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Abstract: This work presents a new algorithm for matrix power series which is near-sparse, that is, 

there are a large number of near-zero elements in it. The proposed algorithm uses a filtering 

technique to improve the sparsity of the matrices involved in the calculation process of the 

Paterson-Stockmeyer (PS) scheme. Based on the error analysis considering the truncation error 

and the error introduced by filtering, the proposed algorithm can obtain similar accuracy as the 

original PS scheme but is more efficient than it. For the near-sparse matrix power series, the 

proposed method is also more efficient than the MATLAB built-in codes. 
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1. Introduction 

The research on efficient and accurate algorithms for matrix functions has become one of the 

basic topics in modern scientific computing. Matrix function calculation is involved in 

computational mathematics, computational mechanics, computational physics, big data analysis, 

computational finance, and other aspects. Common basic matrix functions include: matrix 

exponential eZ
, matrix logarithm log Z , matrix sine / cosine sin Z / ( )cos Z , matrix power  p

Z  

( p  is an arbitrary rational number), matrix sign ( )sign Z , and so on [1]. However, most 

algorithms proposed for these matrix functions involve the matrix polynomial or the matrix power 



series [2, 3]. On the one hand, most matrix functions can be expressed as the Taylor series, and it 

is natural to approximate these matrix functions by using Taylor series. On the other hand, the 

matrix functions can also be approximated by using the interpolation method, the rational function 

approximation, or the Chebyshev polynomial approximation, and all these methods involve the 

matrix polynomial. In a word, the computation of matrix polynomial or matrix power series is a 

basic issue in the matrix function computation.  

There have been many algorithms proposed for matrix polynomial and matrix power series. 

Among these, the Qin scheme (also called the Horner scheme) and the Paterson-Stockmeyer (PS) 

scheme are two widely used methods. The PS scheme is an improved version of the Qin scheme  

and is more efficient for the matrix power series [2, 3]. However, both these methods do not 

consider the sparsity of the matrix. In many physical and engineering problems, the matrix 

involved is often highly sparse. Many scholars have found that for these highly sparse matrices, 

their matrix functions have the property of localization, that is, there are a small number of 

nonnegligible elements in the matrix functions, while there are a large number of elements very 

close to zero around them [4, 5]. In this paper, these matrices are called near-sparse matrices. The 

near-sparse matrix is dense, even full, but most elements in it are very close to zero so dropping 

out the near-zero elements can generate a sparse approximation to the original matrix.  

Since the localization of matrix function was observed, more and more research have been 

done. Not matrix functions of all the sparse matrices are near-sparse. Under what condition the 

matrix function is sparse, and how sparse is its approximation have not been fully solved [4-14]. 

For some specific matrix functions, such as the matrix inversion and the matrix exponential, there 

are some theoretical estimates about their localization and bandwidths, and these evaluations are 

often too conservative and difficult to calculate. More accurate and easy to calculate estimates 

need further research. Readers interested in this issue can read [4] which provided a good review. 

The localization of the matrix function can be used for designing more efficient algorithms. 

In this aspect, the mainstream idea is to improve the computational efficiency of matrix function 

by using the filtering technique, which removes the elements with very small absolute value in the 

matrix, and obtains a highly sparse matrix to improve the computation efficiency and reduce the 

memory. How to determine which elements are small enough to be ignored without affecting the 

accuracy is an important guarantee for the success of the algorithm. Since the behavior of filtering 

is equivalent to a kind of artificial rounding error, how to filter the matrices without affecting the 

accuracy will involve the analysis of filtering error, which is a difficult task. From the existing 

literature, it can be seen that there are many algorithms based on filtering to improve the 



computation efficiency for matrix functions such as matrix inverse and matrix exponential. 

However the research on other functions is quite a few, and the research on matrix series and 

matrix polynomial, which are two basic matrix functions, has not been reported. It will be more 

fundamental and important to design an efficient algorithm for computing matrix polynomials and 

matrix series based on the filtering technique. This work is the content of our research. 

The structure of this paper is as follows. In section 2,  we briefly review the PS scheme for 

computing matrix polynomials and matrix series. In section 3, the PS scheme combined with 

filtering (PSSCF) for matrix polynomials is first presented. According to the error analysis, we 

propose an adaptive filtering threshold to remove as many elements as possible without losing 

accuracy. On this basis, the PSSCF is further extended to compute matrix series. In section 4, 

numerical examples are given to verify the correctness and effectiveness of our algorithm. Finally, 

the conclusion is given in section 5.  

2. Paterson and Stockmeyer scheme 

2.1 Matrix polynomial 

        The considered matrix polynomial is 

 
1

2 3 1

0 1 2 3

0

...
N

i N

N i N

i

P a a a a a a
−

−

=

= = + + + + + Z I Z Z Z Z  (1) 

where Z  is a n n  matrix, ia  is the coefficients of the polynomial. To evaluate the matrix 

polynomial, there have been many efficient methods, such as the Qin scheme (also called the 

Honor scheme) and the Paterson and Stockmeyer (PS) scheme [15]. The PS scheme may be the 

most efficient one which vitalizes the following equation:  
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where 
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According to Eqs. (2) and (3), the calculation process of the PS scheme includes three steps: 

1) evaluating 
2 1, , , , ,q q−

I Z Z Z Z ; 2) evaluating iB  in terms of Eq. (3); 3) evaluating 

( )
1

0

b
i

q

i

i

−

=

 Z B . The first step requires 1q −  matrix multiplications, and the second step does not 

require matrix multiplications. The third step needs to evaluate a matrix polynomial which can be 



done by using the Qin scheme as: 

 ( ) ( ) ( )0 1 1 1 1 0 2, , , q

b i b i i N b bq q q− − − − − −= = + = = + =S B S B Z S P S B Z S Z Z , (4) 

which require 1b −  matrix multiplications. Therefore, the PS scheme requires 2q b+ −  matrix 

multiplications to evaluate the matrix polynomial. If  ( ) ( )

1
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1S  does not need matrix multiplications, and the number of matrix multiplications required 

reduces to 3q b+ − . According to [2], in the PS scheme, the minimum number of matrix 

multiplications, denoted by ( )mt N , is  
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2.2 Matrix power series 

The considered matrix power series is 
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There are many methods proposed to evaluate the matrix power series, such as the Pade 

approximation and the Chebyshev approximation. One simple way of these method is taking the 

first N  terms to approximate Eq. (7), i.e.,  
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which becomes a matrix polynomial. How to determine the parameter N  is a key issue. If let iz  

be a upper bound to 
i

Z , the upper bound to the error of Eq. (8) can be expressed as: 

 ( ) ( ) i

N i i i

i N i N
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For a given error tolerance tol , N  can be determined by toli i

i N

a z 


=

 . 

      Equation (9) involves the upper bound to 
i

Z  which can be evaluated by a simple method, 



i.e., 
ii

iz =Z Z . Of course, this type of evaluation is too conservative, and we here introduce 

Higham’s code normest1[16, 17] to evaluate it when i  is not too large.  

        The PS scheme reviewed above requires a great number of matrix multiplications. According 

to [14], the bandwidth of the matrix power of a sparse matrix increases linearly as the power. 

Hence the matrix polynomial will be quite dense though the matrix Z  is highly sparse. However, 

much previous research found that there are many elements whose absolute values are very small 

for many common matrix functions [4, 7]. It is natural to filter out those near-zero elements to 

obtain a sparse approximation and to improve the computational efficiency. In the next section, we 

will discuss how to filter out the near-zero elements in the computation of the matrix polynomials. 

 

3 PS scheme combined with filtering 

        This section proposed a PS scheme combined with the filtering technique (PSSCF) to 

evaluate the matrix power series. As any matrix power series can be approximated by a matrix 

polynomial with N  terms, as shown as Eq. (2), the evaluation of the matrix polynomial will be 

studied first. 

3.1 Filtering for matrix polynomial 

3.1.1 Filtering for a matrix 

       The near-sparse matrix is a type of matrix which is dense but contains a large number of near-

zero elements. In the calculation of matrix functions, we often encounter near-sparse matrices. For 

a near-sparse matrix C , we can drop out the near-zero elements to obtain a sparse Ĉ , and in such 

a way to improve the computational efficiency. A simple filtering method is to give a filtering 

threshold f , and then the elements with absolute values smaller than f  will be moved from C . 

However, in the computation of matrix functions, it is often needed to give some conditions to the 

norm of the matrix ˆ= −Δ C C  where Δ  consists of the dropped elements. If the matrix size is too 

large, Δ  may be also very large even f  is small, and in this case, we cannot state that Ĉ  is an 

acceptable approximation to C . In [14], an adaptive filtering method was proposed. This method 

can adaptively select the filtering threshold to make sure that Δ  be smaller than any given 

filtering-norm-threshold (FNT) g . In this paper, the adaptive filtering method will be used for 

the calculation of matrix power series. The calculation process of this method is shown in 

Algorithm 1. 



Algorithm 1 This algorithm filters out the near-zero elements in the matrix C  to generate a 

sparse matrix Ĉ  satisfying ( )r
ˆ 1g e−  +C C . 0g   is the filtering-norm-threshold, and 

r 0e   is a given error tolerance. 

1: Set 
0 1m = , 

0 1c = , 0i = , and 
0 =c C ; 

2: while ( )r1i gc e + ; 

( )1

f ;
i

g im 
+

=  

( )( )1

ffind
i

ip 
+

= c , where p  is a set of linear indices corresponding to the nonzero 

entries in ic whose absolute values are larger than ( )1

f

i


+
; 

( ) 10,i i ip += =c c c ; 

1 1i ic + += c ; 

( )1

+1 1 f ;
i

i im c 
+

+=  

1;i i= +  

end 

3: ˆ
i= −C C c . 

 

3.1.2 Formula of PS scheme with filtering 

For the convenience of analysis, let 
( )

: i

i
=Z Z . The first step of the PS scheme can be shown 

as 
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which involves many matrix multiplications and the matrix ( )i
Z  becomes denser and denser. If we 

drop out the near-zero elements in ( )i
Z , the calculation process can be shown as 

 ( ) ( ) ( ) ( ) ( )2 11 2 1 1
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= = − = −Z Z Z ZZ ζ Z ZZ ζ  (11) 

where ( )1
ˆ

i+
Z  represents the sparse matrix obtained by filtering ( )

ˆ
i

ZZ , and 1i+ζ  is the matrix 

consisting of the dropped-out elements. Combining ( ) ( ) 11 1
ˆ

ii i ++ +
= +Z Z ζ  with Eq. (11) yields 
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Z . Substituting Eq. (12) into Eq. 

(3), we have 
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where iB  is the error between ˆ
iB  and iB . As the calculation of iB  does not require matrix 

multiplications, filtering is also needed. But the third step of the PS scheme requires matrix 

multiplications, and hence also needs filtering. The third step is calculated by using the Qin 

scheme. If the filtering is considered, the Qin scheme should be modified as 
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iS  represents the sparse matrix obtained by filtering ( )1 1
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need filtering, i.e., 
1b− =Σ 0 .  

3.1.3 Error introduced by filtering 

According to Eq. (14), we have 
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To simplify the analysis, we only consider the case that the errors ( )q
Z  and 1i−S  are so small 

that 
( ) 1iq − Z S  can be ignored. In this case,

iS  can be written as  

 ( ) ( )1 1 1,i i i i b i i iq q− − − − =  + =  +  +S Z S Φ Φ B Z S Σ  (16) 

and 

 0 0 0 1
ˆ
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Combining Eq. (16) with Eq. (17), iS  can also be rewritten as 
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From (18), and noting that 
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q
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=Z Z , we have 

 
( )

1
1

1

0

b
q b j

b j

j

−
− −

−

=

 S Z Φ  (19) 



where 

 ( )1 1j b j j jq− − −  +  +Φ B Z S Σ  (20) 

From (13), 

 

1 1

, ,

2

,
q q

k j

i i j j i j iq k

j k j

a 
− −

−

+

= =

  = B ζ Z  (21) 

From (12), 
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Combining Eqs. (19)-(22) yields 
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where ( ),g q N  is shown as Eq. (6), and  
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From Eqs. (3) and (4), we have 
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Using Eqs. (25)-(26) and Eq. (24), we can evaluate kd .

 

3.1.4 Adaptive FNT 

Equation (23) is the error bound to the PS scheme combined with filtering. For a given error 

tolerance  , if we require that 
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the upper bounds to kζ  and jΣ  should be constrained. 

In Eq. (23), k kd ζ  represents the error introduced by the filtering matrix kζ , and 

( )1q b j

j

− −
Z Σ  the error introduced by the filtering matrix jΣ . If we require that the influences of 

different filtering matrices on the last error 1b−S  are the same, we can derive the filtering-norm-

threshold for kζ  and jΣ  that  
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where kd  can be evaluated in terms of Eq. (24). 

3.2 Filtering for matrix power series 

The matrix power series ( )
0

i
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PSSCF. However, the error introduced by truncating the series should be considered to determine 

the filtering-norm-thresholds.  

3.2.1 Filtering-norm-thresholds considering the truncation error 

For the matrix power series, the error can be written as 
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( ) ( )Nf P−Z Z  is the truncation error. If the upper bounds to the errors introduced by filtering 

and truncating are required to be the same, we have 
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What should be noted is the truncation error is controlled by N  which is unknown before 

calculating. Combining Eqs. (9) and (32), we have 
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where ( )0 1, , , ,iz z z=z , and ( )0 1, , , ,ia a a=a  is an infinite vector consisting of the 

coefficients of the matrix power series. According to Eq. (34), N  can be evaluated. Combining 

(31) with (33), we have 
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Again, requiring the influences of the filtering matrices are the same yields the FNT that  
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3.2.2 Evaluation of the norm of matrix power 

It can be seen from the above analysis, the norm i
Z  has a great effect on the FNT. In [17], 

Higham proposed an efficient method and the corresponding MATLAB code normest1 for the 

evaluation of 
i

Z . After numerical simulations, it was observed that the computation time of 

i
Z  using the normest1 increases as i . In this paper, if 10i  , we use normest1 to evaluate 

i
Z ; else, we use the following lemma [18]. 
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Lemma 1 is a simple corollar of the Theorem 2 in [18]. Using Higham’s method and Lemma 

1, the evaluation of  iz  can be shown as 
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3.2.3 PSSCF for matrix power series 

Algorithm 2 This algorithm evaluates the approximation ( )f̂ Z  to the matrix power series 
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11: ( )1 1
ˆˆ ˆ ;i b i iq− − −= +S B Z S  

12:Estimate ,si according to (36), filter out iS with Algorithm 1 to get ˆ
iS , satisfying

,s
ˆ ;i i i− S S  

13: end  

14: ( ) 1
ˆ ˆ

bf −=Z S  

        If the matrix polynomial is evaluated, the second step in Algorithm 2 should be ignored due 

to the number N  is known, and the FNTs of 1,si +  and ,si  should be replaced with 1,pi +  and 

,pi , as shown in (28).  

4. Numerical examples 

       Two types of matrix functions, i.e., the matrix exponential and the matrix cosine, are used to 

test the effectiveness and efficiency of the proposed method. These two matrix functions can be 

expressed as the Taylor series which converge for any matrices. For the matrix exponential, the 

original PS scheme without filtering, the proposed PSSCF, and the MATLAB code expm are used; 

and for the matrix exponential, the original PS scheme without filtering, the proposed PSSCF, and 

the MATLAB code cosm are used. Both the original PS scheme and the proposed PSSCF have 

been implemented by using MATLAB, and the corresponding MATLAB codes have been 

uploaded to https://www.rocewea.com/10.html. We performed the experiments by using the 

computer with Microsoft Windows 11 22H2, AMD Ryzen 7 5800H with Radeon Graphics @3.20 

GHz, and 15.9GB of RAM. And the MATLAB version is MATLAB R2021b. 

        We used the following sets of matrices for testing: 

https://www.rocewea.com/10.html


1. Ten 10000×10000 adjacency matrices 
iB   were downloaded from 

https://networkrepository.com. These matrices were modified to be ( )0.5i i i= −A I B B , 

which were used as the test matrices. The matrices 
iA  can also be downloaded from  

https://www.rocewea.com/10.html. 

2. Random banded matrices 1000×1000 with different bandwidths were used. The lower and 

upper bandwidths of these matrices are the same, and denoted by b , and b  ranges from 1 to 

15. The random numbers in these matrices obey the standard normal distribution. For each 

bandwidth, 30 random matrices are generated.  

4.1 Matrix exponential 

        For the sparse matrix 
iA , the matrix exponential can be written as  

 
0

1

!
i j

i

j

e
j



=

=
A

A . (38) 

To test the efficiency and accuracy of the proposed PSSCF, the original PS scheme, the proposed 

PSSCF, and the MATLAB built-in code expm are used to evaluate the matrix exponential. The 

expm result is seen as the benchmark solution. The errors of the original PS and proposed 

methods are evaluated by  

 
( )

( )

expm

expm

i i

i

i

er
−

=
X A

A
 (39) 

where 
iX  represents the result evaluated with the original PS or the proposed method. For both 

the original PS scheme and the proposed PSSCF, the error tolerances are set to be 
14

tol 10 −= . 

Table 1 Comparison between different algorithms used to compute the matrix exponential 

experiments of the first set of test matrices. 

iA  
Computational time (s) ier  

PSSCF PS expm PSSCF PS 

1 0.06 0.06 49.81 5.33E-13 5.33E-13 

2 1.60 3.75 50.67 2.72E-13 2.72E-13 

3 3.88 12.31 20.11 2.70E-15 2.70E-15 

4 0.05 0.07 11.06 3.90E-13 3.90E-13 

https://networkrepository.com/
https://www.rocewea.com/10.html


5 0.05 0.06 49.65 5.50E-13 5.50E-13 

6 0.23 0.30 49.04 8.74E-13 8.74E-13 

7 0.07 0.08 50.25 4.88E-13 4.88E-13 

8 0.09 0.14 50.45 4.83E-13 4.83E-13 

9 0.10 0.13 49.30 4.91E-13 4.91E-13 

10 0.14 0.22 50.01 4.85E-13 4.85E-13 

        

The computational times and relative errors of different algorithms used for the first set of 

test matrices are compared in Table 1. As shown, both the original PS scheme and the proposed 

PSSCF can evaluate the considered test matrices precisely and efficiently. The accuracy of PSSCF 

is equivalent to that of PS, but the efficiency of PSSCF is better than that of PS, which is 

particularly obvious in the third test matrix 
3A , where the computational time of PSSCF is only 

one-fourth of that of PS. 

 

Figure 1. Comparison of different algorithms in terms of the average computational times (a), the 

average sparsity of the computed matrix exponentials (b), and the relative errors (c). 

        Figures 1 (a) compares the average computational times that different algorithms take to 

compute the 30 random banded matrices with each bandwidth. The approximate matrices obtained 

by different methods have different sparsity, i.e., the ratio of the number of non-zero elements to 

the square of the dimension of the matrix. The average sparsities of the 30 results obtained by 

different algorithms are compared in Fig. 1(b). The average errors of PS and PSSCF are compared 

in Fig. 1(c). As shown in Fig. 1, both the PS and the PSSCF can produce results with high 

accuracy. The sparsity of the matrix exponential approximated by PSSCF is smaller than that by 

PS or expm. PSSCF is always more efficient than PS. Compared with expm, PSSCF performs 

more efficient when 11b  , and less efficient when 11b  , as the matrix exponential is no longer 

near-sparse when 11b   in terms of Fig. 1(b).   

 

4.2 Matrix cosine 

  For the sparse matrix iA , the matrix exponential can be written as  



 ( )
( )
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0

cos 1
2 !

j
j i

i

j j
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=

= −
A

A . (40) 

To test the efficiency and accuracy of the proposed PSSCF, the original PS scheme, the proposed 

PSSCF, and the MATLAB built-in code cosm are used to evaluate the matrix cosine. The cosm 

result is seen as the benchmark solution. The errors of the original PS and proposed methods are 

evaluated by  

 
( )

( )

cosm

cosm

i i

i

i

er
−

=
X A

A
, (41) 

where 
iX  represents the matrix cosine evaluated with the original PS or the proposed method. For 

both the original PS scheme and the proposed PSSCF, the error tolerances are set to be 
14

tol 10 −= . 

Table 2 Comparison between different algorithms used to compute the matrix cosine experiments 

of the first set of test matrices. 

iA  
Computational time (s) ier  

PSSCF PS cosm PSSCF PS 

1 0.04 0.04 30.19 1.73E-15 3.80E-16 

2 1.57 4.02 77.18 1.46E-14 1.42E-14 

3 4.39 15.79 121.86 1.59E-14 1.48E-14 

4 0.04 0.04 28.21 2.68E-15 5.93E-16 

5 0.04 0.05 30.19 1.63E-15 6.31E-16 

6 0.25 0.22 36.59 3.92E-15 2.36E-15 

7 0.06 0.08 31.66 2.06E-15 3.57E-16 

8 0.09 0.09 33.78 2.41E-15 4.43E-16 

9 0.08 0.10 33.87 2.28E-15 6.42E-16 

10 0.14 0.17 36.67 2.58E-15 5.21E-16 

 

The computational times and relative errors of different algorithms are compared in Table 2. 

As shown, both the original PS scheme and the proposed PSSCF can evaluate the considered test 

matrices precisely and efficiently. The accuracy of PSSCF is equivalent to that of PS. For the test 

matrices 
2A  and 

3A , the computational times of PSSCF are far smaller than that of PS, which 

shows the filtering can significantly improve the computational efficiency of PS. For other test 

matrices, the computational efficiency of PSSCF and PS is equivalent, which may be because the 

considered matrices are too sparse to reflect the advantages of the filtering. But it also shows that 

the filtering does not weaken the computational efficiency and accuracy of the original PS. 



 

       Figure 2. Comparison of different algorithms in terms of the average computational times (a), 

the average sparsity of the computed matrix exponentials (b), and the relative errors (c). 

Figures 2 (a) compares the average computational times that different algorithms take to 

compute the matrix cosines of the 30 random banded matrices with each bandwidth. The average 

sparsities of the 30 results obtained by different algorithms are compared in Fig. 2(b). The average 

errors of PS and PSSCF are compared in Fig. 2(c). As shown in Fig. 2 again, both the PS and the 

PSSCF can produce results with high accuracy. The sparsity of the matrix cosines approximated 

by PSSCF is smaller than that by PS or cosm. PSSCF is always more efficient than PS or cosm.   

 

5. Conclusion 

        A competitive modification of the PS scheme has been proposed by using the filtering 

technique. The filtering-norm-threshold was based on the error analysis considering the truncation 

error and the error introduced by filtering, leading to a new algorithm for the matrix power series 

which is near-sparse. It was verified by numerical experiments on evaluating the matrix 

exponentials and matrix cosines of two sets of sparse matrices that the proposed method can 

obtain similar accuracy as the original PS scheme, but is more efficient than the PS scheme. For 

the near-sparse matrix power series, the proposed method is also more efficient than some state-

of-the-art codes, such as expm and cosm. 
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