)0≤i≤nN−1, at the collocation points, which we define by

EN = |x(0) ⊗ 1N + vec (Θ f (x(tN), u(tN), tN)) − x(tN)| .

Problem 1. Consider ProblemP with g(x(t), u(t), t) = 0.5x2
1
+0.25x4

2
−0.5x2

2
+0.5bu2 and f (x(t), u(t), t) = [x2; u]

with free periodic boundary conditions and a weighting parameter b for the control variable. For b ≤ 0.25, the π-test

guarantees the existence of periodic solutions which improve the performance index more than the static extremal

solutions. Moreover, the quartic term in the integral cost function dominates the negative quadratic term for large

values of x2, thus bounding the amplitude of the optimal minimizing solutions; cf. [89]. This problem was solved

earlier by Evans et al. [89] using the Lindstedt-Poincaré asymptotic series expansion and later by Elnagar and Kazemi

[59] using a FPS method. Figure 2 shows the profiles of the approximate optimal state and control variables and the

ADFEs obtained at the collocated nodes set S12 using the FIPS-fmincon method, for T = 4.431736 and b = 0.2475.

The elapsed time required to run the FIPS-fmincon method and obtain the required approximations is about 0.209

seconds (s). Table 1 shows the approximate minimum values of the performance index obtained by the current method

and the method of [59] for several values of b, T , and 2m = N. Clearly, the approximate optimal objective function

values obtained by the FIPS-fmincon method are lower than those obtained by the method of [59] for all parameter

variations shown in the table with negligible ADFEs that are approaching the machine epsilon.

Problem 2 (Solar Energy Control). This problem is taken from Refs. [2, 48] with slight modifications: Consider

the following linear control mathematical model of a collector/storage/ enclosure type solar heating system

(

mCp

)

E
Ṫ E = Qaux + QS − (UA)E (TE − TA) ,

(

mCp

)

S
Ṫ S = QC − QS − (UA)S (TS − TA) ,

where m is the mass (kg), Cp is the specific heat coefficient (kJ C−1 kg−1), A is the area (m2), U is the heat transfer

coefficient (kJ h−1 C−1 m−2), QS (t) is the heat flow rate (kJ h−1) from storage to enclosure, QC(t) is the insolation or

3The ADFE at a collocation node measures the amount by which the approximate optimal solutions fail to satisfy the discrete constraint

equations (6.4) being used for the approximation at that node.
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Table 1: Comparisons between the FIPS-fmincon method and the method of [59] in terms of the approximate performance index minimum values

obtained for several values of b,T , and 2m = N. The values of J2m , JN , and ‖ADFE‖∞ are rounded to the displayed number of significant digits.

Problem 1

Method of [59] The FIPS-fmincon Method

b T 2m = N J2m JN ‖ADFE‖∞

0.2475 4.431736 12 −4.18880200× 10−6 −4.02232772× 10−2 4.441 × 10−16

0.2475 4.43173625 16 −4.18880203× 10−6 −4.08422489× 10−2 4.441 × 10−16

0.2250 4.32786300 12 −4.38802000× 10−4 −4.42143743× 10−2 2.220 × 10−16

0.2250 4.32786260 16 −4.38880203× 10−4 −4.48293692× 10−2 6.661 × 10−16

0.1000 3.6343100 12 −1.97810000× 10−2 −7.75663473× 10−2 2.220 × 10−16

0.1000 3.6343132 16 −1.97813000× 10−2 −7.81094298× 10−2 3.331 × 10−16

the heat flow rate (kJ hr−1) from collector to storage, Qaux(t) is the heat flow rate (kJ h−1) from auxiliary heat source

to enclosure, TA(t) is the ambient temperature (◦C), TS (t) is the storage temperature (◦C), and TE(t) is the enclosure

temperature (◦C). The subscripts in the parameters denote values for storage element or enclosure element. Given the

24 h-periodic disturbance inputs QC(t) and TA(t), we seek the 24 h-periodic control inputs, Qaux(t) and QS (t), which

minimize the following performance index

J =
1

24
I(t)

24

[

1000
(

TE − T̄ E

)2
+ 10
(

TS − T̄ S

)2
+ 0.1

(

Qaux − Q̂aux

)2

+Qaux] ,

which gives the average steady-state value of an integral quadratic measure; in particular, it penalizes the enclosure

and storage temperatures deviations from given set points and the auxiliary heat input from its mean value. The

last term, integrated over a period, represents the average auxiliary energy consumed. The bars and hats above the

variables denote fixed set levels and average levels, respectively. A depiction of the solar heating system is shown

in Figure 3. The parameter values used for the solar heating system are shown in Table 2. The ambient temperature

and insolation are given by TA(t) = −10 sin(ωt) and QC(t) = 13333[1 − cos(ωt)], respectively, where ω = π/12 h−1.

Some care is required in this problem in order to avoid negative values of Qaux and QS and unreasonable values of

temperatures. We assume here that Qaux(t) ≥ 8, 000 kJ h−1,QS (t) > 0 kJ h−1, and TE(t), TS (t) ≥ 0◦C∀t ∈ Ω24.

This problem has the form laid out in Section 3 with x = [TE; TS ], u = [Qaux; QS ], g (x(t), u(t), t) = 1000(x1 −
20)2 + 10(x2 − 30)2 +0.1(u1 − û1)2 + u1,

f (x(t), u(t), t) =









































1
(

mCp

)

E

(u1 + u2 − (UA)E (x1 − TA))

1
(

mCp

)

S

(QC − u2 − (UA)S (x2 − TA))








































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Figure 3: A graph of the solar heating system as taken from Ref. [2]. The capital initials “AUX” are replaced with small letters.

Table 2: Parameter values used for the solar heating system.

Parameter S E Unit

UA 20.07 949.5 kJ/(◦C h)

mCp 19000 18890 kJ/(◦C)

T̄ 30 20 ◦C

and c(x(t), u(t), t) = [−x; 8000−u1; ǫ−u2], where û1 =
1

24
I(t)

24
u1 is the average value of the heat flow rate from auxiliary

heat source to enclosure over one period, and ǫ is a relatively small positive number to keep u2 always positive. In

practice, we may assume this constant to be the machine precision that is approximately equals 2.2204 × 10−16 in

double precision arithmetic. Figure 4 shows the profiles of the approximate optimal temperatures distributions and

heat flow rates as well as the absolute differences between the average temperatures and their set points and the

ADFEs obtained at the collocated nodes set S50 using the FIPS-fmincon method. Observe how the FIPS-fmincon

method brings x̂ − x̄ as close to zero as possible, while on the other hand minimizes the cost of setting u to nonzero

values by selecting u1 to be nearly its lower bound. It is realistically consistent to observe through the plots that the

storage is slowly heating up during the day and cools down during the night. A similar observation holds true for the

enclosure which receives heat during the day due to the large thermal inertia (mCp)E .

Remark 7.1. For more complex OC problems with bang-bang periodic solutions, the reader may consult our recent

works in [27, 76]. For further challenging fractional OC problems with periodic solutions, we refer the reader to our

recent works in [80, 81].

8. Conclusion

This paper presented a robust and computationally efficient Fourier-based algorithm for solving generally nonlin-

ear, periodic OC problems. The proposed FIPS method promises further to be a very appropriate tool for the design of

solar systems as demonstrated through numerical simulations. The developed method enjoys rapid convergence with

exponential rate and superior flexibility in treating problems with and without inequality constraints in the absence

of explicit use of extra necessary conditions of optimality. A key reason underlying the computationally streamlined

nature of the approach is the automatic satisfaction of the state and control periodic conditions due to the periodic-

ity of their Fourier interpolants. Another advantage of the approach lies in the integral reformulation of the system

dynamics, which allows for using numerical integration operators widely known for their well-conditioning. The con-

vergence of Fourier interpolation and quadrature is addressed in detail for smooth, T -Periodic Functions leading to

the derivation of a sharp FPSQ error estimate as indicated by Ineq. (5.9) and sustained by Figure 1. The formulation
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Figure 4: The profiles of the approximate optimal temperatures distributions and heat flow rates (first row) as well as the absolute differences

between the average temperatures and their set points and the ADFEs obtained at the collocated nodes set S50 (second row) for Problem 2 using the

FIPS-fmincon method. Here n = 2,N = 50, and the plots of the temperatures and heat flow rates were generated using 100 linearly spaced nodes

in Ω24.

and analysis presented here can be smoothly extended to other generally nonlinear, periodic OC problems in Mayer

and Bolza forms.

It is important to remind the reader that no single direct optimization method is perfect for all types of OC problems

because different problems have different characteristics that make them more or less amenable to certain methods.

For example, methods designed to solve OC problems with nonsmooth methods are less efficient and more computa-

tionally expensive than those designed to solve OC problems with sufficiently differentiable solutions. The latter are

also less accurate than those designed to solve classes of problems with periodic, sufficiently differentiable solutions,

and so on. The proposed FIPS method works best for periodic problems with sufficiently differentiable solutions,

where it can can capture the smooth and periodic features of the solution very accurately with remarkable exponential

convergence, even with a relatively small number of grid points. This is in contrast to finite difference and other tra-

ditional methods implementing nonperiodic basis functions like Chebyshev or Legendre bases function, for example,

which typically converge more slowly than Fourier basis functions with higher costs.

As a result of these advantages and the remarkable advantages of FIPS methods stated earlier in the Introduction

Section, we consider the proposed FIPS method to be at the front line of the methods of choice for solving periodic

problems with sufficiently differentiable solutions. For periodic problems with bang-bang solutions, the reader may

consult [27, 76] in which the solutions can be recovered in short time periods within excellent accuracies.

9. Future Work

One possible future work is to explore the application of the costate mapping theory on Problem P to ensure that

the results of the reduced NLP obtained by the direct FIPS method meet the first-order necessary conditions of the

OC problem in discrete manner.
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