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A-TD ALGEBRAS, GENERALIZED SHUFFLE PRODUCTS AND LEFT COUNITAL
HOPF ALGEBRAS

HENGYILUO AND SHANGHUA ZHENG

ABsTRACT. The theory of operated algebras has played a pivotal role in mathematics and physics.
In this paper, we introduce a A-TD algebra that appropriately includes both the Rota-Baxter algebra
and the TD-algebra. The explicit construction of free commutative A-TD algebra on a commutative
algebra is obtained by generalized shuffle products, called A-TD shuffle products. We then show
that the free commutative A-TD algebra possesses a left counital bialgera structure by means of a
suitable 1-cocycle condition. Furthermore, the classical result that every connected filtered bialge-
bra is a Hopf algebra, is extended to the context of left counital bialgebras. Given this result, we
finally prove that the left counital bialgebra on the free commutative A-TD algebra is connected
and filtered, and thus is a left counital Hopf algebra.
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1. INTRODUCTION

An algebra with (one or more) linear operators, first appeared in [27] in the 1960s, is vital in
the recent developments in a wide range of areas. The notion of an operated algebra (that is,
an associative algebra with only one linear operator) was proposed by Guo for constructing the
free Rota-Baxter algebra [[[§]. A Rota-Baxter algebra of weight A (also called a 1-Rota-Baxter
algebra) is an associative algebra R equipped with a linear operator P : R — R satisfying the
Rota-Baxter equation

(1) P(X)P(y) = P(xP(y) + P(x)y + Axy), forall x,y € R.
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Then P is called a Rota-Baxter operator of weight 1 or a A-Rota-Baxter operator, where A is
a constant. Derived from the work of Baxter on probability study [[], the Rota-Baxter operator
is intimately connected with the classical Yang-Baxter equation [[]], number theory [21]], combi-
natorics [[[§, B0, BT}, B3], and most conspicuously, renormalization in quantum field theory based
on the Hopf algebra framework of Connes and Kreimer [[IT, [[T]].

On the other hand, the direct connection between Rota-Baxter algebras and dendriform alge-
bras was first provided by Aguiar [[]], who proved that every Rota-Baxter algebra of weight 0
naturally gives a dendriform algebra. Likewise, Ebrahimi-Fard and Guo showed that every Rota-
Baxter algebra of non-zero weight A carries a tridendriform algebra structure [[]. In order to
offer another way to produce the tridendriform algebra, the TD operator, which can be formally
viewed as an analog of the Rota-Baxter operator, was invented by Leroux [4]. A TD operator
P : R — R is a linear operator satisfying the TD equation

2) P(x)P(y) = P(xP(y) + P(x)y — xP(1)y), forall x,y € R.

Note that when A takes —P(1) in Eq. ([l]), the Rota-Baxter opeator becomes a TD operator. From
this viewpoint, the TD operator can be considered as a special class of Rota-Baxter operators.
Indeed, the TD operator belongs to the category of Rota-Baxter type operator [3{], which was
proposed for solving the Rota’s problem of classifying all linear operators on an associative alge-
bra.

In recent years, classical operators, such as differential operators, Rota-Baxter operators and
TD operators, are generalized in diverse ways for developing the various algebraic structures and
phenomena [20, Bd]]. For instance, The A-different operator was introduced by Guo and Keigher
in [R0] for uniformly studying the algebraic structure with both a differential operator and a dif-
ference operator, and for the same reason the A-differential Rota-Baxter operator was discovered.
Subsequently, in [[I]], the concept of Rota-Baxter Nijenhuis TD operaotrs or RBNTD operators
was represented as a combination of Rota-Baxter operator, Nijenhuis operator and TD operator,
giving rise to a RBNTD-dendriform algebra and a five-part splitting of associativity. The Rota-
Baxter Nijenhuis TD operator is defined by the Rota-Baxter Nijenhuis TD equation

3) P(x)P(y) = P(xP(y) + P(x)y + Axy — P(xy) — xP(1)y), forall x,y € R.

Lately, Zhou and Guo [BY] introduced the concept of a Rota-Baxter TD operator, given by the
Rota-Baxter TD equation

4 P(x)P(y) = P(xP(y) + P(x)y + Axy — xP(1)y — xyP(1)), forall x,y € R.

As a consequence, a Rota-Baxter TD operator also gives a five-part splitting of the associativity
and induces a quinquedendriform algebra structure. One can see at once that every TD operator
contains the Rota-Baxter operator by taking P(1) = 0. But if we require 4 = 0, the Rota-
Baxter TD operator is not a TD operator in general. In this work, we will mainly develop a more
appropriate fusion of a Rota-Baxter operator and a TD operator, called a A-TD operator or a TD
operator of weight 1 (See Definition [.1)).

It is well-known that one of the most meaningful examples of Hopf algebras for applications in
mathematical physics is the Connes-Kreimer Hopf algebra of rooted forests [f, []], whose coprod-
uct satisfies the 1-cocycle property. Lately, Hopf algebraic structures on the free non-commutative
Rota-Baxter algebra of decorated rooted forests has been achieved by the same way [B4]]. Fur-
thermore, it is worth mentioning that the explicit constructions of free non-commutative TD al-
gebras and free non-commutative Rota-Baxter TD algebras were also accomplished by using the
rooted trees [BY, BJ]. Based on the construction of shuffle product Hopf algebras, a Hopf algebra
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structure was established on the free commutative (modified) Rota-Baxter algebra by means of
various generalized shuffle products [[, B, [9, B3]. Motivated by this, in [[[3, B7], the Hopf al-
gebraic structure on free commutative and non-commutative Nijenhuis algebras was considered
spontaneously. However, it turns out that this method can not produce a genuine Hopf algebra
again, only one with a left-sided counit and right-sided antipode. Such Hopf-type algebra is called
a left counital Hopf algebra (See Definition [I.4) to distinguish between this Hopf algebra and
the usual Hopf algebra. Intriguingly, algebra structures associated with it have already occurred
in the study of quantum group [[[d, 9] and combinatorics [[[3, [4]. See [£3, B7] for other variants
of Hopf algebra under more weaker conditions.

Thanks to Rota-Baxter operators, TD operators and Nijenhuis operators [£3, £€] sharing anal-
ogous properties and similar applications, it is reasonable to speculate that the free A-TD algebras
should possess a weakened form of Hopf algebra structure. In this paper, we primarily aim to
equip the free commutative A-TD algebra with a left counital Hopf algebra structure.

The paper is organized as follows. First of all, in Section 2, we give the concept of A-TD
algebras and then provide some general properties of A-TD algebras in parallel to that of A-
Rota-Baxter algebras [[[7]]. Then we combine the quasi-shuffle product and the left-shift shuffle
product [[[J] together, thus yielding a A-TD shuffle product. This allows us to construct the free
commutative A-TD algebra on a commutative algebra. In Section 3, we recall the concepts of left
counital coalgebra and left counital bialgebra. Then applying a proper 1-cocycle property gives a
coproduct on the free commutative A-TD algebra. Afterwards, a left counit is also defined on it.
Thus the free commutative A-TD algebra possesses a left counital bialgebra. Finally in Section 4,
we first prove that every connected filtered left counital operated bialgebra is a Hopf algebra. We
then show that the aforementioned left counital bialgebra on the free commutative A-TD algebra
satisfies the connectedness and has an increasing filtration, and thus leads to a left counital Hopf
algebra.

Convention. In this paper, all algebras are taken to be unitary commutative over a unitary
commutative ring kK unless otherwise specified. Also linear maps and tensor products are taken
over k.

2. FREE cOMMUTATIVE A-TD ALGEBRAS ON A COMMUTATIVE ALGEBRA

In this section, we first present a more opportune combination of Rota-Baxter algebras and TD
algebras, which can be regarded as one of Rota-Baxter type algebras. Then the general properties
of A-TD lagebas are developed. The construction of free commutative A-TD algebras will be
given by the A-TD shuffle product, as a generalization of shuffle product [[[2].

2.1. General properties of 1-TD algebras.

Definition 2.1. Let 1 € k. A A-TD algebra is an algebra R equipped with a linear operator P,
called a A-TD operator, satisfying the A-TD equation:

&) P(x)P(y) = P(xP(y) + P(x)y + Axy — xP(1)y), forall x,y € R.

Formally, every A-TD-operator can be obtained from a Rota-Baxter operator by adding the last
term —P(xP(1)y) on the right hand side of Eq. (fJ) to the right hand side of Eq. ([l). Note that every
TD operator is a 0-TD operator. From this viewpoint, a 1-TD operator can be viewed as a natural
generalization of TD-operator. Furthermore, we have
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Proposition 2.2. Let P be a linear operator on an algebra R. Let A € K be given.

(a) If P(1) = 0, then P is a A-TD operator if and only if P is a Rota-Baxter operator of weight
A

(b) If P(1) = A, then P is a A-TD operator if and only if P is a Rota-Baxter operator of weight
0

(c) If P(1) = 24, then P is a A-TD operator if and only if P is a Rota-Baxter operator of weight
—-A.

Proof. Ttems (f), () and (d) follow from Egs. ([)) and (). O

By Item (fJ) and [BY, Proposition 2.2], if a A-TD operator P satisfies P(1) = 24, then P is a
A-RBTD operator. By [[[7, Proposition 1.1.12], a 1-Rota-Baxter operator P leads to another A-
Rota-Baxter operator —1id — P. However, it is not necessarily true that if P is a A-TD operator, so
is —Aid — P. From the A-TD equation, we obtain

Proposition 2.3. Let P is a linear operator on a k-algebra R. Then P is a A-TD operator if and
only if —P is a —A-TD operator.

Definition 2.4. Let P be a linear operator on R. Then P is called a A-modified TD operator if P
satisfies the A-modified TD equation
(6) P(x)P(y) = P(xP(y) + P(x)y + Axy) — xP(1)y.
In this case, we call (R, P) a A-modified TD algebra.

Every Rota-Baxter algebra contains naturally a double structure, which is intimately related
to the splitting of associativity in algebras such as Loday type algebras, including dendriform

algebras and tridendriform algebras [[I]]. To explore this structure on a A-TD algebra (R, P), we
define another operation *, on R, given by

@) x 3,y =xP(y) + P(x)y + Axy — xP(1)y.
We can prove that (R, *,, P) is not a A-TD algebra by a direct calculation, that is, a A-TD algebra
does not have the double structure in general. But if the A-TD operator P satisfies P> = P, then
(R, *,, P) is a A-TD algebra. Furthermore, we obtain the following observation.
Proposition 2.5. Let (R, P) be a A-TD algebra. Then
(a) The pair (R, %)) is a nonunitary associative algebra;
(b) The triple (R, *,, P) is a A-modified TD algebra.
Proof. () follows from [B@, Proposition 2.37].
(B) By Egs. (F]) and ([]), we obtain

P(x) %, P(y) = PX)P*(y)+ P*(X)P(y) + AP(x)P(y) — P(x)P(1)P(y)
= P(x)P’(y) + P*(X)P(y) + AP(X)P(y) — (P*(x) + AP(x))P(y)
= PP ()
= P(P(X)P()).

On the other hand, by Item (f) and Eqgs. () and (), we get
P(x %1 P(y) + P(3) x4y + Ax %2 y) = x4 P(1) %0 y
= P (P (X)P(y) + P(x)P ()’)) + AP(x)P(y) — (P*(x)P(y) + AP(x)P(y))
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P(P(x)P(y) + P(x)P(y)) = P(P(x)P(y))
P(P(x)P(y)).

This gives
P(x) % P(y) = P(x % P(y) + P(x) 52y + Ax 1Y) = x %4 P(1) %2y,
proving Item (). O

2.2. The construction of free commutative 1-TD algebras. The explicit construction of free
commutative TD algebras on a commutative algebra A was carried out in [[[J] by using gener-
alized shuffle products. This section will investigate the construction of the free commutative
A-TD algebra on A by another generalized shuffle product. We first give the notion of the free
commutative A-TD algebra on a commutative algebra.

Definition 2.6. Let A be a commutative algebra. A free commutative A-TD algebra on A is a
commutative A-TD algebra F(A) with a A-TD operator P, and an algebra homomorphism j, :
A — F1(A) such that, for any commutative A-TD algebra (R, P) and any algebra homomorphism
f 1 A = R, there is a unique A-TD algebra homomorphism f : F;(A) — R such that f = f o ju,
that is, the following diagram

JA

A

FL(A)

\_l
f

R
commutes.

For a given unital commutative algebra A with unit 14, the free commutative Rota-Baxter alge-
bra on A is given by the quasi-shuffle or mixable shuffle product in [[[ 7], and the free commutative
TD algebra on A is given by the left-shift shuffle product in [[Z].

Let
I (A) := @AW.
n>0
Here A®" is the n-th tensor power of A with the convention that A%® = k. We next generalize
the quasi-shuffle product and left-shift shuffle product by combining them together. For a =
a® -®a, €A’ andb=b,®---®b, € A% withm,n>0,denote @’ =a, ® ---Qa,, if m > 1
and b =bH,®---®b,ifn > 1,sothata = a; ®a’ and b = b; ® b’. Define a binary operation 1,
on I11*(A) as follows. If m = O or n = 0, thatis, a = ¢ € k or b = ¢ € Kk, we define am,b to be the
scalar product: am,b = ¢b or am,b = ca. If m > 1 and n > 1, we define

®) am,b = a; ® (a'u,b) + by ® (am,b’) + Aa;b; ® (a'm,b") —a1by ® ((a'm, 1 ,4)m,b).
Then we extend the product of two pure tensors to a binary operation on I11*(A) by bilinearity,
called the A-TD shuffle product.

Example 2.1. Let a = a¢; and b = b; ® b,. Then

a; ® by @by + by @ (aym,by) + daib; @ by — aib; @ (1,1,b,)

= a1®b;®by+b; ®(a; @by + by @ ay + dajb, — a1br, ® 1,)
+da1b; @by —a1b; @ (1, @by + by @ 14+ Aby — by @ 1,)

= a1®9b;®b,+b1 Qa1 ®br,+b1 @by, ®a; + by ®ab,
-b1®a1b,®14—a1by ® 1,4, Dbs,.

amr, b
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We next give some properties of A-TD shuffle product w1, for proving that it satisfies the com-
mutativity and associativity.

Lemma 2.7. Leta=a,®---®a, € A®". Then

cly, ifa=ce A%,

9) 1Amra:amr1A:{ ly,®@a+ da. ifae A®* forn>1.

Proof. Let a € A®". Forn =0, let a = ¢ € k. Then 1,m,a = ¢l = am, 1, by the definition of m,.
Forn > 1,weleta=a; ®a’, where @’ = a, ® - - - ® a,,. Then by Eq. (§)

lLya,a = 1am(a ®a’)
= 14,0490 +a;®(1am,a")+ Ada; ® a —a; ® (141m,a")
= 1,®a+ Aa.
On the other hand,
am, 1y = (a; ® a)um,ly
= a1®@ml)+1,®a;9d +da;®a —a; ®(a'm,1y)
= 1,®a+ Aa.
Thus Eq. () follows. o
Lemma28. leta=aq; 4, ®---®a, € A" andb=5b,b,®---®b, € A% for m,n > 1. Then
(10) (14 ® ), b = am, (14 ® D).

Proof. We prove the claim by inductiononm +n > 2. Form+n = 2, we have m = n = 1, and so
(Ia®apm,b, = 14®(@u,b)+b1®1,®a; + by ®a; —b; @ (aju,14) (by Eq. (§))
= 14®@mb)+b;®1,®a,+Ab;®a; —b®(1,®a, +1a;) (by Eq. )
= 1, ® (aju,by).
Likewise,
a,(1,®b) = a1®1,0by + 14 ® (aju,by) + da; ® by —a; @ (14m,by)  (by Eq. ()
= a1 Q14®b; + 1,® (aju,by) +da; ®b; —a; @ (1, ® b, + Aby) (by Eq. @)
= 14 ®(aju,by).

Thus Eq. ([0) follows. Assume that the claim holds for m + n < k with k > 2. Consider
m+n=k+1. Leta=a; ®a and b = b; V. By Egs. (§) and ([), we get

(14 ®a)m,b = 14& (am,bd) + b @ ((14 ® A)u,b) + Ab; ® (am,b’) — by @ ((am, 1 4)m,b")
= 1,® (am,b) + b; ® (14 ® a)m,b") + Ab; ® (am,b’) — by @ (14 ® a + Aa)ur,b’)
= 14 ® (am,b).
On the other hand,
a, (1, ®0) = a;® (@'u, (14 ®Db)) + 1, ® (aum,b) + Aa; ® (a'm1,b) — a; @ ((a'm,14)m1,b)
= a;®@m(ly ®b)) + 14 ® (am,b) + Aa; ® (a'u,b) —a; @ (1, ® ' + Aa")m,b)
= a;®(@m(l,®D)) + 1, ® (au,b) —a; ® (1, ® a")u1,b)
= 14 ® (am,b). (by the induction hypothesis)
Then Eq. ([[0) holds. Induction on m + n completes the proof of the claim. O
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From the proof of the above lemma, we also obtain
(11) (14 ® a)ur,b = 1,4 ® (am,b), foralla € A®", b e A®".
Lemma 2.9. The A-TD shuffle product m, on III*(A) is commutative.

Proof. 1t suffices to prove
(12) am,b=">bm,a,
for all pure tensors a ;= a; ® a4, @ - a,, € A®*" andb:=b1 @b, ® ---® b, € A*" withm,n > 0.
Use inductiononm +n > 0. If m =0,0orn =0,thena=c €k, orb = ¢ € Kk, and so am,b = bur,a
by the definition of m,. If m > 1 andn > 1, weleta = a; ® o’ with a’ € A% D andb = b, @ I/
with b’ € A®"~D_ Assume that Eq. ([2) holds for m + n < k. Consider m + n = k + 1. Then by
Eq. ), we get
am,b=a; ® ((l’H_Irb) +b ® (GLHrb’) + da\b; ® (a,LH,b’) —a1b; ® ((a,LHrlA)H_I,b,).
By Eq. ({}), we obtain a’ui, 1, = 14 ® a’ + Aa’, and then using the induction hypothesis, we have
am,b=a; ® (bLHr(l,) +b ® (b’LHr(l) —a1b; ® (b’LHr(lA ® (1,)).
By Eq. (B) again, we get
bm,a=5;® (b’H_Ir(l) +a; ® (bLHr(l’) + Abja; ® (b,LH,(l’) —bia; ® ((b,LHrlA)H_I,a,).
Applying Eq. () gives b'ur, 14 = 1, ® b’ + AV, and so
bm,a=5;® (b,LH,(l) +a1® (bH_I,a,) —bia; ® (I ® b,)LHr(l’).

Then Eq. ([2) follows from the commutativity of A and Eq. ([0). This completes the induction
and the proof of the lemma. O

Lemma 2.10. The A-TD shuffle product u1, on IIT1*(A) is associative.
Proof. To show that the associativity of ur,, we need only prove
(13) (amr,b)m,¢ = am, (b, ¢),

for all pure tensors a € A®", b € A®", ¢ € A% withm,n, £ > 0. Use inductionon s := m+n+¢ > 0.
If one of m,n, ¢ is 0, then Eq. ([3) is true by the definition of wur,. This proves Eq. ([3)) for
0 < 5 < 2. Assume that Eq. (T3) holds for s < k with k > 2, and consider s = m+n+{ = k+1 with
m,n,{> 1. Denote a = ¢;®a’,b = b;®V, and ¢ = ¢; ¢’ with a’ € A®"™D " € A%D ¢ ¢ A2(D),
Then we have

(am,b)u, ¢

(a1 ® (@10 ), + (b1 ® ()¢

+H{Aaby © @ ) )uye - (anby @ (@ 1)) e (by Eq. @)

= a; ® ((a'm,b)um,c) +¢; ® ((m ® (a’m,b))m,c’) + dayc; ® ((a'm,b)m, <)

—aic; ® (((a’m,b)m,lA)m,c’) + by ® ((au, b ) ¢) + ¢ @ ((b1 ® (am,b’))m,c’)
+Abyc; ® ((au,b ), ') = bic; ® (((am,b’)m,lA)m,c’) + Aayby ® ((o'1m,b ) c)

+c1 ® ((ﬂalbl ® ((l’H_I,b,))LHr(’) + /lzalblcl ® ((a’m,b’)m,c’)
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—Adaibic; ® (((a,mrb,)mrlA)mr(,) —aib; ® (((a’lﬂrlA)leb')leC)
-1 ® ((a1b1 ® ((a’m,lA)m,b’))m,c’) —daibic; ® (((a’m,lA)m,b’)mrc’)
+a1bic; ® ((((a’m,lA)m,b’)mrlA)mrc’).
Combining the second, sixth, tenth and fourteenth terms and by Eq. (), we obtain
(au,D)m,c = a1 ® ((a’mrb)mrc) +01® ((amrb)mrc’) + dajc; ® ((a’mrb)mrc’)
—a;c; ® (((a’mrb)mrlA)mrc’) +b® ((amrb’)mrc) + Abic; ® ((amrb’)mrc’)
~bic; ® (((amrb’)mrlA)mrc’) + Aa;b; ® ((a’mrb’)mrc) + aybic, ® ((a’mrb’)mrc’)
~darbner © (o)1) ) = arby @ (((@ e a)on, )y
—Aa\bic; ® (((a’m,lA)m,b’)m,c’) +aibic; ® ((((a’m,1A)m,b’)m,1A)m,c’).

On the other hand,
am,(bur,¢) = am,(bl ® (b’mrc)) + amr(cl ® (bmrc’))

v (Abic @ (6,¢)) = an {biey ® (@ L<)) - (by Eq. @)
- 4, ® (a’w,(bl ® (b’m,c))) +b ® (amr(b'mrc)) + dab, ® (a'mr(b'mrc))
—aib; ® ((a'mrlA)mr(b’er)) +a;® (a’lﬂr(cl ® (ber'))) +0® (amr(ber'))
+lare) ® (', (b, ) — arey © (0", 1) (b, )
vy ® (W (i1 ® (0'm,) ) + Abyes © (am, (o',
+labrer (o (¢ ) = Aasbicr © (1o (¥'1m,)
—a; ® (a’mr(blcl ® ((b'mrlA)er’))) —bic; ® (amr((b'mrlA)leC’))
_daybie; ® (a'mr((b’mrlA)mrc’)) arbier ® ((a'mr1A)mr((b'mr1A)mrc'))
Adding the first, fifth, ninth and thirteenth terms and then using Eq. (§) again, we have
o) = a1 @ (wm,(ou1,9)) + by @ (o (0'0,0) + Aarr & (', (01, 0)
—a1b1 ® (01, 1), (6'm,)) + €4 © (aum, (b, ) + Aarey ® ('m, (b, )
—arcy ® (@', 1), (b, <)) + Abic ® (amr(b'mrc'))

+/12a1b1c1 ® (G/le(b’lllrf’)) - /lalblcl ® (((l’lllrlA)IHr(b’IHrC’))
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-bic1 ® (am,((b'm,lA)LH,c')) — Ada1bic; ® (a'm,((b'm,lA)m,c'))

rarbrer (o Lo (©m 1<) )
Applying Eq. (fJ) and the induction hypothesis to the seventh term
~arey ® (@1, (b, )
gives
—arcy ® (o', b)u, 1)1, ).
Then by the induction hypothesis, we obtain

am, (b, ) = @ ® ((a’mrb)mrc) + by ® (a6 )i, ¢) + Aay by ® (('1,b ) c)
~a1b1 © (WL, i) + €1 © (@, D)) + darer  ((@m by <)
—ayc; ® (((ou,b)m, 14 )us, ') + Ay @ ((am,b’)m,c’)
+Rarbyc; ® ((a’mrb’)mrc') _darbier ® (((a’mrlA)mrb’)mrc’)
~bicy ® (om0 o) = Ay @ (o' Y 1o

+a1bic; ® ((((a/ﬂlrlA)IHrb’)IHrIA)IHrC/).
Then the i-th term in the expansion of (amur,b)ur,c matches with the o (i)-th term in the expansion

of amr,(bur,c), where the permutation o € X3 is

i\ (123456 7 89 10 11 12 13
c@ ) \1 56 72811 3 9 12 4 10 13 )

This completes the proof. O
Proposition 2.11. The triple (1T (A), m1,, 1) forms a unitary commutative algebra.
Proof. This follows from Lemma P.9 and Lemma P.10. o

We next construct the free object of the category of A-TD algebras on a commutative algebra
A. Let

(14) I(A) = A® I (A) = A8 k) @A & (= (P A™).
n>1
Here A®" is the n-th tensor power of A.
We first recall the definition of the right-shift operator P, on I1I(A). Let a := ay ® o’ € 11I(A)
fora’ e A% and alln > 0. If n = 0, we let o’ = ¢ € k(= A®"). Define
(15) P, :111(A) - I1(A), a— 1,®an>1 and ar 14,®cag, n=0.

We next define a multiplication ¢, on III(A) as follows. For this purpose, we just need to define
the product of two pure tensors and then to extend by bilinearity. For a := ¢y ® @’ € A ® A®” and
b:=by®b € A®A®, we define

(16) ao,; b =agby® (a'm,b),
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where m, is the A-TD shuffle product defined in Eq. (B). Then the associativity and commutativity
of o, follows from that of the multiplication in A and m, in III*(A).
Alternatively, let I11(A) = @ A®". Fora = a;®- - -®a,, € A*" and b = b, ®- - -®b, € A*",m,n >

n>1

I,denotea’ = a, ® ---®a, ifm>2andb =b,®---®b,if n > 2, so that a = g; ® a’ and
b =5, ®b. Then ¢, on I1I(A) can also be defined by the following recursion.

aby, m=n=1,

611b1®b,, m = 1,”22,
(17 o b=l @b ®T, m>2n=1,

aib @ (@ 0, (1, @) + (14 ®a) o Y

+A0" 0, 1 = (o 0y Py(14)) 02 1), m,n > 2.

Let
ja A > 1I(A), a — a,
be the natural embedding. Then
jalab) =ab=ao, b = js(a) o4 ja(b), forall a,b € A.
So j, is an algebra homomorphism.

Theorem 2.12. Let A be a commutative algebra. Let II(A), P,, o, and ja be defined as above.
Then

(a) The triple (II(A), ©,, P,) is a commutative A1-TD algebra;
(b) The quadruple (III(A), ¢, P, ja) is the free commutative A-TD algebra on A.

Proof. ()Let a,b € T11(A). Then by Eq. ([']), we have

P(a) o4 Pa(b)

(Ia®a)o, (14,®D)

1h@(a0 (14®D))+ 14 ®((1a®a) o1 b) + A4 @ (a0, b) — 1, ® ((a o1 Pa(14)) @1 b)

Pﬂ(a o) Pﬂ(b)) + P,l(P,l(a) o b) + Py(ao,b) — Pﬂ((a o) Pﬂ(lA)) o b).

Thus P, is a A-TD operator on I11(A), and so (II(A), ¢,, P,) forms a commutative A-TD algebra.

(H) We now show that (I11(A), ©,, P, j4) is a free commutative A-TD algebra, that is, I1I(A) with
ja satisfies the universal property in Definition 2.6. Let (R, P) be a commutative A-TD algebra
and let f : A — R be an algebra homomorphism. For any pure tensor a = a; ® 4, ®- - -Qa,, € A®",
we apply the induction on m to define a A-TD algebra homomorphism f : III(A) — R. If m = 1,
we define f(a) = f(a). Then f(1,) = f(14) = lg, the unit of R. Assume that f(a) has been
defined for m < k with k > 1. Consider a = a; ® a’ € A®**D for ' € A®*. Note that

(18) a=a; o, (1,®a) =a; oy Pya).
Then define
(19) f(@) = fla)P(f(a)),

where f(a’) is well-defined by the induction hypothesis. The uniqueness of f follows from the
definition of f.
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Next we will verify that f is a A-TD algebra homomorphism. By Eq. ([J), we obtain
f(Pa() = fF(a® ) = f(1)P(f(a)) = P(f()).

This gives

(20) foP,=Pof.

So it suffices to verify that f satisfies

(21) fao,0) = f(a)f(b), VaeA®", beA®.

We will carry out the verification by inductiononm+n > 2. If m+n =2,thenm =n =1, and
so a,b € A. By Eq. ([9), we have

flao b) = f(ab) = f(ab) = f(@)f(b) = f(@)f ().

Assume that Eq. (R1)) holds form +n < k. Leta = a; ® @ € A% andb = b, ® b’ € A®" with
m+n=k+ 1. Then

(@ @) oy (b ® 1))

flaov) = f(
= f{(ar ex Pa@)) 02 (b1 o4 Pa®))) by Ea. ()

fl(aiby) o, P}(a ) oy Pa(b ))) (by the commutativity of ¢ ;)
= f((albl) o) P/l(a/ 01 Pa(b') + Pa(a’) o,
+A0" 0, 0 = (0" 0y Pi(14)) 04 b’)) (by P, being a A1-TD operator)

= flaib )P( (@ o4 Pa(b) + Pa’) 0, b
FAQ 0, 0 — (0 oy Pa(11)) o, b)) (by Eq. ([9)
= Fab)P(F@)FPAe) + FPA ) w)
+AF(@)FO) = (F@)F(Pa(14)) f(b')) (by the induction hypothesis)
= fla)f (bl)P(f ()P(f(0") + P(f(a")f(®)
+AF@OF®) = F@PFANF®)) by Ea. @)
= fla)f(b1)P(F(a))P(F(t')) (by f(14) = I and P being a A-TD operator)
_ ( flan)P( f(a')))( FBr)P( f(b’))) (by the commutativity of A)
= f(@f(®). (byEq.[)

This completes the induction, and so the proof of Theorem .12 O
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3. THE COCYCLE BIALGEBRA STRUCTURE ON FREE COMMUTATIVE A-TD algebras

In this section, the free commutative A-TD algebra I11I(A) obtained in Theorem will be
equipped with a bialgebra structure, under the assumption that the generating algebra A is a
bialgebra. So we let A := (A, mg, pa, As, £4) be a bialgebra. To achieve our goal, the first step
in this process is to construct a comultiplication on the free commutative A-TD algebra I11(A) :=
(II(A), ¢4, Py) in terms of a suitable 1-cocycle property AP = (id ® P)A, which was used to
construct left counital Hopf algebras on free Nijenhuis algebras [[[3, 7] and on bi-decorated
planar rooted forests [2]. Afterward, a left counit on III(A) is given.

3.1. Comultiplication by cocycle condition. Let us first recall the definition of a left counital
cocycle bialgebra.

Definition 3.1. [[13, 37, 9]

(a) A left counital coalgebra is a triple (C, A, ), where C is a k-module, the comultiplication
A : C — C ® C is coassociative and the counit € : C — Kk is left counital, that is,
(e®id)A = B¢, where 5, : C - k® C, given by ¢ — 1 ® ¢, is a bijection.

(b) A left counital operated bialgebra is a sextuple (H, m, u, A, g, P), where the quadruple
(H,m, u, P) is an operated algebra and the triple (H, A, €) is a left counital coalgebra such
that A: H - H® H and € : H — k are algebra homomorphisms;

(c) A left counintal operated bialgebra (H, m, u, A, , P) that satisfies the 1-cocycle property
AP = (id ® P)A is called a left counital cocycle bialgebra.

In order to distinguish the multiplication in I11(A) and in II(A) ® III(A), we denote by e the
multiplication in II(A) ® III(A).

Let A := (A, ma, ua, As, €4) be a bialgebra. Now we begin with the construction of the comulti-
plicaiton A, : 1I1(A) — HI(A)®UI(A). For this, it suffices to define A (a) for a := a;®a,®- - -®a, €
A®" with n > 1, and then to extend by linearity. Use induction on n, starting with n = 1, that is,
a = a; € A. Then define A,(a) := As(a;) to be the coproduct A4 on A, giving

(22) A1) = 14 ® 14.

Assume that A (a) has been defined for n. Consider a = a; ® ' € A®"*D witha’ ==, ®---®a, €
A®". By Eq. (1q), we have

(23) ar®a’ =a; oy Pya’).

By the 1-cocycle property, we first define

(24) A(Pa(a") = (id ® P)A ().
Then define

(25) Aar @) = Ag(ar) o ((id ® PYALW)),

where A,(a’) in Eq. (£3)) is well-defined by the induction hypothesis. So A,(a) is well-defined.
Next, the counit £, on ITI(A) will be given in terms of the counit g4 of A. Leta =aq;®a, Q- -®
a, € A%" with n > 1. Define

: _ ) &ala), ifn=1,
(26) g1: 1I(A) > Kk, a - g(a) = { 0. —_—

Then extending by linearity, this map induces a linear map from III(A) to k. By &4 being an
algebra homomorphism, we obtain £,;(14) = €4(1,4) = 1.
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Lemma 3.2. Let m,n > 1 and let a € A®” and b € A®*" be pure tensors. Then

Q27) (d®A,)(Id® P)a®b) = (id ®id ® P,)(id ® A,)(a ® b).
and
(28) (A, ®1d)id® Py)(a®b) = (id®id® P)(A, ®id)(a @ b).
Proof. By Eq. (£4)), we obtain
(d®A)(Id® P)®D) = (i[d®A,P,)(a®b)
= a® (A Pi(b))
= a®((id® PA (D))

= deid®P)Ad®A)(a®Db).

Thus Eq. (27) holds, and Eq. (2§) can be done by straightforward computation. O

Lemma 3.3. Let 111(A) ® I1I(A), ® and A, be as above. Then the triple (III(A) ® 111(A), »,id ® P,)
forms a A-TD algebra.

Proof. We only need to show that id ® P, satisfies Eq. (f). Forall a®b, c®d € III(A) ® ITI(A), we
have

(id® P))(a®b) e (id ® P)(c ®d)
= (a0 )@ ((Pa(b) 0, Pi(D))
= (00, 0)® Pﬂ(b 0, Py(d) + Py(0) 0,0+ Ab o, d— Doy Py(l4) o4 b)

= (id® P))((a 01 ) ® (b oy Pa(d) + Py(b) 03+ Ab 0y b — (b oy Pa(14)) 0, D))
= (i[d®P)((a®b) e ([d®P)(c®Dd) + (iId®P)(a®b) ¢ (c®D)
+A(a@Db) e (c®d) — (a® (b oy Pi(14))) @ (c®D))
= (i[d®P)((a®b)e(d®P)(c®D)+(d®P)a®b)e (c&D)
+A(a@Db) e (c®d) — ((a®b) e (1, ®Py(14)) e (c®D))
= (i[d®P)((a®b)e(d®P)(c®D)+(d®P)a®b)e (c®D)

+A(a®@Db)e (c®D)—(a®D) e IdRP)(14®@14) @ (c®b)).
O

3.2. The compatibilities of A, and £,. We are now going to show that A, and &, as defined
above are compatible with the multiplications.

Proposition 3.4. The comultiplication A, : II(A) — II(A)Q1I(A) is an algebra homomorphism.

Proof. Tt suffices to verify that for pure tensors a € A®” and b € A®" with m,n > 1,
(29) Ax(a oy b) = Ay(a) @ Ay(b).

We prove Eq. (B9) by inductiononm +n. If m + n = 2, thenm = n = 1, and so a,b € A. By the
definitions of ¢, and A, together with A4 being an algebra homomorphism, Eq. (29) holds.
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Suppose that Eq. (29) is true for m + n < k. Let m + n = k + 1 > 3. This leads to either m > 2
or n > 2. We just show that Eq. (E9) holds for the case m > 2 and n > 2. The others are similar.
When m > 2 and n > 2, denote a = a; @ o’ with o/ € A®" D and b = b, ® b’ with b’ € A% D On
the one hand,

Aj(a oy b)
A,l((dl ® (l’) 2 (b1 ® b’))

Au((ar o Pa@) o4 (b1 o4 Pa(®)) by Ea. @)
A,l(albl o) (P}(a’) o) P,l(b’))) (by the definition of )

Ai(albl o1 Po( 0 PaW) + Po(@) o4 B + A o1 = (03 Pa(1y)) o b))
(by P, being a A-TD operator)
A,l(albl ® (0 04 Pa(') + Py(a) 04 b’ + 20" 0, 1 = (' 03 Pa(14)) 04 b)) (by Eq. (TD)

Aarby) o ((id ® P)A(a o) Py(1)) + (id @ P)A(Pa(a) 0, V)

+A3id ® P)A (0" 04 B') — (id ® P/l)A/I((a’ o1 Pi(14)) <2 b’)) (by Eq. (£9)
Aarby) e ((id ® P)(A(0') @ Ay(Pa(1)) + ([d @ P)(A(Pa(2)) @ Ay(V))

+A(id ® P)(Ax(a) @ Ay(D)) = (id ® P)((Ar(@) @ Ay(Pa(14))) Aﬂ<b'>))
(by the induction hypothesis)
Axaiby) e ((id ® P)(Ax(@) @ (id ® P)AYD) + (id @ P)A(a) @ Ay(b)

FAAL) @ Ay(6) = Ai(@) 0 (A © P(14 ® 12) » A1) (by Eas. (2 and @)

On the other hand,

Ay(a) @ A, (b)
(Ax@r) o (([d@ PAL))) o (Aa(br) o ((id ® PYALD)))  (by Eq. @)

(Auar) » Axby)) o ((id ® POA) o ((id@ PA)Aﬁ(b’))) (by the commutativity of »)
Ay(a\by) e ((id ® PA)(A/I(G’) o (id® PA(D) + (id® Py)Ay(a') @ Ay(D)

+AA (@) @ Ay(B') — Ap(a') o (Id@ P)(1, ® 14) @ A/l(b’))). (by Lemma B.3)

Thus the terms of A (a ¢, b) agree with the terms of A;(a) e A;(b), and so Eq. (9) holds. This
completes the induction. O

From Proposition B.4, we obtain
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Corollary 3.5. Let ITI(A) ® ITI(A) and A, be as above. Then the induced maps
d®A, : 1I(A) ®III(A) — II(A) ® (IH(A) ® IH(A)), a®b - a®A,(b)
and
Ay®id : TII(A) @ III(A) — (H_I(A) ® H_I(A)) QII(A),a®b > A(a)®D
are algebra homomorphisms, respectively.
We next verify that &, : II1(A) — k given by Eq. () is an algebra homomorphism.
Proposition 3.6. The linear map &, is an algebra homomorphism.

Proof. By the definition of &, £,(14) = 1. So we just prove that
(30) ga(a oy b) = gy(a)e,(b)

for any pure tensors a := a; ® @’ € A*" and b := b; QU € A¥ withm,n > 1. f m = n = 1,
then by Eq. (I7), a ¢, b = a;b;, and so Eq. (B()) follow from Eq. (£g). If m > 2 or n > 2, then
a0y b=ab ®(@mb) by Eq. (Td, and so a o, b € X751 A%, Then by Eq. (Z§) again,

gx(aoyb) =0 = gy(a)e;(b).
O

3.3. The coassociativity of A, and the left counitality of £,. In the following, we will show
that A, satisfies the coassociativity and &, satisfies the left counitality.

Proposition 3.7. The comultiplication A, is coassociative, that is,

Proof. Leta := a; ® a’ € A®" with k > 1. Then we shall verify that

We now proceed by induction on n. For k = 1, we have a = a; € A. Then by the definition of A,
and the coassociativity of A4, Eq. (B2) holds.

Assume that k > 1 and Eq. (B2) is true for all a € A®*. Consider a = a;®a’ € A®**D, Expanding
the left hand side (id ® A;)A,(a) of Eq. (B2) gives

(id ® ApA,(a)
(id @ Ap(Axar) o ((id® P)AL)))  (by Eq. @3))
(id® A)Ai(ay) e (id® Ay))(id ® P)A(a")  (by Corollary B.3)
(d®ADA(ar) o (d®id® P)(d ® ADA()  (by Eq. @)
(id® A)A (ar) e (id®id ® Py)(A; ® id)A (a").  (by the induction hypothesis)
On the other hand, we obtain
(A ® 1d)Ay(0)

= (M ®id)(Ayar) o ((id® P)A)))  (by Eq. ()

= (Ar®@id)A(ar) e (A ®id)(id ® PA(a")  (by Corollary B.5)

= (Ar@id)Ai(ar) o (Id®@id ® Py)(A; ® id)Ay(a’)  (by Eq. (E3))

= (d®A)A(a)) e (id®id® P;)(A, ®id)A,(a"). (by the coassociativity of Ay)
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Then the expansion of (id ® A,)A,(a) matches up with the expansion of (A, ® id)A,(a). This
completes the induction, and thus proving Eq. (B2). O

Proposition 3.8. The linear map &, satisfies the left counitality, that is,

(33) (2 ®1d)A, = By,

where B, : III(A) — k ® III(A) is given by a — 1 ® a for a € A% and for k > 1.
Proof. 1t suffices to verify that

(34) (€2 ®@1d)A,(a) = Be(a).

for every pure tensor a € A®*. We do this by applying the inductionon k > 1. If k = 1, then a € A,
and so Eq. B4 follows from the left counitality of &,.
Assume k > 1 and consider a := a; ® a’ € A%**D_ Then

@ @id)A ) = (5 @id)A(a; 04 Pa(a))

= (e1®id)(Auar) o Ay(Py(@)  (by Eq. )
= (8 id)Aﬁ(al))((sﬁ ® id)AA(Pﬂ(a’))) (by Proposition f0)
= Bela)(e; ®@id)(id ® Py)Ay(a")  (by Eq. €9)
= Brla)(d ® Py)(ea ® id)A,(a")
= PBela)(id® P,)B,(a’) (by the induction hypothesis)
= Bela)Be(Pa(a’))
= PBela; o, Py(a")) (by B, being an algebra isomorphism)
= Be(a).

This completes the induction and the proof of Eq. (34). O

However, &, does not satisfy the right counitality. For example, we first define an algebra
isomorphism f3, : III(A) — III(A) ® k, given by a = a® 1, for all a € A%, Let a = P,(x), where
x € A. By using Sweedler’s notation: As(x) = >, x’ @ x”, we get

(d® e AP (x)) = (id®e)(id® P)As(x) (by Eq. (F4)
= (id®e,)(id® P Z X ®x")
= Z X' ® sﬂ(Pﬂ(x”))
= 0 (byEq. [€9)
£ Br(Pa(x)).

Lastly, we state the main theorem of this section. It follows that there exists a linear map u, :
k — II11(A), given by

cHcly, cek

Then we can verify that y, is a unit for (IT1I(A), ¢,). According to our previous results, we obtain

Theorem 3.9. The sextuple 111(A) := (I11(A), ¢4, Ua, Ay, €5, P)) is a left counital cocycle bialgebra.
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Proof. By Theorem P.17], the quadruple (IT1(A), ¢4, a0, Py) is a commutative A-TD algebra. Fur-
thermore, the triple (I11(A), Ay, &;) is a left counital coalgebra by Proposition B.7 and Proposi-
tion .8 Finally, by Proposition B.4 and Proposition .6, the sextuple (IT1(A), ¢4, a1, Ay, €1, Py) is
a left counital cocycle bialgebra. O

4. THE LEFT COUNITAL HOPF ALGEBRA STRUCTURE ON FREE COMMUTATIVE A-TD ALGEBRAS

This section will equip the free commutative A-TD algebra (II(A), ¢4, 11, Ay, ;) With a left
counital Hopf algebra structure.
Definition 4.1. [[[7, P7]

(a) A left counital operated bialgebra H := (H,m,u, A, g, P) is called filtered if there exists
an increasing filtration H" for n > 0 such that

(35) U H' = H, HPHYCH' AH")CH'®H"+ Z HP @ HY.
n>0 ptg=n
p>0,4>0

(b) A filtered left counital operated bialgebra H is connected if H° = imu(= klp).

Lemma 4.2. Let k be a field. Let H be a connected filtered left counital operated bialgebra and
let e = ue. Then
H =imu @ ker ¢.

Proof. By € : H — Kk being an algebra homomorphism, we obtain u = idy. Then e* = u(su)e =
e, and so
H = ime @ kere.

By e = ue, we get ime C imu. If x € imy, then u(c) = x for some ¢ € k, and so x = cu(ly) =
cu(e(ly)) = e(cly) € ime. Thus ime = imu. By e = ue again, ker e C kere. Let z € kere. Then

e(z) = u(e(z)) = e(@u(ly) = &)1y = 0.
This gives &(z) = 0, and then ker e C ker &, yielding ker e = ker €. Thus

H = imu & ker ¢.

By Lemma [f.7 and the connectedness of H, we obtain
(36) H =Kkly ®kere.
Lemma 4.3. Let k be a field. Let H be a connected filtered left counital operated bialgebra.
(a) Let H" := H" Nnkere for n > 0. Then
(37) a c g™
and
(38) H' =H'e 0"

(b) Let p,g > 0. Then
(39) H’®H!CH @ H!+ A’ ® H® + H” ® H".
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(c) For x € A" with n > 0, we have

A(x) = 1® x+ A(x), where A(x) € (kere ® H® + kere ® ker €).

Proof. () For all x € H", we get x = &(x)1y + x — &(x)1 . Since e(x — &(x)1y) = &(x) —&(x) =0
and x—&(x)1y € H"+ H° C H", we have H" = H* + H". Forevery y € H* N H", we have y = cly
for some ¢ € k by the connectedness of H and &(y) = 0. This leads to 0 = &(y) = &(cly) = c.
Thus y = 0, proving Eq. (B§).

(B)Firstly, Eq. (B7) follows from the increasing filtration H" € H"*!. Secondly, by Eq. (B9), we
obtain

(H° e A")® (H® ® HY)

HeoH +H @A+ A’ ® H + A’ ® AY

H@H!+ A" @ H* + H* ® Y (by H? C H? and H° C HY)

H? @ H?

N 1N

(@ Let n > 0. By Eq. (B), we obtain
AHY C H'®H" + Z H” ® H"

p+g=n
p>0,4>0
C H'®@H'+ Y H'@H'+A'@H"+ A’ @A (byEq. §J)
;:HZZB
C H'®H"+ Z H°® H + Z Ar e H + Z Ar e i
p+g=n p+q=n p+g=n
p>0,4>0 p>0,g>0 p>0,4>0
C HQH'+H'@H + A '@H + Y A’®A* (byEq. §7)
;ZEZZB
c HoH'+HA"'oH® + Z Ar e i
p+q=n
p>0,g>0

C H'®H" +kere® H + kere ® kere.

Then for all x € H" for n > 0, we can write

A(x) = 1®u+ A(x),
where u € H" and A(x) € (kere ® H® + ker & ® ker &). Then by the left counitality of & given by
Definition 3.1,

x = B le®id)A(x)

Bl e®id)(1 ®u+ Ax))
B (e(l) @ u + (e ®id)A(x))
u. (by A(x) € (kere ® H® + ker & ® ker £))

This yields ~
Alx) =1® x + A(x),
where A(x) € (kere ® H° + kere ® ker €). o
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From the above proof of Item (), we also obtain

(40) Alx) € Z H? @ HY.

ptg=n
p>0,g>0

Definition 4.4. Let H := (H,m, u, A, g, P) be a left counital operated bialgebra.

(a) A linear map S : H — H is said to be an right antipode if S is a right inverse of idy
under the convolution product *, that is

idyg xS =e.
(b) A left counital operated bialgebra H with a right antipode is called a left counital Hopf
algebra.

The following fact is parallel to [[7], Corollary II. 3.2].

Proposition 4.5. A connected filtered left counital operated bialgebra is a left counital Hopf
algebra. The right antipode is recursively defined by

(41) S(y) =1y, Skx) = —Zx’S(x”), x € kereg,
using Sweedler’s notation A(x) = ¥, x' ® x”

Proof. Verify directly that the linear map S defined in Eq. (]]) satisfies the equation id * S = e.
By A being an algebra homomorphism, we get A(1y) = 15 ® 1. The formula e = ue gives

e(lp) = ue(lp)) = u(li) = 1p.
Then
Ad*S)1y) =mAd@S)A(ly) =Sy = (d=S)(1y) =15 =e(1y).
Let x € ker &. Then by Lemma [£.3] Item (),

(id * S)(x) = m(id ® $)A(x) = m@id ® S )(1 ® x + A(x)) = S (x) + Z xS,

where A(x) = 3, X’ ® X" € ¥, p+g=n HP ® H? follows immediately from Eq. (F0). By Eq. ), we
p>0,g>0
obtain

S+ Y ¥S(K') =0,
This gives
(id % S)(x) =0 = e(x), x € kere.
O

Theorem 4.6. Let A = |J A" is a connected filtered left counital bialgebra. Let NII(A) =

n>0

(TI1(A), 04, 1, Ay, €2, Py) be as in Theorem [5.9. Then TI(A) is a left counital Hopf algebra.

Proof. According to Proposition [I.3, we only need to verify that IIT(A) is a connected filtered left
counital operated bialgebra. For this reason, we denote the degree of a by

deg(a) := min{k € N|a € A¥}), Va € A.
For any m > 1 and any pure tensor 0 # a = a; ® - - - ® a,,, € A®™, we set

42) deg(a) := deg(a;) + - -- + deg(a,,) + m— 1.
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For simplicity, we write A := III(A) = &,5;A®" and denote by A* the linear span of pure tensors
a € A with deg(a) < k. Then we get a increasing filtration A* € A*! forall k > 0 and A° = A® =
k1, by the connectedness of A. Let a = a; ® @’ € A®"*D with o’ € A®". Then by Eq. (F2) we
obtain

(43) deg(a) = deg(a;) + deg(a’) + 1.
Furthermore, if a € A” for r > 1, then
(44) o e Ardeelanl
We next show that the increasing filtration A* satisfies that for all p, g > 0
(45) Al oy AP C NPT
and
(46) MY CA O A+ Y AP@ A
om0

Now use induction on p + g > 0 to verify Eq. (¢3). For this it suffices to prove a ¢, b € AP*4 for
all pure tensors a € A” and b € A9. When p + g = 0, we have a,b € A°, and so a o, b € A° by
A° = k1, and Eq. ([7). Assume that Eq. (F3) holds for p+ g <n.Letp+g=n+1.If p=0or
g =0,thenae A’ orb € A proving Eq. (F3) by Eq. (T7) again. Hence we suppose that p, g > 1.
If a € Aorb e A, then deg(a ¢, b) < deg(a) + deg(b) by Eq. ([7) and the connectedness of A, and
so Eq. (F3) holds. Thus we only consider a € A® and b € A®" for {,m > 2. Write a = a; ® &
witha =a; ®---®as, and b =b; ® b witht' = b, ® --- ® b,,. By Eq. ([7)) again, we obtain
(47)

a0, b =a1h;®(a' 0, (1,0)+a1b1®((1,®a" )0, b")+Aa b ®(d’ o}b’)—a1b1®((a’ oﬂP}(lA))oﬂb’).

By Eq. (), o’ € Ar~de@)-l and p’ € A9-9e®D=1  Furthermore, by Eq. (F3) and deg(14) = 0
because A = k1 ,, we have

deg(l4 ® a’) = deg(1,) + deg(a’) + 1 = deg(a’) + 1 = 1, ® a’ € AP~deel@)
and
deg(1, ® ') = deg(14) + deg(d’) + 1 = deg(d) + 1 = 1, @b € A9,
Since p—deg(a;)—1+qg—deg(by) = p+qg—deg(a;)—deg(b;)—1 < p+q, wehave a’¢,(1,Qb") €
APra-degla)=dee-1 by the induction hypothesis. Thus
deg(ab; ® (a" ¢, (1, ®1"))) deg(aby) + deg(a’ o, (1, ®10")) + 1
deg(a;) + deg(b)) + p + g — deg(a;) —deg(b) — 1 + 1
pP+q.
This gives a;b; ® (0’ ¢, (1, ® b)) € AP*4, Similarly, a;b; ® (14 ® a’) ¢, 1') € AP*? and Aa,b; ®

(¢’ o, ) € AP*~1 For the fourth term on the right-hand side of Eq. (D, by deg(P(14)) =
deg(14) +deg(14) + 1 = 1 and the induction hypothesis, we obtain

a’ oy P(14) € AP~deelan)

and thus using the induction hypothesis yields ((a’ o, P;(14)) 0, b’) € AP*a-deglan=dee®-1 " thereby
proving

AN

a1by ® (o 04 Pa(14)) 02 ') € AP,
Hence all terms on the right-hand side of Eq. (f7) are in A", yielding a o, b € AP*9,
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Finally, it remains to prove Eq. (fg). The proof proceeds by induction on k > 0, with the case
k = 0 is true, because A = k1, and A;(1,) = 1, ® 1,. Assume that k > 0 and Eq. (ff6) holds
for all pure tensors a € A¥. Consider a € A¥!. If a € A(= U,50A"), then by deg(a) < k + 1, we
get a € A1, Since A is a connected filtered left counital bialgebra and A" C A" for all n > 0, we
have

Ay(a) = Ax(a) € A @ AF! + Z AP AT C A @ A+ Z AP ® A9,

prq=k+1 prq=k+1
p>0,g>0 p>0,g>0

We then suppose that a = a; ® «’ € A®*! with «’ € A® for € > 1. Then
A(a) = Ap(a; ®a’)
= Aj(a)) o ((id® PA,(a'))  (by Eq. (EI)
= Aular) o ((id® P)A(a)).
By a € A¥! and Eq. (), we get ' € Ak+I-deel@)-l — Ak=degla) = Then applying the induction
hypothesis gives

Ay(a') € A® @ Akdeg@n 4 Z AP @ AL,

p2tqr=k—deg(a;)
p2>0,g2>0

Thus
A(a) = Axa)) o ((d® PA(a))
e (AeAkEm L N AM@AT)

p1+q1=deg(ar)
p1>0,41>0

O(id ® P,l)(AO ® Ak-degtan) 4 Z A" ® qu)

p2+qr=k—deg(ar)
p2>0,g2>0

C (AeAkEw L N AP g AT)
p1+qi=deg(ar)
p1>0,1>0
o(A0@ AT L N AP AT
p2+qr=k—deg(ay)
p2>0,g2>0
c Al AR 4 Z AP @ Adegl@a)+ar+l
p2tqr=k—deg(ay)
p2>0,g2>0
+ Z AP ®A41+k—deg(a1)+l + Z APLITP2 ®A£11+£12+1
p1+qi=deg(ar) pa+qr=k—deg(ay)
p1>0,g1>0 p1+qi=deg(ar)
p1>0,q1>0,p2>0,4,>0
C AeAMTe N AR AT (phy pd#0)
p2+qr=k—deg(ai)
pr+q1=deg(ay)
p120,g1>0,p2>0,42>0
C A@AT+ Y AOAT (pi=pitpngi=qitgt]).

p+q=k+1
p>0,g>0



22 HENGYI LUO AND SHANGHUA ZHENG
This completes the induction and thus proves Eq. Q). |
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