
A filtering technique for the matrix power

series being near-sparse

Wu Feng‡; Zhu Li†; Zhao Yuelin†; Zhang Kailing†

†Department of Mechanics, Dalian University of Technology, Dalian 116023, P.R.China

‡School of Mathematical Sciences, State Key Laboratory of Structural Analysis of Industrial Equipment, Dalian

University of Technology, Dalian 116023, P.R.China (Tel.:+86-13940846142, Corresponding author:

vonwu@dlut.edu.cn).

Project supported by the National Natural Science Foundation of China grants (Nos. 11472076 and 51609034), the

Science Foundation of Liaoning Province of China (No. 2021-MS-119), the Dalian Youth Science and Technology

Star project (No. 2018RQ06), and the Fundamental Research Funds for the Central Universities grant (Nos.

DUT20RC(5)009 and DUT20GJ216).

Abstract: This work presents a new algorithm for matrix power series which is near-sparse, that is,

there are a large number of near-zero elements in it. The proposed algorithm uses a filtering

technique to improve the sparsity of the matrices involved in the calculation process of the

Paterson-Stockmeyer (PS) scheme. Based on the error analysis considering the truncation error

and the error introduced by filtering, the proposed algorithm can obtain similar accuracy as the

original PS scheme but is more efficient than it. For the near-sparse matrix power series, the

proposed method is also more efficient than the MATLAB built-in codes.

Keywords: Matrix power series; Matrix polynomial; Paterson-Stockmeyer scheme; filtering

1. Introduction

The research on efficient and accurate algorithms for matrix functions has become one of the

basic topics in modern scientific computing. Matrix function calculation is involved in

computational mathematics, computational mechanics, computational physics, big data analysis,

computational finance, and other aspects. Common basic matrix functions include: matrix

exponential eZ
, matrix logarithm log Z , matrix sine / cosine sin Z / ()cos Z , matrix power p

Z

(p is an arbitrary rational number), matrix sign ()sign Z , and so on [1]. However, most

algorithms proposed for these matrix functions involve the matrix polynomial or the matrix power

series [2, 3]. On the one hand, most matrix functions can be expressed as the Taylor series, and it

is natural to approximate these matrix functions by using Taylor series. On the other hand, the

matrix functions can also be approximated by using the interpolation method, the rational function

approximation, or the Chebyshev polynomial approximation, and all these methods involve the

matrix polynomial. In a word, the computation of matrix polynomial or matrix power series is a

basic issue in the matrix function computation.

There have been many algorithms proposed for matrix polynomial and matrix power series.

Among these, the Qin scheme (also called the Horner scheme) and the Paterson-Stockmeyer (PS)

scheme are two widely used methods. The PS scheme is an improved version of the Qin scheme

and is more efficient for the matrix power series [2, 3]. However, both these methods do not

consider the sparsity of the matrix. In many physical and engineering problems, the matrix

involved is often highly sparse. Many scholars have found that for these highly sparse matrices,

their matrix functions have the property of localization, that is, there are a small number of

nonnegligible elements in the matrix functions, while there are a large number of elements very

close to zero around them [4, 5]. In this paper, these matrices are called near-sparse matrices. The

near-sparse matrix is dense, even full, but most elements in it are very close to zero so dropping

out the near-zero elements can generate a sparse approximation to the original matrix.

Since the localization of matrix function was observed, more and more research have been

done. Not matrix functions of all the sparse matrices are near-sparse. Under what condition the

matrix function is sparse, and how sparse is its approximation have not been fully solved [4-14].

For some specific matrix functions, such as the matrix inversion and the matrix exponential, there

are some theoretical estimates about their localization and bandwidths, and these evaluations are

often too conservative and difficult to calculate. More accurate and easy to calculate estimates

need further research. Readers interested in this issue can read [4] which provided a good review.

The localization of the matrix function can be used for designing more efficient algorithms.

In this aspect, the mainstream idea is to improve the computational efficiency of matrix function

by using the filtering technique, which removes the elements with very small absolute value in the

matrix, and obtains a highly sparse matrix to improve the computation efficiency and reduce the

memory. How to determine which elements are small enough to be ignored without affecting the

accuracy is an important guarantee for the success of the algorithm. Since the behavior of filtering

is equivalent to a kind of artificial rounding error, how to filter the matrices without affecting the

accuracy will involve the analysis of filtering error, which is a difficult task. From the existing

literature, it can be seen that there are many algorithms based on filtering to improve the

computation efficiency for matrix functions such as matrix inverse and matrix exponential.

However the research on other functions is quite a few, and the research on matrix series and

matrix polynomial, which are two basic matrix functions, has not been reported. It will be more

fundamental and important to design an efficient algorithm for computing matrix polynomials and

matrix series based on the filtering technique. This work is the content of our research.

The structure of this paper is as follows. In section 2, we briefly review the PS scheme for

computing matrix polynomials and matrix series. In section 3, the PS scheme combined with

filtering (PSSCF) for matrix polynomials is first presented. According to the error analysis, we

propose an adaptive filtering threshold to remove as many elements as possible without losing

accuracy. On this basis, the PSSCF is further extended to compute matrix series. In section 4,

numerical examples are given to verify the correctness and effectiveness of our algorithm. Finally,

the conclusion is given in section 5.

2. Paterson and Stockmeyer scheme

2.1 Matrix polynomial

 The considered matrix polynomial is

1

2 3 1

0 1 2 3

0

...
N

i N

N i N

i

P a a a a a a
−

−

=

= = + + + + + Z I Z Z Z Z (1)

where Z is a n n matrix, ia is the coefficients of the polynomial. To evaluate the matrix

polynomial, there have been many efficient methods, such as the Qin scheme (also called the

Honor scheme) and the Paterson and Stockmeyer (PS) scheme [15]. The PS scheme may be the

most efficient one which vitalizes the following equation:

 ()

()

1
2 3 1

0 1 2 3

0

1 11 1

0 0 0 0

1

0

...
N

i N

N i N

i

q qb b
i

iq j q j

iq j iq j

i j i j

b
i

q

i

i

P a a a a a a

a a

−
−

=

− −− −
+

+ +

= = = =

−

=

= = + + + + +

= =

=



  



Z I Z Z Z Z

Z Z Z

Z B

 (2)

where

1

0

q
j

i iq j

j

a
−

+

=

=B Z . (3)

According to Eqs. (2) and (3), the calculation process of the PS scheme includes three steps:

1) evaluating
2 1, , , , ,q q−

I Z Z Z Z ; 2) evaluating iB in terms of Eq. (3); 3) evaluating

()
1

0

b
i

q

i

i

−

=

 Z B . The first step requires 1q − matrix multiplications, and the second step does not

require matrix multiplications. The third step needs to evaluate a matrix polynomial which can be

done by using the Qin scheme as:

 () () ()0 1 1 1 1 0 2, , , q

b i b i i N b bq q q− − − − − −= = + = = + =S B S B Z S P S B Z S Z Z , (4)

which require 1b − matrix multiplications. Therefore, the PS scheme requires 2q b+ − matrix

multiplications to evaluate the matrix polynomial. If () ()

1

1 1 1
0

q
j

b b q j b q
j

a a
−

− − + −
=

= =B Z I , evaluating

1S does not need matrix multiplications, and the number of matrix multiplications required

reduces to 3q b+ − . According to [2], in the PS scheme, the minimum number of matrix

multiplications, denoted by ()mt N , is

 ()
()

0, 2
mt

2 , , otherwise

N
N

q b g q N


= 

+ − −
 (5)

where

 ()
()1, if 1 1

1 , , ,
0, otherwise

N q bN
q N b g q N

q

 − − =   = − = =   
  

. (6)

2.2 Matrix power series

The considered matrix power series is

 ()
0

i

i

i

f a


=

=Z Z . (7)

There are many methods proposed to evaluate the matrix power series, such as the Pade

approximation and the Chebyshev approximation. One simple way of these method is taking the

first N terms to approximate Eq. (7), i.e.,

 ()
1

2 3 1

0 1 2 3

0

...
N

i N

N i N

i

f P a a a a a a
−

−

=

 = = + + + + +Z Z I Z Z Z Z , (8)

which becomes a matrix polynomial. How to determine the parameter N is a key issue. If let iz

be a upper bound to
i

Z , the upper bound to the error of Eq. (8) can be expressed as:

 () () i

N i i i

i N i N

f P a a z
 

= =

−   Z Z Z . (9)

For a given error tolerance tol , N can be determined by toli i

i N

a z 


=

 .

 Equation (9) involves the upper bound to
i

Z which can be evaluated by a simple method,

i.e.,
ii

iz =Z Z . Of course, this type of evaluation is too conservative, and we here introduce

Higham’s code normest1[16, 17] to evaluate it when i is not too large.

 The PS scheme reviewed above requires a great number of matrix multiplications. According

to [14], the bandwidth of the matrix power of a sparse matrix increases linearly as the power.

Hence the matrix polynomial will be quite dense though the matrix Z is highly sparse. However,

much previous research found that there are many elements whose absolute values are very small

for many common matrix functions [4, 7]. It is natural to filter out those near-zero elements to

obtain a sparse approximation and to improve the computational efficiency. In the next section, we

will discuss how to filter out the near-zero elements in the computation of the matrix polynomials.

3 PS scheme combined with filtering

 This section proposed a PS scheme combined with the filtering technique (PSSCF) to

evaluate the matrix power series. As any matrix power series can be approximated by a matrix

polynomial with N terms, as shown as Eq. (2), the evaluation of the matrix polynomial will be

studied first.

3.1 Filtering for matrix polynomial

3.1.1 Filtering for a matrix

 The near-sparse matrix is a type of matrix which is dense but contains a large number of near-

zero elements. In the calculation of matrix functions, we often encounter near-sparse matrices. For

a near-sparse matrix C , we can drop out the near-zero elements to obtain a sparse Ĉ , and in such

a way to improve the computational efficiency. A simple filtering method is to give a filtering

threshold f , and then the elements with absolute values smaller than f will be moved from C .

However, in the computation of matrix functions, it is often needed to give some conditions to the

norm of the matrix ˆ= −Δ C C where Δ consists of the dropped elements. If the matrix size is too

large, Δ may be also very large even f is small, and in this case, we cannot state that Ĉ is an

acceptable approximation to C . In [14], an adaptive filtering method was proposed. This method

can adaptively select the filtering threshold to make sure that Δ be smaller than any given

filtering-norm-threshold (FNT) g . In this paper, the adaptive filtering method will be used for

the calculation of matrix power series. The calculation process of this method is shown in

Algorithm 1.

Algorithm 1 This algorithm filters out the near-zero elements in the matrix C to generate a

sparse matrix Ĉ satisfying ()r
ˆ 1g e−  +C C . 0g  is the filtering-norm-threshold, and

r 0e  is a given error tolerance.

1: Set
0 1m = ,

0 1c = , 0i = , and
0 =c C ;

2: while ()r1i gc e + ;

()1

f ;
i

g im 
+

=

()()1

ffind
i

ip 
+

= c , where p is a set of linear indices corresponding to the nonzero

entries in ic whose absolute values are larger than ()1

f

i


+
;

() 10,i i ip += =c c c ;

1 1i ic + += c ;

()1

+1 1 f ;
i

i im c 
+

+=

1;i i= +

end

3: ˆ
i= −C C c .

3.1.2 Formula of PS scheme with filtering

For the convenience of analysis, let
()

: i

i
=Z Z . The first step of the PS scheme can be shown

as

 () () () () ()
2

2 1 1
, ,

i i q q+ −
= = =Z Z Z ZZ Z ZZ , (10)

which involves many matrix multiplications and the matrix ()i
Z becomes denser and denser. If we

drop out the near-zero elements in ()i
Z , the calculation process can be shown as

 () () () () ()2 11 2 1 1
ˆ ˆ ˆ ˆ ˆ, , ii i ++

= = − = −Z Z Z ZZ ζ Z ZZ ζ (11)

where ()1
ˆ

i+
Z represents the sparse matrix obtained by filtering ()

ˆ
i

ZZ , and 1i+ζ is the matrix

consisting of the dropped-out elements. Combining () () 11 1
ˆ

ii i ++ +
= +Z Z ζ with Eq. (11) yields

()

2

ˆ
i

i i k

ki
k

−

=

= −Z Z Ζ ζ , (12)

where ()
2

:
i

i k

ki
k

−

=

 =Z Ζ ζ represents the error between ()
ˆ

i
Z and

i
Z . Substituting Eq. (12) into Eq.

(3), we have

()

1 1 1

0 0 0 2

1 1

2

ˆ

ˆ ˆ

q q q j
j j k

i iq j iq j iq j kj
j j j k

q q
k j

i iq k j i i

j k j

a a a

a

− − −
−

+ + +

= = = =

− −
−

+

= =

 
= = +  

 

 
= + = +  

 

   

 

B Z Z Ζ ζ

B Z ζ B B

. (13)

where iB is the error between ˆ
iB and iB . As the calculation of iB does not require matrix

multiplications, filtering is also needed. But the third step of the PS scheme requires matrix

multiplications, and hence also needs filtering. The third step is calculated by using the Qin

scheme. If the filtering is considered, the Qin scheme should be modified as

 () ()0 1 1 1 1 0 2 1
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, ,b i b i i i N b b bq q

P− − − − − − −= = + − = = + −S B S B Z S Σ S B Z S Σ (14)

where ˆ
iS represents the sparse matrix obtained by filtering ()1 1

ˆˆ ˆ
b i iq− − −+B Z S

()1i+
Z , iΣ consists of

the dropped out elements, and ˆ
NP is the approximation to NP . When ()1 1b b q

a− −
=B I ,

() () ()2 0 2 1
ˆˆ ˆ ˆ ˆ

b bq q b q
a− − −

+ = +B Z S B Z does not require the matrix multiplication, and hence also does not

need filtering, i.e.,
1b− =Σ 0 .

3.1.3 Error introduced by filtering

According to Eq. (14), we have

 () ()()()1 1 1 1 1 1
ˆ ˆˆ ˆ q

i b i i i b i b i i i i i iq q− − − − − − − − −= + − = −  + −  −  − = − S B Z S Σ B B Z Z S S Σ S S . (15)

To simplify the analysis, we only consider the case that the errors ()q
Z and 1i−S are so small

that
() 1iq − Z S can be ignored. In this case,

iS can be written as

 () ()1 1 1,i i i i b i i iq q− − − − =  + =  +  +S Z S Φ Φ B Z S Σ (16)

and

 0 0 0 1
ˆ

b− = − = S S S B . (17)

Combining Eq. (16) with Eq. (17), iS can also be rewritten as

 () 0 0 1

0

,
i

i j

i j bq
j

−

−

=

 = =  = S Z Φ Φ S B . (18)

From (18), and noting that
()

q

q
=Z Z , we have

()

1
1

1

0

b
q b j

b j

j

−
− −

−

=

 S Z Φ (19)

where

 ()1 1j b j j jq− − −  +  +Φ B Z S Σ (20)

From (13),

1 1

, ,

2

,
q q

k j

i i j j i j iq k

j k j

a 
− −

−

+

= =

  = B ζ Z (21)

From (12),

()

2

q k
q

kq
k

−

=

 Z Ζ ζ (22)

Combining Eqs. (19)-(22) yields

()

()1 ,
1

1

2 1

b g q Nq
q b j

b k k j

k j

d
− −

− −

−

= =

  + S ζ Z Σ (23)

where (),g q N is shown as Eq. (6), and

() ()

1
1

1 , 1 1 1 ,

0

, 0
b

q b j q k

k b j k j b j q

j

d  
−

− − −

− − − − − −

=

= + = = Z Ζ S S . (24)

From Eqs. (3) and (4), we have

1 1

0 0

q q
j j

i iq j iq j

j j

a a
− −

+ +

= =

=  B Z Z , (25)

and

()0 1 1 1 1 1, q

b i b i i b i iq− − − − − − −= = +  +S B S B Z S B Z S (26)

Using Eqs. (25)-(26) and Eq. (24), we can evaluate kd .

3.1.4 Adaptive FNT

Equation (23) is the error bound to the PS scheme combined with filtering. For a given error

tolerance  , if we require that

()

()1 ,
1

1

2 1

b g q Nq
q b j

b k k j

k j

d 
− −

− −

−

= =

  +  S ζ Z Σ (27)

the upper bounds to kζ and jΣ should be constrained.

In Eq. (23), k kd ζ represents the error introduced by the filtering matrix kζ , and

()1q b j

j

− −
Z Σ the error introduced by the filtering matrix jΣ . If we require that the influences of

different filtering matrices on the last error 1b−S are the same, we can derive the filtering-norm-

threshold for kζ and jΣ that

()() () ()()

,p ,p 1
,

2 , 2 ,
k k j j q b j

kd q b g q N q b g q N

 
 

− −
 =  =

+ − − + − −
ζ Σ

Z
 (28)

where kd can be evaluated in terms of Eq. (24).

3.2 Filtering for matrix power series

The matrix power series ()
0

i

i

i

f a


=

=Z Z can be approximated by the sum of the first N

terms, i.e., ()
1

0

N
i

N i

i

P a
−

=

=Z Z , which is a matrix polynomial and can be computed by using the

PSSCF. However, the error introduced by truncating the series should be considered to determine

the filtering-norm-thresholds.

3.2.1 Filtering-norm-thresholds considering the truncation error

For the matrix power series, the error can be written as

 () () () () () ()1 1 1
ˆ ˆ

b N N b N bf f P P f P− − −− = − + − = − + Z S Z Z Z S Z Z S , (29)

for which we have

 () () ()1 1
ˆ

b N bf f P− −−  − + Z S Z Z S . (30)

For a given error tolerance tol , the error should satisfy that

() () ()
()

() ()
1 ,

1

1 tol

2 1

b g q Nq
q b j

b N k k j N

k j

f P d f P 
− −

− −

−

= =

 + −  + + −  S Z Z ζ Z Σ Z Z , (31)

where,
()

()1 ,
1

2 1

b g q Nq
q b j

k k j

k j

d
− −

− −

= =

+ ζ Z Σ is the error introduced by filtering, and

() ()Nf P−Z Z is the truncation error. If the upper bounds to the errors introduced by filtering

and truncating are required to be the same, we have

 () () tol0.5Nf P − Z Z . (32)

What should be noted is the truncation error is controlled by N which is unknown before

calculating. Combining Eqs. (9) and (32), we have

 () () tol0.5i

N i i i

i N i N

f P a a z 
 

= =

−    Z Z Z , (33)

which yields

 ()tol tol, , : min : 0.5 , and,i i

i m

N m a z m 


=

 
=  =   

 
a z (34)

where ()0 1, , , ,iz z z=z , and ()0 1, , , ,ia a a=a is an infinite vector consisting of the

coefficients of the matrix power series. According to Eq. (34), N can be evaluated. Combining

(31) with (33), we have

()

()1 ,
1

tol

2 1

b g q Nq
q b j

k k j i i

k j i N

d a z
− − 

− −

= = =

+  −  ζ Z Σ . (35)

Again, requiring the influences of the filtering matrices are the same yields the FNT that

()() () ()()

tol tol

,s ,s 1
,

2 , 2 ,

i i i i

i N i N
k k j j q b j

k

a z a z

d q b g q N q b g q N

 

 

 

= =

− −

− −

 =  =
+ − − + − −

 
ζ Σ

Z
 (36)

3.2.2 Evaluation of the norm of matrix power

It can be seen from the above analysis, the norm i
Z has a great effect on the FNT. In [17],

Higham proposed an efficient method and the corresponding MATLAB code normest1 for the

evaluation of
i

Z . After numerical simulations, it was observed that the computation time of

i
Z using the normest1 increases as i . In this paper, if 10i  , we use normest1 to evaluate

i
Z ; else, we use the following lemma [18].

Lemma 1 Let i
Z be known for 0,1, ,i K= , and 2K  be an even number, then for any

1

2

K
i

+ 
  
 

, we have
i i

KZ , where

1

max , , ,
2

k k
K

K
k K

  
= =  

  
Z .

Lemma 1 is a simple corollar of the Theorem 2 in [18]. Using Higham’s method and Lemma

1, the evaluation of iz can be shown as

() 1

10

10

normest1 , 10
, max , 5 :10

, 10

i

k k
i

i

i
z k

i




   
= = =  

 

Z
Z (37)

3.2.3 PSSCF for matrix power series

Algorithm 2 This algorithm evaluates the approximation ()f̂ Z to the matrix power series

()
0

i

i

i

f a


=

=Z Z satisfying () () tol
ˆf f − Z Z , where

tol 0  is a given error tolerance.

1: Calculate ()0 1, , , ,iz z z=z with formula (37);

2: ()tol , , ;N =  a z

3: 1 , ;
N

q N b
q

 
 = − =   

 

4: ()1: 1 ;i q= −for

5: () ()1
ˆ

i i+
= ；Z ZZ

6: Estimate 1,si + according to (36), filter out
()1i+

Z with Algorithm 1 to get ()1
ˆ

i+
Z , satisfying

() () 1,s1 1
ˆ ;ii i

 ++ +
− Z Z

7: end

8:
() ()

1

0 1 1
0

ˆ ˆ ˆ ;
q

b b q j j
j

a
−

− − +
=

= =S B Z

9: ()1: 1 ;i q= −for

10:
() ()

1

1 1
0

ˆ ˆ ;
q

b i b i q j j
j

a
−

− − − − +
=

=B Z

11: ()1 1
ˆˆ ˆ ;i b i iq− − −= +S B Z S

12:Estimate ,si according to (36), filter out iS with Algorithm 1 to get ˆ
iS , satisfying

,s
ˆ ;i i i− S S

13: end

14: () 1
ˆ ˆ

bf −=Z S

 If the matrix polynomial is evaluated, the second step in Algorithm 2 should be ignored due

to the number N is known, and the FNTs of 1,si + and ,si should be replaced with 1,pi + and

,pi , as shown in (28).

4. Numerical examples

 Two types of matrix functions, i.e., the matrix exponential and the matrix cosine, are used to

test the effectiveness and efficiency of the proposed method. These two matrix functions can be

expressed as the Taylor series which converge for any matrices. For the matrix exponential, the

original PS scheme without filtering, the proposed PSSCF, and the MATLAB code expm are used;

and for the matrix exponential, the original PS scheme without filtering, the proposed PSSCF, and

the MATLAB code cosm are used. Both the original PS scheme and the proposed PSSCF have

been implemented by using MATLAB, and the corresponding MATLAB codes have been

uploaded to https://www.rocewea.com/10.html. We performed the experiments by using the

computer with Microsoft Windows 11 22H2, AMD Ryzen 7 5800H with Radeon Graphics @3.20

GHz, and 15.9GB of RAM. And the MATLAB version is MATLAB R2021b.

 We used the following sets of matrices for testing:

https://www.rocewea.com/10.html

1. Ten 10000×10000 adjacency matrices
iB were downloaded from

https://networkrepository.com. These matrices were modified to be ()0.5i i i= −A I B B ,

which were used as the test matrices. The matrices
iA can also be downloaded from

https://www.rocewea.com/10.html.

2. Random banded matrices 1000×1000 with different bandwidths were used. The lower and

upper bandwidths of these matrices are the same, and denoted by b , and b ranges from 1 to

15. The random numbers in these matrices obey the standard normal distribution. For each

bandwidth, 30 random matrices are generated.

4.1 Matrix exponential

 For the sparse matrix
iA , the matrix exponential can be written as

0

1

!
i j

i

j

e
j



=

=
A

A . (38)

To test the efficiency and accuracy of the proposed PSSCF, the original PS scheme, the proposed

PSSCF, and the MATLAB built-in code expm are used to evaluate the matrix exponential. The

expm result is seen as the benchmark solution. The errors of the original PS and proposed

methods are evaluated by

()

()

expm

expm

i i

i

i

er
−

=
X A

A
 (39)

where
iX represents the result evaluated with the original PS or the proposed method. For both

the original PS scheme and the proposed PSSCF, the error tolerances are set to be
14

tol 10 −= .

Table 1 Comparison between different algorithms used to compute the matrix exponential

experiments of the first set of test matrices.

iA
Computational time (s) ier

PSSCF PS expm PSSCF PS

1 0.06 0.06 49.81 5.33E-13 5.33E-13

2 1.60 3.75 50.67 2.72E-13 2.72E-13

3 3.88 12.31 20.11 2.70E-15 2.70E-15

4 0.05 0.07 11.06 3.90E-13 3.90E-13

https://networkrepository.com/
https://www.rocewea.com/10.html

5 0.05 0.06 49.65 5.50E-13 5.50E-13

6 0.23 0.30 49.04 8.74E-13 8.74E-13

7 0.07 0.08 50.25 4.88E-13 4.88E-13

8 0.09 0.14 50.45 4.83E-13 4.83E-13

9 0.10 0.13 49.30 4.91E-13 4.91E-13

10 0.14 0.22 50.01 4.85E-13 4.85E-13

The computational times and relative errors of different algorithms used for the first set of

test matrices are compared in Table 1. As shown, both the original PS scheme and the proposed

PSSCF can evaluate the considered test matrices precisely and efficiently. The accuracy of PSSCF

is equivalent to that of PS, but the efficiency of PSSCF is better than that of PS, which is

particularly obvious in the third test matrix
3A , where the computational time of PSSCF is only

one-fourth of that of PS.

Figure 1. Comparison of different algorithms in terms of the average computational times (a), the

average sparsity of the computed matrix exponentials (b), and the relative errors (c).

 Figures 1 (a) compares the average computational times that different algorithms take to

compute the 30 random banded matrices with each bandwidth. The approximate matrices obtained

by different methods have different sparsity, i.e., the ratio of the number of non-zero elements to

the square of the dimension of the matrix. The average sparsities of the 30 results obtained by

different algorithms are compared in Fig. 1(b). The average errors of PS and PSSCF are compared

in Fig. 1(c). As shown in Fig. 1, both the PS and the PSSCF can produce results with high

accuracy. The sparsity of the matrix exponential approximated by PSSCF is smaller than that by

PS or expm. PSSCF is always more efficient than PS. Compared with expm, PSSCF performs

more efficient when 11b  , and less efficient when 11b  , as the matrix exponential is no longer

near-sparse when 11b  in terms of Fig. 1(b).

4.2 Matrix cosine

 For the sparse matrix iA , the matrix exponential can be written as

 ()
()

2

0

cos 1
2 !

j
j i

i

j j



=

= −
A

A . (40)

To test the efficiency and accuracy of the proposed PSSCF, the original PS scheme, the proposed

PSSCF, and the MATLAB built-in code cosm are used to evaluate the matrix cosine. The cosm

result is seen as the benchmark solution. The errors of the original PS and proposed methods are

evaluated by

()

()

cosm

cosm

i i

i

i

er
−

=
X A

A
, (41)

where
iX represents the matrix cosine evaluated with the original PS or the proposed method. For

both the original PS scheme and the proposed PSSCF, the error tolerances are set to be
14

tol 10 −= .

Table 2 Comparison between different algorithms used to compute the matrix cosine experiments

of the first set of test matrices.

iA
Computational time (s) ier

PSSCF PS cosm PSSCF PS

1 0.04 0.04 30.19 1.73E-15 3.80E-16

2 1.57 4.02 77.18 1.46E-14 1.42E-14

3 4.39 15.79 121.86 1.59E-14 1.48E-14

4 0.04 0.04 28.21 2.68E-15 5.93E-16

5 0.04 0.05 30.19 1.63E-15 6.31E-16

6 0.25 0.22 36.59 3.92E-15 2.36E-15

7 0.06 0.08 31.66 2.06E-15 3.57E-16

8 0.09 0.09 33.78 2.41E-15 4.43E-16

9 0.08 0.10 33.87 2.28E-15 6.42E-16

10 0.14 0.17 36.67 2.58E-15 5.21E-16

The computational times and relative errors of different algorithms are compared in Table 2.

As shown, both the original PS scheme and the proposed PSSCF can evaluate the considered test

matrices precisely and efficiently. The accuracy of PSSCF is equivalent to that of PS. For the test

matrices
2A and

3A , the computational times of PSSCF are far smaller than that of PS, which

shows the filtering can significantly improve the computational efficiency of PS. For other test

matrices, the computational efficiency of PSSCF and PS is equivalent, which may be because the

considered matrices are too sparse to reflect the advantages of the filtering. But it also shows that

the filtering does not weaken the computational efficiency and accuracy of the original PS.

 Figure 2. Comparison of different algorithms in terms of the average computational times (a),

the average sparsity of the computed matrix exponentials (b), and the relative errors (c).

Figures 2 (a) compares the average computational times that different algorithms take to

compute the matrix cosines of the 30 random banded matrices with each bandwidth. The average

sparsities of the 30 results obtained by different algorithms are compared in Fig. 2(b). The average

errors of PS and PSSCF are compared in Fig. 2(c). As shown in Fig. 2 again, both the PS and the

PSSCF can produce results with high accuracy. The sparsity of the matrix cosines approximated

by PSSCF is smaller than that by PS or cosm. PSSCF is always more efficient than PS or cosm.

5. Conclusion

 A competitive modification of the PS scheme has been proposed by using the filtering

technique. The filtering-norm-threshold was based on the error analysis considering the truncation

error and the error introduced by filtering, leading to a new algorithm for the matrix power series

which is near-sparse. It was verified by numerical experiments on evaluating the matrix

exponentials and matrix cosines of two sets of sparse matrices that the proposed method can

obtain similar accuracy as the original PS scheme, but is more efficient than the PS scheme. For

the near-sparse matrix power series, the proposed method is also more efficient than some state-

of-the-art codes, such as expm and cosm.

References:

 [1]. Bini, D.A. and B. Meini, On the exponential of semi-infinite quasi-Toeplitz matrices. Numerische

Mathematik, 2019. 141(2): p. 319-351.

 [2]. N. J., H., Functions of Matrices: Theory and Computation. 2008: SIAM.

 [3]. Nicholas, J.H., Accuracy and stability of numerical algorithms. 2 ed. 2011, Beijing: Tsinghua

University Press.

 [4]. Benzi, M., Localization in matrix computations: theory and applications, in Exploiting hidden

structure in matrix computations: algorithms and applications, Lecture Notes in Mathematics, M. Benzi

and V. Simoncini, M. Benzi and V. Simoncini^Editors. 2016, Springer: Berlin

. p. 211-317.

 [5]. Benzi, M. and P. Boito, Decay properties for functions of matrices over C⁎-algebras. Linear

Algebra and its Applications, 2013. 456(1): p. 174-198.

 [6]. Benzi, M. and G.H. Golub, Bounds for the Entries of Matrix Functions with Applications to

Preconditioning. Bit Numerical Mathematics, 1999. 39(3): p. 417-438.

 [7]. Benzi, M. and N. Razouk, Decay bounds and O(n) algorithms for approximating functions of

sparse matrices. Electronic Transactions on Numerical Analysis, 2007. 28: p. 16-39.

 [8]. Benzi, M., Preconditioning Techniques for Large Linear Systems: A Survey. Journal of

Computational Physics, 2002. 182(2): p. 418-477.

 [9]. Benzi, M. and M. Tûma, A comparative study of sparse approximate inverse preconditioners.

Applied numerical mathematics, 1999. 30(2): p. 305-340.

[10]. Ford, N.J., D.V. Savostyanov and N.L. Zamarashkin, On the decay of the elements of inverse

triangular Toeplitz matrices. SIAM Journal on matrix analysis and applications, 2014. 35(4): p. 1288-

1302.

[11]. Frommer, A., C. Schimmel and M. Schweitzer, Bounds for the decay of the entries in inverses

and Cauchy–Stieltjes functions of certain sparse, normal matrices. Numerical Linear Algebra with

Applications, 2018. 25(4): p. n/a-n/a.

[12]. Canuto, C., V. Simoncini and M. Verani, On the decay of the inverse of matrices that are sum of

Kronecker products. Linear Algebra and its Applications, 2014. 452: p. 21-39.

[13]. Demko, S., W.F. Moss and P.W. Smith, Decay-rates for inverses of band matrices. Mathematics

of computation, 1984. 43(168): p. 491-499.

[14]. Wu, F., et al., High-performance computation of the exponential of a large sparse matrix. SIAM

Journal on Matrix Analysis and Applications, 2021. 4(42): p. 1636-1655.

[15]. Paterson, M.S. and L.J. Stockmeyer, On the Number of Nonscalar Multiplications Necessary to

Evaluate Polynomials. SIAM journal on computing, 1973. 2(1): p. 60-66.

[16]. Higham, N.J. and F. Tisseur, A bock algorithm for matrix 1-Norm estimation, with an application

to 1-norm pseudospectra. SIAM journal on matrix analysis and applications, 2000. 21(4): p. 1185-1201.

[17]. AL-Mohy, A.H. and N.J. Higham, A new scaling and squaring algorithm for the matrix

exponential. SIAM journal on matrix analysis and applications, 2010. 31(3): p. 970-989.

[18]. Sastre, J., et al., Accurate matrix exponential computation to solve coupled differential models in

engineering. Mathematical and Computer Modelling, 2011. 54(7-8): p. 1835-1840.

	A filtering technique for the matrix power series being near-sparse
	1. Introduction
	2. Paterson and Stockmeyer scheme
	2.1 Matrix polynomial
	2.2 Matrix power series

	3 PS scheme combined with filtering
	3.1 Filtering for matrix polynomial
	3.1.1 Filtering for a matrix
	3.1.2 Formula of PS scheme with filtering
	3.1.3 Error introduced by filtering
	3.1.4 Adaptive FNT

	3.2 Filtering for matrix power series
	3.2.1 Filtering-norm-thresholds considering the truncation error
	3.2.2 Evaluation of the norm of matrix power
	3.2.3 PSSCF for matrix power series

	4. Numerical examples
	4.1 Matrix exponential
	4.2 Matrix cosine

	5. Conclusion

