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Abstract

In spite of the omnibus property of Integrated Conditional Moment (ICM) specification tests, they

are not commonly used in empirical practice owing to, e.g., the non-pivotality of the test and the high

computational cost of available bootstrap schemes especially in large samples. This paper proposes

specification and mean independence tests based on a class of ICM metrics termed the generalized

martingale difference divergence (GMDD). The proposed tests exhibit consistency, asymptotic χ2-

distribution under the null hypothesis, and computational efficiency. Moreover, they demonstrate

robustness to heteroskedasticity of unknown form and can be adapted to enhance power towards specific

alternatives. A power comparison with classical bootstrap-based ICM tests using Bahadur slopes is

also provided. Monte Carlo simulations are conducted to showcase the proposed tests’ excellent size

control and competitive power.
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1 Introduction

Model misspecification is a major source of misleading inference in empirical work. This issue is

further compounded when various competing models are available. It is thus imperative that model-

based statistical inference be accompanied by proper model checks such as specification tests (Stute,

1997).

Existing tests in the specification testing literature can be categorized into three classes, namely,

conditional moment (CM) tests, non-parametric tests, and integrated conditional moment (ICM) tests.

The class of CM tests, such as those proposed by Newey (1985) and Tauchen (1985), is not consistent as

it relies on only a finite number of moment conditions implied by the null hypothesis (Bierens, 1990). The

class of non-parametric tests is therefore proposed as a remedy, see e.g. Fan and Li (2000), Hardle and

Mammen (1993), Hong and White (1995), Li et al. (2022), Li and Wang (1998), Su and White (2007),

Wooldridge (1992), Yatchew (1992), and Zheng (1996). The key idea is to use an approximately infinite

number of moment conditions, a characteristic that often necessitates user-defined parameters such as

bandwidths or the number of sieves.

The class of non-parametric tests may encounter challenges such as non-parametric smoothing and

suboptimal performance stemming from over-fitting the non-parametric alternative. On the other hand,

the class of ICM tests, such as those introduced by Antoine and Lavergne (2022), Bierens (1982, 1990),

Bierens and Ploberger (1997), Delgado (1993), Delgado et al. (2006), Domı́nguez and Lobato (2015),

Escanciano (2006a), Stute (1997), and Su and Zheng (2017), has gained popularity due to its ability to

avoid these issues and detect local alternatives at faster rates. ICM metrics, on which ICM tests are based,

also appear in other contexts: martingale difference hypothesis tests (Escanciano, 2009), joint coefficient

and specification tests (Antoine & Lavergne, 2022), model-free feature screening (Li et al., 2023; Shao &

Zhang, 2014; Zhu et al., 2011), model estimation (Escanciano, 2018; Tsyawo, 2023), specification tests

of the propensity score (Sant’Anna & Song, 2019), and tests of the instrumental variable (IV) relevance

condition in ICM estimators (Escanciano, 2018; Tsyawo, 2023).

Despite their advantages, ICM tests are not widely used in empirical research (Domı́nguez & Lobato,

2015). First, ICM test statistics are not pivotal under the null hypothesis, thus critical values cannot
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be tabulated analytically (Bierens & Ploberger, 1997; Domı́nguez & Lobato, 2015). Second, ICM tests,

as commonly implemented, incur a high computational cost due to a large number of bootstrap sam-

ples needed to compute p-values. Third, although ICM tests are omnibus (Bierens, 1982; Domı́nguez

& Lobato, 2015; Stute, 1997), they only have substantial local power against alternatives in a finite-

dimensional space (Escanciano, 2009). Moreover, it is not obvious how to leverage prior knowledge of

potential directions under the alternative in order to enhance the power of ICM tests.

In light of the foregoing, this paper proposes consistent χ2-tests of mean independence and model

specification. The statistical foundation of our tests rests on a class of newly developed ICM metrics

called generalized martingale difference divergence (GMDD) in Li et al. (2023). As a generalization of

the martingale difference divergence ICM metric proposed by (Shao & Zhang, 2014), GMDD inherits the

advantages of ICM metrics and goes further by providing researchers with a wider array of choices of ICM

metrics derived from both integrable and non-integrable integrating measures. Furthermore, the GMDD

framework explicitly allows for endogenous regressors, instrumental variables (IV), and heteroskedasticity

of unknown form in both linear and non-linear models. Therefore, our tests are ICM-based and omnibus,

suggesting their capability to detect all forms of model misspecification including those that violate IV

exogeneity conditions.

Compared to existing ICM tests, our tests are more advantageous in three aspects. First, they can

be implemented as a χ2- or two-sided t-test, which can be interpreted more easily when compared to

bootstrap-based tests. Second, the tests do not require bootstrap calibration of critical values, and hence

are computationally fast and remain feasible even in very large samples. Third, although our proposed

tests are not optimal, their power can be enhanced with the knowledge of directions under the alternative

or more generally, with directions the researcher may have in mind whereas ICM tests lack this property.

Therefore, we consider our tests as a bridge between CM tests and ICM tests. However, we acknowledge a

drawback of our approach, namely, the requirement of a tuning parameter when computing the generalized

inverse in forming the Wald-type test statistics.

This paper is not the first attempt at circumventing the non-pivotality of ICM test statistics. Bierens

(1982) approximates the critical values of the ICM specification test using Chebyshev’s inequality for
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first moments under the null hypothesis, which is subsequently improved upon by Bierens and Ploberger

(1997). Bierens (1982) also proposes a χ2-test based on two estimates of Fourier coefficients and a

carefully chosen tuning parameter. Simulation evidence therein shows a high level of sensitivity to the

tuning parameter. Besides, estimating Fourier coefficients no longer makes the test ICM as the test

statistic is no longer “integrated”. Another attempt in the literature is the conditional Monte Carlo

approach of De Jong (1996) and Hansen (1996). These are, however, computationally costly as Bierens

and Ploberger (1997) notes.

The rest of the paper is organized as follows. Section 2 provides a brief literature review of ICM

metrics and provides background information on the GMDD. Section 3 reformulates the hypothesis test

of mean independence, proposes a new charaterization, and establishes its omnibus property. Section 4

proposes the test statistic and derives the asymptotic distribution under the null, local, and alternative

hypotheses. Section 5 extends the test of mean independence to model specification. Monte Carlo

simulations in Section 6 compare the empirical size and power of the χ2 specification test to bootstrap-

based ICM specification tests, and Section 7 concludes. All technical proofs and additional simulation

results are relegated to the supplementary material.

Notation: For a ∈ Rp, we denote its transpose by a⊤, and its Euclidean norm as ∥a∥. For a, b ∈ R, we

denote a∧b = min{a, b}. We denote i as the imaginary unit which satisfies i2 = −1. “
p→” and “

d→” denote

convergence in probability and distribution, respectively. Throughout the paper, for a random vector W ,

we denote W † as its independent and identically distributed (iid) copy, and write EnW = n−1
∑n

i=1Wi

as the empirical mean for iid copies {Wi}ni=1 of W. To cut down on notational clutter, W̃ is sometimes

used to denote the centered version of a random variable W , i.e., W̃ :=W − EW.

2 Integrated Conditional Moment Metrics

In this section, we briefly review recent developments in the literature on ICM metrics and provide

some background to the concept of GMDD and its use in quantifying mean dependence. For a random
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variable U ∈ R and a random vector Z ∈ Rpz , we say U is mean-independent of Z, if

E[U |Z] = E[U ] almost surely (a.s.), (1)

otherwise, U is mean-dependent on Z.

2.1 A Literature Review of ICM metrics

To characterize the relationship (1), the existing literature puts much effort into studying ICM mean

dependence metrics of the form:

T (U |Z; ν) =
∫
Π

∣∣∣E[(U − EU)w(s, Z)]
∣∣∣2ν(ds) (2)

where w(s, Z) is a weight function, the index s is defined on an appropriate space Π, and ν(·) is a suitable

integrating measure on Π.

A notable feature of T (U |Z; ν) is its omnibus property, namely, T (U |Z; ν) = 0 if and only if (1) holds,

see e.g., Shao and Zhang (2014, Theorem 1.2). The omnibus property guarantees the consistency of ICM

tests. Therefore, a larger value of T (U |Z; ν) indicates a stronger mean dependence of U on Z. Examples

of weight functions from the literature include the step function w(s, Z) = I(Z ≤ s), e.g., Delgado et al.

(2006), Domı́nguez and Lobato (2004), Escanciano (2006b), Stute (1997), and Zhu et al. (2011); a one-

dimensional projection in the step function w(s, Z) = I(Z⊤s−1 ≤ s1), e.g., Escanciano (2006a) and Kim

et al. (2020); the real exponential w(s, Z) = exp(Z⊤s), e.g., Bierens (1990); and the complex exponential

w(s, Z) = exp(iZ⊤s), e.g., Antoine and Lavergne (2022), Bierens (1982), and Shao and Zhang (2014).

The space Π in Escanciano (2006a) and Kim et al. (2020) is given by Π = R× Spz where Spz denotes the

space of pz × 1 vectors with unit Euclidean norm while Π = Rpz for the other works mentioned above.

See Escanciano (2006b, Lemma 1) for a general characterization of ICM weight functions. The real and

complex exponential functions belong to a larger class of generically comprehensively revealing (GCR)

functions, see (Bierens & Ploberger, 1997; Stinchcombe & White, 1998). Other GCR functions include

w(s, Z) = sin(Z⊤s), w(s, Z) = sin(Z⊤s) + cos(Z⊤s), and w(s, Z) = 1/(1 + exp(c − Z⊤s)), c ̸= 0, see
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Stinchcombe and White (1998) for a discussion.

The choices of w(s, Z) and ν are important for practical purposes. First, different choices of w(s, Z)

and ν result in different T (U |Z; ν) that may have varying degrees of sensitivity to the dimension of Z,

see, e.g. Escanciano (2006a) and Tsyawo (2023). Second, without a careful choice of weight function

and integrating measure, one may need to have recourse to numerical integration in T (U |Z; ν), which

is inconvenient in practice (Bierens & Wang, 2012). This paper focuses on the specific choice of the

complex exponential weight function w(s, Z) = exp(iZ⊤s) while allowing for a vast array of (possibly

non-integrable) integrating measures ν(·).

2.2 Generalized Martingale Difference Divergence

GMDD was originally presented as a byproduct of this paper, but shortly after the first draft was

finished, we noticed that the same idea has been independently proposed by Li et al. (2023). To save

space, we only provide necessary concepts of the GMDD here and refer the interested reader to Section

S.3 in the supplement and Li et al. (2023).

Definition 2.1 (GMDD). Let ν(·) be symmetric about the origin.

GMDD(U |Z) =
∫
Rpz

∣∣∣E[(U − E[U ]) exp(iZ⊤s)]
∣∣∣2ν(ds)

is called generalized martingale difference divergence (GMDD), if either of the following conditions is

satisfied:

(i) ν is an integrable measure on Rpz ;

(ii) for some α ∈ (0, 2),
∫
Rpz 1 ∧ ∥s∥αν(ds) <∞ with E|U |2 + E∥Z∥α <∞.

We note that GMDD in Definition 2.1 is more general than that of Li et al. (2023), where they require

that condition (ii) hold with α = 2 under the special choice of the Lévy measure, see equation (1) and

the ensuing discussion therein. Clearly, the GMDD is a subclass of ICM metrics, and therefore has the
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following omnibus property:

GMDD(U |Z) = 0 if and only if E[U |Z] = E[U ] almost surely (a.s). (3)

By (2) and (3), GMDD(U |Z) > 0 if and only if E[U |Z] ̸= E[U ] a.s. This is the property exploited in ICM

tests by transforming the mean independence condition (1) into an equivalent expression based on a scalar-

valued GMDD metric. It can shown that (see Proposition S.3.2 in the supplement) if E[U2+K2(Z)] <∞,

then

GMDD(U |Z) = −E[(U − EU)(U † − EU)K(Z − Z†)],

where K(x) :=

∫
Rpz

(1 − cos(s⊤x))ν(ds). Multiple choices of the kernel K(·) are possible. For exam-

ple, one can choose ν(·) to be density functions of generalized normal distributions so that K(z) =

− exp(−∥z∥α), α > 0 with special cases of α = 1 and α = 2 corresponding to the Laplacian and Gaussian

kernels, respectively, which are commonly used in the machine learning community. One can also choose

K(z) = ∥z∥ which yields the MDD in Shao and Zhang (2014). See Section S.3.2 in the supplement for

more examples. Compared with general ICM metrics, the main advantage of using the GMDD is that

the integral in (2) can be obtained analytically, which greatly reduces the computational cost due to

numerical integration.

Remark 2.1. The purpose of Definition 2.1 is to offer practitioners a range of integrating measures

(and corresponding kernels). Practitioners concerned about the potential restrictiveness of the moment

condition E∥Z∥α < ∞ can opt for Laplacian or Gaussian integrating kernels which are bounded. Ad-

ditionally, since α can be selected from the interval (0, 2), practitioners worried about possible moment

condition failures can simply choose a small α, such as α = 0.5 so that only fractional moments are

required for Z. Moreover, considering the possibility of replacing (or redefining) Z with its element-wise

bounded one-to-one mapping such that Z and its mapping generate the same Euclidean Borel field—e.g.,

atan(Z)—as discussed in Bierens (1982, 1982, p. 108), the moment restrictions are practically mild.
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In practice, we consider the following empirical estimator of GMDD(U |Z), namely

GMDDn(U |Z) = − 1

n(n− 1)

∑
i ̸=j

(Ui − En[U ])(Uj − En[U ])K(Zi − Zj). (4)

Like most existing tests based on ICM metrics, the asymptotic null distribution (under (1)) of the

empirical estimator of GMDD is non-pivotal.

Proposition 2.1. Let E[U2U †2K2(Z − Z†)] <∞ hold.

(1) If GMDD(U |Z) = 0, then

nGMDDn(U |Z) d→
∞∑
k=1

λkG
2
k, (5)

where {Gk}∞k=1 is a sequence of iid standard Gaussian random variables, and {λk}∞k=1, λk ≥ 0, is

a sequence of non-increasing coefficients that depend on the distribution of (U,Z) and the kernel

K(·).

(2) If GMDD(U |Z) > 0, then

√
n(GMDDn(U |Z)−GMDD(U |Z)) d→ N (0, 4Var{J(D)}),

where J(D) :=
{
E[(U † − EU)K(Z − Z†)|Z]− E[(U † − EU)K(Z − Z†)]

}
(U−EU), and D = (U,Z).

The key observation from Proposition 2.1 is that the limiting behavior of the GMDD-based test

statistic is non-pivotal under mean independence. It depends heavily on the underlying data-generating

process (DGP) and the integrating measure ν(·). This may hinder the use of GMDD for practitioners

because the implementation usually requires bootstrapped critical values. This is precisely the problem

rectified by the proposed test in Section 3 while preserving the omnibus property. Although the existing

literature is well aware of this problem, e.g., Bierens (1982), Domı́nguez and Lobato (2004) and Escanciano

(2006b), improvements largely remain focused on bootstrap calibration methods, e.g., Domı́nguez and

Lobato (2015), instead of pivotalizing ICM tests.
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Another implication of Proposition 2.1 is that GMDDn(U |Z) is first-order degenerate under mean

independence, i.e. E[K(Z − Z†)(U − EU)(U † − EU)|U,Z] = 0 a.s., which further manifests as J(D) =

0 a.s., leading to the breakdown of the central limit theorem. The first-order degeneracy problem is at

the heart of the unavailability of pivotal ICM tests, see, e.g., Shao and Zhang (2014, Theorem 4). When

mean independence is violated, however, GMDDn(U |Z) is first-order non-degenerate after centering. This

suggests a pivotal ICM-based test is achievable once first-order degeneracy under mean independence is

appropriately dealt with. In the next section, we further exploit the structure of GMDD and provide a

novel perspective for GMDD-based (and thus ICM-based) pivotal tests.

3 A new characterization of mean independence

Consider the following hypothesis testing problem of mean independence:

Ho : E[U |Z] = E[U ] a.s.;

Ha : E[U |Z] ̸= E[U ] a.s.
(6)

The above hypotheses of interest, in view of the omnibus property (3), can be restated as testing

GMDD(U |Z) = 0. By the Law of Iterated Expectations (LIE), we have

GMDD(U |Z) =− E
{
K(Z − Z†)(U † − EU)E[(U − EU)|Z,Z†, U †]

}
=− E

{
K(Z − Z†)(E[U |Z]− EU)(U † − EU)

}
.

(7)

Under Ho, E[U |Z] is degenerate, i.e., E[U |Z] = EU a.s., which accounts for the first-order degeneracy in

Proposition 2.1. In this regard, we propose to replace U with a variable V ∈ Rpv constructed such that

E[V |Z] is non-degenerate under both the null and alternative hypotheses while preserving the omnibus

property. The two crucial properties, namely, the omnibus and first-order non-degeneracy properties

guarantee that the proposed tests are consistent and pivotal. To this end, this paper bases the proposed
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testing procedure on the quantity

δV := E[K(Z − Z†)(V − EV )(U † − EU)], (8)

where the subscript “V ” is used to reflect the user-dependent choice of V. In (8), we center V around its

mean value to align with the expression of GMDD. However, this step can often be omitted with minor

adjustments to the theory.

3.1 The Omnibus Property

The omnibus property requires that with a suitable choice of V , δV = 0 if and only if Ho holds. The

if part holds under Ho thanks to the degeneracy of E[U |Z]. In fact, by the LIE,

δV =E
{
K(Z − Z†)(V † − EV )E[(U − EU)|Z,Z†, V †]

}
=E

{
K(Z − Z†)(V † − EV )(E[U |Z]− EU)

}
.

(9)

Therefore, Ho implies δV = 0 by construction irrespective of the formulation of V . The only if part, which

is crucial for the omnibus property of δV , however, does not hold by construction. We illustrate this by

the manipulation of δV via the LIE. Denote

m
Ṽ
(Z) := E[K(Z − Z†)(V † − EV )|Z], (10)

then in view of (9), we have

δV =E
{
E[K(Z − Z†)(V † − EV )|Z](E[U |Z]− EU)

}
=E

{
m

Ṽ
(Z)(E[U |Z]− EU)

}
.

(11)

Therefore, (11) implies that the only if part fails if m
Ṽ
(Z) and E[U |Z]−EU are orthogonal to each other

under Ha.

In view of the preceding, the following condition is imposed to ensure the omnibus property of the
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proposed test.

Condition 3.1 (Omnibus Property). If Ha holds, i.e., E[U |Z] ̸= EU a.s., then V is such that

E{m
Ṽ
(Z)(E[U |Z]− EU)} ≠ 0.

Although Condition 3.1 ensures the omnibus property, it imposes a strong restriction on V under Ha,

which is a high-level condition that does not provide adequate guidance to a practitioner in the specifica-

tion of V since the direction of E[U |Z] under Ha is usually unknown. Nevertheless, this condition serves

as a guide in the choice of V .

3.2 A proposal of V

Since E[U |Z] − EU ̸= 0 a.s. under Ha, and K(Z − Z†) ̸= 0 a.s., Condition 3.1 thus implies that

E[V †|Z†] (or equivalently E[V |Z]) should be non-degenerate under Ha. The non-degeneracy of E[V |Z]

under the Ho ensures a pivotal test under the Ho. This is stated in the following condition.

Condition 3.2 (First-order non-degeneracy). Under Ho, E[V |Z] ̸= EV a.s.

Since V is user-specified, Condition 3.2 can be easily satisfied by letting some components of V be

measurable and non-generate functions of Z. Note that the first-order non-degeneracy of E[V |Z] should

not be understood element-wise, but jointly, in that some but not all elements of E[V |Z] can be constant

almost surely. Condition 3.1 and 3.2, respectively, guarantee the omnibus and first order non-degeneracy

properties of δV under Ho. The following fundamental result provides a formulation of V that satisfies

Conditions 3.1 and 3.2.

Lemma 3.1. For any arbitrary measurable and non-degenerate function h(Z), i.e., h(Z) ̸= E[h(Z)] a.s.,

V = [h(Z), U − h(Z)]⊤ satisfies Conditions 3.1 and 3.2.

Proof. Let h̃(Z) := h(Z)− E[h(Z)], then

δV =
[
E[K(Z − Z†)h̃(Z)(U † − EU)], −GMDD(U |Z)− E[K(Z − Z†)h̃(Z)(U † − EU)]

]⊤
:= [δ

(1)
V , δ

(2)
V ]⊤.
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Recall GMDD(U |Z) > 0 under Ha, hence δ
(1)
V +δ

(2)
V < 0 under Ha. This implies at least one element in δV

is strictly negative (hence strictly different from zero), and thus Condition 3.1 is satisfied. Note that h(Z)

is non-degenerate, and that underHo, E[V |Z]−EV = [h̃(Z),E[U |Z]−EU−h̃(Z)]⊤ = h̃(Z)[1,−1]⊤ ̸= 0 a.s.

It follows that Condition 3.2 holds. ■

Lemma 3.1 shows that symmetrizing any non-degenerate measurable function of Z about U yields a V

that guarantees the omnibus and first-order non-degeneracy properties.

The requirement on h(Z) in Lemma 3.1 can hardly be termed a “condition” as it only requires

measurability and non-degeneracy. Therefore, the proposed tests are omnibus as long as the choice of V

is suitable, i.e., it obeys Condition 3.1. Moreover, it leads to a first-order non-degenerate U/V -statistics

when V obeys Condition 3.2 as well. The proof of Lemma 3.1 provides an insight into the inclusion

of U linearly in the construction of V . This brings in the term GMDD(U |Z) in δV that is strictly

positive under Ha and drives power under the alternative whenever the “worst-case-scenario” arises when

Condition 3.1 is violated with a simple choice such as V = h(Z) under Ha. The proposed tests thus draw

their consistency from the ICM omnibus property (3).

Since h(Z) can be chosen arbitrarily, the practitioner does not bear the burden of “carefully” selecting

functions such as polynomials that provide power by approximating E[U |Z] under Ha, as required in

non-parametric tests specification tests, e.g., Wooldridge (1992), Yatchew (1992), and Zheng (1996). In

addition, the user-specified h(Z) provides extra flexibility as the practitioner can use it to augment the

power of the test in given directions, unlike GMDD-based bootstrap tests. As demonstrated in Section

4.3, Section 6, and Section S.5.3 of the supplement, properly choosing h(Z) can result in a more powerful

test than existing bootstrap-based ICM tests.

Remark 3.1. This paper focuses on the fixed-dimensional case. In the high-dimensional setting pz → ∞,

Zhang et al. (2018, Remark 2.2) demonstrates that (G)MDD criteria only capture linear dependence when

pz is large. Our χ2-test derives its consistency property and part of its power from the GMDD so it cannot

be expected to perform better in high dimensions.

Furthermore, there are limited efforts in the existing literature dedicated to studying the independence

testing problem between two high-dimensional vectors with dimensions p and q, using distance covariance-
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based test statistics proposed by Székely et al. (2007). In particular, Zhu et al. (2020) shows that if

min(p, q) ≫ n, the distance-based test statistics can only capture the component-wise cross-variance, a

phenomenon further supported by Chakraborty and Zhang (2021). Complementing these findings, Gao et

al. (2021) shows that if p = q = o(
√
n), the re-scaled sample distance correlation can still detect nonlinear

dependence. Recently, Zhang et al. (2024) gives a more detailed discussion on how the order of p, q and n

can jointly impact the power. Consequently, extending our testing procedure to high dimensions requires

a separate paper and is deferred to future research.

3.3 Extension to Testing the Nullity of E[U |Z]

In some applications such as specification testing, one may be interested in the nullity of E[U |Z]

directly, i.e.

H∗
o : E[U |Z] = 0 a.s.; H∗

a : E[U |Z] ̸= 0. (12)

This is an augmented version of (6) which further imposes E[U ] = 0, i.e., a joint hypothesis of conditional

mean independence and nullity of the unconditional mean. To this end, we follow Su and Zheng (2017)

to augment δV with an additional quantity that accounts for E[U ] = 0 under H∗
o. In particular, one may

consider

δ∗V = δV − E[K(Z − Z†)]EV EU.

The following result shows that the choice of V in Lemma 3.1 is still valid under such an extension.

Lemma 3.2. For V given in Lemma 3.1, δ∗V = 0 if and only if E[U |Z] = 0 a.s.

To save space, we focus on δV in what follows, and refer the interested reader to Section S.2 of the

supplement for the theoretical properties of the χ2-test based on δ∗V .
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4 Test Statistic and Theoretical Properties

In this section, we construct the test statistic based on δV . Given empirical observations, in the same

spirit of (4), a natural estimator for δV is given by its sample analogue, i.e.

δ̂V =
1

n(n− 1)

n∑
i=1

∑
j ̸=i

K(Zi − Zj)(Ui − En[U ])(Vj − En[V ]). (13)

In Section 4.1, we analyze the asymptotic behavior of δ̂V under the null hypothesis, as well as under

local and fixed alternatives. In Section 4.2, we construct the pivotal χ2-test statistic and discuss its

implementation. Section 4.3 uses Bahadur slopes to compare the power of the χ2-test and bootstrap-

based GMDD tests.

4.1 Asymptotic Distribution

In this section, we analyze the asymptotic behavior of δ̂V under Ho, a sequence of Pitman local

alternatives

H′
an : E[U |Z]− E[U ] = n−1/2a(Z),

and a fixed alternative

H′
a : E[U |Z]− E[U ] = a(Z),

where a(Z) is a non-degenerate measurable function of Z satisfying E[a(Z)] = 0. Define D := (U, V, Z),

m
Ũ
(Z) := E[K(Z − Z†)(U † − EU)|Z],

ϕ(D) := [m
Ũ
(Z)− Em

Ũ
(Z)](V − EV ) + [m

Ṽ
(Z)− Em

Ṽ
(Z)](U − EU), (14)

and ΩV = Var {ϕ(D)}.

Under Ho, we have that m
Ũ
(Z) = 0 a.s. by the LIE, and hence ϕ(D) reduces to ϕ(D) = [m

Ṽ
(Z) −

Em
Ṽ
(Z)](U − EU). This implies that ΩV may have different expressions under the null and alternative

hypotheses. Here, we distinguish ΩVo and ΩVa , corresponding to specific expressions of ΩV under Ho
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and H′
a, respectively; they are generally referred to as ΩV whenever the distinction is not needed. For

completeness, we impose the following sampling and dominance conditions.

Assumption 4.1. {Di}ni=1 are independently and identically distributed (iid).

Assumption 4.2. E[∥K(Z − Z†)V U †∥2] <∞.

We assume that observations are iid in Assumption 4.1 in order to simplify the theoretical analyses. Our

results should be extensible to weak temporal dependence, panel data, and clustered data settings, but

this lies beyond the scope of the current paper. Assumption 4.2 is standard, e.g., Serfling (2009, Sect.

5.5.1 Theorem A); it is needed to establish the asymptotic normality of
√
n(δ̂V − δV ).

Theorem 4.1. Suppose Assumption 4.1, Assumption 4.2, Condition 3.1, and Condition 3.2 hold, then

(i) under Ho,
√
nδ̂V

d→ N (0,ΩVo);

(ii) under H′
an,

√
nδ̂V

d→ N (ao,ΩVo); and

(iii) under H′
a,

√
n(δ̂V − δV )

d→ N (0,ΩVa);

where ao := E[(V − EV )a(Z†)K(Z − Z†)].

We note that the covariance matrices in the above asymptotic normal distributions can be singular, which

we further elaborate on in Section 4.2 below.

4.2 Test Statistic

Theorem 4.1 justifies the asymptotic normality of δ̂V , even under Ho, which naturally motivates the

Wald test statistic:

T̃V,n = nδ̂⊤V Ω̃
−1
V,nδ̂V , (15)

where Ω̃V,n is a consistent estimator of ΩV under both Ho and Ha. This testing procedure is valid when

ΩV is positive definite, which, however, may not be true for our test. For example, the formulation
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V = [h(Z), U − h(Z)]⊤ in Lemma 3.1 under Ho yields

ϕ(D) = [m
h̃
(Z)− Em

h̃
Z)](U − EU)× [1,−1]⊤ , with m

h̃
(Z) := E

{
K(Z − Z†)[h(Z†)− Eh(Z†)]|Z

}
,

which is of column rank one. This suggests that ΩV can be singular. Indeed,

ΩV = E
{
[m

h̃
(Z)− Em

h̃
(Z)](U − EU)

}2 ×
 1 −1

−1 1

 .
Although it is tempting to replace the inverse matrix Ω̃−1

V,n in (15) with a generalized inverse matrix

Ω̃−
V,n, e.g., the Moore-Penrose inverse, the resulting Wald statistic may still not have an asymptotic χ2

distribution unless the rank condition,

P
(
rank(Ω̃n,V ) = rank(ΩV )

)
→ 1 as n→ ∞, (16)

is satisfied, see Andrews (1987). To deal with this problem, we adopt the thresholding technique in

Lütkepohl and Burda (1997) which ensures the rank condition (16) is satisfied, see also Duchesne and

Francq (2015) and Dufour and Valéry (2016). Let

Ω̃V,n =
1

n− 1

n∑
i=1

[ϕ̂(Di)− 2δ̂V ][ϕ̂(Di)− 2δ̂V ]
⊤, (17)

be a consistent estimator of ΩV (Sen, 1960), where

ϕ̂(Di) := [m̂
Ṽ
(Zi)− Enm̂Ṽ

(Z)](Ui − EnU) + [m̂
Ũ
(Zi)− Enm̂Ũ

(Z)](Vi − EnVi),

and

m̂
Ṽ
(Zi) =

1

n− 1

∑
j=1,j ̸=i

K(Zi − Zj)(Vj − EnV ), m̂
Ũ
(Zi) =

1

n− 1

∑
j=1,j ̸=i

K(Zi − Zj)(Uj − EnU).
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By the singular value decomposition,

Ω̃V,n = Γ̃nΛ̃nΓ̃
⊤
n , (18)

where Λ̃n = diag(λ̃1, · · · , λ̃pv) is the diagonal matrix comprising the eigenvalues λ̃1 ≥ · · · ≥ λ̃pv ≥ 0 of

Ω̃V,n, and the columns of Γ̃n are the corresponding eigenvectors. For cn = Cn−1/2+ι where ι ∈ (0, 1/2) is

a small positive number and C ∈ (0,∞) is a constant (Dufour & Valéry, 2016), we define the regularized

estimator of ΩV by

Ω̂V,n := Γ̃nΛ̂n,cnΓ̃
⊤
n , where Λ̂n,cn = diag(λ̃11(λ̃1 > cn), · · · , λ̃pv1(λ̃pv > cn)) (19)

and its Moore-Penrose inverse by

Ω̂−
V,n := Γ̃nΛ̂

−
n,cnΓ̃

⊤
n where Λ̂−

n,cn = diag(λ̃−1
1 , · · · , λ̃−1

p(cn)
,0⊤pv−p(cn)

)

and p(cn) =
∑pv

l=1 1{λ̃l > cn}.

Finally, we define the regularized Wald test statistic:

TV,n := nδ̂⊤V Ω̂
−
V,nδ̂V . (20)

In practice, Ho is rejected when TV,n > χ2
rank(ΩVo ),1−α, the 1− α quantile of χ2

rank(ΩVo )
, at a pre-specified

significance level α ∈ (0, 1). We remark that ΩVo and ΩVa can be different, for example, for V in

Lemma 3.1, rank(ΩVo) = 1 while rank(ΩVa) = 2 if a(Z) ̸= c · h(Z) for any c ∈ R.

Remark 4.1. Following Lütkepohl and Burda (1997) and Dufour and Valéry (2016), a consistent choice

of the threshold cn that is used in this paper is cn = λ̃1n
−1/3 where λ̃1 is the leading eigenvalue of Ω̃V,n.

For the robustness of the χ2-test to variations of the form cn = λ̃1n
−ι, ι ∈ (0, 1/2) and other suitable

selection criteria commonly used in the literature on truncated singular value decomposition, see Section

S.5.4 in the supplement.
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Remark 4.2. In general, rank(ΩVo) is the number of free elements in E[V |Z] under Ho that cannot

be expressed almost surely as a linear combination of the other elements. For example, when V takes

the bivariate form in Lemma 3.1, rank(ΩVo) = 1. Under Ho, GMDDn(U |Z) = Op(n
−1) from (5) in

Proposition 2.1, thus it can be shown that
√
nδ̂V =

√
nδ̂

(1)
V [1, −1]⊤ +Op(n

−1/2). In this particular case,

the test statistic has the form

TV,n = nδ̂⊤V Ω̂
−
V,nδ̂V =

(
δ̂
(1)
V√

Var(δ̂
(1)
V )

)2

+ op(1)
d−→ χ2

1, as n→ ∞.

This implies
√
TV,n converges in distribution to the half standard normal under Ho and shares the inter-

pretability without a formal hypothesis test of a two-sided t-test.

The next theorem justifies the use of (20) under the null hypothesis, local alternatives, and fixed

alternatives.

Theorem 4.2. If E |ψ(Di, Dj)|4+ε < ∞ for some ε > 0, and let cn = Cn−1/2+ι for some constants

ι ∈ (0, 1/2) and C ∈ (0,∞) independent of n, then

(i) under Ho, Ω̂
−
V,n

p→ Ω−
Vo
, and

TV,n
d→ χ2

rank(ΩVo )
;

(ii) under H′
an, Ω̂

−
V,n

p→ Ω−
Vo
, the asymptotic local power is given by

lim
n→∞

P(TV,n > χ2
rank(ΩVo ),1−α) = P

(
χ2
rank(ΩVo )

(θ) > χ2
rank(ΩVo ),1−α

)
,

where θ := a⊤o Ω
−
Vo
ao, ao is defined in Theorem 4.1, and χ2

rank(ΩVo )
(θ) is a non-central χ2 random

variable; and

(iii) under H′
a, Ω̂−

V,n

p→ Ω−
Va
, and if δV ̸∈ M0, where M0 is the eigenspace associated with the null

eigenvalue of ΩVa,

lim
n→∞

P(TV,n > χ2
rank(ΩVo ),1−α) = 1.
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Remark 4.3. For V defined in Lemma 3.1, δV ̸∈ M0 always holds and hence the test given Theorem

4.2 (iii) is consistent. The proof is provided in the supplementary material.

4.3 Power Comparison with the GMDD test

In this section, we examine the efficiency of the proposed test statistic compared with the bootstrap-

based GMDD test by adopting the approach of Bahadur (1960). Under a fixed alternative, both tests

demonstrate consistency as n tends to infinity. The Bahadur slope in Bahadur (1960) allows us to further

compare the rate of convergence of p-values to zero as n increases.

Let SG(t) := P(
∑∞

k=1 λkG
2
k > t) and ST (t) := P(χ2

rank(ΩVo )
> t) be the survival functions of the

asymptotic null distributions of the GMDD test statistic nGMDDn(U |Z), and the pivotal test statistic,

TV,n, respectively. Their Bahadur slopes are respectively given by

cG = lim
n→∞

− 2

n
logSG(nGMDDn(U |Z)), cT = lim

n→∞
− 2

n
logSG(TV,n).

Theorem 4.3. Suppose Ω̂−
V,n

p→ Ω−
Va
, and the conditions of Theorem 4.2 hold, then under H′

a : E[U |Z]−

E[U ] = a(Z), where a(Z) is a non-degenerate function of Z, the (approximate) Bahadur slopes of the

GMDD test statistic nGMDDn(U |Z) and the pivotal test statistic TV,n are respectively given by

cG =
−E[a(Z)a(Z†)K(Z − Z†)]

λ1
and cT = a⊤o Ω

−
Va
ao

where λ1 is the leading eigenvalue associated with the limiting null distribution in (5), and ao = E[(V −

EV )a(Z†)K(Z − Z†)].

The approximate Bahadur slopes presented in Theorem 4.3 are primarily of theoretical interest. Con-

ducting a comprehensive comparison of these slopes is challenging as they depend on data-dependent

quantities such as λ1 and a(Z) and user-specified variables like V and the kernel K(·).

To make these results concrete, we consider the simple design

U = exp(−Z2/3)−
√

3/5 + E , with Z ∼ N (0, 1) and E ∼ U [−
√
3,
√
3],
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where E is independent of Z, hence E[U |Z] := a(Z) = exp(−Z2/3) −
√

3/5, and EU = 0.1 Using the

Gaussian kernel K(Z −Z†) = exp(−0.5(Z −Z†)2) for both tests, Table 4.1 shows the Bahadur slopes of

the GMDD test alongside the χ2-test with

(1) V1 = [h1(Z), U − h1(Z)]
⊤, h1(Z) = exp(Z)− exp(1/2) which is agnostic of a(Z);

(2) V1a = [h1(Z), U − h1(Z), Z]
⊤;

(3) V2 = [h2(Z), U − h2(Z)]
⊤, h2(Z) = a(Z) which results in a singular covariance matrix under Ha;

(4) V3 = [h3(Z), U−h3(Z)]⊤, h3(Z) =
√
3 exp(−Z2/2)−

√
3/2 which satisfies E[K(Z−Z†)h(Z†)|Z] =

exp(−Z2/3)−
√

3/5 := a(Z); and

(5) V3a = [h3(Z), U − h3(Z), Z]
⊤.

In scenarios (3) - (5), we use prior knowledge of the alternative. In (3), it can be shown that ao =

−[GMDD(U |Z), 0]⊤, and

ΩVa = A×

 1 −1

−1 1

 ,
where A = Var {ϕ(D)} and ϕ(D) = (U − EU)E[a(Z†)K(Z − Z†)|Z]. Clearly, E[ϕ(D)] = −GMDD(U |Z),

therefore a⊤o Ω
−
Va
ao = GMDD2(U |Z)/[4Var(ϕ(D))]. This is in fact a worst-case scenario under Ha for the

χ2-test. To fully make use of the information of a(Z), the choice of h(Z) in scenario (4) maximizes the

linear dependence in Condition 3.1 with respect to the first element of δV while the second term is not

degenerate: δV = E
[
a2(Z), −GMDD(U |Z)−a2(Z)

]⊤
. Therefore, power should be augmented. Scenarios

(2) and (5) are V s of scenarios (1) and (4) augmented with Z.

Table 4.1: Bahadur Slopes

GMDD χ2

V1 V1a V2 V3 V3a

Bahadur Slope 0.0109 0.0214 0.0242 0.0056 0.0246 0.0246

1See Appendix S.6 for details on the computation of the Bahadur slopes.
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Table 4.1 shows that the GMDD is an intermediate case between the agnostic choice with h(Z) =

exp(Z) − exp(1/2) (scenario (1)) and the worst case with h(Z) = a(Z) (scenario (3)). In the case

where the linear dependence under Condition 3.1 is maximized with respect to either element of V =

[h(Z), U − h(Z)]⊤ without degeneracy in the other (scenario (4)), the χ2-test Bahadur slope is larger.

Moreover, we note that when augmenting V , one observes a slight increase in the Bahadur slope for

scenario (2) but none for scenario (5). The latter case is not surprising as Z is orthogonal to the direction

under alternative, namely, E[K(Z − Z†)h(Z†)|Z] = a(Z) = exp(−Z2/3)−
√

3/5 is orthogonal to Z thus

the augmentation with Z does not improve power.

5 Specification Testing

This section studies the behavior of the χ2-test (20) when applied to the specification testing problem.

Specification tests assess conditional moment restrictions which arise often in empirical work. Examples

include treatment effect analyses (e.g., Callaway and Karami, 2022), Euler and Bellman equations (Es-

canciano, 2018; Hansen & Singleton, 1982), the hybrid New Keynesian Phillips curve (Choi et al., 2021),

forecast rationality (Hansen & Hodrick, 1980), conditional equal and predictive ability (Giacomini &

White, 2006), see Li et al. (2022) for a discussion.

Consider the following parametric regression model,

Yi = g(Xi;βo) + Ui, (21)

where Yi ∈ R is the response variable, Xi ∈ Rpx is the regressor, Ui is the model error satisfying

E[U |Z] = 0, and Zi ∈ Rpz is a vector of instruments which may or may not coincide with Xi, thus

allowing for endogenous Xi. Here, the regression function g(x;βo) is known, and parameterized by

βo ∈ B where B is a compact parameter space in Rk.
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5.1 The test statistic

The specification testing problem is of the form,

Ho : P(E[Yi − g(Xi;βo)|Zi] = 0) = 1, for some βo ∈ B and

Ha : P(E[Yi − g(Xi;β)|Zi] = 0) < 1, for all β ∈ B.
(22)

Note (22) is equivalent to testing E[Ui|Zi] = 0 a.s. under the null hypothesis. Unlike the mean

independence testing problem in Section 3 where all variables are observed, the error term in (21) is

unobservable but can be estimated using the residual

Ûi = Yi − g(Xi; β̂n),

where β̂n is an estimator of βo. Similarly, the construction of V = V(Ui, Zi), which satisfies both the

omnibus and first-order non-degeneracy properties in Section 3.1, is replaced with V̂i = V(Ûi, Zi). We

use the normalization EnÛ = 0 which holds by construction with the inclusion of an intercept term for

EU . Therefore, one may consider

δ̂n =
1

n(n− 1)

n∑
i=1

∑
j ̸=i

K(Zi − Zj)ÛiV̂j ,

as the test statistic for specification testing. Note that both Ûi and V̂i may involve estimation effects,

which is shown to have a non-negligible effect on asymptotic properties in comparison to (13).

Remark 5.1. A choice of test statistic based on the GMDD metric in the ICM literature is given by

nGMDDn(Û |Z), where a special case using the MDD metric is considered in Su and Zheng (2017).

However, as indicated by results of Proposition 2.1 in the current paper and Theorem 3.1 in Su and

Zheng (2017), the asymptotic behavior of nGMDDn(Û |Z) depends on the underlying data-generating

process. More importantly, it is not pivotal. Bootstrap methods are required to obtain asymptotically valid

p-values for statistical inference.

Given the above remark, we will not investigate the theoretical properties of nGMDDn(Û |Z), for which
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proof techniques developed for Section 2 and Su and Zheng (2017) are applicable.

5.2 Asymptotic Theory

Following Bierens and Ploberger (1997) and Escanciano (2009), we consider the asymptotic behavior

of δ̂n under the following sequence of Pitman local alternatives

Han : Yi = g(Xi;β0) + n−1/2a(Xi, Zi) + Ei, i = 1, . . . , n, (23)

where Ei := Yi−E[Yi|Zi] and Ui = Ei+n−1/2a(Xi, Zi). As the form of misspecification a(Xi, Zi) contains

both Xi and Zi, it also allows for misspecification that violates the IV exclusion restriction on excluded

instruments in Z. From (23), Ei = Ui under Ho. The following conditions are imposed.

Condition 5.1. E[U2 +K2(Z)] <∞.

Condition 5.2. (i). g′(x;β) := ∂g(x;β)/∂β exists and is a continuously differentiable function of β ∈ B

on the support of Xi; (ii) E[sup
β∈B

∥g′(Xi;β)∥] <∞.

Condition 5.3. βo is an interior point of B and there exists a consistent estimator β̂n of βo that satisfies:

(i).
√
n(β̂n − βo) = ζa +

1√
n

n∑
i=1

φiEi + op(1),

where ζa = E[a(Xi, Zi)φi] ∈ Rk, φi := φi(βo) = φ(Xi, Zi;βo) with E[Eiφi] = 0 and φi(β) ∈ Rk is

observable for given β ∈ B;

(ii). Ξ0 := E[φiφ
⊤
i E2

i ] exists and is positive definite.

Condition 5.4. V̂i = V(Ûi, Zi) ∈ Rpv , and satisfies:

(i).

V̂i = Vi + ξ⊤i (β̂n − βo) + op(n
−1/2),

where Vi = V(Ui, Zi) satisfies Condition 3.2, ξi := ξi(βo) = ξ(Xi, Zi;βo) ∈ Rk×pv , and ξi(β) ∈ Rk×p is

observable for given β ∈ B;
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(ii). E∥ξi∥2 <∞.

The above assumptions are standard in the specification testing literature, cf. Bierens (1982), Es-

canciano (2009), and Su and Zheng (2017). Condition 5.1 imposes moment conditions on the data and

the kernel used, which ensures that the GMDD metric is well defined. Although the moment restriction

on U cannot be relaxed, that of K(·) can be relaxed through the choice of bounded kernels or suitable

transformations of Z – see Remark 2.1. Condition 5.2 regulates the smoothness and moment condi-

tions of the nonlinear regression function g(x;β). Condition 5.3 follows Assumption A3 in Escanciano

(2009) and assumes that the estimator β̂n is consistent and permits a Bahadur linear representation

under Han. Condition 5.3(ii) requires instrument relevance, e.g., E[Z⊤X] is non-singular in the case of

the linear IV estimator. The Bahadur linear representation holds for a large class of estimators defined

by estimating equations, including commonly used (nonlinear) least squares, maximum likelihood, and

GMM estimators. Condition 5.4 is similar to Condition 5.3, and is satisfied when the function V(·, Z) is

twice continuously differentiable in the neighborhood of βo by a standard Taylor expansion argument. In

particular, if the construction of V̂ does not depend on Û , we set ξ = 0.

We are now ready to establish the asymptotic distribution of
√
nδ̂n under Han (hence Ho). Define

ψ(Di, Dj) = K(Zi − Zj)(EiVj + EjVi), and ψ(1)(Di) = E[ψ(Di, Dj)|Di]. Moreover, define

ri := ∂g(Xi;βo)/∂βo ∈ Rk, Ξ1 = −E[K(Zi − Zj)Vjr
⊤
i ] ∈ Rpv×k,

Ξ2 = E[ψ(1)(Di)Eiφ⊤
i ] ∈ Rpv×k, Ξa = E[K(Zi − Zj)a(Xi, Zi)Ṽj ] ∈ Rpv , and

Ωδ = Var{ψ(1)(Di)}+ Ξ1Ξ0Ξ
⊤
1 + Ξ1Ξ

⊤
2 + Ξ2Ξ

⊤
1 . (24)

Theorem 5.1. Suppose Conditions 5.1-5.4 hold, then, under Han,

√
nδ̂n

d→ N (Ξa + Ξ1ζa, Ωδ).

In particular, under Ho,
√
nδ̂n

d→ N (0,Ωδ).
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Compared with the asymptotic results in Theorem 4.1, the asymptotic variance in the above theorem

corrects for the additional effect of estimating βo, see Condition 5.3 and Condition 5.4. Such estimation

effect contributes Ξ1ζa to the local power in addition to the part Ξa that stems from model misspecifica-

tion. In practice, Ωδ can be estimated by replacing the quantities that appear in (24) with their sample

counterparts. Let

ψ̂(1)(Di) =
1

(n− 1)

n∑
j=1,j ̸=i

K(Zi − Zj)
(
ÛiV̂j + Ûj V̂i

)
,

and define the corresponding sample estimators:

Ω̃δ,n =Ω̃V,n + Ξ̃1,nΞ̃0,nΞ̃
⊤
1,n + Ξ̃1,nΞ̃

⊤
2,n + Ξ̃2,nΞ̃

⊤
1,n;

Ω̃V,n =
1

n

n∑
i=1

[ψ̂(1)(Di)− 2δ̂n][ψ̂
(1)(Di)− 2δ̂n]

⊤;

Ξ̃0,n =
1

n

n∑
i=1

φ(Xi, Zi; β̂n)φ(Xi, Zi; β̂n)
⊤Û2

i ;

Ξ̃1,n =
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

K(Zi − Zj)[Ûiξ(Xj , Zj ; β̂n)
⊤ − V̂jg

′(Xi; β̂n)
⊤]; and

Ξ̃2,n =
1

n

n∑
i=1

ψ̂(1)(Di)Ûiφ(Xi, Zi; β̂n)
⊤.

The regularized Wald test statistic in the same spirit as (20) can be defined as

Tn = nδ̂⊤n Ω̂
−
δ,nδ̂n,

where Ω̂−
δ,n is the Moore-Penrose inverse of Ω̂δ,n, which is constructed similarly as in (18) and (19).

We reject Ho when Tn > χ2
rank(Ωδo ),1−α where χ2

rank(Ωδo ),1−α is the 1−α quantile of the χ2
rank(Ωδo )

and

rank(Ωδo) is the rank of Ωδ under Ho. For practical implementation, rank(Ωδo) has to be predetermined,

which may be further complicated by the estimation effect compared with the case of ΩVo in the test of

mean independence in Section 4.1. Luckily, the following lemma shows that such estimation effect on the

rank is negligible for a specification test with the formulation V̂i = [h(Zi), Ûi − h(Zi)]
⊤.
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Lemma 5.1. Under the conditions of Theorem 5.1, the formulation V̂i = [h(Zi), Ûi − h(Zi)]
⊤ satisfies

rank(Ωδo) = rank(ΩVo) = 1 under Ho, where h(·) is a measurable and non-degenerate function of Zi.

Therefore, in practice, one only needs to determine rank(ΩVo), which depends on the user-specified V .

In view of Remark 4.2 and Lemma 5.1, the χ2-test procedures based on V = [h(Z), U − h(Z)]⊤ do not

require the estimation of rank(ΩVo).

6 Monte Carlo Experiments - Specification Test

This section examines the size and power of the χ2 specification test with V̂ = [h(Z), Û − h(Z)]

in comparison to bootstrap-based ICM procedures via simulations.2 For all implementations of the

specification test proposed in this paper, the regularized inverse in (15) is computed using cn = λ̃1n
−1/3

where λ̃1 is the leading eigenvalue of Ω̃V,n.
3 For ease of exposition, we choose the Gaussian kernel K(Z−

Z†) = exp(−0.5||Z−Z†||2) for the GMDD measure as other kernels deliver similar results. The following

ICM metrics are considered for the bootstrap procedures: Gaussian (Gauss), S&Z (corresponding to

the Su and Zheng (2017) test), and the angular distance (Esc6) of Escanciano (2006a). The empirical

size and power curves are based on 1000 Monte Carlo replicates. 499 bootstrap samples are used for

the bootstrap procedures.4 Other simulation results on specification and mean independence tests are

relegated to Section S.5 of the supplementary material.

6.1 Specifications

We consider the linear model

Y = X + U,

with and without excluded instruments based on the following DGPs of U :

2See Section S.5 in the supplement for simulation results on the test of mean independence.
3For the robustness of the performance of the proposed χ2-test to other suitable selection criteria, see Section S.5.4 in

the supplement.
4The wild bootstrap with Mammen (1993) two-point distributed auxiliary variables is used to conduct all bootstrap-based

ICM tests.
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LS1: U =
E√

1 + Z2
;

LS2: U =

√
2

5
γZ2 +

E√
1 + Z2

;

LS3: U = 2.5
Z2

√
n
+

E√
1 + Z2

;

LS4: U = 0.5γ
sin(2Z) + cos(2Z)√
(1− exp(−8))/2

+
E√

1 + Z2
; and

LS5: U = exp(−Z2/3)−
√
3/5 +

E√
1 + Z2

where E and Z are independent N (0, 1) random variables, and γ ∈ [0, 1] tunes the deviation away from

Ho. In the above specifications, we set X = Z in DGP LS1 and X = (1.5Z + Ẽ)/
√
3.25 with Ẽ ∼ N (0, 1)

and Cov(Ẽ , E) = 0.5 in DGPs LS2 through LS5. Thus, X is exogenous under DGP LS1 and endogenous

under DGPs LS2 through LS5. LS1 is estimated via Ordinary Least Squares (OLS) while the rest are

estimated using the Instrumental Variable (IV) estimator with Z as the excluded instrument. Observe

that heteroskedasticity of arbitrary form is imposed in all DGPs.

Different sample sizes n ∈ {200, 400, 600, 800} help to examine the empirical size of the test in DGPs

LS1 and LS2 (with γ = 0). For the analyses of (local) power in DGPs LS2 through LS5, the sample size

is kept at n = 400 while γ is varied in order to study the power of the proposed χ2-test in comparison to

the bootstrap-based ICM procedures.

6.2 Empirical Size and Power

Table 6.1 presents the empirical sizes corresponding to DGPs LS1 (under strictly exogenous X) and

LS2 (under endogenous X instrumented with Z) at three nominal levels: 10%, 5%, and 1%. One observes

comparably good size control of the proposed χ2-test and the wild-bootstrap-based procedures across all

the sample sizes considered. This lends evidence to the proposed test’s validity under both exogenous X

and endogenous X with valid instrument Z.

To ensure that the good size control of the χ2-test in Table 6.1 is not achieved at the expense of

power, we consider its performance under both local and fixed alternatives. DGP LS3 serves to examine
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Table 6.1: Empirical Size - DGP LS1 & LS2

10% 5% 1%

n χ2 Gauss S&Z Esc6 χ2 Gauss S&Z Esc6 χ2 Gauss S&Z Esc6

LS1
200 0.112 0.071 0.081 0.077 0.068 0.034 0.033 0.035 0.022 0.011 0.006 0.007
400 0.097 0.091 0.096 0.091 0.058 0.041 0.042 0.047 0.011 0.004 0.006 0.008
600 0.111 0.107 0.107 0.101 0.052 0.058 0.050 0.052 0.012 0.010 0.010 0.006
800 0.110 0.091 0.089 0.087 0.047 0.048 0.051 0.050 0.012 0.012 0.013 0.011

LS2
200 0.111 0.069 0.084 0.077 0.074 0.038 0.033 0.036 0.023 0.011 0.006 0.006
400 0.101 0.090 0.097 0.093 0.058 0.041 0.044 0.043 0.012 0.004 0.007 0.006
600 0.112 0.106 0.105 0.105 0.054 0.057 0.051 0.054 0.013 0.010 0.010 0.007
800 0.108 0.093 0.089 0.090 0.046 0.048 0.050 0.050 0.014 0.012 0.013 0.009

power under the local alternative. The results are presented in Table 6.2. Clearly, the local power of the

proposed χ2-test alongside the bootstrap-based procedures is non-trivial.

Table 6.2: Local Power – DGP LS3

10% 5% 1%

n χ2 Gauss S&Z Esc6 χ2 Gauss S&Z Esc6 χ2 Gauss S&Z Esc6

LS2
200 0.978 0.984 0.981 0.923 0.937 0.962 0.953 0.853 0.757 0.862 0.815 0.625
400 0.988 0.990 0.992 0.946 0.974 0.978 0.974 0.884 0.882 0.904 0.872 0.690
600 0.991 0.992 0.987 0.944 0.976 0.974 0.968 0.898 0.903 0.925 0.904 0.736
800 0.993 0.993 0.992 0.954 0.984 0.990 0.981 0.903 0.928 0.925 0.906 0.742

Figures 1 to 3 present power curves corresponding to DGPs LS2, LS4, and LS5, respectively. From

Figures 1 to 3, one observes that all tests demonstrate non-trivial power against the fixed alternative for

variations of γ away from zero. Quite interestingly, the χ2-test slightly dominates the bootstrap-based

procedures in terms of power in Figure 2 while remaining competitive in Figure 1.
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Figure 1: Power Curves - DGP LS2, n = 400.
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Figure 2: Power Curves - DGP LS4, n = 400.
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Figure 3: Power Curves - DGP LS5, n = 400

The goal of DGP LS5 is to show potential gains in using h(Z) in V to target alternatives. Following

the discussion in Section 4.3, the variant of the χ2-test with h(Z) =
√
3 exp(−Z2/2) −

√
3/2 which

maximises the absolute linear dependence of E[K(Z − Z†)h(Z†)|Z] on a(Z) := E[U |Z] namely, χ2
AV , is

introduced. Including the “default” χ2-test which is agnostic about the alternative helps to visualize the

power gains from targeting the alternative. One observes power gains relative to the bootstrap-based

procedures. Thus, there are power gains to using the χ2-test when the researcher has an alternative in

mind.5

The χ2-test is thus especially useful when the researcher has certain alternatives in mind (due to

the adaptability of h(Z) to target alternatives), and when the researcher has a preference for a measure

of correct model specification or mean independence without a formal hypothesis test (thanks to the

pivotality of the test statistic). In sum, the simulations show that the proposed χ2-test, besides the easier

interpretability that it offers relative to bootstrap-based ICM specification tests, has good size control

and comparable power performance.

5One such example is the linear versus quadratic first-stage IV specifications considered in Dieterle and Snell (2016).

30



6.3 Running Time

An added advantage of a pivotal test is its computational efficiency vis-à-vis bootstrap-based proce-

dures. This becomes essential, especially in large samples. Comparing the running times of competing

tests is therefore in order. Table 6.3 compares the running times of the proposed pivotal χ2-test to the

bootstrap-based ICM tests.6

Table 6.3: Running Time - Specification Test - DGP LS1

Average Running Time (seconds) Median Relative Time

n χ2 Gauss S&Z Esc6 Gauss S&Z Esc6

200 0.005 2.090 2.073 2.213 506.250 503.000 544.875
(0.002) (0.132) (0.134) (0.142) (328.583) (322.833) (346.375)

400 0.011 2.184 2.165 2.961 238.222 239.444 324.222
(0.003) (0.041) (0.046) (0.085) (87.004) (94.857) (134.433)

600 0.022 2.489 2.523 4.980 129.921 133.211 261.289
(0.005) (0.036) ( 0.076) (0.035) (46.358) (52.096) (95.995)

800 0.039 2.909 2.914 8.721 84.159 83.479 254.721
(0.007) (0.064) (0.065) (0.068) (26.516) (25.382) (83.269)

Notes: The second row (in parentheses) for each sample size includes standard deviations and inter-quartile ranges for the
average running times and relative times (with the χ2-test as the benchmark), respectively.

Table 6.3 shows clear computational gains of using the χ2 specification test. The average running

times of the χ2-test are negligible in comparison to the bootstrap-based procedures for all the sample sizes

considered. One observes a striking difference in terms of median relative computational time. Although

the median relative computational time of the other bootstrap-based procedures appears to decrease with

the sample size, the computational gain remains considerable.

7 Conclusion

In spite of the 40-year-long history of ICM tests dating back to Bierens (1982), which has seen

interesting contributions, a bona fide pivotalized ICM specification test remains lacking. This paper

6All computations were carried out on a 2.8 GHz, Quad-Core Intel Core i7, and 16 GB MacBook Pro computer.
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achieves the objective of proposing an omnibus χ2 specification test and test of mean independence based

on ICM metrics.

The proposed test solves a major drawback of ICM tests, where, the test statistic can be constructed

with functional forms that boost power in the direction of alternatives the researcher may have in mind.

The test is computationally more efficient than bootstrap-based procedures and remains viable even in

large samples. In addition to providing a reliable pivotal test that draws its omnibus property from

ICM metrics, the test statistic provides an easily interpretable metric of model specification and mean

dependence that obviates formal hypothesis tests. The proposed test complements existing ICM spec-

ification tests as they are more clearly valuable in large samples where bootstrap-based procedures are

computationally prohibitive or in cases where the researcher has certain alternatives in mind.

We conclude by highlighting several intriguing extensions to the current paper. This paper offers a

viable solution for pivotalizing the ICM metrics. However, it is noteworthy that this solution necessitates

regularization under the null hypothesis to address the ill-posed inverse problem. Exploring alternative

formulations of V may offer solutions with more desirable theoretical properties. Moreover, we focus on

the fixed-dimensional setting, and an extension to the high-dimensional setting would be an interesting

topic. For instance, incorporating the projection idea proposed by Tan and Zhu (2022) and Sant’Anna

and Song (2019) could be beneficial in handling models estimated via the LASSO. It would also be

interesting to extend the idea to time series data, clustered data, and multiple-equation models with

(non)-smooth objective functions. We leave these topics for future research.
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Supplementary Material

Feiyu Jiang Emmanuel Selorm Tsyawo

The supplementary material contains all technical proofs and additional simulation results. Section

S.1 provides the proofs of theoretical results given in the main text. Section S.2 studies the asymptotic

properties of the χ2-test based on δ∗V . Details on the GMDD metric developed in the main text are

available in Section S.3, and Section S.4 discusses the relation between the proposed χ2-test and the

family of CM tests. Section S.5 contains simulation results on mean independence tests. Section S.6

concludes with details of the numerical computation of the Bahadur slopes in Section 4.3.

To simplify notation, we use µW := E[W ], W̃ := W − E[W ], µW (Z) := E[W |Z], En[W ] :=

n−1
∑n

i=1Wi throughout the supplement.

S.1 Technical Proofs

S.1.1 Proof of Proposition 2.1

(1) The first part is similar to the proof of Theorem 4 in Li et al. (2023).

(2) By simple algebra, we have

GMDDn(U |Z) := 1

n(n− 1)

n∑
i=1

∑
j ̸=i

K(Zi − Zj)(Ui − En[U ])(Uj − En[U ])

=
1

n(n− 1)

n∑
i=1

∑
j ̸=i

K(Zi − Zj)(Ũi − En[Ũ ])(Ũj − En[Ũ ])

=
1

n(n− 1)

n∑
i ̸=j

K(Zi − Zj)ŨiŨj +
1

n(n− 1)

n∑
i ̸=j

K(Zi − Zj)En[Ũ ]En[Ũ ]

− 2

n(n− 1)

n∑
i ̸=j

K(Zi − Zj)ŨiEn[Ũ ]

:=
3∑

k=1

Gk

1



The first summand is a second-order U -statistic. Let h(Di, Dj) := K(Zi − Zj)ŨiŨj , and h
(1)(Di) =

E[h(Di, Dj)|Di], then by the Hoeffding decomposition, we have

G1 =
1

n(n− 1)

n∑
i ̸=j

K(Zi − Zj)ŨiŨj

=

(
n

2

)−1 n∑
i<j

K(Zi − Zj)ŨiŨj

=GMDD(U |Z) + 2

n

n∑
i=1

[h(1)(Di)−GMDD(U |Z)]

+
2

n(n− 1)

n∑
i<j

[h(Di, Dj)− h(1)(Di)− h(1)(Dj) + GMDD(U |Z)].

=GMDD(U |Z) + 2

n

n∑
i=1

[h(1)(Di)−GMDD(U |Z)] + op(n
−1/2),

(S.125)

by Theorem 3 in section 1.3 of Lee (1990).

By the Lindberg-Lévy Central Limit Theorem, En[Ũ ] = Op(n
−1/2). Thus, the second summand G2

is of order Op(n
−1).

For the third summand, note that by the law of large numbers for U -statistics, we have

2

n(n− 1)

n∑
i ̸=j

K(Zi − Zj)Ũi =

(
n

2

)−1 n∑
i<j

K(Zi − Zj)(Ũi + Ũj)
p−→ 2E[K(Z − Z†)Ũ ].

Hence, G3 = −2E[K(Z − Z†)Ũ ](En[Ũ ]) + op(n
−1/2).

Thus, by combining all the above terms, we have that

√
n[GMDDn(U |Z)−GMDD(U |Z)] = 2√

n

n∑
i=1

{
[h(1)(Di)−GMDD(U |Z)]− E[K(Z − Z†)Ũ ]Ũi

}
+ op(1).

The result follows from the Lindberg-Lévy Central Limit Theorem.

■
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S.1.2 Proof of Lemma 3.2

For V = [h(Z), U − h(Z)]⊤ in Lemma 3.1,

δ∗V =
[
E[Ũ †h̃(Z)K(Z − Z†)], −GMDD(U |Z)− E[Ũ †h̃(Z)K(Z − Z†)]

]⊤
−
[
E[h(Z)]µU , µ2U − E[h(Z)]µU

]⊤ E[K(Z − Z†)]

=
[
E[Ũ †h̃(Z)K(Z − Z†)]− E[K(Z − Z†)]E[h(Z)]µU ,

−GMDD(U |Z)− E[Ũ †h̃(Z)K(Z − Z†)]− E[K(Z − Z†)](µ2U − E[h(Z)]µU )
]⊤

:= [δ
∗(1)
V , δ

∗(2)
V ]⊤.

Thus,

δ
∗(1)
V + δ

∗(2)
V = −GMDD(U |Z)− µ2UE[K(Z − Z†)].

If µU (Z) = 0, then µU = 0 by the LIE. This implies that δ∗V = 0.

Conversely, if δ∗V = 0, then we must have δ
∗(1)
V + δ

∗(2)
V = 0. Note that both −GMDD(U |Z) and

−µ2UE[K(Z − Z†)] are non-negative, thus we must have GMDD(U |Z) = 0 and µ2UE[K(Z − Z†)] = 0,

corresponding to µU (Z) = µU and µU = 0, respectively. Hence µU (Z) = 0. ■
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S.1.3 Proof of Theorem 4.1

We first decompose δ̂V into four summands,

δ̂V :=
1

n(n− 1)

n∑
i=1

∑
j ̸=i

K(Zi − Zj)(Vi − En[V ])(Uj − En[U ])

=
1

n(n− 1)

n∑
i=1

∑
j ̸=i

K(Zi − Zj)(Ṽi − En[Ṽ ])(Ũj − En[Ũ ])

=
1

n(n− 1)

n∑
i ̸=j

K(Zi − Zj)ṼiŨj +
1

n(n− 1)

n∑
i ̸=j

K(Zi − Zj)En[Ṽ ]En[Ũ ]

− 1

n(n− 1)

n∑
i ̸=j

K(Zi − Zj)ṼiEn[Ũ ]− 1

n(n− 1)

n∑
i ̸=j

K(Zi − Zj)ŨiEn[Ṽ ]

= :
4∑

k=1

δ̂V,k.

(S.126)

The first summand is a second-order U -statistic. Let ψ(Di, Dj) := K(Zi − Zj)(ṼiŨj + ṼjŨi), and

ψ(1)(Di) = E[ψ(Di, Dj)|Di], then by the Hoeffding decomposition, we have

δ̂V,1 =
1

n(n− 1)

n∑
i ̸=j

K(Zi − Zj)ṼiŨj

=

(
n

2

)−1 n∑
i<j

K(Zi − Zj)(ṼiŨj + ṼjŨi)/2

=δV +
1

n

n∑
i=1

[ψ(1)(Di)− 2δV ] +
1

n(n− 1)

n∑
i<j

[ψ(Di, Dj)− ψ(1)(Di)− ψ(1)(Dj) + 2δV ].

=δV +
1

n

n∑
i=1

[ψ(1)(Di)− 2δV ] + op(n
−1/2),

(S.127)

where the last equality holds by Theorem 3 in section 1.3 of Lee (1990). Here, we also note that

ψ(1)(Di) = E[ψ(Di, Dj)|Di] =
{
E[K(Zi − Zj)ṼjŨi|Di] + E[K(Zi − Zj)ṼiŨj |Di]

}
:=
{
m

Ṽ
(Zi)Ũi +m

Ũ
(Zi)Ṽi

}
,

(S.128)
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where m
Ũ
(Z) = E[K(Z − Z†)Ũ †|Z], and m

Ṽ
(Z) = E[K(Z − Z†)Ṽ †|Z].

By the Lindberg-Lévy Central Limit Theorem, En[Ũ ] = Op(n
−1/2) and En[Ṽ ] = Op(n

−1/2). Thus,

the second summand δ̂V,2 is of order Op(n
−1).

For the third and fourth summands, note that by the law of large numbers for U -statistics, we have

1

n(n− 1)

n∑
i ̸=j

K(Zi − Zj)Ṽi =

(
n

2

)−1 n∑
i<j

K(Zi − Zj)(Ṽi + Ṽj)/2

p−→ E[K(Z − Z†)Ṽ ] := E[m
Ṽ
(Z)].

Similarly,
1

n(n− 1)

n∑
i ̸=j

K(Zi − Zj)Ũi
p−→ E[K(Z − Z†)Ũ ] := E[m

Ũ
(Z)].

Hence, δ̂V,3 = −E[m
Ṽ
(Z)](En[Ũ ]) + op(n

−1/2), and δ̂V,4 = −E[m
Ũ
(Z)]En[Ṽ ] + op(n

−1/2).

Thus, combining all all above terms, together with (S.126), (S.128) and (S.127), we obtain

δ̂V = δV +
1

n

n∑
i=1

{
m

Ṽ
(Zi)− E[m

Ṽ
(Z)]

}
Ũi − δV +

1

n

n∑
i=1

{
m

Ũ
(Zi)− E[m

Ũ
(Z)]

}
Ṽi − δV + op(n

−1/2).

(S.129)

(i) Under Ho, we have δV = 0, and

m
Ũ
(Z) = E[K(Z − Z†)Ũ †|Z] = E{K(Z − Z†)E[Ũ †|Z,Z†]|Z} = 0 a.s.

This also implies that E[m
Ũ
(Z)] = 0 under Ho, and hence using (S.129),

√
nδ̂V =

1√
n

n∑
i=1

{
m

Ṽ
(Zi)− E[m

Ṽ
(Z)]

}
Ũi + op(1).

Asymptotic normality thus follows from Assumption 4.1 and the Lindberg-Lévy Central Limit Theorem.
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(ii) Under H′
an, we have

δV = E[K(Z − Z†)Ũ †Ṽ ] = E
[
E[Ũ †|Z†]K(Z − Z†)Ṽ

]
= n−1/2E

[
a(Z†)K(Z − Z†)Ṽ

]
= n−1/2ao,

by the independence between D = (U, V, Z) and D† = (U †, V †, Z†) and the LIE.

Furthermore, we have thatm
Ũ
(Z) = E{K(Z−Z†)E(Ũ †|Z†, Z)]|Z} = 1√

n
E[K(Z−Z†)a(Z†)|Z]. Hence

by the law of large numbers,

1√
n

n∑
i=1

{
m

Ũ
(Zi)− E[m

Ũ
(Z)]

}
Ṽi −

√
nδV

=
1

n

n∑
i=1

{
E[K(Zi − Z†)a(Z†)|Zi]− E[K(Z − Z†)a(Z†)]

}
Ṽi −

√
nδV

→pE{E[K(Z − Z†)a(Z†)|Z]Ṽ } − E[K(Z − Z†)a(Z†)]EṼ − a0 = a0 − 0− a0 = 0.

Therefore, by (S.129), we obtain that

√
n(δ̂V − δV ) =

1√
n

n∑
i=1

{
m

Ṽ
(Zi)Ũi − E[m

Ṽ
(Z)]Ũi − δV

}
+ op(1).

Under H′
an, E

{
m

Ṽ
(Zi)Ũi − E[m

Ṽ
(Z)]Ũi − δV

}
= 0, hence the asymptotic normality follows. Further-

more, since δV = O(n−1/2), it can be shown that

Var(ϕ(Di))− ΩVo = O(n−1/2),

and the continuous mapping theorem applies.

(iii) Note that δV ̸= 0 under Ha, the result follows directly from (S.129). ■
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S.1.4 Proof of Theorem 4.2

By Theorem 2, equation (3.3) in Maesono (1998), we know that

Ω̃V,n − ΩV = Op(n
−1/2),

for both Ho and H′
a. Furthermore, under H′

an, we know that ΩV −ΩVo = O(n−1/2). Hence, for any small

ι ∈ (0, 1/2), n1/2−ι(Ω̃V,n −ΩVo) = op(1), under Ho and H′
an. This implies that Assumption 2.2 in Dufour

and Valéry (2016) holds by setting bn = n1/2 and cn = Cn−1/2+ι for some constant C > 0. Furthermore,

by Proposition 9.1 in Dufour and Valéry (2016), we know that Ω̂−
V,n

p→ Ω−
Vo

under Ho and H′
an. Similarly,

Ω̂−
V,n

p→ Ω−
Va

under H′
a.

(i). By Corollary 9.3 in Dufour and Valéry (2016), TV,n
d→ χ2

rank(ΩVo )
.

(ii). By the continuous mapping theorem and theorem 4.1 (ii),

TV,n
d→ χ2

rank(ΩVo )
(θ).

(iii). When δV ̸∈ M0, we have that lim
n→∞

TV,n = lim
n→∞

nδ⊤V Ω
−
Va
δV = ∞, in probability, and the result

follows. ■

S.1.5 Proof of the Result in Remark 4.3

Lemma S.1.1. δV ̸∈ M0 for V in Lemma 3.1.

Proof. Under H′
a, we have E[U |Z]− E[U ] = a(Z) with Ea(Z) = 0. Define h̃(Z) = h(Z)− E[h(Z)]. Then

m
Ṽ
(Z) =

[
E{K(Z − Z†)h̃(Z†)|Z}, E{K(Z − Z†)[a(Z†)− h̃(Z†)]|Z}

]⊤
and

m
Ũ
(Z) = E{K(Z − Z†)a(Z†)|Z}.

First, when Ωa is of rank 2, the claim holds because δV ̸= 0⊤ under H′
a.

Second, recall that Ωa = Var{ϕ(D)} with ϕ(D) = [m
Ũ
(Z)−Em

Ũ
(Z)](V−EV )+[m

Ṽ
(Z)−Em

Ṽ
(Z)](U−

EU) and ΩV = Var {ϕ(D)} . By the Cauchy-Schwarz inequality, we know that Ωa is of rank one if and
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only if for some constant C ̸= −1,

ϕ(D)⊤[−C, 1] = 0 a.s.

Here we rule out C = −1 as it indicates that GMDD(a(Z)|Z) = 0, a contradiction of H′
a.

Let f(Z†) := a(Z†)− (C + 1)h̃(Z†), this implies that

[m
Ũ
(Z)− Em

Ũ
(Z)][Ũ − (C + 1)h̃(Z)] + [m

f̃
(Z)− Em

f̃
(Z)]Ũ = 0 a.s. (S.130)

where m
Ũ
(Z) = E{K(Z − Z†)Ũ †|Z}, and m

f̃
(Z) = E{K(Z − Z†)f(Z†)|Z}.

Recall that E[Ũ |Z] = a(Z), by taking conditional expectation of (S.130) w.r.t. Z, we have

[m
Ũ
(Z)− Em

Ũ
(Z)]f(Z) + [m

f̃
(Z)− Em

f̃
(Z)]a(Z) = 0 a.s. (S.131)

Therefore, by taking the difference, we have

{
m

Ũ
(Z) +m

f̃
(Z)− Em

Ũ
(Z) + Em

f̃
(Z)
}
[Ũ − a(Z)] = 0 a.s.

In light of the foregoing, either one of the following holds:

(1) Ũ = a(Z) a.s.

(2) Ũ ̸= a(Z), so that the coefficient on Ũ in (S.130) is zero, i.e.

{
m

Ũ
(Z) +m

f̃
(Z)− Em

Ũ
(Z) + Em

f̃
(Z)
}
= 0 a.s.

which further implies that [m
Ũ
(Z)− Em

Ũ
(Z)]h̃(Z) = 0 a.s. in combination of (S.130).

We proceed using proof by contradiction.

If (1) holds, we have

Ωa = Var
{
[m

Ũ
(Z)− Em

Ũ
(Z)]h(Z) + [m

h̃
(Z)− Em

h̃
(Z)]a(Z)|D]

}1 C

C C2
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which implies M0 = {(x, y)⊤|x = −Cy, y ∈ R}. Note in this case, by taking the expectation of (S.131),

we can show that E{K(Z −Z†)a(Z†)[a(Z)− h̃(Z)]} = CE[K(Z −Z†)a(Z†)h(Z)], so that δV = E[K(Z −

Z†)a(Z†)h(Z)][1, C]⊤ ̸∈ M0.

If (2) holds, then we have m
Ũ
(Z)−Em

Ũ
(Z) = 0 a.s. since h̃(Z) is non-degenerate. This implies that

E{[m
Ũ
(Z)− Em

Ũ
(Z)]a(Z)} = GMDD(U |Z) = 0, a contradiction.

■

S.1.6 Proof of Theorem 4.3

For two functions fa(x) and fb(x), write fa(x) ∼ fb(x) if and only if fa(x)/fb(x) → 1 as x → ∞. By

Zolotarev (1961), we know that

logP
( ∞∑

k=1

λkG
2
k > x

)
∼ −x/(2λ1), as x→ ∞.

Clearly, under H′
a, we have nGMDDn(U |Z) → ∞ in probability. Thus,

cG = plim
n→∞

nGMDDn(U |Z)
nλ1

=
GMDD(U |Z)

λ1
,

where we note that GMDDn(U |Z) →a.s. GMDD(U |Z). The first result holds by noting GMDD(U |Z) =

−E[a(Z)a(Z†)K(Z − Z†)].

Next, by the large deviation result for the chi-squared distribution,

logP
(
χ2
rank(ΩVo )

> x
)
∼ −x/2 as x→ ∞.

Recall ao = E[(µV (Z)− µV )a(Z
†)K(Z − Z†)] and plim

n→∞
TV,n = lim

n→∞
na⊤o Ω

−
Va
ao = ∞ under H′

a, thus

cT = lim
n→∞

2

n

na⊤o Ω
−
Va
ao

2
= a⊤o Ω

−
Va
ao.

■
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S.1.7 Proof of Theorem 5.1

Define ri := ∂g(Xi;βo)/∂βo ∈ Rk, then under Condition 5.2, we can obtain

Ûi =Yi − g(Xi; β̂n) = Ei + n−1/2a(Xi, Zi) + g(Xi;βo)− g(Xi; β̂n)

=Ei + n−1/2a(Xi, Zi)− r⊤i (β̂n − βo) + op(n
−1/2)

(S.132)

by Taylor expansion.

By Condition 5.3, we know that β̂n − βo = Op(n
−1/2). Then, rewriting V̂i = Vi + V̂i − Vi and

Ûi = Ei + Ûi − Ei, the symmetrized U-statistic estimator is given by

δ̂n =
1

n(n− 1)

∑
i<j

K(Zi − Zj)
[
V̂jÛi + V̂iÛj

]
=

1

n(n− 1)

∑
i<j

K(Zi − Zj)
[
(Vj + V̂j − Vj)(Ei + Ûi − Ei) + (Vi + V̂i − Vi)(Ej + Ûj − Ej)

]
=

1

n(n− 1)

∑
i<j

K(Zi − Zj) [ViEj + VjEi] +
1

n(n− 1)

∑
i<j

K(Zi − Zj)
[
Eiξ⊤j + Ejξ⊤i

]
(β̂n − βo)

+
1

n(n− 1)

∑
i<j

K(Zi − Zj)
[
Vjn

−1/2a(Xi, Zi) + Vin
−1/2a(Xj , Zj)

]
− 1

n(n− 1)

∑
i<j

K(Zi − Zj)
[
Vjr

⊤
i + Vir

⊤
j

]
(β̂n − βo) + op(n

−1/2)

:= Rn1 +Rn2 +Rn3 +Rn4 + op(1),

where the third equality holds by Condition 5.4 (i) and (S.132).

By arguments similar to those in the proof of Theorem 4.1,

√
nRn1 =

1√
n

n∑
i=1

ψ(1)(Di) + op(1)
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with Ui replaced with Ei. Furthermore, by the law of large numbers for U-statistics and Condition 5.3(i),

√
n(Rn2 +Rn4) =

1

n(n− 1)

∑
i<j

K(Zi − Zj)(Eiξ⊤j + Ejξ⊤i − Vjr
⊤
i − Vir

⊤
j )

√
n(β̂n − βo)

=
(
Ξ1 + op(1)

)(
ζa +

1√
n

n∑
i=1

φiEi + op(1)
)
,

where we note that E[K(Zi − Zj)Eiξ⊤j ] = 0 by the fact that E[Ei|Zi]=0 and LIE.

Similarly, the law of large numbers for U-statistics implies

√
nRn3 = E[K(Zi − Zj)a(Xi, Zi)Vj ] + op(1).

Thus, Slutsky’s theorem implies

√
nδ̂n = Ξa + Ξ1ζa +

1√
n

( n∑
i=1

ψ(1)(Di) + Ξ1

n∑
i=1

φiEi
)
+ op(1)

d→ N (Ξa + Ξ1ζa, Ωδ)

with

Ωδ = ΩV + Ξ1E[φiφ
⊤
i E2

i ]Ξ
⊤
1 + Ξ1E[φiEiψ(1)(Di)

⊤] + E[ψ(1)(Di)Eiφ⊤
i ]Ξ

⊤
1 .

■
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S.1.8 Proof of Lemma 5.1

From the proof of Theorem 5.1, we know that under Ho

√
nδ̂n =

1√
n

( n∑
i=1

ψ(1)(Di) + Ξ1

n∑
i=1

φiUi

)
+ op(1)

=
1√
n

n∑
i=1

(mV (Zi) + Ξ1φi)Ui + op(1)

=
1√
n

n∑
i=1

(mV (Zi)− E[mV (Z)r
⊤]φi)Ui + op(1)

= [1,−1]⊤ × 1√
n

n∑
i=1

(mh(Zi)− E[mh(Z)r
⊤]φi)Ui + op(1)

(S.133)

where ψ(1)(Di) = mV (Zi)Ui, mV (Z) := E[K(Z − Z†)V †|Z], and Ξ1 = E[K(Z − Z†)(Uξ
†⊤ − V †r⊤)] =

−E[K(Z −Z†)V †r⊤] = −E[mV (Z)r
⊤] noting that E[U |D†, Z] = E[U |Z] = 0 a.s. under Ho. For V of the

form [h(Z), U − h(Z)]⊤ under Ho, mV (Z) = [1,−1]⊤ ×mh(Z) where mh(Z) := E[K(Z − Z†)h(Z†)|Z];

the last equality hence follows. The result follows because the leading term in (S.133) is the product of

[1,−1]⊤ and a non-degenerate scalar-valued random variable. ■

S.2 Asymptotic properties of δ̂∗V .

When one is interested in the testing (12), a natural empirical estimator for δ∗V is given by

δ̂∗V = δ̂V − 1

n(n− 1)

n∑
i=1

∑
j ̸=i

K(Zi − Zj)EnUEnV.

To analyze the asymptotic behavior of δ̂∗V , we further consider the following local and fixed alternatives:

H∗
an : E[U |Z] = n−1/2a(Z) and H∗

a : E[U |Z] = a(Z),

12



where a(Z) is a non-degenerate measurable function of Z (not necessarily mean zero). Let mU (Z) =

E[K(Z − Z†)U †|Z], mV (Z) = E[K(Z − Z†)V †|Z], K̃(Z) = E[K(Z − Z†)|Z]− E[K(Z − Z†)], and

ϕ∗(D) =
{
m

Ṽ
(Z)− E[mV (Z)]

}
(U − EU) +

{
m

Ũ
(Z)− E[mU (Z)]

}
(V − EV )− 2EUEV K̃(Z).

Theorem S.2.1. Let the conditions of Theorem 4.1 hold, then

(i) under H∗
o,

√
nδ̂∗V

d→ N (0,Ω∗
Vo
);

(ii) under H∗
an,

√
nδ̂∗V

d→ N (a∗o,Ω
∗
Vo
); and

(iii) under H∗
a;

√
n(δ̂∗V − δ∗V )

d→ N (0,Ω∗
Va
),

where a∗o := E{(V −EV )[a(Z†)−Ea(Z)]K(Z−Z†)}−EV Ea(Z)EK(Z−Z†), and Ω∗
Vo

and Ω∗
Va

correspond

to specific expressions of Ω∗
V = Var[ϕ∗(D)] under H∗

o and H∗
a, respectively.

Proof. (i) Note that by the law of large numbers (for U -statistics), we have

δ̂∗V =δ̂V − 1

n(n− 1)

n∑
i ̸=j

K(Zi − Zj)En[V ]En[U ]

=δ̂V − [EK(Zi − Zj)EV + op(1)]En[U ].

Under H∗
o, we have Ui = Ũi. Therefore, by (S.129), we have

δ̂∗V =
1√
n

n∑
i=1

{
m

Ṽ
(Zi)− E[mV (Z)]

}
Ui + op(1),

where E[mV (Z)] = E[K(Z −Z†)V †]. The result follows from the Lindberg-Lévy Central Limit Theorem.

(ii) Under H∗
an, we have EU = n−1/2E[a(Z)]. In this case, we have

√
n(δ̂∗V − δ̂V ) = −[EK(Zi − Zj)EV + op(1)][Ea(Zi) +

√
nEnŨi].
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Therefore, by (S.129) and the proof of Theorem 4.1 (ii), we have

√
n(δ̂∗V − δV )

=
1√
n

n∑
i=1

{
m

Ṽ
(Zi)Ũi − E[m

Ṽ
(Z)]Ũi − δV

}
− EK(Zi − Zj)EV Ea(Z)−

√
nEK(Zi − Zj)EV EnŨi + op(1)

=
1√
n

n∑
i=1

{
m

Ṽ
(Zi)Ũi − E[mV (Z)]Ũi − δV

}
− EK(Zi − Zj)EV Ea(Z) + op(1),

where δV = n−1/2E
[
Ṽ [a(Z†)− Ea(Z†)]K(Z − Z†)

]
.

Therefore, we obtain that

√
nδ̂∗V = δ∗V +

1√
n

n∑
i=1

{
m

Ṽ
(Zi)Ũi − E[mV (Z)]Ũi − δV

}
+ op(1)

with δ∗V = δV − EK(Zi − Zj)EV Ea(Z) = a∗0.

(iii) Recalling EnU = EU + EnŨ and EnV = EV + EnṼ , we have

√
n(δ̂∗V − δ̂V ) =−

√
n

n(n− 1)

n∑
i ̸=j

K(Zi − Zj)EnṼ EnŨ −
√
n

n(n− 1)

n∑
i ̸=j

K(Zi − Zj)EV EnŨ

−
√
n

n(n− 1)

n∑
i ̸=j

K(Zi − Zj)EUEnṼ −
√
n

n(n− 1)

n∑
i ̸=j

K(Zi − Zj)EUEV

:=−
4∑

k=1

Rk.

By the law of large numbers and the Lindberg-Lévy Central Limit Theorem, it is not hard to see that

R1 = Op(n
−1/2) = op(1), R2 =

√
nEK(Zi−Zj)EV EnŨ+op(1), R3 =

√
nEK(Zi−Zj)EUEnṼ +op(1).

Applying the Hoeffding decomposition to R4, we have that

√
n[R4 − EK(Zi − Zj)EUEV ] =

2√
n

n∑
i=1

EUEV K̃i + op(1),

14



where K̃i = E[K(Zi − Zj)|Zi]− EK(Zi − Zj).

Together with (S.129), we obtain that

√
n(δ̂∗V − δ∗V ) =

1

n

n∑
i=1

{
m

Ṽ
(Zi)− E[mV (Z)]

}
Ũi − δV +

1

n

n∑
i=1

{
m

Ũ
(Zi)− E[mU (Z)]

}
Ṽi − δV

− 2√
n

n∑
i=1

EUEV K̃i + op(1),

where δ∗V = δV − EK(Z − Z†)Ea(Z)EV ] = a∗0.

Also,

Ω∗
Va

= Var
[{
m

Ṽ
(Zi)− E[mV (Z)]

}
Ũi +

{
m

Ũ
(Zi)− E[mU (Z)]

}
Ṽi − 2EUEV K̃i

]
. (S.234)

■

S.3 The GMDD Metric

Section S.3.1 discusses the class of suitable ICM integrating measures and Section S.3.2 provides a

characterization and concrete examples of GMDD metrics.

S.3.1 Integrating Measures

The measure ν ought to be “suitable” in some sense for the resulting metric to be a valid ICM metric.

The following proposition provides further clarification.

Proposition S.3.1. Let Z ∈ Rpz and U ∈ R with E[U2] <∞. Suppose either of the following conditions

is satisfied:

(i) ν is an integrable measure on Rpz ;
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(ii) ν is a non-integrable measure on Rpz with

∫
Rpz

1 ∧ ∥s∥αν(ds) <∞, (S.335)

and E∥Z∥α <∞ for some α ∈ (0, 2),

then, T (U |Z; ν) =
∫
Rpz

∣∣∣E[(U − EU) exp(iZ⊤s)]
∣∣∣2ν(ds) <∞.

The above proposition imposes sufficient conditions on ν for the resulting metric T (U |Z; ν) to be

well defined. The first scenario of integrable ν corresponds to examples in the literature such as the

standard normal density in Antoine and Lavergne (2014, 2022) and Escanciano (2018). The second

scenario of a non-integrable ν is less explored in the literature. A notable exception is the martingale

difference divergence (MDD) metric by Shao and Zhang (2014), which studied a special case using the

non-integrable measure of Székely et al. (2007) with ν(ds) = c−1
pz ||s||

−1−pzds for some constant cpz > 0,

see also Su and Zheng (2017). MDD was later extended by Li et al. (2023) to the generalized martingale

difference divergence (GMDD) by allowing for more choices of integrating measures. GMDD serves as

the building block of the omnibus tests proposed in this paper. We elaborate further in what follows.

Proof of Proposition S.3.1. By the Cauchy-Schwarz inequality, we obtain that

∣∣∣E[U exp(iZ⊤s)]− E[U ]E[exp(iZ⊤s)]
∣∣∣2 ≤Var(U)E| exp(iZ⊤s)− E exp(iZ⊤s)|2

=Var(U)(1− |E exp(iZ⊤s)|2)

This implies that the integrand of T (U |Z; ν) is uniformly bounded when E[U2] <∞ since |E exp(iZ⊤s)|2 ≤

1 by the boundedness of characteristic functions.

(i). This part is trivial since the integrand of T (U |Z; ν) is uniformly bounded.

(ii). By (S.335), ν({s : ∥s∥ > 1}) is integrable. Hence, it suffices to show the integrability of

(1− |E exp(iZ⊤s)|2) for ∥s∥ ≤ 1. Note that for an independent copy Z† of Z, and ∥s∥ ≤ 1, by equation

16



(2.5) in Davis et al. (2018),

1− |E[exp(iZ⊤s)]|2 =
∫
Rpz

(1− cos(z⊤s))P(Z − Z† ∈ dz)

≤
∫
Rpz

(2 ∧ |z⊤s|2)P(Z − Z† ∈ dz)

≤2

∫
|z⊤s|≤

√
2
|z⊤s/

√
2|αP(Z − Z† ∈ dz) + 2P(|(Z − Z†)⊤s| >

√
2)

≤C∥s∥αE∥Z − Z†∥α <∞,

where C > 0 is some constant, the first inequality holds by the elementary inequality that 1− cos(x) ≤

1∧x2/2, and the last inequality holds by the Markov’s inequality and the fact that |z⊤s| ≤ ∥s∥ · ∥z∥. ■

S.3.2 Characterising the GMDD metric

The following proposition characterizes the class of GMDD metrics.

Proposition S.3.2. Let GMDD(U |Z) be a GMDD metric, and denote

K(x) =

∫
Rpz

(1− cos(s⊤x))ν(ds). (S.336)

If E[U2 +K2(Z)] <∞, then

GMDD(U |Z) = −E[(U − EU)(U † − EU)K(Z − Z†)],

where (U †, Z†) is an independent copy of (U,Z).

Proof of Proposition S.3.2 . See proof of Theorem 1 in Li et al. (2023). ■

In the following, we characterise GMDD metrics via leading examples.

Example S.3.1 (Integrable ν(·) – Fourier Transform). Let ν be the probability measure of a random

vector ξ ∈ Rpz with symmetric support about the origin. Let ϕν(·) be the Fourier transform of the density
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induced by the measure ν, i.e., ϕν(z) =
∫
Rpz ν(s) exp(iz

⊤s)ds, then

T (U |Z; ν) = E[(U − EU)(U † − EU)ϕν(Z − Z†)],

see, e.g., Antoine and Lavergne (2014, p. 62). The Fourier transform characterisation leads to ICM

metrics based on some commonly used kernel metrics, e.g.,

Gaussian kernel: ϕν(z) = exp(−z⊤Σz), for some positive definite matrix Σ;

Laplacian kernel: ϕν(z) = exp(−∥z∥/σ), for some positive constant σ; and

Uniform kernel: ϕν(z) =
∏pz

l=1
sin(alzl)

alzl
, for al > 0, l = 1, · · · , pz, with the convention sin(0)

0 = 1

see, e.g., Gretton et al. (2007).

Remark S.3.1. The Fourier transform characterization ϕν(·) in Example S.3.1 suggests two ways of

generating integrable kernel metrics:

1. setting ν(·) to a probability density function which results in a tractable Fourier transform; and

2. directly positing a symmetric bounded probability density function (pdf) as ϕν(·) whose Fourier

transform is strictly positive on Rpz and non-increasing on (0,∞), see Antoine and Lavergne (2014,

p. 62).

While the former involves integration in order to obtain the Fourier transform, the latter is more con-

venient as one simply chooses appropriate joint probability density functions without deriving Fourier

transforms.

Example S.3.2 (Non-integrable ν(·) – Distance). Let ν(s) = c−1
pz (α)∥s∥

−(α+pz) with cpz(α) =
2πpz/2Γ(1−α/2)
α2αΓ((pz+α)/2)

and α ∈ (0, 2). This measure is directly adopted from (Székely et al., 2007). It can be shown that

T (U |Z; ν) = −E[(U − EU)(U † − EU)∥Z − Z†∥α].
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The leading case, α = 1, corresponds to the Martingale Difference Divergence (MDD) in Shao and Zhang

(2014).

The MDD is scale-invariant and rigid motion invariant with respect to Z, i.e. T (U |b + cQZ; ν) =

|c|T (U |Z; ν) for any constants b, c and orthonormal Q ∈ Rpz×pz .

Example S.3.3 (Non-integrable ν(·) – Lévy Measure). Let ν(·) be a symmetric Lévy measure correspond-

ing to an Rpz -valued infinitely divisible random vector ξ such that (S.335) holds. If ξ satisfies E∥ξ∥α <∞,

for some α ∈ (0, 2), with characteristic function

ϑ(z) = exp
{
−
∫
Rpz

[exp(iz⊤s)− 1− iz⊤s1(∥s∥ ≤ 1)]ν(ds)
}
,

then

T (U |Z; ν) = ReE
[
(U − EU)(U † − EU) log ϑ(Z − Z†)

]
,

see Lemma 2.6 in Davis et al. (2018).

Remark S.3.2. A special case of Example S.3.3 is obtained by setting ξ to a sub-Gaussian α/2 stable

random vector with characteristic function ϑ(z) = exp(−|z⊤Σz|α/2) and a positive definite matrix Σ. The

resulting metric has the form

T (U |Z; ν) = −E
[
(U − EU)(U † − EU)

∣∣(Z − Z†)⊤Σ(Z − Z†)
∣∣α/2] .

With Σ equal to the identity matrix, the ICM metric above coincides with that of Example S.3.2.

The above examples indicate that non-integrable ν(·) can be more useful when Z is subject to scale-

transformed, rigid-motion-transformed, or when potential violations of (1) occur in the tail of the dis-

tribution of Z, i.e., at large values of ∥Z∥. In the context of ICM specification testing with integrable

ν(·) for example, large ∥Z∥ in T (U |Z; ν) destroys power, see Bierens (1982, p. 130). Another implication

of the above examples is that the integral in (2) can be obtained analytically. This greatly reduces the

computational cost due to numerical integration. We tabulate some commonly used kernels in Table S.1.7

7For the Esc6 kernel used in the paper, see Escanciano (2006).
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Table S.1: GMDD K(·) functions

ν(·) K(z)

Gauss Standard Normal − exp(−||z||2/2)
MDD c−1

pz (1)∥s∥
−(1+pz) ||z||

SRBα c−1
pz (α)∥s∥

−(α+pz) ||z||α, α ∈ (0, 2)

Laplace − exp(−||z||)

ν(Unif) Uniform [-1,1] −
pz∏
l=1

sin(zl)

zl
with sin(0)

0 = 1

ν(Tri) Triangular [-1,0,1] 2

pz∏
l=1

cos(z2l )− 1

zl
with cos(0)−1

0 = 1

Logistic −
pz∏
l=1

exp(zl)

(1 + exp(zl))2

Cauchy −
pz∏
l=1

1

π(1 + z2l )

Notes: The SRBα denotes the Székely et al. (2007) weight with α ∈ (0, 2), and MDD is the special case with α = 1.

S.4 Relation to CM tests

The proposed test is rooted in ICM tests, but it also shares the advantages of CM tests (Newey,

1985; Tauchen, 1985), which are powerful if prior information on Ha is available. For example, if E[U |Z]

can only take certain types of alternatives f1(Z), · · · , fpf (Z), pf ≥ 1, then setting weight functions in

CM tests along the span of these alternatives may yield optimal power (Newey, 1985). Such power

enhancement is also allowed in the proposed test by augmenting V with a vector-valued function of Z.

In the case of the bivariate V = [h(Z), U − h(Z)]⊤ in Lemma 3.1, power enhancement is also achievable

by using h(Z) to target alternatives. CM tests, which are closely related to the proposed test, are based

on estimates of the form

T CM
n =

n∑
i=1

m̃(Zi)Ui,

where m̃(·) is a vector of non-degenerate weight functions. Although one may argue that m
Ṽ
(Z) :=

E[K(Z − Z†)(V † − EV )|Z] in our case plays a role similar to m̃(Zi) in CM tests, there are fundamental

differences.
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First, CM tests are not omnibus for any m̃(Z) of fixed dimension. There always exist certain forms

f1(Z), · · · , fpg(Z) in µU (Z) under Ha such that T CM
n has no power; this occurs when U is orthogonal to

m̃(Z) under Ha. This drawback drew much criticism from the literature and may have triggered the rapid

development of ICM tests, see, e.g. Bierens (1982, 1990), Bierens and Ploberger (1997), and Delgado

et al. (2006). Although the omnibus property for CM tests can be approximately attained by increasing

the dimension of m̃(Zi) via non-parametric techniques such as kernel smoothing (which is effectively

what non-parametric tests do, e.g., Wooldridge (1992), Yatchew (1992), and Zheng (1996)), our proposed

specification test remains omnibus with the dimension of V fixed; the proposed χ2-test can therefore be

viewed as a consistent CM test.

Second, our specification test allows V to be linearly dependent on U but CM tests do not. This also

distinguishes our test from CM tests as GMDD(U |Z) is key to justifying the omnibus property of our

test, see the proof of Lemma 3.1. Two independent copies (U, V, Z) and (U †, V †, Z†) are jointly included

in δV while E[T CM
n ] = E[m̃(Z)U ] involves only a single copy. If U is linearly included in the construction

of m̃(·), then most likely T CM
n is non-null even under Ho. A common feature shared by the proposed

test and CM tests is the pivotal limiting distribution of the test statistic. This is achieved thanks to the

non-degeneracy of m̃(Z) and m
Ṽ
(Z).

S.5 Monte Carlo Experiments - Test of Mean Independence

This section examines the empirical size control and power performance of the test of mean indepen-

dence via simulations. Section S.5.1 presents and discusses five DGPs; Section S.5.2 examines the size

control and power performance of the tests of mean independence; Section S.5.3 examines the perfor-

mance of the χ2-test with V augmented to dimensions pv > 2; Section S.5.4 conducts sensitivity analyses

of the size and power performance of the test to variations of the tuning rule cn = λ̃1n
−1/3 and other

selection criteria used in the literature; Section S.5.5 examines the test of nullity E[U |Z] = E[U ] = 0 a.s.;

and Section S.5.6 compares the running time of the proposed χ2-test with existing ICM-based tests.
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S.5.1 Specifications

Five different DGPs with conditional heteroskedasticity are considered for the test of mean indepen-

dence. Each predictor in the set {ξ1, ξ2, ι1, ι2} is standard normally distributed. The predictor set is

partitioned into an active set {ξ1, ξ2} and an inactive set {ι1, ι2}. Between partitions, predictors are

independent but are correlated within each partition with cov(ξ1, ξ2) = cov(ι1, ι2) = 0.25. Z is set to

the inactive set to examine size control. To examine power, Z includes at least one predictor from the

active set – γ serves to tune the strength of the deviation from the null under Ha. The disturbance E

is standard normally distributed and independent of all predictors. The following DGPs are considered

with γ ∈ [0, 1].

MI 1: U = ξ1 + ξ2 + E/
√

1 + ι21 + ι22, Z = [ι1, ι2].

MI 2: U = 0.5γ
√
ξ21 + ξ22 + E/

√
1 + ι21 + ι22, Z = [ξ1, ι2].

MI 3: U = 0.5γI(|ξ1| < −Φ−1(1/4)) + E/
√

1 + ι21 + ι22, Z = [ξ1, ι2].

MI 4: U = γ sin(2ξ1)+cos(2ξ2)√
(1−exp(−8))/2

+ E/
√

1 + ι21 + ι22, Z = [ξ1, ξ2].

MI 5: U = 2(ξ1 + ξ2)
2/
√
n+ E/

√
1 + ι21 + ι22, Z = [ξ1, ξ2].

One observes from the DGPs above that the mean of U is dependent on the active set but not on

the inactive one. DGP MI 1 serves to compare the empirical sizes of tests. The purpose of DGP MI 2

is to examine power against an alternative of non-linear and non-monotone form. DGP MI 3 concerns a

binary and non-monotone signal under Ha while DGP MI 4 considers a high-frequency alternative. DGP

MI 5 serves to examine the power of the tests to detect local alternatives shrinking to zero at the
√
n rate.

Save MI 1 where U is homoskedastic with respect Z under Ho, U is heteroskedastic in all other DGPs.

For all DGPs above, the χ2-test is conducted with V = [h(Z), U − h(Z)]⊤, h(Z) = exp(0.5(Z1 + Z2))

and the regularized inverse is computed using cn = λ̃1n
−1/3 where λ̃1 is the leading eigen-value of Ω̃V,n.
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Table S.1: Empirical Size - Test of Mean Independence - DGP MI 1

10% 5% 1%

n χ2 Gauss MDD Esc6 χ2 Gauss MDD Esc6 χ2 Gauss MDD Esc6

200 0.093 0.091 0.093 0.094 0.043 0.046 0.048 0.048 0.011 0.006 0.006 0.005
400 0.087 0.097 0.096 0.095 0.042 0.054 0.048 0.044 0.009 0.010 0.007 0.004
600 0.101 0.086 0.083 0.084 0.046 0.047 0.039 0.039 0.011 0.009 0.008 0.009
800 0.091 0.085 0.089 0.091 0.045 0.047 0.043 0.045 0.012 0.011 0.014 0.013

Table S.2: Local Power - DGP MI 5:

10% 5% 1%

n χ2 Gauss MDD Esc6 χ2 Gauss MDD Esc6 χ2 Gauss MDD Esc6

200 0.929 0.903 0.712 0.503 0.878 0.849 0.538 0.267 0.721 0.619 0.147 0.054
400 0.939 0.923 0.770 0.551 0.886 0.855 0.598 0.324 0.718 0.644 0.212 0.066
600 0.932 0.939 0.815 0.544 0.886 0.877 0.614 0.337 0.727 0.662 0.225 0.076
800 0.934 0.943 0.814 0.558 0.878 0.879 0.640 0.338 0.724 0.677 0.242 0.077

S.5.2 Empirical Size and Power

Table S.1 compares the empirical sizes of the proposed χ2-test of mean independence and the bootstrap-

based procedures (DGP MI 1) while Table S.2 presents results on local alternatives (DGP MI 5). One

observes a good size control and non-trivial local power in Tables S.1 and S.2, respectively, of all tests

across all sample sizes and nominal sizes.
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Figure S.4: Power Curves - DGP MI 2, n = 400
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Figure S.5: Power Curves - DGP MI 3, n = 400
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Figure S.6: Power Curves - DGP MI 4, n = 400

Figures S.4 to S.6 demonstrate a generally good performance of all tests in detecting deviations from

the null. Without incorporating specific information on the direction alternatives may take, the χ2-test of

mean independence dominates the bootstrap-based tests in Figures S.4 and S.5 while it is dominated in

Figure S.6 by bootstrap-based tests. On the whole, all tests perform reasonably well. That no particular

test dominates overall suggests a complementary role played by both the χ2- and bootstrap-based ICM

tests of mean independence.

S.5.3 pv > 2

The goal of this subsection is to study the sensitivity of the χ2-test to the dimension of V alongside

bootstrap-based ICM tests. Consider the following DGP adapted from Section 4.3.

MI 6: U = γ
0.233(exp(−Z

2/3)−
√
3/5) + E , Z ∼ N (0, 1), and E ∼ U [−

√
3,
√
3].

Define the following: h1(Z) := exp(Z)− exp(1/2); h2(Z) :=
√
3 exp(−Z2/2)−

√
3/2; V1 := [h1(Z), U −

h1(Z)]
⊤; V1A := [h1(Z), U − h1(Z), h2(Z)]

⊤; V2 := [h2(Z), U − h2(Z)]
⊤; and V2A := [h2(Z), U −

h2(Z), h1(Z)]
⊤. Let gp(Z) denote a vector of orthogonal polynomials of Z with degrees 1 through p.

Then, we generate higher dimensional V given by V1B and V2B, respectively, which augment V1A and V2A

using g2(Z), and V1C and V2C , respectively, which augment V1A and V2A using g7(Z). When pv ≥ 3, the
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degrees of freedom of the χ2-test is set to the number of positive eigenvalues of Ω̂V,n. In contrast to V2

where h2(Z) targets the alternative, V1 is agnostic about the alternative.

Table S.3: DGP MI 6 - Sensitivity to pv

γ Sig-Lev χ2-test Bootstrap

V1 V1A V1B V1C V2 V2A V2B V2C Gauss MDD Esc6
pv = 2 pv = 3 pv = 5 pv = 10 pv = 2 pv = 3 pv = 5 pv = 10

10% 0.088 0.088 0.091 0.093 0.105 0.091 0.094 0.093 0.102 0.101 0.104
0.0 5% 0.039 0.039 0.041 0.042 0.056 0.043 0.047 0.046 0.049 0.051 0.053

1% 0.006 0.006 0.004 0.004 0.006 0.007 0.006 0.006 0.007 0.009 0.007

10% 0.945 0.945 0.943 0.941 0.991 0.973 0.966 0.965 0.927 0.816 0.710
0.2 5% 0.877 0.877 0.873 0.867 0.976 0.937 0.923 0.917 0.852 0.674 0.473

1% 0.689 0.689 0.655 0.662 0.885 0.810 0.771 0.756 0.614 0.257 0.124

10% 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.4 5% 0.997 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999

1% 0.979 0.979 0.997 0.993 1.000 1.000 1.000 1.000 1.000 0.998 0.951

10% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.6 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1% 0.991 0.991 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8 5% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1% 0.998 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.0 5% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1% 0.998 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table S.3 presents the power performance of four variations (depending on the dimension and specifi-

cation of V ) of the χ2-test in addition to bootstrap-based tests. First, one observes good size control and

non-trivial power increasing in γ of all tests. Second, increasing the dimension of V does not necessarily

increase or decrease power. Consider the χ2-tests using {V1, V1A, V1B, V1C} with pv increasing over the

set {2, 3, 5, 10} for example. The 5% level test appears to decrease in power at γ = 0.2 while it appears to

increase in power at γ = 0.4. The effect of pv on the power performance in this particular case is therefore

inconclusive. A comparison of the test with V2 (where the alternative is targeted) and {V1, V1A, V1B, V1C}
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shows a power advantage of targeting the alternative using a parsimonious 2-dimensional V . Targeting

the alternative appears to generate larger power gains than increasing the dimension of V .

S.5.4 Selection Criteria cn

In all preceding implementations of the proposed χ2-test, the tuning parameter in the regularized

Ω̂V,n is set to cn = λ̃1n
−1/3. This subsection concerns a robustness exercise to examine the sensitivity of

the empirical size and power performance to the tuning rule cn using DGP MI 6. There are two scenarios

to consider.

S.5.4.1 Scenario 1

The first scenario concerns sensitivity to the constant ι in the rule cn = λ̃1n
−ι. For the implementation,

the set ι ∈ {2/5, 1/3, 1/4, 1/6} is considered with pv = 2, and V = V1 from Section S.5.3.

Table S.4 presents results that compare the performance of the χ2-test by different choices of cn in the

first scenario. A clear conclusion is that the results are robust to the choice of ι in the rule cn = λ̃1n
−ι

as there are negligible numerical differences in the empirical size and power across different valid choices

of ι ∈ (0, 1/2).

S.5.4.2 Scenario 2

The second scenario compares the χ2-test with, in addition to cn in Scenario 1 above, suitable selection

criteria typically used for truncated singular value decomposition – see Falini (2022) for a review. The

setting adopted in this scenario is DGP MI 6, pv = 10, and V = V1C from Section S.5.3. From Section 4.2,

recall p(cn) is the number of non-zero eigenvalues in the regularized Ω̂V,n. Define

El := − 1

log(pv)

l∑
l′=1

f̃l′ log(f̃l′) where f̃l := λ̃2l /

pv∑
l′=1

λ̃2l′ .

The following suitable SVD selection criteria are defined in terms of p(cn).
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Table S.4: DGP MI 6 - Sensitivity to ι

γ Sig-Lev cn = λ̃1n
−ι

ι = 2
5 ι = 1

3 ι = 1
4 ι = 1

6

10% 0.087 0.085 0.085 0.085
0.0 5% 0.044 0.042 0.042 0.042

1% 0.009 0.009 0.009 0.009

10% 0.303 0.303 0.302 0.302
0.2 5% 0.189 0.189 0.188 0.188

1% 0.049 0.049 0.048 0.048

10% 0.757 0.757 0.757 0.757
0.4 5% 0.632 0.632 0.632 0.632

1% 0.315 0.315 0.314 0.314

10% 0.937 0.937 0.937 0.937
0.6 5% 0.871 0.871 0.871 0.871

1% 0.665 0.665 0.665 0.665

10% 0.980 0.980 0.980 0.980
0.8 5% 0.958 0.958 0.958 0.958

1% 0.835 0.835 0.835 0.835

10% 0.989 0.989 0.989 0.989
1.0 5% 0.980 0.980 0.980 0.980

1% 0.922 0.920 0.920 0.920
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(1) R-B – ratio-based selection; p(cn) = argmin
1≤l≤pv

λ̃l+1

λ̃l
; references: Lam et al. (2011), Lam and Yao

(2012), and Lee and Shao (2018, eqn. 6).

(2) Eι – entropy-based selection; p(cn) = min
{
1 ≤ l ≤ pv : El ≥ ιEpv

}
; references: Alter et al. (2000)

and Falini (2022, Sect. 2.6).

(3) TVι – Total Variance based selection; p(cn) =

pv∑
l=1

1{f̃l ≥ ι}; references: Suhr (2005) and Falini

(2022, Sect. 2.6).

(4) CTVι – Cumulative percentage of Total Variance based selection; p(cn) = min
{
1 ≤ l ≤ pv :

l∑
l′=1

f̃l′ ≥ ι
}
; references: Jolliffe (2002, Chapter 6) and Falini (2022, Sect. 2.6).

Recall Ω̃V,n is positive semi-definite hence the f̃l, l = 1, . . . , pv are in descending order given a descending

ordering of the eigenvalues λ̃l, l = 1, . . . , pv. This ensures that p(cn) per any of the above selection

criteria corresponds to the largest p(cn) eigenvalues and the corresponding cn is implicitly defined.

Table S.5 compares the size control and power performance of the χ2-test with different choices of

the regularization parameter cn. Besides the ratio-based estimator which fails to deliver a χ2-test that

controls size, the other choices lead to meaningful size control. One observes non-trivial power under

Ha. This exercise and that of Scenario 1 confirm the reliability and robustness of the selection rule

cn = λ̃1n
−1/3 used in this paper.

S.5.5 Test of Nullity

H∗
o : E[U |Z] = E[U ] = 0 a.s. is violated if either E[U ] ̸= 0 or E[U |Z] ̸= E[U ] a.s. To compare the

performance of the χ2-test of the hypothesis of nullity H∗
o, we take the following modified versions of

DGP MI 6.

MI 6′: U = γ
0.233

√
3/5 + E , Z ∼ N (0, 1) and E ∼ U [−

√
3,
√
3].

MI 6′′: U = γ
0.233 exp(−Z

2/3) + E , Z ∼ N (0, 1) and E ∼ U [−
√
3,
√
3].
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Table S.5: DGP MI 6 - SVD selection criteria

(cn = λ̃1n
−ι) Selection Criteria

γ Sig-Lev ι = 2
5 ι = 1

3 ι = 1
4 ι = 1

6 R-B E.7 E.9 TV.05 TV.10 CTV.7 CTV.9

10% 0.090 0.093 0.092 0.088 0.376 0.093 0.089 0.093 0.091 0.084 0.090
0.0 5% 0.042 0.042 0.042 0.041 0.363 0.042 0.041 0.042 0.040 0.044 0.039

1% 0.004 0.004 0.004 0.005 0.343 0.004 0.004 0.004 0.005 0.008 0.005

10% 0.928 0.941 0.937 0.632 0.824 0.943 0.906 0.933 0.724 0.291 0.752
0.2 5% 0.853 0.867 0.864 0.538 0.765 0.872 0.833 0.861 0.637 0.188 0.664

1% 0.650 0.662 0.657 0.347 0.630 0.665 0.628 0.654 0.437 0.073 0.462

10% 1.000 1.000 1.000 0.939 1.000 1.000 1.000 1.000 0.967 0.718 0.982
0.4 5% 1.000 1.000 0.999 0.897 1.000 1.000 1.000 0.999 0.940 0.615 0.965

1% 0.984 0.993 0.993 0.786 0.999 0.996 0.981 0.991 0.858 0.384 0.905

10% 1.000 1.000 1.000 0.997 1.000 1.000 1.000 1.000 0.999 0.928 1.000
0.6 5% 1.000 1.000 1.000 0.990 1.000 1.000 1.000 1.000 0.998 0.877 1.000

1% 0.999 0.999 0.999 0.946 1.000 1.000 0.999 0.999 0.971 0.729 0.989

10% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 1.000
0.8 5% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.973 1.000

1% 1.000 1.000 1.000 0.992 1.000 1.000 1.000 1.000 0.996 0.903 0.999

10% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 1.000
1.0 5% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 1.000

1% 1.000 1.000 1.000 0.994 1.000 1.000 1.000 0.999 0.997 0.964 0.999

Notes: The first four columns use the regularization technique used in this paper with cn = λ̃1n
−ι, ι ∈ {2/5, 1/3, 1/4, 1/6},

respectively. R-B is the ratio-based selection criterion, Eι, ι ∈ {.7, .9} is the α fraction of total entropy selection criterion,

TVι, ι ∈ {.05, .10} is the α of total variance selection criterion, CTVι, ι ∈ {.7, .9} is the cumulative percentage of the total

variance selection criterion.
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Table S.6: DGPs MI 6′ and MI 6′′

DGP MI 6′, cn = λ̃1n
−ι

γ Sig-Lev ι = 2
5 ι = 1

3 ι = 1
4 ι = 1

6

10% 0.087 0.085 0.085 0.085
0.0 5% 0.044 0.042 0.042 0.042

1% 0.009 0.009 0.009 0.009

10% 0.999 0.986 0.977 0.977
0.2 5% 0.997 0.969 0.948 0.948

1% 0.991 0.873 0.807 0.807

10% 1.000 1.000 1.000 1.000
0.4 5% 1.000 1.000 1.000 1.000

1% 1.000 1.000 1.000 1.000

10% 1.000 1.000 1.000 1.000
0.6 5% 1.000 1.000 1.000 1.000

1% 1.000 1.000 1.000 1.000

10% 1.000 1.000 1.000 1.000
0.8 5% 1.000 1.000 1.000 1.000

1% 1.000 1.000 1.000 1.000

10% 1.000 1.000 1.000 1.000
1.0 5% 1.000 1.000 1.000 1.000

1% 1.000 1.000 1.000 1.000

DGP MI 6′′, cn = λ̃1n
−ι

γ Sig-Lev ι = 2
5 ι = 1

3 ι = 1
4 ι = 1

6

10% 0.087 0.085 0.085 0.085
0.0 5% 0.044 0.042 0.042 0.042

1% 0.009 0.009 0.009 0.009

10% 0.941 0.822 0.817 0.817
0.2 5% 0.885 0.683 0.678 0.678

1% 0.774 0.410 0.400 0.400

10% 1.000 1.000 1.000 1.000
0.4 5% 1.000 1.000 1.000 1.000

1% 1.000 1.000 1.000 1.000

10% 1.000 1.000 1.000 1.000
0.6 5% 1.000 1.000 1.000 1.000

1% 1.000 1.000 1.000 1.000

10% 1.000 1.000 1.000 1.000
0.8 5% 1.000 1.000 1.000 1.000

1% 1.000 1.000 1.000 1.000

10% 1.000 1.000 1.000 1.000
1.0 5% 1.000 1.000 1.000 1.000

1% 1.000 1.000 1.000 1.000
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γ ̸= 0 corresponds to E[U ] ̸= 0 in MI 6′ and to E[U |Z] ̸= E[U ] a.s. in DGP MI 6′′.

Table S.6 presents results on DGPs MI 6′ and MI 6′′ using the framework of Table S.4 but with a focus

on the power performance under either violation of H∗
o. From both sets of columns corresponding to

DGPs MI 6′ and MI 6′′, one observes from Table S.6 that the χ2-test of nullity has good size control and

non-trivial power under both violations: E[U ] = 0 and E[U |Z] = E[U ] a.s.

S.5.6 Running Time

An advantage of pivotalizing the ICM test of mean independence is the gain in computational time.

The computational advantage in addition to the pivotality of the test can be very useful in tasks such

as feature screening in (ultra-) high dimensions, see e.g., Shao and Zhang (2014). The following exercise

serves to give an idea of the computational gain relative to bootstrap-based procedures.

Table S.7: Running Time - Test of Mean Independence - DGP MI 1

Average Running Time (seconds) Median Relative Time

n χ2 Gauss MDD Esc6 Gauss MDD Esc6

200 0.004 0.047 0.048 0.202 13.333 13.333 57.667
(0.001) (0.080) (0.019) (0.031) (4.500) (4.917) (23.667)

400 0.010 0.157 0.153 1.458 17.056 16.778 160.111
(0.002) (0.008) (0.007) (0.035) (5.542) (5.933) (59.479)

600 0.020 0.354 0.349 4.660 19.243 19.111 257.722
(0.004) (0.011) (0.009) (0.048) (5.512) (5.853) (82.725)

800 0.035 0.692 0.689 10.845 21.365 21.594 338.937
(0.006) (0.019) (0.016) (0.049) (5.638) (6.426) (103.268)

Notes: The second row (in parentheses) for each sample size includes standard deviations and inter-quartile ranges for the
average running times and relative times (with the χ2-test as the benchmark), respectively.

Table S.7 compares the running time of tests. One observes from Table S.7 that the proposed χ2-test

of mean independence on average incurs a negligible computational cost, unlike the bootstrap-based

procedures that incur substantial computational costs at large sample sizes. This observation is also

borne out by the relative computational times. Across all sample sizes, the relative computational times

indicate a considerable computational gain from using the proposed χ2-test of mean independence.
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S.6 Numerical Computation of the Bahadur lopes

This section outlines details pertaining to the Monte Carlo numerical integration used to obtain the

Bahadur slopes in Section 4.3. The approach proceeds by computing E[a(Z)a(Z†)K(Z−Z†)], λ1, ao, and

ΩVa on a sample of 1 000 random draws following the DGP in Section 4.3. λ1 = 0.6175762 is computed

using steps 1-3 of Seri (2022, Algorithm 1) with (i, j)’th element exp(−0.5(Zi − Zj)
2)EiEj/(n − 1). The

numerical values of the Bahadur slopes in Table 4.1 are then obtained using averages of the quantities

E[a(Z)a(Z†)K(Z − Z†)], λ1, ao, and ΩVa over 10 000 replications.
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Dufour, J.-M., & Valéry, P. (2016). Rank-robust wald-type tests: A regularization approach (tech. rep.).

Working paper, McGill University/HEC.

33



Escanciano, J. C. (2006). A consistent diagnostic test for regression models using projections. Econometric

Theory, 22 (6), 1030–1051.

Escanciano, J. C. (2018). A simple and robust estimator for linear regression models with strictly exoge-

nous instruments. The Econometrics Journal, 21 (1), 36–54.

Falini, A. (2022). A review on the selection criteria for the truncated svd in data science applications.

Journal of Computational Mathematics and Data Science, 5, 100064.

Gretton, A., Fukumizu, K., Teo, C., Song, L., Schölkopf, B., & Smola, A. (2007). A kernel statistical test

of independence. Advances in neural information processing systems, 20.

Jolliffe, I. T. (2002). Principal component analysis for special types of data. Springer.

Lam, C., & Yao, Q. (2012). Factor modeling for high-dimensional time series: Inference for the number

of factors. The Annals of Statistics, 694–726.

Lam, C., Yao, Q., & Bathia, N. (2011). Estimation of latent factors for high-dimensional time series.

Biometrika, 98 (4), 901–918.

Lee, A. J. (1990). U-statistics: Theory and practice. Routledge.

Lee, C. E., & Shao, X. (2018). Martingale difference divergence matrix and its application to dimension

reduction for stationary multivariate time series. Journal of the American Statistical Association,

113 (521), 216–229.

Li, L., Ke, C., Yin, X., & Yu, Z. (2023). Generalized martingale difference divergence: Detecting con-

ditional mean independence with applications in variable screening. Computational Statistics &

Data Analysis, 180, 107618.

Maesono, Y. (1998). Asymptotic comparisons of several variance estimators and their effects for studen-

tizations. Annals of the Institute of Statistical Mathematics, 50 (3), 451–470.

Newey, W. K. (1985). Maximum likelihood specification testing and conditional moment tests. Econo-

metrica, 1047–1070.

Seri, R. (2022). Computing the asymptotic distribution of second-order u-and v-statistics. Computational

Statistics & Data Analysis, 174, 107437.

34



Shao, X., & Zhang, J. (2014). Martingale difference correlation and its use in high-dimensional variable

screening. Journal of the American Statistical Association, 109 (507), 1302–1318.

Su, L., & Zheng, X. (2017). A martingale-difference-divergence-based test for specification. Economics

Letters, 156, 162–167.

Suhr, D. D. (2005). Principal component analysis vs. exploratory factor analysis. SUGI 30 proceedings,

203 (230), 1–11.
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