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PINCHUK SCALING METHOD ON DOMAINS WITH

NON-COMPACT AUTOMORPHISM GROUPS

NINH VAN THU, NGUYEN THI KIM SON AND NGUYEN QUANG DIEU1,2

Abstract. In this paper, we characterize weakly pseudoconvex domains of finite type
in Cn in terms of the boundary behavior of automorphism orbits by using the scaling
method.

1. introduction

Let Ω be a domain in Cn. The set of all automorphisms of Ω, denoted by AutpΩq,
makes a group under composition and this group is also a topological group with the
topology of uniform convergence on compact sets of Ω. By a classical theorem of H. Car-
tan (see [Na71]), for a bounded domain Ω in Cn, it follows that AutpΩq is non-compact
if and only if there exist a point a P Ω, a point p P BΩ, and automorphisms ϕj P AutΩq
such that ϕjpaq Ñ p as j Ñ 8. Such a point p is called a boundary orbit accumula-
tion point. The local geometry of the boundary orbit accumulation point in turn gives
global information about the characterization of domains. In particular, Greene and
Krantz [GK93] posed a conjecture that for a smoothly bounded pseudoconvex domain
admitting a non-compact automorphism group, the boundary orbit accumulation point
is of finite type in the sense of D’Angelo [D’A82]. (In this paper, the finiteness of type
is understood in the sense of D’Angelo.) The interested reader is referred to the recent
papers [IK99, KN15, Kr21] for this conjecture.
In this paper, we study the problem of characterizing domains in Cn with non-compact

automorphism groups. The main results around this problem are due to B. Wong and
J. P. Rosay [Wo77, Ro79], E. Bedford and S. Pinchuk [BP89, BP91, BP95, BP99], K.-T.
Kim [Ki90], F. Berteloot [Be94, Be03], A. Isaev and S. Krantz [IK97], Do Duc Thai and
the first author [DN09], the first and third authors [NN20]. Almost all previous work
requires the finiteness of type and either the strong pseudoconvexity (or even convexity),
or pseudoconvexity only in dimension 2. In contrast to these results, we provide a new
characterization of weakly pseudoconvex domains of finite type in terms of the boundary
behavior of automorphism orbits by using the scaling method, introduced by S. Pinchuk
[Pi81].
The scaling method may be briefly described as follows. Let Ω be a domain in Cn`1

and tϕjpaqu be a sequence of automorphism orbits converging to a boundary point ξ0.
Let us fix a small neighborhood U0 of ξ0. By using the reasonable composition, say Tj, of
polynomial automorphisms of Cn`1, including translations and dilations, the sequence
of domains Dj :“ TjpU0 X Ωq converges normally to a model MP , given by

MP :“ tpz, wq P C
n ˆ C : Repwq ` P pz, z̄q ă 0u ,
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where P is a real-valued polynomial on Cn. When P is a homogeneous plurisubharmonic
polynomial, MP is called a local homogeneous model at ξ0.
The sequence Fj :“ Tj ˝ ϕj is in turn called a Pinchuk scaling sequence. The most

difficulty is to prove that the Pinchuk scaling sequence tFju is normal, i.e., there exists
a subsequence of tFju that converges uniformly on compacta from Ω to MP . We first
assume, temporarily, that Ω is a bounded domain in Cn. Then the approach of Bedford
and Pinchuk conveniently splits into two steps. In the first step, E. Bedford and S.
Pinchuk [BP89, BP91, BP95, BP99] considered, alternatively, the convergence of the
backward scaling sequence tF´1

j u. Thanks to the boundedness of Ω, the Montel theorem

ensures that this sequence tF´1

j u contains a convergent subsequence. Next, that limit,
say G, was showed to be one-one from MP into Ω by using the uniform estimates
of the Kobayashi metric (cf. [Cat89] for n “ 1), or the Sibony metric (cf. [Sib81] for
corank one domains) on a family of the scaling domains tDju. In addition, the existence
of a plurisubharmonic exhaustion function for Ω (cf. [DF77]) yields the holomorphic
map G is surjective. In the second step, they treated a one-dimensional subgroup
thtutPR Ă AutpΩq defined by htpzq “ G pGpzq ` p01, itqq , z P Ω. This subgroup is
parabolic in the sense that htpzq tends to some boundary point p P BΩ as j Ñ ˘8 for any
z P Ω. A careful analysis of the holomorphic vector field Hpzq :“ d

dt
|t“0 htpzq, defined

on Ω and tangent to BΩ (by [Fe74] each ht, t P R, extends smoothly to the boundary),
at the parabolic fixed point ξ0 shows that the polynomial P is a weighted homogeneous
polynomial such as P pz1, z̄1q “ c|z1|2m for n “ 1 and P pz, z̄q “ c|z1|2m `|z2|2 `¨ ¨ ¨`|zn|2
for corank one domains, where c is a positive constant.
Let us emphasize that the above-mentioned method does not work for unbounded

domains. Therefore, an alternative approach is to prove directly the normality of tFju
and then the tautness of Ω indicates that tF´1

j u is also normal. Then, [GK87, Lemma
4.1](see also [DN09, Prop. 2.1]) guarantees that the limit of tFju is a biholomorphism
from Ω onto MP . The tautness of Ω easily follows from the existence of a plurisubhar-
monic peak function at ξ0 (cf. [Be94, Prop. 2.1]). Therefore, our work boils down to
verify the normality of tFju.
In 1991, S. Pinchuk [Pi91] himself considered the case that ξ0 is strongly pseudo-

convex. Thanks to the locally convexifiability of Ω near ξ0, S. Pinchuk proved that
tFju is normal. Therefore, Ω is biholomorphically equivalent to the unit ball Bn, which
gives a local version of the Wong-Rosay theorem. Similar result was achieved by A. M.
Efimov [Ef95] for unbounded strongly pseudoconvex domains in Cn. In addition, for
convex domains in Cn the normality of our Pinchuk scaling sequence can instead be
easily established (cf. [BP95, Ga97, Ni09]). However, the Frankel scaling method given
in [Fra89] can be applied for convenience (cf. [Ki90, Ki01, Zi17, Jo18]).
For unbounded weakly pseuconvex domains of finite type in C2, F. Berteloot [Be94,

Be03, Be06] obtained a significant progress by using the properties of polydics con-
structed by D. Catlin (see [Cat89]) and the corresponding estimate of Kobayashi metric
near ξ0 to show the normality of the Pinchuk scaling sequence. Hence, Ω is biholomor-
phically equivalent to some local homogeneous model MP . This result was generalized
by Do Duc Thai and the first author [DN09] for corank one domains in Cn.
Recently, the first and third authors [NN20] investiaged a pseudoconvex domain Ω Ă

Cn which is of finite Catlin’s multitype near ξ0 P BΩ. When MP is a homogeneous
model of finite type, there exists a plurisubharmonic peak function for MP at the origin.
Therefore, the attraction property of analytic discs yields the normality of the Pinchuk
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scaling sequence. Consequently, Ω is biholomorphically equivalent to MP provided that
the automorphism orbit tϕjpaqu converges Λ-nontangentially to ξ0 (cf. Remark 3.1 and
[NN20, Theorem 1.1]).
One observes that the local homogeneous model MP depends heavily on the boundary

behavior of tϕjpaqu. More precisely, the boundary behavior of tϕjpaqu suggests some
choice of dilations. The purpose of this paper is to give a characterization of local
homogeneous models when the automorphism orbit tϕjpaqu accumulates at ξ0 “very”
tangentially to BΩ - the remaining possibility (cf. Definitions 3.1 and 4.1).
The first aim of this paper is to prove the following theorem, which says that only the

unit ball admits an automorphism orbit accumulating at ξ0 uniformly Λ-tangentially to
BΩ (cf. Definition 3.1).

Theorem 1.1. Let Ω be a pseudoconvex domain in Cn`1 with C8-smooth boundary BΩ.
Let ξ0 P BΩ be strongly h-extendible with Catlin’s finite multitype p2m1, . . . , 2mn, 1q and
let Λ “ p1{2m1, . . . , 1{2mnq (see Definition 3.2). Suppose that there exists a sequence
tϕju Ă AutpΩq such that tϕjpaqu converges uniformly Λ-tangentially to ξ0 for some
a P Ω (see Definition 3.1). Then Ω is biholomorphically equivalent to the unit ball Bn`1.

Remark 1.1. The uniform Λ-tangential convergence of tϕjpaqu allows us to choose a
suitable sequence of dilations (cf. see Equation (3) in Section 3) so that our model is
an analytic ellipsoid that is biholomorphically equivalent to B

n`1. However, Example
3.3 in Section 3 points out that without this uniform Λ-tangential convergence, there
still exists an alternative sequence of dilations to get such a model. In addition, the
explicit description for the automorphism group of the Thullen domains or the finite
multitype models (cf. [NNTK19]) demonstrates that any sequence of automorphism
orbit converges Λ-nontangentially to some boundary orbit accumulation point. There-
fore, it seems reasonable to expect that may drop the requirement of the uniformity of
Λ-tangentially convergences (see Remark 3.3).

Now we turn to pseudoconvex Levi corank one domains in Cn`1 which includes pseu-
doconvex domains of finite type in C2. Then, the point ξ0 is h-extendible (cf. [Yu95]).
In addition, if n “ 1 and ξ0 is strongly h-extendible, then Ω is biholomorphically equiva-
lent to B2 by Theorem 1.1. However, without the strongly h-extendibility, the notion of
spherically 1

2m
-tangential convergence is necessary to determine if Ω is biholomorphically

equivalent to Bn`1 (cf. Definition 4.1).
The second aim of this paper is to prove the following theorem.

Theorem 1.2. Let Ω be a pseudoconvex domain in Cn`1 with C8-smooth boundary BΩ.
Suppose that ξ0 is a boundary point of Ω of D’Angelo finite type such that the Levi form
has corank at most 1 at ξ0 and there exists a sequence tϕju Ă AutpΩq such that ϕjpaq
converges spherically 1

2m
-tangentially to ξ0 for some a P Ω (cf. Definition 4.1). Then Ω

is biholomorphically equivalent to the unit ball Bn`1.

Now let Ω Ă C2 be a pseudoconvex domain of finite type near ξ0 P BΩ with the
type 2m. Then the notion of uniformly p 1

2m
q-tangential convergence (cf. Definition

3.1) reduces to that of p 1

2m
q-tangential convergence. Moreover, the notion of spherically

1

2m
-tangential convergence is exactly Definition 4.1. Therefore, Theorem 1.2 yields the

following corollary.

Corollary 1.3. Let Ω be a pseudoconvex domain in C2 with C8-smooth boundary BΩ.
Suppose that ξ0 P BΩ is of finite type 2m. Suppose that there exists a sequence tϕju Ă



4 NINH VAN THU, NGUYEN THI KIM SON AND NGUYEN QUANG DIEU1,2

AutpΩq such that ϕjpaq converges spherically 1

2m
-tangentially to ξ0 for some a P Ω (see

Definition 4.1). Then Ω is biholomorphically equivalent to the unit ball B2.

In the case that tϕjpaqu does not converge spherically 1

2m
-tangentially to ξ0 for some

a P Ω, we prove the following proposition, in which our model may be defined by a
homogeneous polynomial of degree larger than 2.

Proposition 1.4. Let Ω be a pseudoconvex domain in C2 with C8-smooth boundary BΩ.
Suppose that ξ0 P BΩ is of finite type 2m. Suppose that there exist a number 2 ď ν ď m,
a P Ω and a sequence fj Ă AutpΩq such that fjpaq converges spherically 1

2m
-tangentially

of order 2ν to ξ0 (see Definition 5.1). Then Ω is biholomorphically equivalent to a model
of the form

MQ :“
 

pz, wq P C
2 : Repwq ` Qpzq ă 0

(
,

where Q is a homogeneous polynomial of degree 2ν which is not harmonic.

Remark 1.2. We note that Example 5.1 in Section 5 illustrates that if the sequence
of automorphism orbits does not converge spherically 1

2m
-tangentially to a boundary

point, then our domain Ω is not biholomorphically equivalent to the unit ball B2 but to
MQ with degpQq “ 4.

The organization of this paper is as follows: In Sections 2, we recall some basic
definitions and results needed later. In Section 3, we present the notion of Λ-tangential
convergence and give a proof of Theorem 1.1. Next, the notion of spherical 1

2m
-tangential

convergence and the proof of Theorem 1.2 are introduced in Section 4. Finally, the proof
of Proposition 1.4 is given in Section 5.

2. Preliminaries

First of all, we recall the following definition (see [GK87, Kr21], or [DN09]).

Definition 2.1. Let tΩiu8
i“1 be a sequence of domains in Cn. The sequence tΩiu8

i“1 is
said to converge normally to a domain Ω0 Ă Cn if the following two conditions hold:

(i) If a compact set K is contained in the interior (i.e., the largest open subset) ofč

jěm

Ωj for some positive integer m, then K Ă Ω0.

(ii) If a compact subset K 1 Ă Ω0 , then there exists a constant m ą 0 such that

K 1 Ă
č

jěm

Ωj .

In addition, when a sequence of map ϕj : Ωj Ñ Cm converges uniformly on compact
sets to a map ϕj : Ω Ñ Cm then we shall say that ϕj converges normally to ϕ.

Next, let us recall the following definition (cf. [Yu95]).

Definition 2.2. Let Λ “ pλ1, . . . , λnq be a fixed n-tuple of positive numbers and µ ą 0.
We denote by Opµ,Λq the set of smooth functions f defined near the origin of Cn such
that

DαD
β
fp0q “ 0 whenever

nÿ

j“1

pαj ` βjqλj ď µ.
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If n “ 1 and Λ “ p1q then we use Opµq to denote the functions vanishing to order at

least µ at the origin. Here and in what follows, Dα and D
β
denote the partial differential

operators

B|α|

Bzα1

1 ¨ ¨ ¨ Bzαn
n

and
B|β|

Bz̄β1

1
¨ ¨ ¨ Bz̄βn

n

,

respectively. Furthermore, À and Á denote inequality up to a positive constant. More-
over, we will use « for the combination of À and Á

Finally, in order to give proofs of Theorem 1.1 and Theorem 1.3, let us recall the
following proposition that is the main ingredient in our argument (see [NN20, Prop.
4.3]).

Proposition 2.1 ([NN20]). Let ω be a domain in Ck, a P ω and σj : ω Ñ Ωj be a
sequence of holomorphic mappings such that tσjpaqu Ť MP . If MP is of finite type,
then tσju contains a subsequence that converges locally uniformly to a holomorphic map
σ : ω Ñ MP .

3. The behaviour of automorphism orbits accumulating at a boundary

point of an h-extendible domain in Cn

3.1. Λ-tangential convergence. Throughout this subsection, let Ω be a domain in Cn

and assume that ξ0 P BΩ is an h-extendible boundary point (cf. [Yu95, DH94]). Let ρ be
a local defining function for Ω near ξ0 and let the multitype Mpξ0q “ p2m1, . . . , 2mn, 1q
be finite (see [Cat84]). (Note that because of the pseudoconvexity of Ω, the integers
2m1, . . . , 2mn are all even.) Let us denote by Λ “ p1{2m1, . . . , 1{2mnq. By the definition
of multitype, there are distinguished coordinates pz, wq “ pz1, . . . , zn, wq such that ξ0 “ 0
and ρpz, wq can be expanded near 0 as follows:

ρpz, wq “ Repwq ` P pzq ` Qpz, wq,
where P is a Λ-homogeneous plurisubharmonic polynomial that contains no plurihar-
monic monomials, Q is smooth and satisfies

|Qpz, wq| ď C

˜
|w| `

nÿ

j“1

|zj |2mj

¸γ

,

for some constant γ ą 1 and C ą 0. In what follows, distpz, BΩq denotes the Euclidean
distance from z to BΩ.

Definition 3.1. We say that a sequence tηj “ pαj , βjqu Ă Ω with αj “ pαj1, . . . , αjnq,
converges uniformly Λ-tangentially to ξ0 if the following conditions hold:

(a) |Impβjq| À |distpηj , BΩq|;
(b) |distpηj , BΩq| “ op|αjk|2mkq for 1 ď k ď n;
(c) |αj1|2m1 « |αj2|2m2 « ¨ ¨ ¨ « |αjn|2mn .

Remark 3.1. It is well-known that tηju Ă Ω converges nontangentially to ξ0 if |Impβjq| À
|distpηj, BΩq| and |αjk| À |distpηj , BΩq| for every 1 ď k ď n. Nevertheless, such se-
quence converges Λ-nontangentially to ξ0 if |Impβjq| À |distpηj , BΩq| and |αjk|2mk À
|distpηj, BΩq| for every 1 ď k ď n (cf. [NN20]).
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Denote by

σpzq :“
nÿ

k“1

|zk|2mk .

Definition 3.2. We say that a boundary point ξ0 P BΩ is strongly h-extendible if there
exists δ ą 0 such that P pzq ´ δσpzq is plurisubharmonic, i.e. ddcP ě δddcσ.

Remark 3.2. The notion of strongly h-extendibility is exactly that MP is homogeneous
finite diagonal type given in [He92, He16]. Let ξ0 P BΩ be strongly h-extendible. Then
by ddcP Á ddcσ, it follows that ξ0 P BΩ is in fact h-extendible and

nÿ

k,l“1

B2P

BzkBz̄l
pαqwjw̄l Á

nÿ

k,l“1

B2σ

BzkBz̄l
pαqwjw̄l

Á m2

1|α1|2m1´2|w1|2 ` ¨ ¨ ¨ ` m2

n|αn|2mn´2|wn|2

for all α,w P Cn.

In the sequel, we will assume that ξ0 P BΩ is a strongly h-extendible point and
let tǫju Ă R` be a given sequence. Then we define the sequence τj “ pτj1, . . . , τjnq,
associated to tǫju, as follows:

τjk :“ |αk|.
ˆ

ǫj

|αjk|2mk

˙1{2

, j ě 1, 1 ď k ď n.

A simple calculation shows that τ 2mk

jk “ ǫj .
´

ǫj

|αjk|2mk

¯mk´1

À ǫj . Hence, we get the

following estimates

ǫ
1{2
j À τjk À ǫ

1{2mk

j .(1)

In what follows, we assign weights 1

2m1

, . . . , 1

2mn
, 1 to the variables z1, . . . , zn, w, re-

spectively and denote by wtpKq :“ řn

j“1

kj
2mj

the weight of an n-tupleK “ pk1, . . . , knq P
Zn

ě0
. We note that wtpK ` Lq “ wtpKq ` wtpLq for any K,L P Zn

ě0
.

In order to prove Theorem 1.1, we need the following lemmas. First of all, from (1)
one easily obtains the following lemma.

Lemma 3.1. Let fpz, wq be a C8-smooth function defined in a neighborhood of the
origin in Cn`1 vanishing to weight order greater than 1 at the origin. Then

fpτj1z1, . . . , τjnzn, ǫjwq “ opǫjq.
For monomials with weight order ď 1, we have the following lemmas.

Lemma 3.2. Let p, q P Nn be two multi-indices. Then, for all polynomials P one has

ǫ´1

j

ˇ̌
DpD

q
P pαjqτ p`q

j

ˇ̌
Ñ 0

for |p| ` |q| ą 2. In addition, if |p| “ |q| “ 1, then

ǫ´1

j

ˇ̌
DpD

q
P pαjqτ p`q

j

ˇ̌
À 1.

Moreover, if P pzq ´ δσpzq is plurisubharmonic for some δ ą 0, then

ǫ´1

j

nÿ

k,l“1

B2P

BzkBz̄l
pαjqτjkτjlwkw̄l Á m2

1
|w1|2 ` ¨ ¨ ¨ ` m2

n|wn|2.
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Proof. It suffices to prove the lemma for P pzq “ zK z̄L and K ě p, L ě q. Then we have

ǫ´1

j

ˇ̌
DpD

q
P pαjqτ p`q

j

ˇ̌
“ ǫ´1

j |αj1|k1`l1

ˆ
τj1

|αj1|

˙p1`q1

¨ ¨ ¨ |αjn|kn`ln

ˆ
τjn

|αjn|

˙pn`qn

“
ˆ |αj1|2m1

ǫj

˙k1`l1
2m1

´
p1`q1

2

¨ ¨ ¨
ˆ |αjn|2mn

ǫj

˙kn`ln
2mn

´ pn`qn
2

«
ˆ |αj1|2m1

ǫj

˙ nř
s“1

ks`ls
2ms

´
pj`qj

2

“
ˆ |αj1|2m1

ǫj

˙1´ |p|`|q|
2

.

Therefore, we get

ǫ´1

j

ˇ̌
DpD

q
P pαjqτ p`q

j

ˇ̌
Ñ 0

as j Ñ 8 for |p| ` |q| ą 2 and

ǫ´1

j

ˇ̌
DpD

q
P pαjqτ p`q

j

ˇ̌
À 1

for |p| ` |q| “ 2. Finally, by Remark 3.2 one obtains that

ǫ´1

j

nÿ

k,l“1

B2P

BzkBz̄l
pαjqτjkτjlwkw̄l Á ǫ´1

j

nÿ

k,l“1

B2σ

BzkBz̄l
pαjqτjkτjlwjw̄l

Á ǫ´1

j

`
m2

1|α1|2m1´2τ 2j1|w1|2 ` ¨ ¨ ¨ ` m2

n|αn|2mn´2τ 2jn|wn|2
˘

Á m2

1|w1|2 ` ¨ ¨ ¨ ` m2

n|wn|2

for every w P Cn. �

In the same fashion we have the following lemma.

Lemma 3.3. Let Qpzq be a polynomial in z P Cn such that Q P Op1,Λq. Then we have

ǫ´1

j

ˇ̌
DpD

q
Qpαjqτ p`q

j

ˇ̌
Ñ 0

as j Ñ 8 for |p| ` |q| ě 2.

Proof. As in the proof of Lemma 3.2, it suffices to consider Qpzq “ zK z̄L and K ě
p, L ě q with d :“ wtpK ` Lq ą 1. Then following the proof of Lemma 3.2, one has

ǫ´1

j

ˇ̌
DpD

q
Qpαjqτ p`q

j

ˇ̌
«
ˆ |αj1|2m1

ǫj

˙d´ |p|`|q|
2

.

Therefore, we conclude that ǫ´1

j

ˇ̌
DpD

q
Qpαjqτ p`q

j

ˇ̌
Ñ 0 as j Ñ 8 for |p| ` |q| ě 2, as

desired. �

3.2. Proof of Theorem 1.1. Let Ω and ξ0 P BΩ be as in the statement of Theorem
1.1. Let Mpξ0q “ p2m1, . . . , 2mn, 1q be the finite multitype of Ω at ξ0 and denote by
Λ “ p1{2m1, . . . , 1{2mnq. As in Subsection 3.1, one can find local coordinates pz̃, w̃q “
pz̃1, . . . , z̃n, w̃q near ξ0 such that ξ0 “ 0 and the local defining function ρpz̃, w̃q for Ω can
be expanded near 0 as follows:

ρpz̃, w̃q “ Repw̃q ` P pz̃q ` Qpz̃, w̃q,
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where P is a Λ-homogeneous plurisubharmonic polynomial that contains no plurihar-
monic monomials, Q is smooth and satisfies

|Qpz̃, w̃q| ď C

˜
|w̃| `

nÿ

j“1

|z̃j |2mj

¸γ

,

for some constant γ ą 1 and C ą 0.
By hypothesis of Theorem 1.1, there exist a sequence tϕju Ă AutpΩq and a point

a P Ω such that ηj :“ ϕjpaq converges uniformly Λ-tangentially to ξ0. Let us write
ηj “ pαj, βjq “ pαj1, . . . , αjn, βjq. Then one has

(a) |Impβjq| À |distpηj , BΩq|;
(b) |distpηj , BΩq| “ op|αjk|2mkq for 1 ď k ď n.
(c) |αj1|2m1 « |αj2|2m2 « ¨ ¨ ¨ « |αjn|2mn .

By following the proofs of Lemmas 4.10, 4.11 in [Yu95], after a change of variables

#
z :“ z̃;

w :“ w̃ ` b1pz̃qw̃ ` b2pz̃qw̃2 ` b3pz̃q,

where b1, b2, b3 are holomorphic functions of z̃ satisfying bk “ Op|z̃|2q, k “ 1, 2, 3, there
are local holomorphic coordinates pz, wq in which ξ0 “ 0 and Ω can be described near 0
as follows:

Ω “
 

pz, wq P C
n`1 : ρpz, wq “ Repwq ` P pzq ` R1pzq ` R2pImwq ` pImwqRpzq ă 0

(
,

where R1 P Op1,Λq, R P Op1{2,Λq, and R2 P Op2q. We would like to emphasize that in
the new coordinates the sequence tηju still has the properties paq, pbq, and pcq.
Let U0 be a fixed small neighborhood of ξ0 “ 0. Then for any sequence tηj “ pαj , βjqu

of points converging uniformly Λ-tangentially to the origin in U0 X tρ ă 0u “: U´
0
, we

associate with a sequence of points η1
j “ pαj, aj `ǫj `ibjq, where ǫj ą 0 and βj “ aj `ibj ,

such that η1
j “ pαj, β

1
jq with β 1

j “ aj ` ǫj ` ibj is in the hypersurface tρ “ 0u for every
j P N

˚. We note that ǫj « distpηj , BΩq
Before we begin the scaling procedure, we make several changes of coordinates.

Firstly, let us consider the sequences of translations Lη1
j
: Cn Ñ Cn , defined by

Lη1
j
pz, wq :“ pz, wq ´ η1

j “ pz ´ αj, w ´ β 1
jq.

Then, under the change of variables pz̃, w̃q :“ Lη1
j
pz, wq, i.e.,

#
w ´ β 1

j “ w̃;

zk ´ αjk “ z̃k, k “ 1, . . . , n,

one observes that Lη1
j
pαj , βjq “ p01,´ǫjq for every j P N˚.
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Now let us write w “ u`iv, v “ bj`pv´bjq “ bj`Impw̃q, and z “ αj`pz´αjq “ αj`z̃.
Since R2 P Op2q and R P Op1{2,Λq, by using Taylor’s theorem, we have

R2pvq “ R2pbjq ` R1
2
pbjqpv ´ bjq ` op|v ´ bj |q “ R2pbjq ` R1

2
pbjqImpw̃q ` op|Impw̃q|q;

vRpzq “ pbj ` pv ´ bjqqRpαj ` z̃q

“ pbj ` Impw̃qq
´
Rpαjq ` 2Re

ÿ

1ď|p|ď2

DpR

p!
pαjqpz̃qp ` 1

2

nÿ

k,l“1

B2R

Bz̃kBz̃l
pαjqz̃kz̃l ` op|z̃|2q

¯

“ bjRpαjq ` bj

´
2Re

ÿ

1ď|p|ď2

DpR

p!
pαjqpz̃qp ` 1

2

nÿ

k,l“1

B2R

Bz̃kBz̃l
pαjqz̃kz̃l

¯

` op|z̃|2q ` op|Impw̃q|q.

Hence, using again Taylor’s theorem we see that the hypersurface Lη1
j
ptρ “ 0uq is defined

by an equation of the form

ρ
´
L´1

ηj
pz̃, w̃q

¯
“ Repw̃q ` R1

2
pbjqImpw̃q ` RpαjqImpw̃q ` op|Impw̃q|q

` 2Re
ÿ

1ď|p|ď2

DpP

p!
pαjqpz̃qp ` 1

2

nÿ

k,l“1

B2P

Bz̃kBz̃l
pαjqz̃kz̃l

` 2Re
ÿ

1ď|p|ď2

DpR1

p!
pαjqpz̃qp ` 1

2

nÿ

k,l“1

B2R1

Bz̃kBz̃l
pαjqz̃kz̃l

` bj

´
2Re

ÿ

1ď|p|ď2

DpR

p!
pαjqpz̃qp ` 1

2

nÿ

k,l“1

B2R

Bz̃kBz̃l
pαjqz̃kz̃l

¯
` op|z̃|2q “ 0.

(2)

Next, to remove the pluriharmonic terms in (2) let us define a sequence tQju of
automorphisms of Cn`1 by

$
’’’&
’’’%

w :“ w̃ ` pR1
2
pbjq ` Rpαjqqiw̃ ` 2

ř
1ď|p|ď2

DpP p
p!

pαjqpz̃qp ` 2
ř

1ď|p|ď2

DpR1

p!
αjqpz̃qp

`bj
ř

1ď|p|ď2

DpR
p!

pαjq;

zk :“ z̃k, k “ 1, . . . , n.

Then the composite Qj ˝ Lη1
j

P AutpCnq and satisfies that

Qj ˝ Lη1
j
pαj, βjq “ p0, . . . , 0,´ǫj ´ ipR1

2pbjq ` Rpαjqqǫjq

for every j P N˚. Moreover, the hypersurface Qj ˝ Lη1
j
ptρ “ 0uq is given by an equation

of the form

ρ
´
L´1

ηj
˝ Q´1

j pz, wq
¯

“ Repwq ` op|Impwq|q ` 1

2

nÿ

k,l“1

B2P

BzkBz̄l
pαjqzkz̄l

` 1

2

nÿ

k,l“1

B2R1

BzkBz̄l
pαjqzkz̄l ` bj

2

nÿ

k,l“1

B2R

BzkBz̄l
pαjqzkz̄l ` op|z|2q “ 0.
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Finally, let us recall the following notation

τjk :“ |αjk|.
ˆ

ǫj

|αjk|2mk

˙1{2

, 1 ď k ď n

and we define an anisotropic dilation ∆j : C
n Ñ Cn by settings:

(3) ∆jpz, wq :“ ∆ǫj
ηj

pz1, . . . , zn, wq “
ˆ
z1

τj1
, . . . ,

zn

τjn
,
w

ǫj

˙
.

Then it follows that ∆j ˝Qj ˝Lη1
j
pαj , βjq “ p0, . . . , 0,´1´ ipR1

2
pbjq `Rpαjqqq Ñ p01,´1q

as j Ñ 8. Furthermore, the hypersurface ∆j ˝ Qj ˝ Lη1
j
ptρ “ 0uq is now defined by an

equation of the form

ǫ´1

j ρ
´
L´1

ηj
˝ Q´1

j ˝ p∆jq´1 pz̃, w̃q
¯

“ Repw̃q ` ǫ´1

j opǫj |Impw̃q|q ` 1

2

nÿ

k,l“1

B2P

Bz̃kBz̃l
pαjqǫ´1

j τjkτjlz̃kz̃l

` 1

2

nÿ

k,l“1

B2R1

Bz̃kBz̃l
pαjqǫ´1

j τjkτjlz̃kz̃l `
ǫ´1

j bj

2

nÿ

k,l“1

B2R

Bz̃kBz̃l
pαjqτjkτjlz̃kz̃l ` ¨ ¨ ¨ “ 0,

(4)

where the dots denote remainder terms. Note that by Lemma 3.1 the terms with weight
order greater than one must converge uniformly on compacta of Cn`1 to 0. Hence, we
consider only the convergence of monomials from (4) with weight order ď 1.
Since the sequence tηj :“ ϕjpaqu converges uniformly Λ-tangentially to ξ0 “ p01, 0q,

it follows that
|αj1|2m1

ǫj
« |αj2|2m2

ǫj
« ¨ ¨ ¨ « |αjn|2mn

ǫj
.

Thus Lemma 3.2 yields

ǫ´1

j

ˇ̌
ˇ̌
ˇ
DpD

q
P

p!q!
pαjqτ p`q

j

ˇ̌
ˇ̌
ˇ Ñ 0

as j Ñ 8 for |p| ` |q| ą 2 and, after taking a subsequence if necessary, we may assume
that

akl :“
1

2
lim
jÑ8

B2P

Bz̃kBz̃l
pαjqǫ´1

j τjkτjl, 1 ď k, l ď n.

Moreover, by Lemma 3.3 we also have

ǫ´1

j

ˇ̌
ˇ̌
ˇ
DpD

q
R1

p!q!
pαjqτ p`q

j

ˇ̌
ˇ̌
ˇ Ñ 0

as j Ñ 8 for |p| ` |q| ě 2. In addition, since |ǫ´1

j bj | À 1, we obtain that

ǫ´1

j bj

ˇ̌
ˇ̌
ˇ
DpD

q
R

p!q!
pαjqτ p`q

j

ˇ̌
ˇ̌
ˇ Ñ 0

as j Ñ 8 for |p| ` |q| ě 1. Therefore, after taking a subsequence if necessary, we
may assume that sequence of defining funtions given in (4) converges uniformly on
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compacta of Cn`1 to ρ̂pz̃, w̃q :“ Repw̃q ` Hpz̃q. Consequently, the sequence of domains
Ωj :“ ∆j ˝ Qj ˝ Lη1

j
pU´

0
q converges normally to the following model

MH :“ tpz̃, w̃q P C
n ˆ C : ρ̂pz̃, w̃q :“ Repw̃q ` Hpz̃q ă 0u ,

where

Hpz̃q “
nÿ

k,l“1

aklz̃kz̃l.

Note that MH is a limit of a sequence of the pseudoconvex domains ∆j ˝Qj ˝Lη1
j
pU´

0 q.
Hence, MH is also pseudoconvex, and thus H is plurisubharmonic. In addition, it follows
directly from Lemma 3.2 that H is positive definite. Therefore, MH is biholomorphically
equivalent to unit ball Bn`1 (cf. [Gra75, Prop. 2]).
For simplicity, let us denote by Tj :“ ∆j ˝Qj ˝Lη1

j
and σj :“ Tj ˝ϕj : ϕ

´1

j pU´
0

q Ñ Ωj .

Then Tjpηjq “ p01,´1 ´ ipR1
2
pbjq ` Rpαjqqq and tσju is a sequence of biholomorphic

mappings satisfying

σjpaq “ bj :“ p01,´1 ´ ipR1
2
pbjq ` Rpαjqqq Ñ b :“ p01,´1q.

as j Ñ 8. Thus, by Proposition 2.1, after passing to a subsequence, we may assume
that σj converges locally uniformly to a holomorphic map σ : Ω Ñ MH which satisfies
σpaq “ b.
On the other hand, since Ω is taut (cf. [DN09, Prop. 2.2]), the sequence σ´1

j : Ωj Ñ
ϕ´1

j pU´
0

q Ă Ω is also normal. Since σ´1

j pbjq “ a P Ω with bj Ñ b P Ω as j Ñ 8, we

may also assume, after switching a subsequence, that σ´1

j converges locally uniformly
to a holomorphic map σ˚ : MH Ñ Ω. It then follows from [DN09, Prop. 2.1] that Ω is
biholomorphically equivalent to MH . Hence, Ω is biholomorphically equivalent to Bn`1,
and thus the proof of Theorem 1.1 is finally complete. l

3.3. Example. Denote by E1,2,4 the domain in C
3, given by

E1,2,4 :“ tpz1, z2, wq P C
3 : Repwq ` |z1|4 ` |z1|2|z2|4 ` |z2|8 ă 0u.

Denote by P pzq “ |z1|4 ` |z1|2|z2|4 ` |z2|8 and σpzq “ |z1|4 ` |z2|8. Then a computation
shows that

ddcP pzq “ p4|z1|2 ` |z2|4qdz1dz̄1 ` 2z̄1z2|z2|2dz1dz̄2 ` 2z1z̄2|z2|2dz̄1dz2
` p16|z2|6 ` 4|z1|2|z2|2qdz2dz̄2
“ 4|z1|2dz1dz̄1 ` 16|z2|6dz2dz̄2 ` |z2|2|z2dz̄1 ` 2z̄1dz2|2

ě ddcσpzq.
Therefore, the origin is strongly h-extendible with multitype p4, 8, 1q and thus the weight
Λ is now given by Λ :“ p1

4
, 1
8
q.

Now we consider the sequence tp 1

j1{4 ,
1

j3{8 ,´1

j
´ 2

j2
´ 1

j3
qu that converges Λ-tangentially

but not uniformly to p01, 0q. We are going to show that tηju is not a sequence of
automorphism orbits, that is, there do not exist a sequence tfju Ă AutpE1,2,4q and
a P E1,2,4 such that fjpaq “ p 1

j1{4 ,
1

j3{8 ,´1

j
´ 2

j2
´ 1

j3
q for all n P N˚. Assume for the

sake of seeing a contradiction that tfju and a exist. Then, although we cannot apply
a scaling given in the proof of Theorem 1.1, an alternative scaling can be introduced
as follows. Indeed, let ρpz1, z2, wq “ Repwq ` |z1|4 ` |z1|2|z2|4 ` |z2|8 and let ηj “
p 1

j1{4 ,
1

j3{8 ,´1

j
´ 2

j2
´ 1

j3
q for every j P N˚. We see that ρpηjq “ ´ 1

j2
« ´distpηj , BE1,2,4q.
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Set ǫj “ |ρpηjq| “ 1

j2
. In addition, we consider a change of variables pz̃, w̃q :“ Ljpz, wq,

i.e., $
’’’&
’’’%

w “ w̃;

z1 ´ 1

j1{4
“ z̃1;

z2 ´ 1

j3{8
“ z̃2.

Then, a direct calculation shows that

ρ ˝ L´1

j pw̃, z̃1, z̃2q “ Repwq ` | 1

j1{4
` z̃1|4 ` | 1

j1{4
` z̃1|2| 1

j3{8
` z̃2|4 ` | 1

j3{8
` z̃2|8

“ Repwq ` 1

j
` 4

j3{4
Repz̃1q ` 2

j1{2
|z̃1|2 ` 1

j1{2
p2Repz̃1qq2 ` 4

j1{4
|z̃1|2Repz̃1q ` |z̃1|4

`
ˆ

1

j1{2
` 2

j1{4
Repz̃1q ` |z̃1|2

˙
ˆ

ˆ
1

j3{2
` 4

j9{8
Repz̃2q ` 2

j3{4
|z̃2|2 ` 1

j3{4
p2Repz̃2qq2 ` 4

j3{8
|z̃2|2Repz̃2q ` |z̃2|4

˙
` | 1

j3{8
` z̃2|8.

To define an anisotropic dilation, let us denote by τ1j :“ τ1pηjq “ 1

2j3{4 , τ2j :“ τ2pηjq “
1

j3{8 for all j P N˚. Now let us introduce a sequence of polynomial automorphisms φηj

of Cn (j P N˚), given by

φ´1

ηj
pz̃1, z̃2, w̃q

“
´ 1

j1{4
` τ1j z̃1,

1

j3{8
` τ2j z̃2, ´1

j
´ 1

j2
´ 1

j3
` ǫjw̃ ´ 4

j3{4
τ1j z̃1 ´ 2

j1{2
pτ1jq2z̃21

¯
.

Therefore, for each j P N˚ the hypersurface φηj ptρ “ 0uq is then defined by

ǫ´1

j ρ ˝ φ´1

ηj
pz̃1, z̃2, w̃q

“ ǫ´1

j ρ
´ 1

j1{4
` τ1j z̃1,

1

j3{8
` τ2j z̃2, ´1

j
´ 1

j2
´ 1

j3
` ǫjw̃ ´ 4

j3{4
τ1j z̃1 ´ 2

j1{2
pτ1jq2z̃21

¯

“ Repw̃q ` |z̃1|2 ` 1

16j
|z̃1|4 ` 1

2j1{4
|z̃1|2Repz̃1q `

`
|z̃2 ` 1|4 ´ 1

˘
` Op 1

j1{2
q ` Op1

j
q “ 0.

Hence, the sequence of domains Ωj :“ φηj pE1,2,4q converges normally to the following
model

M1,2 :“
 

pz̃1, z̃2, w̃q P C
3 : Repw̃q ` |z̃1|2 `

`
|z̃2 ` 1|4 ´ 1

˘
ă 0

(
.

Finally, by the same argument as in the proof of Theorem 1.1 we conclude that E1,2,2

is biholomorphically equivalent to M1,2 that is biholomorphically equivalent to
 

pz1, z2, wq P C
3 : Repwq ` |z1|2 ` |z2|4 ă 0

(
.

It is absurd by [CP01, Main Theorem].

Remark 3.3. We consider a sequence tp 1

j1{4 , ηj2,´P p 1

j1{4 , ηj2q ´ 1

j2
u that converges Λ-

tangentially but not uniformly to p01, 0q. Then, following the argument as in Example
3.3, we may assume that Ωj :“ φηj pE1,2,4q converges normally to the following model

!
pz̃1, z̃2, w̃q P C

3 : Repw̃q ` |z̃1|2 ` P̃ pz̃2q ă 0
)
,
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where

i) P̃ pz̃2q “ |z̃2 ` α|4 ´ |α|4 for some α P C if |ηj2| « 1

j3{8 ;

ii) P̃ pz̃2q “ |z̃2|4 if |ηj2| “ o
´

1

j3{8

¯
;

iii) P̃ pz̃2q “ |z̃2|2 if 1

j3{8 “ op|ηj2|q.
This indicates that our model depends deeply on the behavior of the orbit tηju Ă Ω.

4. The behaviour of automorphism orbits accumulating at a boundary

point of a pseudoconvex Levi corank one domains in Cn`1

In this section, we are going to give a proof of Theorem 1.2. To do that, let Ω be a
domain in Cn`1 such that BΩ is pseudoconvex of finite type and has corank one near ξ0.

4.1. Spherical 1

2m
-tangential convergence. In what follows, let us write z “ pz1, . . . , znq

and z˚ “ p0, z2, . . . , znq. Let 2m be the D’Angelo type of BΩ at ξ0. Without loss of
generality, we may assume that ξ0 and the rank of Levi form at ξ0 is exactly n ´ 1.
Let ρ be a smooth defining function for Ω. After an appropriate change of coordi-
nates (cf. [BP91, Cho94]), we can find coordinate functions z1, . . . , zn, w defined on a
neighborhood U0 of ξ0 such that ξ0 “ 0 and

ρpzq “ Repwq ` P pz1, z̄1q `
nÿ

α“2

|zα|2 `
nÿ

α“2

RepQαpz1, z̄1qzαq

` Op|w||pz, wq| ` |z˚|2|z| ` |z˚|2|z1|m`1 ` |z1|2m`1q,
where P pz1, z̄1q, Qαpz1, z̄1q p2 ď α ď nq are homogeneous subharmonic real-valued poly-
nomials of degree 2m and m, respectively, containing no harmonic terms.

Definition 4.1. We say that a sequence tηj “ pαj , βjqu Ă Ω with αj “ pαj1, . . . , αjnq,
converges spherically 1

2m
-tangentially to ξ0 if

(a) |Impβjq| À |distpηj , BΩq|;
(b) |distpηj , BΩq| “ op|αj1|2mq;
(c) ∆P pαj1q Á |αj1|2m´2.

Remark 4.1. Let Ω be a pseudoconvex domain in C2. Suppose that ξ0 P BΩ is of
D’Angelo finite type, say, τpBΩ, ξ0q “ 2m. It is known that Ω is h-extendible at ξ0. Let
tǫju Ă R` be a sequence such that η1

j :“ pαj, βj ` ǫjq is in the hypersurface tρ “ 0u
for every j P N˚. Then the condition pcq simply says that Ω is strongly pseudoconvex
at η1

j for every j P N˚. Consequently, the condition pcq is clearly satisfied if the model

MP :“ tpz, wq P C2 : Repwq ` P pz1q ă 0u is a WB-domain.

4.2. Homogeneous subharmonic polynomials. Let us write P pzq “
2m´1ÿ

j“1

ajz
j z̄2m´j .

Writing z “ |z|eiθ , one defines gpθq by

P pzq “ |z|2mgpθq.
Then we have

∆P pzq “ |z|2m´2
`
p2mq2gpθq ` gθθpθq

˘
ě 0.

(See cf. [BF78].)
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Given a sequence tǫju Ă R`, we associate the sequence tτju given by

τj :“ τpαj , ǫjq “ |αj |.
ˆ

ǫj

|αj |2m
˙1{2

.

To give a proof of Theorem 1.2, it suffices to check the following lemma that is similar
to Lemma 3.2.

Lemma 4.1. We have
ˇ̌
ˇ̌ BkP

BzlBz̄k´l
pαjq

ˇ̌
ˇ̌ ǫ´1

j τkj À
ˆ |αj |2m

ǫj

˙1´ k
2

, k ě 3.

In addition, if k “ 2 and j “ 1, then
ˇ̌
ˇ̌ B2P

BzBz̄ pαjq
ˇ̌
ˇ̌ ǫ´1

j τ 2j “ p2mq2gpθjq ` gθθpθjq.

Proof. It suffices to prove the lemma for P pzq “ zsz̄2m´s for 1 ď s ď 2m ´ 1. Indeed, a
simple computation shows that

BkP

BzlBz̄k´l
pzq “

#
zs´lz̄2m´s´pk´lq if l ď s, k ´ l ď 2m ´ s

0 if otherwise

and
ˇ̌
ˇ̌ BkP

BzlBz̄k´l
pαjq

ˇ̌
ˇ̌ ǫ´1

j τkj À |αj |2m´kǫ´1

j τkj “ |αj |2mǫ´1

j

ˆ
τj

|αj |

˙k

À |αj |2m
ǫj

ˆ
ǫj

|αj|2m
˙k{2

“
ˆ

ǫj

|αj|2m
˙k{2´1

.

Therefore, we get ˇ̌
ˇ̌ BkP

BzlBz̄k´l
pαjq

ˇ̌
ˇ̌ ǫ´1

j τkj À
ˆ |αj|2m

ǫj

˙1´ k
2

for k ą 2. Furthermore, in the case that k “ 2, l “ 1 one has
ˇ̌
ˇ̌ B2P

BzBz̄ pαjq
ˇ̌
ˇ̌ ǫ´1

j τ 2j “ |αj |2m´2
`
p2mq2gpθjq ` gθθpθjq

˘
|αj |2

ˆ
ǫj

|αj|2m
˙

“ p2mq2gpθjq ` gθθpθjq.
�

4.3. Proof of Theorem 1.2. Throughout this section, the domain Ω and the boundary
point ξ0 P BΩ are assumed to satisfy the hypothesis of Theorem 1.2. Let 2m be the
D’Angelo type of BΩ at ξ0. Without loss of generality, we may assume that ξ0 “ 0 P C

n

and the rank of Levi form at ξ0 is exactly n ´ 1. Let ρ be a smooth defining function
for Ω. After an appropriate change of coordinates (cf. [BP91, Cho94]), we can find the
coordinate functions z1, . . . , zn, w defined on a neighborhood U0 of ξ0 such that ξ0 “ 0
and

ρpz, wq “ Repwq ` P pz1, z̄1q `
nÿ

α“2

|zα|2 `
nÿ

α“2

RepQαpz1, z̄1qzαq

` Op|w||pz, wq| ` |z˚|2|z| ` |z˚|2|z1|m`1 ` |z1|2m`1q,
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where P pz1, z̄1q, Qαpz1, z̄1q p2 ď α ď nq are homogeneous subharmonic real-valued poly-
nomials of degree 2m and m, respectively, containing no harmonic terms.
By hypothesis of Theorem 1.2, there exist a sequence tϕju Ă AutpΩq and a point

a P Ω such that ηj :“ ϕjpaq converges spherically 1

2m
-tangentially to ξ0. Let us write

ηj “ pαj, βjq “ pαj, βjq. Then one has

(a) |Impβjq| À |distpηj , BΩq|;
(b) |distpηj , BΩq| “ op|αj1|2mq;
(c) ∆P pαj1q Á |αj1|2m´2.

Let us fix a small neighborhood U0 of the origin. For any sequence tηj “ pαj , βjqu
of points converging 1

2m
-tangentially to the origin in U0 X tρ ă 0u “: U´

0
, we associate

with a sequence of points η1
j “ pαj , aj ` ǫj ` ibjq, where ǫj ą 0 and βj “ aj ` ibj ,

such that η1
j “ pαj , β

1
jq is in the hypersurface tρ “ 0u for every j P N˚. We note that

ǫj « distpηj, BΩq.
By [Cho94, Proposition 2.2] (see also [DN09, Proposition 3.1]), for each point η1

j,

there exists a biholomorphism Φη1
j
of Cn`1, pz, wq “ Φ´1

η1
j

pz̃, w̃q, such that

ρpΦ´1

η1
j

pz̃, w̃qq “ Repw̃q `
ÿ

k`lď2m
k,lą0

ak,lpη1
jqz̃k1 z̃1

l

`
n´1ÿ

α“2

|z̃α|2 `
nÿ

α“2

ÿ

k`lďm
k,lą0

Rerpbαk,lpη1
jqqz̃k1 z̄1lqz̃αs

` Op|w̃||pz̃, w̃q| ` |z̃˚|2|w̃| ` |z̃˚|2|z̃1|m`1 ` |z̃1|2m`1q,

(5)

where z̃˚ “ p0, z̃2, . . . , z̃nq.
Now let us define

τj1 :“ |αj |.
ˆ

ǫj

|αj |2m
˙1{2

, τj2 “ ¨ ¨ ¨ “ τjn “ ǫ
1{2
j , j ě 1.

This implies that

ǫ
1{2
j À τpηj , ǫjq À ǫ

1{p2mq
j .

To finish the scaling procedure, we define an anisotropic dilation ∆j by

∆jpz, wq “
ˆ
z1

τj1
,
z2

τj2
, . . . ,

zn

τjn
,
w

ǫj

˙
, j P N

˚.

This yields ∆j ˝ Φη1
j
pηjq “ p01,´1 ` γjq for some sequence tγju Ă C, depending on

tΦη1
j
u, that converges to 0 as j Ñ 8. Furthermore, for each j P N˚, if we set ρjpz, wq “

ǫ´1

j ρ ˝ Φ´1

η1
j

˝ p∆jq´1pz, wq, then (5) implies that

ρjpz, wq “ Repwq ` Pη1
j
pz1, z̄1q `

nÿ

α“2

|zα|2 `
nÿ

α“2

RepQα
η1
j
pz1, z̄1qzαq ` Opτpη1

j, ǫjqq,
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where

Pη1
j
pz1, z̄1q :“

ÿ

k,lď2m
k,lą0

ak,lpη1
jqǫ´1

j τpη1
j , ǫjqk`lzk

1
z̄l
1
,

Qα
η1
j
pz1, z̄1q :“

ÿ

k`lďm
k,lą0

bαk,lpη1
jqǫ´1{2

j τpη1
j , ǫjqk`lzk1 z̄

l
1.

Note that the sequence tηj :“ ϕjpaqu converges spherically 1

2m
-tangentially to ξ0 “

p01, 0q. Then |αj1|2m
ǫj

Ñ `8 as j Ñ 8. In addition, we have, for 1 ď k, l with k`l ď 2m,

that

ak,lpη1
jq “ Bk`lρ

Bz̃k
1
Bz̃1l

p01, 0q « Bk`lP

Bzk1Bz̄l1
pαj1q.

Therefore, by Lemma 4.1 we get ak,lpη1
jqǫ´1

j τpη1
j , ǫjqk`l Ñ 0 as j Ñ 8 for k, l ą 0 with

2 ă k ` l ď 2m. In addition, by the condition pcq, without loss of generality, we may

assume that the limit a :“ lim
jÑ8

1

2

B2P

Bz1Bz̄1
pαj1qǫ´1

j τ 2j1 ą 0 exists, and thus we conclude

that tPη1
j
pz1, z̄1qu converges uniformly on compacta to a|z1|2.

For the sequences tQα
η1
j
pz1, z̄1qu (2 ď α ď n), by [Cho94, Lemma 2.4] it follows that

|Qα
η1
j
pz1, z̄1q| ď τpη1

j , ǫjq
1

10 , j ě 1,

for all α “ 2, . . . , n and |z1| ď 1. Consequently, tQα
η1
j
u converge uniformly on every

compact subset of C to 0. Therefore, after taking a subsequence if necessary, we may
assume that the sequence tρ̂ju converges to the following function

ρ̂pz, wq :“ Repwq ` a|z1|2 ` |z2|2 ` ¨ ¨ ¨ ` |zn|2,

where a “ 1

2

B2P

Bz1Bz̄1
pαj1qǫ´1

j τ 2j1 ą 0. Hence, after taking a subsequence if necessary, we

may assume that the sequence of domains Ωj :“ ∆j ˝ Φη1
j
pU´

0 q converges normally to

the Siegel half-space

M|z|2 :“
 

pz, wq P C
n`1 : ρ̂pz, wq “ Repwq ` a|z1|2 ` |z2|2 ` ¨ ¨ ¨ ` |zn|2 ă 0

(
,

which is clearly biholomorphically equivalent to the unit ball Bn`1 (by using the Cayley
transform). Moreover, by the same argument as in the proof of Theorem 1.1 we conclude
that Ω is biholomorphically equivalent to M|z|2, or Ω is biholomorphically equivalent to
Bn`1. Hence, the proof of Theorem 1.2 is finally complete. l

5. The behaviour of automorphism orbits accumulating at a boundary

point of a domain in C2

In this section, we shall restrict the discussion to domains in C2. More precisely, let
Ω be a pseudoconvex domain of finite type near ξ0 P BΩ with the type τpBΩ, ξ0q “ 2m.
Then the notion of uniformly p 1

2m
q-tangential convergence given in Section 3 is just the

that of p 1

2m
q-tangential convergence. In addition, the notion of spherically 1

2m
-tangential

convergence is exactly given in Section 4. Therefore, Corollary 1.3 follows directly from
Theorem 1.2 and Lemma 4.1. In this situation our model is biholomorphically equivalent
to the unit ball B2.
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In the sequel, we consider the case that the condition cq in Definition 4.1 is violated,

i.e.
∆P pαjq
|αj |2m´2

Ñ 0 as j Ñ 8 for some sequence tαju converging to the origin in C (see

Definition 5.1 below). Then our model may be defined by a homogeneous polynomial
of degree larger than 2.

5.1. Spherically 1

2m
-tangentially convergence of higher order. Let ρ be a local

defining function for Ω near ξ0 and let the D’Angelo type τpBΩ, ξ0q “ 2m be finite. As in
the proof of Theorem 1.1, we may assume that there are local holomorphic coordinates
pz, wq in which ξ0 “ 0 and Ω can be described near 0 as follows:

Ω “ tρpz, wq “ Repwq ` P pzq ` R1pzq ` R2pImwq ` pImwqRpzq ă 0u .
Here P is homogeneous subharmonic real-valued polynomial of degree 2m containing
no harmonic terms, R1 P Op1,Λq, R P Op1{2,Λq with Λ “ p 1

2m
q, and R2 P Op2q.

Now let us write

P pzq “
2m´1ÿ

l“1

alz
lz̄2m´l,

where al “ al1 if l ` l1 “ 2m. Furthermore, in the polar coordinates z “ |z|eiθ, for
l ` l1 ď 2m, we have

(6)
Bl`l1P

BzlBz̄l1 pzq “ |z|2m´l´l1gl,l1pθq; Bl`l1R1

BzlBz̄l1 pzq “ |z|2m´l´l1hl,l1p|z|, θq,

where gl,l1 is a trigonometric polynomial of degree 2m ´ l ´ l1 and hl,l1p|z|, θq is a C8-
smooth function defined on C with hl,l1p|z|, θq “ Op|z|q.
In analogy to Corollary 1.3, we discuss a situation where our domain is biholomoph-

ically equivalent to some model defined by a homogeneous polynomial of degree larger
than 2. To this purpose, the following variant of Definition 4.1 seems to be necessary.

Definition 5.1. A sequence tηj “ pαj , βjqu Ă Ω is said to converge spherically 1

2m
-

tangentially of order 2ν p2 ď ν ď mq to ξ0 P BΩ if the following conditions hold:

(i) |Impβjq| ď distpηj , BΩq;
(ii) distpηj , BΩq “ op|αj |2mq;
(iii) If l ` l1 ă 2ν, then

lim
jÑ8

´distpηj , BΩq
|αj |2m

¯ l`l1

2ν
´1

pgl,l1pθjq ` hl,l1p|αj |, θjqq “ 0,

where θj :“ argpαjq;
(iv) There exists l0, l

1
0 with l0 ` l10 “ 2ν,maxpl0, l10q ě 1 such that

lim inf
jÑ8

|gl0,l10pθjq| ą 0.

We now assume that tηj “ pαj , βjqu Ă Ω converges spherically 1

2m
-tangentially of

order 2ν p2 ď ν ď mq to ξ0 P BΩ. Then, for a given sequence tǫju Ă R` converging to
0, we define

τj :“ |αj |
´ ǫj

|αj|2m
¯ 1

2ν

, j ě 1.

With this notation, by Definition 5.1 we have the following lemma.

Lemma 5.1. For any integers l, l1 with l, l1 ě 1, we have
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(a) lim
jÑ8

Bl`l1pP ` R1q
BzlBz̄l1 pαjqǫ´1

j τ l`l1

j “ 0 for l ` l1 ă 2ν.

(b) lim
jÑ8

Bl`l1P

BzlBz̄l1 pαjqǫ´1

j τ l`l1

j “ 0 for l ` l1 ą 2ν.

(c) lim
jÑ8

Bl`l1R1

BzlBz̄l1 pαjqǫ´1

j τ l`l1

j “ 0 for l ` l1 ě 2ν.

(d)

ˇ̌
ˇ̌ Bl`l1P

BzlBz̄l1 pαjq
ˇ̌
ˇ̌ ǫ´1

j τ l`l1

j À 1 for l ` l1 “ 2ν and

lim inf
jÑ8

ˇ̌
ˇ̌ B2νP

Bzl0Bz̄2ν´l0
pαjq

ˇ̌
ˇ̌ ǫ´1

j τ 2νj “ lim inf
jÑ8

gl0,2ν´l0pθjq ą 0.

Proof. Indeed, by a direct computation using (6) we obtain

Bl`l1P

BzlBz̄l1 pαjqǫ´1

j τ l`l1

j “ |αj|2m´l´l1gl,l1pθjqǫ´1

j |αj|l`l1
´ ǫj

|αj|2m
¯ l`l1

2ν

“
´ ǫj

|αj |2m
¯ l`l1

2ν
´1

gl,l1pθjq

for l, l1 ě 1. Similarly, one also has

Bl`l1R1

BzlBz̄l1 pαjqǫ´1

j τ l`l1

j “
´ ǫj

|αj|2m
¯ l`l1

2ν
´1

hl,l1p|αj |, θjq

for l, l1 ě 1. Thus the assertion (a) follows directly from the condition (iii).
In the same fashion, for l ` l1 ě 2ν we have

ˇ̌
ˇ̌ Bl`l1P

BzlBz̄l1 pαjq
ˇ̌
ˇ̌ ǫ´1

j τ l`l1

j À |αj |2m´l´l1ǫ´1

j |αj|l`l1
´ ǫj

|αj|2m
¯ l`l1

2ν À
´ ǫj

|αj |2m
¯ l`l1

2ν
´1

;

ˇ̌
ˇ̌B

l`l1R1

BzlBz̄l1 pαjq
ˇ̌
ˇ̌ ǫ´1

j τ l`l1

j À |αj |2m`1´l´l1ǫ´1

j |αj |l`l1
´ ǫj

|αj |2m
¯ l`l1

2ν À |αj |
´ ǫj

|αj |2m
¯ l`l1

2ν
´1

.

(7)

This easily implies pcq. Moreover, if l ` l1 ą 2ν, then we get

lim
jÑ8

Bl`l1P

BzlBz̄l1 pαjqǫ´1

j τ l`l1

j “ 0,

and hence (b) follows.
Finally, it follows from (7) and the condition (iii) that we observe that every sequence!
B2νP

BzlBz̄l1
pαjqǫ´1

j τ l`l1

j

)
jě1

is bounded if l ` l1 “ 2ν, whereas

lim inf
jÑ8

ˇ̌
ˇ̌ B2νP

Bzl0Bz̄2ν´l0
pαjq

ˇ̌
ˇ̌ ǫ´1

j τ 2νj “ lim inf
jÑ8

gl0,2ν´l0pθjq ą 0.

�

5.2. Proof of Proposition 1.4. This subsection is devoted to a proof of Proposition
1.4. Throughout this section, the domain Ω and the boundary point ξ0 P BΩ are assumed
to satisfy the hypothesis of Proposition 1.4. Let ρ be a local defining function for Ω
near ξ0 and let the D’Angelo type τpBΩ, pq “ 2m be finite. As in the proof of Theorem
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1.1, we may assume that there are local holomorphic coordinates pz, wq in which ξ0 “ 0
and Ω can be described near 0 as follows:

Ω “ tρpz, wq “ Repwq ` P pzq ` R1pzq ` R2pImwq ` pImwqRpzq ă 0u .
Here P is homogeneous subharmonic real-valued polynomial of degree 2m containing
no harmonic terms, R1 P Op1,Λq, R P Op1{2,Λq with Λ “ p 1

2m
q, and R2 P Op2q.

By hypothesis of Proposition 1.4, there exist a sequence tϕju Ă AutpΩq and a point
a P Ω such that ηj :“ ϕjpaq converges spherically 1

2m
-tangentially of order 2ν p2 ď k ď

mq to ξ0.
Let us fix a small neighborhood U0 of the origin. For any sequence tηj “ pαj , βjqu

of points converging 1

2m
-tangentially to the origin in U0 X tρ ă 0u “: U´

0
, we associate

with a sequence of points η1
j “ pαj , aj ` ǫj ` ibjq, where ǫj ą 0 and βj “ aj ` ibj ,

such that η1
j “ pαj , β

1
jq is in the hypersurface tρ “ 0u for every j P N˚. We note that

ǫj « distpηj, BΩq.
As in the proof of Theorem 1.1, let us consider the sequences of translations Lη1

j
and

polynomial automorphisms Qj of C
2 (j P N

˚), defined respectively by

Lη1
j
pz, wq :“ pz, wq ´ η1

j “ pz ´ αj , w ´ β 1
jq

and $
’’’’&
’’’’%

w :“ w̃ ` pR1
2
pbjq ` Rpαjqqiw̃ ` 2

2mř
k“1

1

k!
BkP
Bzk

w̃kpαjq

`2
2mř
k“1

1

k!
BkR1

Bzk
w̃kpαjq ` 2bj

2mř
k“1

1

k!

BkRpαj q

Bzk
w̃k;

z :“ z̃.

Then one sees that Qj ˝ Lη1
j
pαj, βjq “ p0,´ǫj ´ ipR1

2
pbjq ` Rpαjqqǫjq for every j P N˚.

Moreover, the hypersurface Qj ˝ Lη1
j
ptρ “ 0uq is defined by an equation of the form

ρ
´
L´1

ηj
˝ Q´1

j pz, wq
¯

“ Repwq ` op|Impwq|q `
ÿ

k`lď2m
k,lą0

1

k!l!

Bk`lP

BzkBz̄l pαjqzkz̄l

`
ÿ

k`lď2m
k,lą0

1

k!l!

Bk`lR1

BzkBz̄l pαjqzkz̄l ` bj
ÿ

k`lď2m
k,lą0

1

k!l!

Bk`lR

BzkBz̄l pαjqzkz̄l ` ¨ ¨ ¨ “ 0,

where the dots denote remainder terms.
Now let us recall that

τj :“ |αj |.
ˆ

ǫj

|αj |2m
˙1{2ν

.

and then we define an anisotropic dilation ∆j by

∆jpz, wq :“
ˆ
z

τj
,
w

ǫj

˙
, j P N

˚.

This yields ∆j ˝ Qj ˝ Lη1
j
pαj , βjq “ p0,´1 ´ ipR1

2
pbjq ` Rpαjqqq Ñ p0,´1q as j Ñ 8. By

the definition of τj , a simple calculation shows that τ 2mj “ ǫj .
´

ǫj
|αj |2m

¯m
ν

´1

À ǫj . Hence,

we get the following estimates

ǫ
1{2
j À τj À ǫ

1{2m
j .(8)
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Furthermore, the hypersurface ∆j ˝ Qj ˝ Lη1
j
ptρ “ 0uq is defined by an equation of the

form

ǫ´1

j ρ
´
L´1

ηj
˝ Q´1

j ˝ p∆jq´1 pz̃, w̃q
¯

“ Repw̃q `
ÿ

k`lď2m
k,lą0

1

k!l!

Bk`lpP ` R1q
Bz̃kBz̃l

pαjqǫ´1

j τk`l
j z̃kz̃l

` ǫ´1

j bj
ÿ

k`lď2m
k,lą0

1

k!l!

Bk`lR

Bz̃kBz̃l
pαjqǫ´1

j τk`l
j z̃k z̃

l ` ǫ´1

j opǫj |Impw̃q|q ` Opτpηj, ǫjqq “ 0,

(9)

where (8) yields the terms with weight greater than one equal Opτpηj, ǫjq. Hence, we
consider only the convergence of monomials from (9) with weight order ď 1.
Now thanks to Lemma 5.1, we have

Bk`lpP ` R1q
Bz̃kBz̃l

pαjqǫ´1

j τk`l
j Ñ 0

as j Ñ 8 for k ` l ‰ 2ν. For the case that k ` l “ 2ν,

B2νR1

Bz̃kBz̃2ν´k
pαjqǫ´1

j τ 2νj Ñ 0

as j Ñ 8. Moreover, since |ǫ´1

j bj | À 1, we obtain that

ǫ´1

j bj
Bk`lR

Bz̃kBz̃l
pαjqǫ´1

j τk`l
j Ñ 0

as j Ñ 8 for any k, l ě 1. In addition, since every sequence
!

B2νP

BzlBz̄l1
pαjqǫ´1

j τ l`l1

j

)
jě1

is

bounded if l ` l1 “ 2ν, hence after taking a subsequence if necessary we may assume
that

ak,2ν´k :“
1

k!p2ν ´ kq! limjÑ8

B2νP

Bz̃kBz̃2ν´k
pαjqǫ´1

j τ 2νj , 1 ď k, l ď n.

Therefore, after taking a subsequence if necessary, we may achieve that sequence of
defining funtions given in (9) converges uniformly on compacta of C2 to ρ̂ :“ Repw̃q `
Qpz̃q. Consequently, the sequence of domains Ωj :“ ∆j˝Qj˝Lη1

j
pU´

0 q converges normally

to the following model

MQ :“
 

pz̃, w̃q P C
2 : ρ̂pz̃, w̃q :“ Repw̃q ` Qpz̃q ă 0

(
,

where

Qpz̃q “
2ν´1ÿ

k“1

ak,2ν´kz̃
k z̃

2ν´k
.

Note that since MQ is pseudoconvex, we infer that Q is subharmonic. Moreover,
by the condition (iii), we have al0,2ν´l0 ‰ 0 for some 1 ď l0 ď 2ν ´ 1, and hence the
polynomial Q is not harmonic. Furthermore, by the same argument as in the proof of
Theorem 1.1 we conclude that Ω is biholomorphically equivalent to MQ. Hence, the
proof of Proposition 1.4 is eventually complete. l
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5.3. The Kohn-Nirenberg type domains. The Kohn-Nirenberg domain ΩKN is
given firstly in [KN73] by

ΩKN :“
"

pz, wq P C
2 : Repwq ` |z|8 ` 15

7
|z|2Repz6q ă 0

*

This domain is a weakly pseudoconvex domain of finite type having no supporting
function at the origin. In addition, ΩKN cannot be biholomorphically equivalent to a
bounded domain in C

2 with real analytic boundary. Indeed, if this would be the case,
then [BP99] tells us that ΩKN is biholomorphically equivalent to the ellipsoid

 
pz, wq P C

2 : |w|2 ` |z|8 ă 1
(
,

which is biholomorphically equivalent to the model tpz, wq P C2 : Repwq ` |z|8 ă 1u.
This leads to a contradition by [CP01, Main Theorem].
Furthermore, ΩKN is a WB-domain and thus it satisfies the hypothesis of Theo-

rem 1.3. Therefore, Theorem 1.3 shows that if a sequence of automorphism orbits
tηj “ ϕjpaqu, tϕju Ă AutpΩKNq, converges to the origin, then it must converge 1

8
-

nontangentially to the origin.
The condition that η1

j is strongly pseudoconvex ensures that a limit of the scaling

domains (the model MH) is just biholomorphically equivalent to the unit ball B2. If
this condition is not satisfied such as ∆P pαjq “ 0 for all j, then the model now becomes
MQ “ tpz, wq P C

2 : Repwq `Qpzq ă 0u for some homogeneous subharmonic polynomial
Q with degpQq ě 4. The following example will demonstrate these phenomena. It also
describes a situation when Proposition 1.4 may occur.

Example 5.1. Let rΩKN be a domain in C
2 defined by

rΩKN :“
"

pz, wq P C
2 : Repwq ` |z|8 ´ 16

7
|z|2Repz6q ă 0

*
.

We see that the sequence
 

p 1
8
?
j
,
9

7j
´ 1

j2
q
(
converges 1

8
-tangentially but not spherically

1

8
-tangentially to p0, 0q.
Let ρpz, wq “ Repwq`|z|8 ´ 16

7
|z|2Repz6q and let ηj “ p 1

8
?
j
,
9

7j
´ 1

j2
q for every j P N˚.

This implies that ρpηjq “ 9

7j
´ 1

j2
´ 9

7j
“ ´ 1

j2
« ´distpηj, BrΩKNq. Set ǫj “ |ρpηjq| “ 1

j2
.
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Then, a computation shows that

ρpz, wq

“ Repwq ` |pz ´ 1

j1{8
q ` 1

j1{8
|8 ´ 16

7
|pz ´ 1

j1{8
q ` 1

j1{8
|2Repppz ´ 1

j1{8
q ` 1

j1{8
q6q

“ Repwq ` 1

j8{8
` 8

j7{8
Repz ´ 1

j1{8
q ` 16

j6{8
|z ´ 1

j1{8
|2 ` 12

j6{8
Reppz ´ 1

j1{8
q2q

` 8

j5{8
Reppz ´ 1

j1{8
q3q ` 48

j5{8
|z ´ 1

j1{8
|2Repz ´ 1

j1{8
q

` 2

j4{8
Reppz ´ 1

j1{8
q4q ` 32

j4
|z ´ 1

j1{8
|2Reppz ´ 1

j1{8
q2q ` 36

j4{8
|z ´ 1

j1{8
|4

´ 16

7

ˆ
1

j8{8
` 8

j7{8
Repz ´ 1

j1{8
q ` 21

j6{8
Reppz ´ 1

j1{8
q2q ` 7

j6{8
|z ´ 1

j1{8
|2
˙

´ 16

7

ˆ
35

j5{8
Reppz ´ 1

j1{8
q3q ` 21

j5{8
|z ´ 1

j1{8
|2Repz ´ 1

j1{8
q
˙

´ 16

7

ˆ
21

j4{8
Reppz ´ 1

j1{8
q4q ` 35

j4{8
|z ´ 1

j1{8
|2Re

`
pz ´ 1

j1{8
q2
˘˙

` Op 1

j3{8
|z ´ 1

j1{8
|5q

“ Repwq ´ 9

7j8{8
´ 72

7j7{8
Repz ´ 1

j1{8
q ´ 36

j6{8
Reppz ´ 1

j1{8
q2q ´ 72

j5{8
Reppz ´ 1

j1{8
q3q

´ 46

j4{8
Reppz ´ 1

j1{8
q4q ´ 48

j4{8
|z ´ 1

j1{8
|2Reppz ´ 1

j1{8
q2q

` 36

j4{8
|z ´ 1

j1{8
|4 ` Op 1

j3{8
|z ´ 1

j1{8
|5q.

To define an anisotropic dilation, let us denote by τj :“ τpηjq “ 1

j3{8 for all j P N˚.

Now let us introduce a sequence of polynomial automorphisms φ´1
ηj

of C2, given by

$
’&
’%

z “ 1
8

?
j

` τj z̃

w “ ǫjw̃ ` 9

7j
` 72

7j7{8
τj z̃ ` 36

j6{8
τ 2j z̃

2 ` 72

j5{8
τ 3j z̃

3 ` 46

j4{8
τ 4j z̃

4.

Therefore, we have

ǫ´1

j ρ ˝ φ´1

ηj
pz̃, w̃q “ Repw̃q ` 36|z̃|4 ´ 48|z̃|2Repz̃2q ` Op 1

j1{4
q.

We now show that there do not exist a sequence tfju Ă AutprΩKNq and a P rΩKN such

that ηj “ fjpaq Ñ p0, 0q P BrΩKN as n Ñ 8. Indeed, suppose otherwise that there exist

such a sequence tfju and such a point a P rΩKN . Then by the same argument as in the

proof of Theorem 1.3, rΩKN is biholomorphically equivalent to the following domain

D :“
 

pz̃, w̃q P C
2 : Repw̃q ` 36|z̃|4 ´ 48|z̃|2Repz̃2q ă 0

(
.

However, since the D’Angelo type of BD is always less than or is equal to 4, it follows

that D is not biholomorphically equivalent to rΩKN (cf. [CP01, Main Theorem]). It is
impossible.
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