Asymptotic behaviour of the finite blow-up points solutions of the fast diffusion equation

Shu-Yu Hsu Department of Mathematics National Chung Cheng University 168 University Road, Min-Hsiung Chia-Yi 621, Taiwan, R.O.C. e-mail: shuyu.sy@gmail.com

Aug 5, 2023

Abstract

Let $n \geq 3$, $0 \leq m \leq \frac{n-2}{n}$, $i_0 \in \mathbb{Z}^+$, $\Omega \subset \mathbb{R}^n$ be a smooth bounded domain, $a_1, a_2, \ldots, a_{i_0} \in \Omega$, $\widehat{\Omega} = \Omega \setminus \{a_1, a_2, \ldots, a_{i_0}\}, 0 \le f \in L^{\infty}(\partial \Omega)$ and $0 \le u_0 \in L_{loc}^p(\widehat{\Omega})$ for some constant $p > \frac{n(1-m)}{2}$ which satisfies $\lambda_i |x - a_i|^{-\gamma_i} \le u_0(x) \le \lambda_i'$ $\int_{i}^{t} |x - a_{i}|^{-\gamma'_{i}} \ \forall 0 < |x - a_{i}| < \delta,$ $i = 1, \ldots, i_0$ where $\delta > 0$, λ'_i $\gamma'_{i} \geq \lambda_{i} > 0$ and $\frac{2}{1-m} < \gamma_{i} \leq \gamma'_{i}$ $\sum_{i}^{\prime} < \frac{n-2}{m}$ $\forall i = 1, 2, ..., i_0$ are constants. We will prove the asymptotic behaviour of the finite blow-up points solution *u* of $u_t = \Delta u^m$ in $\widehat{\Omega} \times (0, \infty)$, $u(a_i, t) = \infty$ $\forall i = 1, \dots, i_0, t > 0$, $u(x, 0) = u_0(x)$ in $\widehat{\Omega}$ and $u = f$ on ∂Ω × (0, ∞), as *t* → ∞. We will construct finite blow-up points solution in bounded cylindrical domain with appropriate lateral boundary value such that the finite blowup points solution oscillates between two given harmonic functions as *t* → ∞. We will also prove the existence of the minimal solution of $u_t = \Delta u^m$ in $\widehat{\Omega} \times (0, \infty)$, $u(x, 0) = u_0(x)$ in $\widehat{\Omega}$, $u(a_i, t) = \infty \quad \forall t > 0, i = 1, 2 \dots, i_0 \text{ and } u = \infty \text{ on } \partial\Omega \times (0, \infty).$

Keywords: finite blow-up points solutions, fast diffusion equation, asymptotic behaviour, blow-up at boundary

AMS 2020 Mathematics Subject Classification: Primary 35K65 Secondary 35B51, 35B40

1 Introduction

Recently there is a lot of study on the properties of the fast diffusion equation,

$$
u_t = \Delta u^m \tag{1.1}
$$

with 0 < *m* < 1 by P. Daskalopoulos, M. Fila, S.Y. Hsu, K.M. Hui, T. Jin, S. Kim, Y.C. Kwong, P. Macková, M. del Pino, M. Sáez, N. Sesum, J. Takahashi, J.L. Vazquez, H. Yamamoto, E. Yanagida, M. Winkler and J. Xiong, etc. [\[DS1\]](#page-28-0), [\[DS2\]](#page-28-1), [\[FMTY\]](#page-29-0), [\[H1\]](#page-29-1), [\[H2\]](#page-29-2), [\[HK1\]](#page-29-3), [\[HK2\]](#page-29-4), [\[Hs\]](#page-29-5), [\[JX\]](#page-29-6), [\[K\]](#page-29-7), [\[PS\]](#page-30-0), [\[TY\]](#page-30-1), [\[VW1\]](#page-30-2), [\[VW2\]](#page-30-3). The equation [\(1.1\)](#page-0-0) arises in many physical models and in geometry. When $m > 1$, [\(1.1\)](#page-0-0) is called the porous medium equation which arises in the modelling of gases passing through porous media and oil passing through sand [\[Ar\]](#page-27-0). [\(1.1\)](#page-0-0) also arises as the diffusive limit for the generalized Carleman kinetic equation [\[CL\]](#page-28-2), [\[GS\]](#page-29-8), and as the large time asymptotic limit of the solution of the free boundary compressible Euler equation with damping [\[LZ\]](#page-29-9). When $m = 1$, it is the heat equation. When the dimension $n \ge 3$ and $m = \frac{n-2}{n+2}$, [\(1.1\)](#page-0-0) arises in the study of the Yamabe flow [\[DS1\]](#page-28-0), [\[DS2\]](#page-28-1), [\[PS\]](#page-30-0).

Various fundamental results in \mathbb{R}^n for the equation [\(1.1\)](#page-0-0) are obtained recently by A. Friedman and S. Kamin [\[FrK\]](#page-28-3), and M. Bonfonte, J. Dolbeault, G. Grillo, M. del Pino and J.L. Vazquez [\[BBDGV\]](#page-27-1), [\[BGV1\]](#page-28-4), [\[BV1\]](#page-28-5), [\[BV2\]](#page-28-6), [\[CaV\]](#page-28-7), [\[PD\]](#page-29-10), [\[V1\]](#page-30-4). Results for the equation [\(1.1\)](#page-0-0) in bounded domains are also obtained by D.G. Aronson and L.A. Peletier [\[ArP\]](#page-27-2), B.E.J. Dahlberg and C.E. Kenig [\[DaK\]](#page-28-8), E. Dibenedetto and Y.C. Kwong [\[DiK\]](#page-28-9), E. Feireisl and F. Simondon [\[FeS\]](#page-28-10), M. Bonfonte, G. Grillo and J.L. Vazquez [\[BGV2\]](#page-28-11), [\[V2\]](#page-30-5). We refer the readers to the books by P. Daskalopoulos and C.E. Kenig [\[DK\]](#page-28-12) and J.L. Vazquez [\[V3\]](#page-30-6), [\[V4\]](#page-30-7), for some recent results on the equation [\(1.1\)](#page-0-0).

Let $\Omega \subset \mathbb{R}^n$ be a smooth bounded domain, $i_0 \in \mathbb{Z}^+$, $a_1, a_2, \ldots, a_{i_0} \in \Omega$ and

$$
\widehat{\Omega} = \Omega \setminus \{a_1, a_2, \dots, a_{i_0}\}.
$$
\n(1.2)

Let $\delta_0 = \frac{1}{3} \min_{1 \le i,j \le i_0} \left(\textbf{dist}(a_i, \partial \Omega), |a_i - a_j| \right)$). For any $\delta > 0$, let

$$
\Omega_{\delta} = \Omega \setminus \left(\cup_{i=1}^{i_0} B_{\delta}(a_i) \right) \quad \text{and} \quad D_{\delta} = \{ x \in \Omega_{\delta} : \text{dist}(x, \partial \Omega) > \delta \}. \tag{1.3}
$$

For any $j \in \mathbb{Z}^+$, let

$$
E_j = \{x \in \Omega : \text{dist}(x, \partial \Omega) > 1/j\}
$$
\n(1.4)

and $j_0 \in \mathbb{Z}^+$ be such that $j_0 > 1/\delta_0$.

When $n \geq 3$ and $\frac{n-2}{n} < m < 1$, existence of positive smooth solution of the Cauchy problem,

$$
\begin{cases}\n u_t = \Delta u^m & \text{in } \mathbb{R}^n \times (0, \infty) \\
u(x, 0) = u_0(x) & \text{in } \mathbb{R}^n\n\end{cases}
$$
\n(1.5)

for any $0 \le u_0 \in L^1_{loc}(\mathbb{R}^n)$, $u_0 \ne 0$, was proved by M.A. Herrero and M. Pierre in [\[HP\]](#page-29-11). This implies that the diffusion for the solution of [\(1.5\)](#page-1-0) when *m* < 1 must be very fast so that for any $t > 0$ the solution $u(x, t)$ is positive everywhere even though the initial value u_0 may only have compact support in R*ⁿ* .

When *m* > 1, the Barenblatt solution

$$
B(x,t) = t^{-\alpha} \left(C_1 - \frac{\alpha (m-1)|x|^2}{2mn^{t^{\alpha/n}}} \right)_+^{\frac{1}{m-1}}, \quad x \in \mathbb{R}^n, t > 0
$$

where $\alpha = \frac{n}{n(m-1)+2}$ and $C_1 > 0$ is any constant is a solution of [\(1.1\)](#page-0-0) in $\mathbb{R}^n \times (0, \infty)$. Note that the Barenblatt solution $B(x, t)$ has compact support for any $t > 0$ and the diffusion for the solution of [\(1.1\)](#page-0-0) when $m > 1$ is slow. Hence the behaviour of the solution of (1.1) is very different for $m < 1$ and $m > 1$.

Uniqueness of solutions of [\(1.5\)](#page-1-0) for the case $0 < m < 1$ and $n \ge 1$ was also proved in [\[HP\]](#page-29-11). This result was later extended by G. Grillo, M. Muratori and F. Punzo [\[GMP\]](#page-29-12), to the uniqueness of the strong solution of the equation

$$
\begin{cases} u_t = \Delta u^m & \text{in } M \times (0, \infty) \\ u(x, 0) = u_0(x) & \text{in } M \end{cases}
$$

on a Riemannian manifold *M* whose Ricci curvatures satisfies some lower bound condition. Note that in the uniqueness theorems of [\[HP\]](#page-29-11) and [\[GMP\]](#page-29-12) the solutions considered are strong solutions. That is the solution *u* satisfies

$$
u_t \in L^1_{loc}(\mathbb{R}^n \times (0,\infty)) \quad \text{ in } [\mathrm{HP}]
$$

and

$$
u_t \in L^1_{loc}(M \times (0, \infty)) \quad \text{ in [GMP].}
$$

However in the comparison results (Theorem [3.4](#page-14-0) and Theorem [3.5\)](#page-16-0) that we will prove in this paper the subsolutions and the supersolutions that we consider are $C^{2,1}(\mathbb{R}^n \times (0,T))$ functions and the condition $u_t \in L^1_{loc}(\mathbb{R}^n \times (0,T))$ is automatically satisfied.

Asymptotic behaviour of the solution of

$$
\begin{cases}\n u_t = \Delta u^m & \text{in } \Omega \times (0, T) \\
u = 0 & \text{on } \partial \Omega \times (0, T) \\
u(x, 0) = u_0(x) & \text{in } \Omega\n\end{cases}
$$

which vanishes at time $T > 0$ where $0 < m < 1$, $n \ge 3$ and $u_0 \ge 0$ is a function on Ω was studied by G. Akagi [\[A1\]](#page-27-3), [\[A2\]](#page-27-4), J.G. Berryman and C.J. Holland [\[BH\]](#page-27-5), B. Choi , R.J. Mccann and C. Seis [\[CMS\]](#page-28-13), etc. Let $\mu_0 > 0$, $\mu_0 \le f_1 \in C^1(\overline{\Omega})$ and $\mu_0 \le v_0 \in C^2(\overline{\Omega} \setminus \{a_1\})$ satisfies

$$
\lambda_1 |x - a_1|^{-\gamma_1} \le v_0(x) \le \lambda'_1 |x - a_1|^{-\gamma'_1} \quad \forall \Omega \setminus \{a_1\}
$$

for some constants λ'_1 $y'_1 \ge \lambda_1 > 0, \gamma'_1$ $\gamma_1' \geq \gamma_1 > \frac{2}{1-2}$ $\frac{2}{1-m}$. When *n* ≥ 3 and 0 < *m* ≤ $\frac{n-2}{n}$ $\frac{-2}{n}$, existence and asymptotic large time behaviour of the Dirichlet blow-up solution of

$$
\begin{cases}\n u_t = \Delta u^m & \text{in } (\Omega \setminus \{a_1\}) \times (0, \infty) \\
u = f_1 & \text{on } \partial \Omega \times (0, \infty) \\
u(a_1, t) = \infty & \forall t > 0 \\
u(x, 0) = v_0(x) & \text{in } \Omega \setminus \{a_1\}\n\end{cases}
$$

has been proved by J.L. Vazquez and M. Winkler in [\[VW1\]](#page-30-2), [\[VW2\]](#page-30-3). When $n \geq 3$ and $0 < m < \frac{n-2}{n}$ $\frac{-2}{n}$, existence of finite blow-up points solution of

$$
\begin{cases}\n u_t = \Delta u^m & \text{in } \Omega \times (0, \infty) \\
u = f & \text{on } \partial \Omega \times (0, \infty) \\
u(a_i, t) = \infty & \forall t > 0, i = 1, 2 \dots, i_0 \\
u(x, 0) = u_0(x) & \text{in } \Omega\n\end{cases}
$$
\n(1.6)

 f or any $0 \le f \in L^{\infty}(\partial\Omega \times (0, \infty))$ and $0 \le u_0 \in L_{loc}^p(\overline{\Omega} \setminus \{a_1, \ldots, a_{i_0}\})$ for some constant $p > \frac{n(1-m)}{2}$ 2 which satisfies

$$
u_0(x) \ge \lambda_i |x - a_i|^{-\gamma_i} \quad \forall |x - a_i| < \delta_1, i = 1, ..., i_0
$$

for some constants $0 < \delta_1 < \delta_0$, $\lambda_i > 0$ and $\gamma_i > \frac{2}{1-i}$ $\frac{2}{1-m}$ for any $i = 1, \ldots, i_0$, has been proved by K.M. Hui and S. Kim [\[HK2\]](#page-29-4). When *n* ≥ 3, 0 < $m<\frac{n-2}{n}$ $\frac{-2}{n}$ and *f*, u_0 , also satisfy $f \geq \mu_0$ and $u_0 \geq \mu_0$ for some constant $\mu_0 > 0$ and

$$
u_0(x) \leq \lambda'_i |x - a_i|^{-\gamma'_i} \quad \forall |x - a_i| < \delta_1, i = 1, \ldots, i_0
$$

for some constants λ_i' $\gamma_i' \geq \lambda_i > 0, \gamma_i'$ $\gamma_i \geq \gamma_i > \frac{2}{1-1}$ 1−*m* , *i* = 1, . . . , *i*0, asymptotic large time behaviour of the finite blow-up points solution of [\(1.6\)](#page-3-0) has been proved by K.M. Hui and S. Kim in [\[HK2\]](#page-29-4) and [\[H2\]](#page-29-2).

When $n \geq 3$ and $0 < m \leq \frac{n-2}{n}$ $\frac{-2}{n}$, existence of finite blow-up points solutions of [\(1.1\)](#page-0-0) in bounded cylindrical domains was also proved by K.M. Hui and Sunghoon Kim in [\[HK1\]](#page-29-3) using a different method when the initial value u_0 satisfies

$$
u_0(x) \approx |x - a_i|^{-\gamma_i}
$$
 for $x \approx a_i$ $\forall i = 1, 2, ..., i_0$

for some constants γ_i > max $\left(\frac{n}{2n}\right)$ $\frac{n}{2m}$, $\frac{n-2}{m}$ *m* $(i = 1, 2, \ldots, i_0.$

Outline of our results:

- We improve the existence theorems of [\[HK2\]](#page-29-4) (Theorem 1.1 and Theorem 1.2 of [\[HK2\]](#page-29-4)) to the existence of unique maximal solutions of [\(1.6\)](#page-3-0) (Theorem [1.1](#page-4-0) and Theorem [1.2\)](#page-5-0).
- We extend the comparison theorems of [\[H2\]](#page-29-2) (Theorem 1.1 and Theorem 1.2 of [\[H2\]](#page-29-2)) by removing the requirement that the boundary values and the initial values must be larger than some positive constant (Theorem [3.4](#page-14-0) and Theorem [3.5\)](#page-16-0).
- We extend the asymptotic large time behaviour of the finite blow-up points solutions results of [\[HK2\]](#page-29-4) and [\[H2\]](#page-29-2) by removing the requirement that the boundary value *f* and the initial value u_0 must be larger than some positive constant (Theorem [1.3](#page-5-1)) and Theorem [1.4\)](#page-6-0). More precisely we prove the asymptotic large time behaviour of the finite blow-up points solution of [\(1.6\)](#page-3-0) (Theorem [1.3](#page-5-1) and Theorem [1.4\)](#page-6-0) for any $0 \le f \in L^{\infty}(\partial\Omega \times (0, \infty))$ and $0 \le u_0 \in L_{loc}^p(\overline{\Omega} \setminus \{a_1, \ldots, a_{i_0}\})$ for some constant $p > \frac{n(1-m)}{2}$ 2 which satisfies

$$
\frac{\lambda_i}{|x - a_i|^{\gamma_i}} \le u_0(x) \le \frac{\lambda'_i}{|x - a_i|^{\gamma'_i}} \qquad \forall 0 < |x - a_i| < \delta_1, i = 1, \cdots, i_0 \tag{1.7}
$$

for some constants $0 < \delta_1 < \delta_0$, λ_1 , \cdots , λ_{i_0} , λ'_1 $'_{1'}\cdots$, λ'_{i_1} $i_0 \in \mathbb{R}^+$ and

$$
\frac{2}{1-m} < \gamma_i \le \gamma_i' < \frac{n-2}{m} \quad \forall i = 1, 2, \dots, i_0. \tag{1.8}
$$

- In the paper [\[H2\]](#page-29-2) K.M. Hui constructed a solution of [\(1.6\)](#page-3-0) which oscillates between some fixed positive number and infinity as $t \to \infty$. A natural question to ask is whether there exist solutions of [\(1.6\)](#page-3-0) which oscillate between some functions on Ω . We answer this question in the affirmative. We will construct (Theorem [1.5\)](#page-6-1) a solution of [\(1.6\)](#page-3-0) with appropriate lateral boundary value such that the solution of [\(1.6\)](#page-3-0) will oscillate between two given harmonic functions as $t \to \infty$.
- We will prove the existence of minimal finite blow-up points solutions of [\(1.1\)](#page-0-0) in bounded cylindrical domains (Theorem [1.6\)](#page-6-2) which also blow-up everywhere on the lateral boundary of the domain. Asymptotic large time behaviour of such solution is also prove in Theorem [1.6.](#page-6-2)

More precisely we obtain the following results. The first four theorems are extensions of Theorem 2.3, Theorem 2.4 of [\[H2\]](#page-29-2) and Theorem 1.5 of [\[HK2\]](#page-29-4).

Theorem 1.1. *Let* $n \geq 3$, $0 < m < \frac{n-2}{n}$ $\frac{-2}{n}$, 0 < δ₁ < min(1, δ₀), 0 ≤ *f* ∈ *C*³(∂Ω × (0, ∞))∩*L*[∞](∂Ω × $(0, ∞)$ and $0 ≤ u_0 ∈ L^p_{loc}(\overline{\Omega} \setminus {a_1, · · · , a_{i_0}})$ for some constant $p > \frac{n(1-m)}{2}$ 2 *be such that* [\(1.7\)](#page-3-1) *holds for some constants*

$$
\gamma'_i \ge \gamma_i > \frac{2}{1 - m} \quad \forall i = 1, 2, ..., i_0
$$
\n(1.9)

and λ_1 , \cdots , λ_{i_0} , λ'_1 $\lambda'_{1'}$ \cdots λ'_{i_1} $C_{i_0} \in \mathbb{R}^+$ *. Let* $\widehat{\Omega}$ *be given by* [\(1.2\)](#page-1-1)*. Then there exists a unique maximal solution u of* [\(1.6\)](#page-3-0) *such that for any constants* $T > 0$ *and* $\delta_2 \in (0, \delta_1)$ *there exist constants* $C_1 = C_1(T) > 0, C_2 = C_2(T) > 0,$ depending only on $\lambda_1, \dots, \lambda_{i_0}, \lambda_1$ $\lambda'_{1'}$, λ'_{i_0} $\gamma'_{i_0}, \gamma_1, \cdots, \gamma_{i_0}, \gamma'_1$ 1 *,* · · · *,* γ_i' $_{i_0}^{\prime}$, such that

$$
\frac{C_1}{|x-a_i|^{\gamma_i}} \le u(x,t) \le \frac{C_2}{|x-a_i|^{\gamma_i'}} \quad \forall 0 < |x-a_i| < \delta_2, 0 < t < T, i = 1,2,\ldots,i_0
$$
 (1.10)

holds. Moreover the following holds.

(*i*) If there exist constants $T'_0 > T_0 > 0$ and $\mu_1 > 0$ such that

$$
f \ge \mu_1 \quad on \, \partial\Omega \times [T_0, T'_0), \tag{1.11}
$$

then for any $T_1 \in (T_0, T_0)$ C_0) there exists a constant $\mu_2 \in (0, \mu_1)$ such that

$$
u(x,t) \ge \mu_2 \quad \forall x \in \widehat{\Omega}, T_1 \le t < T_0'.\tag{1.12}
$$

(ii) If there exists a constant $T_2 \geq 0$ such that

$$
f(x, t)
$$
 is monotone decreasing in t on $\partial\Omega \times (T_2, \infty)$, (1.13)

then u satisfies

$$
u_t \le \frac{u}{(1-m)(t-T_2)} \quad \text{in } \Omega \times (T_2, \infty). \tag{1.14}
$$

Theorem 1.2. *Let* $n \geq 3$, $0 < m < \frac{n-2}{n}$ $\frac{-2}{n}$, 0 < δ_1 < min(1, δ_0), 0 ≤ $f \in L^{\infty}(\partial\Omega \times (0, \infty))$ and $0 ≤ u_0 ∈ L^p_{loc}($\overline{\Omega} \setminus {a_1, \cdots, a_{i_0}}$ *for some constant* $p > \frac{n(1-m)}{2}$$ 2 *be such that* [\(1.7\)](#page-3-1) *holds for some constants* γ*ⁱ ,* γ ′ $\lambda'_{i'}$ *i* = 1, ..., *i*₀, satisfying [\(1.8\)](#page-4-1) and λ_1 , ..., λ_{i_0} , λ'_{1} $\lambda'_{1}, \dots, \lambda'_{i}$ *i*₀ ∈ **R**⁺. Let $\widehat{\Omega}$ be given *by* [\(1.2\)](#page-1-1)*. Then there exists a unique maximal solution u of* [\(1.6\)](#page-3-0) *such that for any constants T* > 0 *and* $\delta_2 \in (0, \delta_1)$ *there exist constants* $C_1 = C_1(T) > 0$, $C_2 = C_2(T) > 0$, *depending only on* λ_1, \dots , $\lambda_{i_0}, \lambda'_1$ $\lambda'_{1'}$, λ'_{i_0} $\gamma'_{i_0}, \gamma_1, \cdots, \gamma_{i_0}, \gamma'_1$ $'_{1'}$, \cdots , γ'_{i_1} \mathcal{L}_{i_0} , such that [\(1.10\)](#page-4-2) holds. Moreover the following holds.

- (*i*) If there exists constants $T'_0 > T_0 > 0$ and $\mu_1 > 0$ such that [\(1.11\)](#page-4-3) holds, then for any $T_1 \in (T_0, T'_0)$ C_0) there exists a constant $\mu_2 \in (0, \mu_1)$ such that [\(1.12\)](#page-4-4) holds.
- *(ii)* If there exists a constant $T_2 \ge 0$ such that [\(1.13\)](#page-5-2) holds, then u satisfies [\(1.14\)](#page-5-3).

Theorem 1.3. *Let n* ≥ 3 *and* 0 < *m* < $\frac{n-2}{n}$ $\frac{1}{n^2}$ *.* Let 0 ≤ $g \in C^3(∂Ω)$ and $φ$ be the solution of

$$
\begin{cases} \Delta \phi = 0 & \text{in } \Omega \\ \phi = g^m & \text{on } \partial \Omega. \end{cases}
$$
 (1.15)

Let $0 \le u_0 \in L_{loc}^p\left(\overline{\Omega} \setminus \{a_1, \cdots, a_{i_0}\}\right)$ for some constant $p > \frac{n(1-m)}{2}$ 2 *be such that* [\(1.7\)](#page-3-1) *holds for some constants* γ*ⁱ ,* γ ′ \hat{i}_i , $i = 1, ..., i_0$ *, satisfying* [\(1.8\)](#page-4-1) *and* $0 < \delta_1 < \min(1, \delta_0)$ *,* $\lambda_1, ..., \lambda_{i_0}, \lambda_1'$ 1 *,* · · · *,* λ_i' B'_{i_0} ∈ \mathbb{R}^+ *. Let* $f' \in C^3(\partial\Omega \times (0, \infty))) \cap L^\infty(\partial\Omega \times (0, \infty))$ be such that

$$
f \to g \quad \text{uniformly in } C^3 \, (\partial \Omega) \quad \text{as } t \to \infty. \tag{1.16}
$$

Let Ω *be given by* [\(1.2\)](#page-1-1). Let u be the unique maximal solution of [\(1.6\)](#page-3-0) given by Theorem [1.1.](#page-4-0) Then *the following holds.*

(i) If g > 0 *on* ∂Ω*, then*

 $u(x, t) \to \phi^{\frac{1}{m}}$ *uniformly in* $C^2(K)$ *as t* $\to \infty$ (1.17)

holds for any compact subset K of $\overline{\Omega} \setminus \{a_1, \ldots, a_{i_0}\}.$

 (iii) *If* $g \not\equiv 0$ *on* $\partial\Omega$ *,*

$$
f \ge g \quad on \, \partial\Omega \times (0, \infty) \tag{1.18}
$$

and

$$
u_0 \ge \phi^{\frac{1}{m}} \quad on \ \widehat{\Omega} \tag{1.19}
$$

holds, then [\(1.17\)](#page-5-4) *holds for any compact subset K of* Ω *.*

(iii) If $g \equiv 0$ *on* $\partial\Omega$ *, then*

$$
u(x,t) \to 0 \quad \text{uniformly in } K \quad \text{as } t \to \infty \tag{1.20}
$$

for any compact subset K of Ω *.*

Theorem 1.4. *Let n* ≥ 3 *and* 0 < *m* < $\frac{n-2}{n}$ $\frac{1}{n^2}$ *. Let* 0 ≤ *g* ∈ *C*(∂Ω) *and* ϕ *be the solution of* [\(1.15\)](#page-5-5)*. Let* $0 \le u_0 \in L_{loc}^p\left(\overline{\Omega} \setminus \{a_1, \cdots, a_{i_0}\}\right)$ for some constant $p > \frac{n(1-m)}{2}$ 2 *be such that* [\(1.7\)](#page-3-1) *holds for some constants* γ*ⁱ ,* γ ′ \hat{i}_i , $i = 1, ..., i_0$ *, satisfying* [\(1.8\)](#page-4-1) *and* $0 < \delta_1 < \min(1, \delta_0)$ *,* $\lambda_1, ..., \lambda_{i_0}, \lambda_1'$ 1 *,* · · · *,* λ_i' C_{i_0} ∈ **R**⁺. Let f' ∈ $L^{\infty}(\partial\Omega \times (0, \infty)))$ be such that

$$
f \to g
$$
 uniformly in $L^{\infty}(\partial \Omega)$ as $t \to \infty$.

Let $\widehat{\Omega}$ *be given by* [\(1.2\)](#page-1-1)*. Let u be the unique maximal solution of* [\(1.6\)](#page-3-0) *given by Theorem* 1.2*. Then the following holds.*

- *(i)* If $g > 0$ *on* $\partial\Omega$ *, then* [\(1.17\)](#page-5-4) *holds for any compact subset K of* $\widehat{\Omega}$ *.*
- *(ii) If g* . 0 *on* ∂Ω *and both* [\(1.18\)](#page-5-6) *and* [\(1.19\)](#page-5-7) *holds, then* [\(1.17\)](#page-5-4) *holds for any compact subset K* of Ω.
- *(iii)* If $g \equiv 0$ *on* $\partial\Omega$ *, then* [\(1.20\)](#page-6-3) *holds for any compact subset K of* Ω *.*

Theorem 1.5. *Let n* ≥ 3 *and* 0 < *m* < $\frac{n-2}{n}$ $\frac{1}{n^2}$ *.* Let *g*₁*, g*₂ ∈ *C*(∂Ω)*, g*₂ > 0*, g*₁ > 0*, and* ϕ_1 *,* ϕ_2 *, be the solutions of* [\(1.15\)](#page-5-5) *with* $g = g_1, g_2$ *, respectively. Let*

$$
0 < \mu_0 < \min\left(\min_{\partial\Omega} g_1, \min_{\partial\Omega} g_2\right)
$$

be a constant. Let $0 \le u_0 \in L_{loc}^p(\overline{\Omega} \setminus \{a_1, \cdots, a_{i_0}\})$ for some constant $p > \frac{n(1-m)}{2}$ $\frac{(-m)}{2}$ be such that (1.7) *holds for some constants* γ*ⁱ ,* γ ′ $\sum_{i}^{n} i = 1, ..., i_0$ *, satisfying* [\(1.8\)](#page-4-1) *and* $0 < \delta_1 < \min(1, \delta_0)$ *,* $\lambda_1, ..., \lambda_{i_0}$ *,* λ'_1 $\lambda'_1, \cdots, \lambda'_i$ \mathcal{L}_{i_0} ∈ \mathbb{R}^+ *. Let* $\widehat{\Omega}$ *be given by* [\(1.2\)](#page-1-1)*. Then there exist a function* $f \in L^{\infty}(\partial\Omega \times (0, \infty))$ *and* an increasing sequence $\{t_i\}_{i=1}^\infty$, $t_i\to\infty$ as $i\to\infty$, such that if u is the maximal solution of (1.6) *given by Theorem [1.2,](#page-5-0) then*

$$
\begin{cases} u(x, t_{2i-1}) \to \phi_1^{\frac{1}{m}} & \text{in } C^2(K) \quad \text{as } i \to \infty \\ u(x, t_{2i}) \to \phi_2^{\frac{1}{m}} & \text{in } C^2(K) \quad \text{as } i \to \infty \end{cases}
$$

for any compact subset K of Ω *.*

Theorem 1.6. *Let n* ≥ 3, 0 < *m* < $\frac{n-2}{n}$ $\frac{-2}{n}$, 0 < δ_1 < min(1, δ_0) and $0 \le u_0 \in L^p_{loc}(\overline{\Omega} \setminus \{a_1, \cdots, a_{i_0}\})$ for *some constant p* > $\frac{n(1-m)}{2}$ $\frac{2^{m}}{2}$ be such that [\(1.7\)](#page-3-1) holds for some constants γ_i , γ'_i \mathbf{z}'_i , $i = 1, \ldots, i_0$, satisfying (1.9) and $\lambda_1, \dots, \lambda_{i_0}, \lambda'_1$ $\lambda'_{1'}$, λ'_{i_1} $C_{i_0} \in \mathbb{R}^+$. Then there exists a unique minimal solution u of

$$
\begin{cases}\n u_t = \Delta u^m & \text{in } \Omega \times (0, \infty) \\
u = \infty & \text{on } \partial \Omega \times (0, \infty) \\
u(a_i, t) = \infty & \forall t > 0, i = 1, 2 \dots, i_0 \\
u(x, 0) = u_0(x) & \text{in } \Omega\n\end{cases}
$$
\n(1.21)

such that for any constants $T > 0$ *and* $\delta_2 \in (0, \delta_1)$ *there exist constants* $C_1 = C_1(T) > 0$ *,* $C_2 = C_2(T) > 0$, depending only on $\lambda_1, \dots, \lambda_{i_0}, \lambda'_1$ $\lambda'_{1'}$ \cdots , λ'_{i_0} $\gamma'_{i_0}, \gamma_1, \cdots, \gamma_{i_0}, \gamma'_1$ $'_{1'}$, \cdots , γ'_{i_1} $'_{i_0}$, such that [\(1.10\)](#page-4-2) *holds. Moreover u satisfies* [\(1.14\)](#page-5-3) *with* $T_2 = 0$ *and*

$$
u(x,t) \to \infty \quad \text{uniformly on } \Omega_{\delta} \quad \text{as } t \to \infty \quad \forall 0 < \delta < \delta_0. \tag{1.22}
$$

Remark 1.7. *The integrability condition* $0 \le u_0 \in L^p_{loc}(\overline{\Omega} \setminus \{a_1, \dots, a_{i_0}\})$ *for some constant* $p > \frac{n(1-m)}{2}$ 2 *is necessary since this condition together with f* ∈ *L* [∞](∂Ω × (0, ∞)) *implies that the solution u of* [\(1.6\)](#page-3-0) *locally satisfies a L*[∞] − *L p regularizing result in terms of the local L^p norm of the initial value* u_0 *and* L^{∞} *norm of f (Lemma* [3.2](#page-14-1) *and Lemma* [3.3\)](#page-14-2).

Remark 1.8. *In the proof of Theorem [1.1](#page-4-0) and Theorem [1.2](#page-5-0) we will construct the solution of* [\(1.6\)](#page-3-0) *as the limit of a monotone decreasing sequence of solutions of*

$$
\begin{cases}\n u_t = \Delta u^m & \text{in } \Omega \times (0, \infty) \\
u(a_i, t) = \infty & \forall t > 0, i = 1, 2 \dots, i_0\n\end{cases}
$$
\n(1.23)

*which have initial values strictly greater than u*⁰ *and lateral boundary values strictly greater than f . Since there is comparison results (Theorem [3.4](#page-14-0) and Theorem [3.5\)](#page-16-0) between any solution of* [\(1.6\)](#page-3-0) *and this monotone decreasing sequence of solutions of* [\(1.23\)](#page-7-0)*. Hence this constructed solution of* [\(1.6\)](#page-3-0) *must be maximal solution of* [\(1.6\)](#page-3-0) *by comparison argument. On the other hand if we construct solution of* [\(1.6\)](#page-3-0) *as the limit of a monotone increasing sequence of solutions of* [\(1.23\)](#page-7-0) *which have initial values less than u*⁰ *and lateral boundary values less than f . Since there is no comparison result between any solution of* [\(1.6\)](#page-3-0) *and this monotone increasing sequence of solutions of* [\(1.23\)](#page-7-0)*. Hence it is not clear whether minimal solution of* [\(1.6\)](#page-3-0) *exists.*

The plan of the paper is as follows. For the readers' convenience in section 2 we recall some results of [\[H1\]](#page-29-1), [\[H2\]](#page-29-2) and [\[HK2\]](#page-29-4) that is cited in this paper. In section 3 we will prove Theorem [1.1](#page-4-0) and Theorem [1.2.](#page-5-0) We will prove Theorem [1.3](#page-5-1) and Theorem [1.4](#page-6-0) in section 4. We will prove Theorem [1.5](#page-6-1) and Theorem [1.6](#page-6-2) in section 5. Unless stated otherwise we will assume that $n \geq 3$ and $0 < m < \frac{n-2}{n}$ $\frac{-2}{n}$ for the rest of the paper.

We start with some definitions. For any $a \in \mathbb{R}^+$, let $a_+ = \max(a, 0)$.

Definition 1.9. For any $t_2 > t_1$, we say that u is a solution (subsolution, supersolution respec*tively)* of [\(1.1\)](#page-0-0) *in* $\Omega \times (t_1, t_2)$ *if* $u \in C^{2,1}(\Omega \times (t_1, t_2))$ *is positive in* $\Omega \times (t_1, t_2)$ *and satisfies*

$$
u_t = \Delta u^m \quad in \ \Omega \times (t_1, t_2) \quad (\leq, \geq, \ \ respectively).
$$

Definition 1.10. *For any* 0 ≤ *f* ∈ *L*[∞](∂ Ω × (0, *T*)) *and* 0 ≤ *u*₀ ∈ *L*_{*l*_{*loc*}(Ω)*, we say that u is a*} *solution (subsolution, supersolution respectively) of*

$$
\begin{cases}\n u_t = \Delta u^m & \text{in } \Omega \times (0, T) \\
u = f & \text{on } \partial \Omega \times (0, T) \\
u(x, 0) = u_0(x) & \text{in } \Omega.\n\end{cases}
$$
\n(1.24)

if u is a solution (subsolution, supersolution respectively) of [\(1.1\)](#page-0-0) *in* Ω × (0, *T*) *which satisfies*

 $||u(\cdot, t) - u_0||_{L^1(\Omega)} \rightarrow 0$ *as t* → 0

and the boundary condition is satisfied in the sense that

$$
\int_{t_1}^{t_2} \int_{\Omega} (u \eta_t + u^m \Delta \eta) \, dx \, dt = \int_{t_1}^{t_2} \int_{\partial \Omega} f^m \frac{\partial \eta}{\partial \nu} \, d\sigma \, dt + \int_{\Omega} u \eta \, dx \Big|_{t_1}^{t_2}
$$

 $(\geq, \leq$ *respectively)* holds for any $0 < t_1 < t_2 < T$ and $\eta \in C_c^2(\overline{\Omega} \times (0,T))$ satisfying $\eta = 0$ on $\partial\Omega\times(0,T)$.

Definition 1.11. *For any* $T > 0$, $0 \le f ∈ L[∞](∂Ω × (0, T))$ *and* $0 ≤ u₀ ∈ L¹_{loc}(Ω)$ *where* $\widehat{\Omega}$ *is given by* [\(1.2\)](#page-1-1)*, we say that u is a solution (subsolution, supersolution respectively) of*

$$
\begin{cases}\n u_t = \Delta u^m & \text{in } \Omega \times (0, T) \\
u(x, t) = f & \text{on } \partial \Omega \times (0, T) \\
u(x, 0) = u_0(x) & \text{in } \Omega.\n\end{cases}
$$
\n(1.25)

if u is a solution (subsolution, supersolution respectively) of [\(1.1\)](#page-0-0) in $\widehat{\Omega} \times (0, T)$ *which satisfies*

$$
||u(\cdot, t) - u_0||_{L^1(K)} \to 0 \quad \text{as } t \to 0 \tag{1.26}
$$

for any compact set $K \subset \overline{\Omega} \setminus \{a_1, \cdots, a_{i_0}\}$ and

$$
\int_{t_1}^{t_2} \int_{\widehat{\Omega}} \left(u \eta_t + u^m \Delta \eta \right) dx dt
$$

=
$$
\int_{t_1}^{t_2} \int_{\partial \Omega} f^m \frac{\partial \eta}{\partial v} d\sigma dt + \int_{\widehat{\Omega}} u(x, t_2) \eta(x, t_2) dx - \int_{\widehat{\Omega}} u(x, t_1) \eta(x, t_1) dx
$$

 $(\geq, \leq$ *respectively) for any* $0 < t_1 < t_2 < T$ and $\eta \in C_c^2((\overline{\Omega}\setminus{a_1,\cdots,a_{i_0}}])\times(0,T))$ *satisfying* $\eta \equiv 0$ *on* $\partial\Omega \times (0, T)$ *.*

Definition 1.12. *We say that u is a solution (subsolution, supersolution respectively) of* [\(1.6\)](#page-3-0) *if u is a solution (subsolution, supersolution respectively) of* [\(1.25\)](#page-8-0) *and*

$$
u(x, t) \to \infty \quad \text{as } x \to a_i \quad \forall t > 0, i = 1, \dots, i_0. \tag{1.27}
$$

Definition 1.13. *We say that u is a maximal solution of* [\(1.6\)](#page-3-0) *if u is a solution of* [\(1.6\)](#page-3-0) *and for any solution v of* [\(1.6\)](#page-3-0), $v \le u$ *in* $\Omega \times (0, T)$.

Definition 1.14. *We say that u is a solution of* [\(1.21\)](#page-7-1) *if u is a solution of* [\(1.1\)](#page-0-0) *in* $\Omega \times (0, \infty)$ *which satisfies* [\(1.26\)](#page-8-1) *for any compact set* $K \subset \Omega$ *,* [\(1.27\)](#page-8-2) *and*

$$
\lim_{\substack{(y,s)\to(x,t)\\(y,s)\in\Omega\times(0,\infty)}}u(y,s)=\infty\quad\forall (x,t)\in\partial\Omega\times(0,\infty).
$$

Definition 1.15. *We say that u is a minimal solution of* [\(1.21\)](#page-7-1) *if u is a solution of* [\(1.21\)](#page-7-1) *and for any solution v of* [\(1.21\)](#page-7-1), $v \ge u$ *in* $\Omega \times (0, T)$.

2 Preliminaries

In this section we recall some results of [\[H1\]](#page-29-1), [\[H2\]](#page-29-2) and [\[HK2\]](#page-29-4) that are cited in this paper.

Theorem 2.1 (Theorem 1.1 of [\[H2\]](#page-29-2)). Let $n \ge 3$, $0 < m < \frac{n-2}{n}$ $\frac{-2}{n}$, $0 < \delta_1 < \min(1, \delta_0)$, $\mu_0 > 0$, $f_1, f_2 \in C^3(\partial\Omega \times (0, \infty)) \cap L^\infty(\partial\Omega \times (0, \infty))$ be such that $f_2 \geq f_1 \geq \mu_0$ on $\partial\Omega \times (0, \infty)$ and

$$
\mu_0 \le u_{0,1} \le u_{0,2} \in L^p_{loc}(\overline{\Omega} \setminus \{a_1, \cdots, a_{i_0}\}) \quad \text{for some constant } p > \frac{n(1-m)}{2} \tag{2.1}
$$

be such that

$$
\frac{\lambda_i}{|x - a_i|^{\gamma_i}} \le u_{0,1}(x) \le u_{0,2} \le \frac{\lambda_i'}{|x - a_i|^{\gamma_i'}} \qquad \forall 0 < |x - a_i| < \delta_1, i = 1, \cdots, i_0
$$
 (2.2)

holds for some constants $\lambda_1, \cdots, \lambda_{i_0}, \lambda_1'$ $'_{1'}\cdots$, λ'_{i} $C'_{i_0} \in \mathbb{R}^+$ and

$$
\gamma_i' \geq \gamma_i > \frac{2}{1-m} \quad \forall i=1,2,\ldots,i_0.
$$

*Suppose u*₁, *u*₂, *are the solutions of* [\(1.6\)](#page-3-0) *with u*⁰ = *u*_{0,1}, *u*_{0,2}, *f* = *f*₁, *f*₂, *respectively which satisfy*

$$
u_j(x,t) \ge \mu_0 \quad \forall x \in \Omega, t > 0, j = 1,2 \tag{2.3}
$$

such that for any constants $T > 0$ *and* $\delta_2 \in (0, \delta_1)$ *there exist constants* $C_1 = C_1(T) > 0$ *,* $C_2 = C_2(T) > 0$ *, such that*

$$
\frac{C_1}{|x - a_i|^{\gamma_i}} \le u_j(x, t) \le \frac{C_2}{|x - a_i|^{\gamma'_i}}
$$
\n(2.4)

holds for any 0 < |*x* − *aⁱ* | < δ2*,* 0 < *t* < *T, i* = 1, 2, . . . , *i*0, *j* = 1, 2*. Suppose u*1*, u*2*, also satisfy*

$$
||u_i(\cdot, t) - u_{0,i}||_{L^1(\Omega_\delta)} \to 0 \quad \text{as } t \to 0 \quad \forall 0 < \delta < \delta_0, i = 1, 2. \tag{2.5}
$$

Then

$$
u_1(x,t) \le u_2(x,t) \quad \forall x \in \Omega, t > 0.
$$

Theorem 2.2 (Theorem 1.2 of [\[H2\]](#page-29-2)). Let $n \ge 3$, $0 < m < \frac{n-2}{n}$ $\frac{-2}{n}$, $0 < \delta_1 < \min(1, \delta_0)$, $\mu_0 > 0$, $\mu_0 \le f_1 \le f_2 \in L^{\infty}(\partial\Omega \times (0,\infty))$ and [\(2.1\)](#page-9-0), [\(2.2\)](#page-9-1), hold for some constants $\lambda_1, \cdots, \lambda_{i_0}, \lambda'_1$ 1 *,* · · · *,* λ_i' $i_0 \in \mathbb{R}^+$ satisfying [\(1.8\)](#page-4-1)*.* Suppose u_1 , u_2 , are the solutions of [\(1.6\)](#page-3-0) with $u_0 = u_{0,1}$, $u_{0,2}$, $f = f_1$, f_2 , *respectively which satisfy* [\(2.3\)](#page-9-2) *and* [\(2.5\)](#page-9-3) *such that for any constants* $T > 0$ *and* $\delta_2 \in (0, \delta_1)$ *there exist constants* $C_1 = C_1(T) > 0$, $C_2 = C_2(T) > 0$, such that [\(2.4\)](#page-9-4) *holds. Then*

$$
u_1(x,t) \le u_2(x,t) \quad \forall x \in \Omega, t > 0.
$$

For any $m \in \mathbb{R}$, we let $\phi_m(u) = u^m/m$ if $m \neq 0$ and $\phi_m(u) = \log u$ if $m = 0$.

Lemma 2.3 (Lemma 1.7 of [\[H1\]](#page-29-1)). Let $m_0 < 0 < \varepsilon_1 < 1$ and $m \in [m_0, 1 - \varepsilon_1]$. Suppose u is a *solution of*

$$
u_t = \Delta \phi_m(u)
$$

in $\Omega \times (0, T)$ *with initial value* $0 \leq u_0 \in L^p_{loc}(\Omega)$ *for some constant*

 $p > \max(1, (1 - m_0) \max(1, n/2))$.

Then for any $B_{R_1}(x_0) \subset \overline{B_{R_2}(x_0)} \subset \Omega$ *there exists a constant C > 0 such that*

$$
\int_{B_{R_1}(x_0)}u(x,t)^pdx\leq C\Big\{t^{p/(1-m_0)}+t^{p/\varepsilon_1}+\int_{B_{R_2}(x_0)}u_0^pdx\Big\}
$$

holds for any $0 \le t < T$, $m \in [m_0, 1 - \varepsilon_1]$ *.*

Theorem 2.4 (Theorem 1.1 of [\[HK2\]](#page-29-4)). *Let* $n \ge 3$, $0 < m < \frac{n-2}{n}$ $\frac{-2}{n}$, 0 < δ₁ < δ₀, 0 ≤ *f* ∈ $L^{\infty}(\partial\Omega\times[0,\infty))$ and $0\leq u_0\in L_{loc}^p(\overline{\Omega}\setminus\{a_1,\cdots,a_{i_0}\})$ for some constant $p>\frac{n(1-m)}{2}$ $\frac{2^{m}}{2}$ be such that

$$
u_0(x) \ge \frac{\lambda_i}{|x-a_i|^{\gamma_i}} \qquad \forall 0 < |x-a_i| < \delta_1, \ i=1,\cdots,i_0
$$

holds for some constants $\lambda_1, \dots, \lambda_{i_0} \in \mathbb{R}^+$ *and* $\gamma_1, \dots, \gamma_{i_0} \in (\frac{2}{1-\epsilon})$ 1−*m* , ∞)*. Then there exists a solution u* of [\(1.6\)](#page-3-0) such that for any $T > 0$ and $\delta_2 \in (0, \delta_1)$ there exists a constant $C_1 > 0$ such that

$$
u(x,t) \ge \frac{C_1}{|x-a_i|^{\gamma_i}} \quad \forall 0 < |x-a_i| < \delta_2, 0 < t < T.
$$

Moreover if there exists a constant $T_2 \ge 0$ *such that* [\(1.13\)](#page-5-2) *holds, then u satisfies* [\(1.14\)](#page-5-3)*.*

Theorem 2.5 (Theorem 1.5 of [\[HK2\]](#page-29-4)). *Suppose that n* ≥ 3, 0 < *m* < $\frac{n-2}{n}$ $\frac{a}{n}$ and $\mu_0 > 0$. Let $\mu_0 \leq u_0 \in L^p_{loc}(\overline{\Omega} \setminus \{a_1, \cdots, a_{i_0}\})$ for some constant $p > \frac{n(1-m)}{2}$ 2 *such that* [\(1.7\)](#page-3-1) *holds for* some constants $\lambda_1, \cdots, \lambda_{i_0}, \lambda_1'$ $'_{1'}$ \cdots , λ'_{i_0} $\gamma'_{i_0} \in \mathbb{R}^+$ and γ_i , γ'_i $i'_{i'}$ *i* = 1, ..., *i*₀, satisfying [\(1.8\)](#page-4-1). Let $f \in L^\infty(\partial\Omega \times (0,\infty)) \cap C^3(\partial\Omega \times (T_1,\infty))$ for some constant $T_1 > 0$ satisfy

$$
f \ge \mu_0 \quad on \ \partial\Omega \times (0, \infty)
$$

 α [\(1.16\)](#page-5-8) *for some function* $g \in C^3(\partial\Omega)$, $g \geq \mu_0$ *on* $\partial\Omega$. Let u be the solution of [\(1.6\)](#page-3-0) given *by Theorem [2.4.](#page-10-0) Let* ψ *be the solution of* [\(1.15\)](#page-5-5)*. Then* [\(1.17\)](#page-5-4) *holds for any compact subset K of* $\overline{\Omega}\backslash \{a_1, \cdots, a_{i_0}\}.$

Lemma 2.6 (Lemma 2.9 of [\[HK2\]](#page-29-4)). *Let* $n \geq 3$, $0 < m \leq \frac{n-2}{n}$ $\frac{-2}{n}$, 0 $\leq f \in L^{\infty}(\partial\Omega \times [0, \infty))$ and $0 \le u_0 \in L_{loc}^p(\overline{\Omega} \setminus \{a_1, \cdots, a_{i_0}\})$ for some constant $p > \frac{n(1-m)}{2}$ $\frac{2m}{2}$. Suppose *u* is a solution of [\(1.25\)](#page-8-0). *Then for any* $0 < \delta_6 < \delta_5 < \delta_0$ *and* $0 < t_1 < T$ *there exist constants C* > 0 *and* $\theta > 0$ *such that*

$$
||u||_{L^{\infty}(\Omega_{\delta_5} \times [t_1,T))} \leq C \left(k_f^p |\Omega| + \int_{\Omega_{\delta_6}} u_0^p dx\right)^{\theta/p} + k_f
$$

where $k_f = \max(1, ||f||_{L^{\infty}})$ *.*

Lemma 2.7 (Lemma 3.2 of [\[HK2\]](#page-29-4)). *Let* $n \ge 3$, $0 < m < \frac{n-2}{n}$ $\frac{-2}{n}$, 0 < δ_1 < min(1, δ_0), 0 ≤ $f \in$ $L^{\infty}(\partial\Omega \times [0, \infty))$ and $0 \leq u_0 \in L_{loc}^p(\overline{\Omega} \setminus \{a_1, \cdots, a_{i_0}\})$ for some constant $p > \frac{n(1-m)}{2}$ $\frac{2}{2}$ such that [\(1.7\)](#page-3-1) *holds for some constants* $\lambda_1, \cdots, \widetilde{\lambda}_{i_0}, \lambda_1'$ $\lambda'_{1'}$ \cdots , λ'_{i_1} $\gamma'_{i_0} \in \mathbb{R}^+$ and γ_i , γ'_i \hat{i}_i , $i = 1, \ldots, \hat{i}_0$, satisfying [\(1.8\)](#page-4-1). Let u be the solution of [\(1.6\)](#page-3-0) given by Theorem [2.4.](#page-10-0) *Then for any* $0 < \delta_2 < \delta_0$ and $t_0 > 0$ there *exist constants* $C_2 > 0$ *and* $C_3 > 0$ *such that*

$$
u(x,t)\leq C_2\quad\forall x\in\overline{\Omega_{\delta_2}}\times[t_0,\infty)
$$

and

$$
u(x,t) \leq C_3 |x-a_i|^{-\gamma'_i} \quad \forall 0 < |x-a_i| \leq \delta_2, t \geq t_0, i = 1, \cdots, i_0
$$

hold.

Remark 2.8 (Remark 3.7 of [\[HK2\]](#page-29-4)). *If* $f \in L^{\infty}(\partial\Omega \times (0, \infty))$ *,* $g \in C(\partial\Omega)$ *and*

 $f(x,t) \rightarrow g(x)$ *uniformly in* $L^{\infty}(\partial \Omega)$ *as t* $\rightarrow \infty$,

then the solution u of [\(1.6\)](#page-3-0) *given by Theorem 1.1 of [\[HK2\]](#page-29-4) satisfy* [\(1.17\)](#page-5-4) *for any compact set* $K \subset \Omega$ *. Moreover*

$$
u(x,t)\to \psi^{\frac{1}{m}}\quad\text{ in }L^{\infty}_{loc}(\overline{\Omega}\setminus\{a_1,\cdots,a_{i_0}\})\quad\text{ as }t\to\infty.
$$

3 Existence of maximal blow-up solutions

In this section we will use a modification of the argument of [\[HK2\]](#page-29-4) and [\[H2\]](#page-29-2) to prove the existence of maximal solution of [\(1.6\)](#page-3-0). We first extend Theorem 1.1 and Theorem 1.2 of [\[H2\]](#page-29-2). We start with a technical lemma.

Lemma 3.1. *Let* $n \geq 3$, $0 < m < 1$, $p > \frac{n(1-m)}{2}$ $\frac{(-m)}{2}$, $0 \le f \in L^{\infty}(\partial\Omega \times (0,T))$ and $0 \le u_0 \in L^{\infty}(\Omega)$. *Suppose* $u \in L^{\infty}(\Omega \times (0,T))$ *is a solution of* [\(1.24\)](#page-8-3). Then for any $0 < \delta' < \delta < \delta_0$ there exists a *constant C* > 0 *depending only on p, m,* δ *and* δ ′ *such that*

$$
\int_{\Omega_{\delta}} u(x,t)^p dx \le C \left(\int_{\Omega_{\delta'}} u_0^p dx + t^{\frac{p}{1-m}} + ||f||_{L^{\infty}(\partial \Omega \times (0,T))}^p \right) \quad \forall 0 < t < T
$$
 (3.1)

where Ω_{δ} , $\Omega_{\delta'}$, is given by [\(1.3\)](#page-1-2).

Proof. We will use a modification of the proof of Lemma 1.7 of [\[H1\]](#page-29-1) to prove this lemma. Let $0 \leq \phi_1 \in C_0^{\infty}$ $\frac{1}{0}$ ($\overline{\Omega} \setminus \{a_1, \cdots, a_{i_0}\}\)$, $0 \le \phi_1 \le 1$, be such that $\phi_1(x) = 1$ for any $x \in \overline{\Omega_\delta}$ and $\phi_1(x) = 0$ for any $x \in \Omega \setminus \Omega_{\delta'}$. Let $\phi_2 = \phi_1^{\alpha}$ $\frac{\alpha}{1}$ for some constant $\alpha > \frac{2p}{1-p}$ $rac{2p}{1-m}$ and $k > ||f||_{L^∞}$. Let $\widehat{\Omega}$ be given by [\(1.2\)](#page-1-1). Then

$$
\frac{\partial}{\partial t} \left(\int_{\widehat{\Omega}} (u - k)_+^p \phi_2 \, dx \right)
$$
\n
$$
= p \int_{\widehat{\Omega}} (u - k)_+^{p-1} u_t \phi_2 \, dx
$$
\n
$$
= p \int_{\widehat{\Omega}} (u - k)_+^{p-1} \phi_2 \Delta u^m \, dx
$$
\n
$$
= - p \int_{\widehat{\Omega}} \nabla u^m \cdot \nabla \left[(u - k)_+^{p-1} \phi_2 \right] dx
$$
\n
$$
= - p m \left\{ (p - 1) \int_{\widehat{\Omega}} u^{m-1} (u - k)_+^{p-2} |\nabla u|^2 \phi_2 \, dx + \int_{\widehat{\Omega}} u^{m-1} (u - k)_+^{p-1} \nabla u \cdot \nabla \phi_2 \, dx \right\}.
$$
\n(3.2)

Since

$$
\left| \int_{\widehat{\Omega}} u^{m-1} (u-k)_+^{p-1} \nabla u \cdot \nabla \phi_2 \, dx \right| \le (p-1) \int_{\widehat{\Omega}} u^{m-1} (u-k)_+^{p-2} |\nabla u|^2 \phi_2 \, dx + \frac{1}{4(p-1)} \int_{\widehat{\Omega}} u^{m-1} (u-k)_+^p |\nabla \phi_2|^2 \phi_2^{-1} \, dx,
$$

by [\(3.2\)](#page-12-0) and Hölder's inequality with exponents $\frac{p}{1-m}$ and $\frac{p}{p+m-1}$,

$$
\frac{\partial}{\partial t} \left(\int_{\widehat{\Omega}} (u - k)_+^p \phi_2 \, dx \right)
$$
\n
$$
\leq \frac{pm}{4(p-1)} \int_{\widehat{\Omega}} u^{m-1} (u - k)_+^p |\nabla \phi_2|^2 \phi_2^{-1} \, dx
$$
\n
$$
\leq \frac{pm}{4(p-1)} \int_{\widehat{\Omega}} [(u - k)_+^p \phi_2] \frac{v + m - 1}{p} |\nabla \phi_2|^2 \phi_2^{-1} \, dx
$$
\n
$$
\leq \frac{pm}{4(p-1)} \left(\int_{\widehat{\Omega}} \left(|\nabla \phi_2|^2 \phi_2^{-\frac{1 - m}{p} - 2} \right)^{\frac{p}{1 - m}} \, dx \right)^{\frac{1 - m}{p}} \left(\int_{\widehat{\Omega}} (u - k)_+^p \phi_2 \, dx \right)^{1 - \frac{1 - m}{p}} \quad \forall 0 < t < T. \tag{3.3}
$$

Since

$$
|\nabla \phi_2|^2 \phi_2^{\frac{1-m}{p}-2} = \alpha^2 \phi_1^{\frac{(1-m)\alpha}{p}-2} |\nabla \phi_1|^2 \leq \alpha^2 |\nabla \phi_1|^2,
$$

we have

$$
\int_{\widehat{\Omega}}\left(|\nabla \phi_2|^2\phi_2^{\frac{1-m}{p}-2}\right)^{\frac{p}{1-m}}\,dx\leq \alpha^{\frac{2p}{1-m}}\int_{\widehat{\Omega}}|\nabla \phi_1|^{\frac{2p}{1-m}}\,dx<\infty.
$$

Then, by [\(3.3\)](#page-12-1),

$$
\frac{\partial}{\partial t} \left(\int_{\widehat{\Omega}} (u - k)_+^p \phi_2 \, dx \right) \le C \left(\int_{\widehat{\Omega}} (u - k)_+^p \phi_2 \, dx \right)^{1 - \frac{1 - m}{p}}
$$
\n
$$
\Rightarrow \left(\int_{\widehat{\Omega}} (u - k)_+^p \phi_2 \, dx \right)^{\frac{1 - m}{p} - 1} \frac{\partial}{\partial t} \left(\int_{\widehat{\Omega}} (u - k)_+^p \phi_2 \, dx \right) \le C. \tag{3.4}
$$

where $\widehat{\Omega}$ is given by [\(1.2\)](#page-1-1). Integrating [\(3.4\)](#page-13-0) over (t_1, t) , $0 < t_1 < t < T$,

$$
\int_{\widehat{\Omega}} (u(x,t)-k)_+^p \phi_2 dx \leq \left\{ Ct + \left(\int_{\widehat{\Omega}} (u(x,t_1)-k)_+^p \phi_2 dx \right)^{\frac{1-m}{p}} \right\}^{\frac{p}{1-m}}.
$$

Hence

$$
\int_{\Omega_{\delta}} (u(x,t) - k)_{+}^{p} dx \leq \left\{ Ct + \left(\int_{\Omega_{\delta'}} (u(x,t_{1}) - k)_{+}^{p} dx \right)^{\frac{1-m}{p}} \right\}^{\frac{p}{1-m}} \\ \leq C' \left(\int_{\Omega_{\delta'}} u(x,t_{1})^{p} dx + t^{\frac{p}{1-m}} + k^{p} \right)
$$

holds for any $0 < t_1 \le t < T$, $k > ||f||_{L^{\infty}(\partial \Omega \times (0,T))}$. Thus

$$
\int_{\Omega_{\delta}} u(x,t)^p dx \leq C \left(\int_{\Omega_{\delta'}} u(x,t_1)^p dx + t^{\frac{p}{1-m}} + k^p \right) \tag{3.5}
$$

holds for any $0 < t_1 \le t < T$, $k > ||f||_{L^{\infty}(\partial \Omega \times (0,T))}$. Letting $k \searrow ||f||_{L^{\infty}(\partial \Omega \times (0,T))}$ in [\(3.5\)](#page-13-1),

$$
\int_{\Omega_{\delta}} u(x,t)^p dx \leq C \left(\int_{\Omega_{\delta'}} u(x,t_1)^p dx + t^{\frac{p}{1-m}} + ||f||_{L^{\infty}(\partial \Omega \times (0,T))}^p \right) \quad \forall 0 < t_1 \leq t < T.
$$
 (3.6)

Let $C_1 = \max(||u_0||_{L^\infty(\Omega)}||u||_{L^\infty(\Omega \times (0,T))})$. By the mean value theorem for any $x \in \Omega_{\delta'}$ and $0 < t_1 < T$ there exists a constant *ξ* between $u(x, t_1)$ and $u_0(x)$ such that

$$
|u(x,t_1)^p - u_0(x)^p| = p|\xi|^{p-1}|u(x,t_1) - u_0(x)| \leq pC_1^{p-1}|u(x,t_1) - u_0(x)|.
$$

Hence

$$
\left| \int_{\Omega_{\delta'}} u(x, t_1)^p dx - \int_{\Omega_{\delta'}} u_0^p dx \right| \le p C_1^{p-1} \int_{\Omega_{\delta'}} |u(x, t_1) - u_0(x)| dx \tag{3.7}
$$

holds for any $0 < t_1 < T$. Since *u* is a solution of [\(1.24\)](#page-8-3) with initial value u_0 , letting $t_1 \rightarrow 0$ in [\(3.7\)](#page-13-2) by Definition [1.10](#page-8-4) we have,

$$
\lim_{t_1 \to 0} \left| \int_{\Omega_{\delta'}} u(x, t_1)^p dx - \int_{\Omega_{\delta'}} u_0^p dx \right| = 0
$$
\n
$$
\Rightarrow \quad \lim_{t_1 \to 0} \int_{\Omega_{\delta'}} u(x, t_1)^p dx = \int_{\Omega_{\delta'}} u_0^p dx. \tag{3.8}
$$

Since [\(3.6\)](#page-13-3) holds for any $t_1 \in (0, t)$, letting $t_1 \to 0$ in (3.6), by [\(3.8\)](#page-13-4) we get [\(3.1\)](#page-11-0) and the lemma follows.

By Lemma [3.1](#page-11-1) and an argument similar to the proof of Corollary 1.8 of [\[H1\]](#page-29-1) and a compactness argument we have the following result.

Lemma 3.2. *Let* $n \geq 3$, $0 < m \leq \frac{n-2}{n}$ $\frac{-2}{n}$ *, p* > $\frac{n(1-m)}{2}$ $\frac{(-m)}{2}$, $0 \le f \in L^{\infty}(\partial\Omega \times (0,T))$ and $0 \le u_0 \in L^{\infty}(\Omega)$. *Suppose* $u \in L^{\infty}(\Omega \times (0, T))$ *is a solution of* [\(1.24\)](#page-8-3)*. Then for any* $0 < \delta' < \delta < \delta_0$ and $0 < t_1 < t_2 < T$ there exist constants $C > 0$ and $\theta > 0$ such that

$$
||u||_{L^{\infty}(\Omega_{\delta} \times [t_1, t_2))} \leq C \left(1 + ||f||_{L^{\infty}}^p + \int_{\Omega_{\delta'}} u_0^p dx\right)^{\theta/p} + ||f||_{L^{\infty}}
$$
(3.9)

 \Box

where Ω_{δ} , $\Omega_{\delta'}$, is given by [\(1.3\)](#page-1-2).

By Lemma 1.7 of [\[H1\]](#page-29-1) and a compactness argument we have the following result.

Lemma 3.3 (cf. Corollary 1.8 of [\[H1\]](#page-29-1)). *Let* $n \ge 3$, $0 < m \le \frac{n-2}{n}$ $\frac{-2}{n}$ *, p* > $\frac{n(1-m)}{2}$ $\frac{-m}{2}$, 0 ≤ f ∈ $L^{\infty}(\partial\Omega\times(0,T))$ and $0\leq u_0\in L^{\infty}(\Omega)$ *. Suppose* $u\in L^{\infty}(\Omega\times(0,T))$ *is a solution of* [\(1.24\)](#page-8-3)*.* Then *for any* $0 < \delta' < \delta < \delta_0$ *and* $0 < t_1 < t_2 < T$ *there exist constants* $C > 0$ *and* $\theta > 0$ *such that*

$$
||u||_{L^{\infty}(D_{\delta} \times [t_1, t_2))} \leq C \left(1 + \int_{D_{\delta'}} u_0^p dx\right)^{\theta/p}
$$
\n(3.10)

*where D*δ*, D*^δ ′*, is given by* [\(1.3\)](#page-1-2)*.*

Theorem 3.4. *(cf. Theorem 1.1 of [\[H2\]](#page-29-2)) Let* $n \geq 3$ *,* $0 < m < \frac{n-2}{n}$ $\frac{-2}{n}$, $0 < \delta_1 < \min(1, \delta_0)$, $\mu_0 > 0$, *f*1, *f*² ∈ *C* 3 (∂Ω × (0, ∞)) ∩ *L* [∞](∂Ω × (0, ∞)) *be such that*

$$
f_2 \ge f_1 \ge 0 \quad \text{and } f_2 \ge \mu_0 \quad \text{on } \partial\Omega \times (0, \infty)
$$
 (3.11)

and

$$
u_{0,1}, u_{0,2} \in L_{loc}^p(\overline{\Omega} \setminus \{a_1, \cdots, a_{i_0}\}), u_{0,2} \ge u_{0,1} \ge 0, u_{0,2} \ge \mu_0 \text{ for some constant } p > \frac{n(1-m)}{2}.
$$
\n(3.12)

Let $\widehat{\Omega}$ *be given by* [\(1.2\)](#page-1-1). Suppose $u_1, u_2 \in L^{\infty}_{loc}(\widehat{\Omega} \setminus \{a_1, \ldots, a_{i_0}\}) \times (0, \infty)) \cap C^{2,1}(\widehat{\Omega} \times (0, \infty))$ are *subsolution and supersolution of* [\(1.6\)](#page-3-0) *with* $f = f_1$, f_2 *and* $u_0 = u_{0,1}$, $u_{0,2}$ *respectively which satisfy*

$$
u_2(x,t) \ge \mu_0 \quad \forall x \in \Omega, t > 0 \tag{3.13}
$$

such that for any constants $T > 0$ *and* $\delta_2 \in (0, \delta_1)$ *there exist constants* $C_1 = C_1(T) > 0$ *,* $C_2 = C_2(T) > 0$, such that

$$
u_1(x,t) \le \frac{C_1}{|x-a_i|^{\gamma'_i}} \quad \text{and} \quad u_2(x,t) \ge \frac{C_2}{|x-a_i|^{\gamma_i}} \quad \forall 0 < |x-a_i| < \delta_2, 0 < t < T, i = 1, 2, \dots, i_0.
$$
\n(3.14)

for some constants γ*ⁱ ,* γ ′ $i'_{i'}$, $i = 1, \ldots, i_0$, satisfying [\(1.9\)](#page-4-5). Then

$$
u_1(x,t) \le u_2(x,t) \quad \forall x \in \Omega, t > 0. \tag{3.15}
$$

Proof. Since the proof of the theorem is a modification of the proof of Theorem 1.1 of [\[H2\]](#page-29-2), we will only sketch the proof here. Let

$$
D_{+} = \{(x, t) \in \widehat{\Omega} \times (0, \infty) : u_1(x, t) > u_2(x, t)\}\
$$

and $\alpha > \max(2 + n, \gamma'_1, \gamma'_2, \dots, \gamma'_{i_0})$. Then by [\(3.13\)](#page-14-3) for any $(x, t) \in D_+$,

 $u_1(x, t) > u_2(x, t) \geq u_0$.

Hence by the mean value theorem,

$$
(u_1^m - u_2^m)_+(x, t) \le m \mu_0^{m-1} (u_1 - u_2)_+(x, t) \quad \forall x \in \Omega, t > 0.
$$
 (3.16)

As in [\[H2\]](#page-29-2) we choose $\psi \in C^{\infty}(\overline{\Omega} \setminus \{a_1, \dots, a_{i_0}\})$ such that $\psi(x) = |x - a_i|^{\alpha}$ for any $x \in \cup_{i=1}^{i_0} B_{\delta_0}(a_i)$ and

$$
\psi(x) \ge c_1 \quad \forall x \in \overline{\Omega} \setminus \cup_{i=1}^{i_0} B_{\delta_2}(a_i) \tag{3.17}
$$

for some constant $c_1 > 0$. Let $T > 0$. Since

$$
u_1, u_2 \in L^{\infty}_{loc}((\overline{\Omega} \setminus \{a_1, \ldots, a_{i_0}\}) \times (0, \infty)),
$$

by [\(3.14\)](#page-14-4) and the choice of α , we have for any $i = 1, \dots, i_0$,

$$
\int_{B_{\delta_2}(a_i)} |x - a_i|^{\alpha} (u_1 - u_2)_+(x, t) dx \leq C_T \int_0^{\delta_2} \rho^{\alpha + n - \gamma'_i - 1} d\rho
$$

= $C'_T \delta_2^{\alpha + n - \gamma'_i} < \infty \quad \forall 0 < t < T$ (3.18)

for some constants $C_T > 0$, $C'_T > 0$. Since by the same argument as the proof of Proposition 2.2 of [\[H2\]](#page-29-2), the result of Proposition 2.2 of [H2] remains valid for u_1 , u_2 . That is

 $||u_i(\cdot, t) - u_{0,i}||_{L^1(\Omega_\delta)} \to 0$ as $t \to 0$ ∀0 < $\delta < \delta_0$, $i = 1, 2$.

Hence there exists a constant $C_3(T) > 0$ such that

$$
||u_i(\cdot, t) - u_{0,i}||_{L^1(\overline{\Omega} \setminus \cup_{i=1}^{i_0} B_{\delta_2}(a_i))} \le C_3(T) \quad \forall 0 < t < T, i = 1, 2
$$

\n
$$
\Rightarrow ||u_1(\cdot, t) - u_2(\cdot, t)||_{L^1(\overline{\Omega} \setminus \cup_{i=1}^{i_0} B_{\delta_2}(a_i))} \le 2C_3(T) \quad \forall 0 < t < T.
$$
\n(3.19)

By [\(3.18\)](#page-15-0) and [\(3.19\)](#page-15-1),

$$
\int_{\widehat{\Omega}} \psi(x) (u_1 - u_2)_+(x, t) \, dx \le C'_T \delta_2^{\alpha + n - \gamma'_i} + 2C_3(T) < \infty \quad \forall 0 < t < T. \tag{3.20}
$$

By [\(3.14\)](#page-14-4) and the mean value theorem for any $|x - a_i| \le \delta_2$, $0 < t < T$, $i = 1, \dots, i_0$,

$$
|x - a_i|^{\alpha - 2} (u_1^m - u_2^m)_+(x, t)
$$

\n
$$
\leq m |x - a_i|^{\alpha - 2} u_2(x, t)^{m-1} (u_1 - u_2)_+(x, t)
$$

\n
$$
\leq m C_2 (T)^{m-1} |x - a_i|^{(1-m)\gamma_i - 2 + \alpha} (u_1 - u_2)_+(x, t)
$$

\n
$$
\leq m C_2 (T)^{m-1} \delta_0^{(1-m)\gamma_i - 2} |x - a_i|^{\alpha} (u_1 - u_2)_+(x, t)
$$

\n
$$
\leq m C_2 (T)^{m-1} \delta_0^{(1-m)\gamma_i - 2} \psi(x) (u_1 - u_2)_+(x, t).
$$
\n(3.21)

As in [\[H2\]](#page-29-2) we now choose a nonnegative monotone increasing function $\phi \in C^{\infty}(\mathbb{R})$ such that $\phi(s) = 0$ for any $s \leq 1/2$ and $\phi(s) = 1$ for any $s \geq 1$. For any $0 < \delta < \delta_0$, let $\phi_{\delta}(x) = \phi(|x|/\delta)$ and

$$
w_{\delta}(x)=\Pi_{i=1}^{i_0}\phi_{\delta}(x-a_i).
$$

Then by [\(3.16\)](#page-15-2), [\(3.17\)](#page-15-3), [\(3.20\)](#page-15-4) and [\(3.21\)](#page-15-5) and an argument similar to the proof of Theorem 1.1 of [\[H2\]](#page-29-2),

$$
\frac{\partial}{\partial t} \left(\int_{\widehat{\Omega}} (u_1 - u_2)_+ \psi w_{\delta} \, dx \right)
$$
\n
$$
\leq C \int_{\Omega \setminus \cup_{i=1}^{i_0} B_{\delta_2}(a_i)} (u_1^m - u_2^m)_+ (x, t) \, dx
$$
\n
$$
+ C \int_{\cup_{i=1}^{i_0} B_{\delta_2}(a_i)} |x - a_i|^{\alpha - 2} (u_1^m - u_2^m)_+ (x, t) \, dx
$$
\n
$$
\leq C \int_{\widehat{\Omega}} (u_1 - u_2)_+ (x, t) \psi(x) \, dx
$$
\n
$$
+ C \int_{\cup_{i=1}^{i_0} B_{\delta_2}(a_i)} |x - a_i|^{\alpha - 2} (u_1^m - u_2^m)_+ (x, t) \, dx
$$
\n
$$
\leq C_T \int_{\widehat{\Omega}} (u_1 - u_2)_+ (x, t) \psi(x) \, dx. \tag{3.22}
$$

Integrating [\(3.22\)](#page-16-1) over $(0, t)$ as letting $\delta \rightarrow 0$,

$$
\int_{\widehat{\Omega}} (u_1 - u_2)_+(x, t)\psi(x) \, dx \le C_T \int_0^t \int_{\widehat{\Omega}} (u_1 - u_2)_+(x, t)\psi(x) \, dx \, dt \quad \forall 0 < t < T. \tag{3.23}
$$

By (3.23) and the Gronwall inequality, we get (3.15) and the theorem follows.

Theorem 3.5. *(cf. Theorem 1.2 of [\[H2\]](#page-29-2)) Let* $n \geq 3$ *,* $0 < m < \frac{n-2}{n}$ $\frac{-2}{n}$, $0 < \delta_1 < \min(1, \delta_0)$, $\mu_0 > 0$, $f_1, f_2 \in L^{\infty}(\partial\Omega \times (0, \infty))$, $u_{0,1}$, $u_{0,2} \in L_{loc}^p(\overline{\Omega} \setminus \{a_1, \cdots, a_{i_0}\})$ for some constant $p > \frac{n(1-m)}{2}$ $\frac{-m}{2}$, be such that [\(3.11\)](#page-14-6) and [\(3.12\)](#page-14-7) hold. Let $\widehat{\Omega}$ be given by [\(1.2\)](#page-1-1). Suppose $u_1, u_2 \in L^{\infty}_{loc}(\widehat{\Omega} \setminus \{a_1, \ldots, a_{i_0}\}) \times (0, \infty) \cap$ $C^{2,1}(\Omega \times (0, \infty))$ *are subsolution and supersolution of* [\(1.6\)](#page-3-0) *with* $f = f_1, f_2$ *and* $u_0 = u_{0,1}$, $u_{0,2}$ *respectively which satisfy* [\(3.13\)](#page-14-3) *such that for any constants* $T > 0$ *and* $\delta_2 \in (0, \delta_1)$ *there exists a constant* $C_2 = C_2(T) > 0$ *such that*

$$
u_j(x,t) \le \frac{C_2}{|x-a_i|^{y'_i}} \quad \forall 0 < |x-a_i| < \delta_2, 0 < t < T, i = 1, 2, ..., i_0, j = 1, 2 \tag{3.24}
$$

holds for some constants

$$
\frac{2}{1-m} < \gamma_i' < \frac{n-2}{m} \quad \forall i = 1, 2, \dots, i_0. \tag{3.25}
$$

Then [\(3.15\)](#page-14-5) *holds.*

Proof. Since the proof is similar to the proof of Theorem 1.2 of [\[H2\]](#page-29-2), we will only sketch the argument here. Similar to the proof of Theorem 1.2 of [\[H2\]](#page-29-2) we let

$$
A(x,t) = \begin{cases} \frac{u_1(x,t)^m - u_2(x,t)^m}{u_1(x,t) - u_2(x,t)} & \forall x \in \widehat{\Omega}, t > 0 \text{ satisfying } u_1(x,t) \neq u_2(x,t) \\ mu_2(x,t)^{m-1} & \forall x \in \widehat{\Omega}, t > 0 \text{ satisfying } u_1(x,t) = u_2(x,t) \\ 0 & \forall x = a_i, i = 1, \cdots, i_0, t > 0. \end{cases}
$$

For any $k \in \mathbb{Z}^+$, let

$$
\alpha_k(x,t) = \begin{cases} \frac{|u_1(x,t)^m - u_2(x,t)^m|}{|u_1(x,t) - u_2(x,t)| + (1/k)} & \forall x \in \widehat{\Omega}, t > 0\\ 0 & \forall x = a_i, i = 1, \cdots, i_0, t > 0 \end{cases}
$$

and $A_k(x,t) = \alpha_k(x,t) + k^{-1}$. We claim that the function $A(x,t) \in L^\infty(\Omega \times (0,\infty))$. We divide the proof of this claim into two cases.

Case 1: $u_2(x, t) \ge 2u_1(x, t)$. By [\(3.13\)](#page-14-3),

$$
|A(x,t)| \le \frac{u_2(x,t)^m}{\frac{1}{2}u_2(x,t)} = 2u_2(x,t)^{m-1} \le 2\mu_0^{m-1}.
$$

Case 2: $u_2(x, t) < 2u_1(x, t)$.

By [\(3.13\)](#page-14-3) and the mean value theorem there exists a constant $\xi = \xi(x, t)$ lying between $u_1(x, t)$ and $u_2(x, t)$ such that

$$
|A(x,t)| \le m\xi^{m-1} \le m(u_2(x,t)/2)^{m-1} \le 2^{1-m}m\mu_0^{m-1}.
$$

By case 1 and case 2, $A(x, t) \in L^{\infty}(\overline{\Omega} \times (0, \infty))$. Since $|\alpha_k(x, t)| \leq |A(x, t)|$, we get $\alpha_k(x, t) \in$ $L^{\infty}(\widehat{\Omega}\times(0,\infty))$ and hence one can apply the same argument as the proof of Theorem 1.2 of [\[H2\]](#page-29-2) to conclude that the theorem holds.

 \Box

Proof of Theorem [1.1:](#page-4-0) Since the proof is similar to the proof of Theorem 1.1 of [\[HK2\]](#page-29-4), we will only sketch the argument here. For any $M > 0$, $0 < \varepsilon < 1$, let

$$
\begin{cases}\n u_{0,\varepsilon}(x) = (u_0(x)^m + \varepsilon^m)^{1/m} \\
u_{0,\varepsilon,M}(x) = (\min(u_0(x)^m, M^m) + \varepsilon^m)^{1/m}\n\end{cases}
$$
\n(3.26)

and

$$
f_{\varepsilon}(x,t) = (f(x,t)^m + \varepsilon^m)^{1/m} \qquad \forall (x,t) \in \partial\Omega \times (0,\infty).
$$
 (3.27)

Let $u_{\varepsilon,M}$ be the solution of

$$
\begin{cases}\n u_t = \Delta u^m & \text{in } \Omega \times (0, T) \\
u = f_{\varepsilon} & \text{on } \partial \Omega \times (0, T) \\
u(x, 0) = u_{0, \varepsilon, M}(x) & \text{in } \Omega.\n\end{cases}
$$
\n(3.28)

Then

$$
\begin{cases} u_{\varepsilon,M_2} \ge u_{\varepsilon,M_1} \ge \varepsilon & \text{in } \Omega \times (0,\infty) \quad \forall M_2 > M_1 > 0, \varepsilon > 0 \\ u_{\varepsilon_1,M} \ge u_{\varepsilon_2,M} & \text{in } \Omega \times (0,\infty) \quad \forall M > 0, \varepsilon_1 > \varepsilon_2 > 0. \end{cases}
$$
(3.29)

By Lemma [3.2](#page-14-1) for any $0 < \delta' < \delta < \delta_0$, $t'_0 > t_0 > 0$, there exists a constant $C > 0$ such that

$$
\left\|u_{\varepsilon,M}\right\|_{L^{\infty}(\Omega_{\delta}\times[t_0,t'_0])} \leq C\left(1 + \left\|f\right\|_{L^{\infty}}^p + \int_{\Omega_{\delta'}} u_0^p dx\right)^{\theta/p} + \left\|f\right\|_{L^{\infty}} =: C_0 \tag{3.30}
$$

holds for any $0 < \varepsilon \le 1$ and $M > 0$ where Ω_{δ} , $\Omega_{\delta'}$, is given by [\(1.3\)](#page-1-2). As in [\[HK2\]](#page-29-4), by [\(3.29\)](#page-18-0) and [\(3.30\)](#page-18-1), as $M \to \infty$, $u_{\varepsilon,M}$ will increase monotonically to some solution u_{ε} of

$$
\begin{cases}\n u_t = \Delta u^m & \text{in } \Omega \times (0, \infty) \\
u = f_{\varepsilon} & \text{on } \partial \Omega \times (0, \infty) \\
u(a_i, t) = \infty & \forall t > 0, i = 1, 2 \dots, i_0 \\
u(x, 0) = u_{0,\varepsilon}(x) & \text{in } \Omega.\n\end{cases}
$$
\n(3.31)

Letting $M \rightarrow \infty$ in [\(3.29\)](#page-18-0) and [\(3.30\)](#page-18-1),

$$
\begin{cases}\n u_{\varepsilon} \geq \varepsilon & \text{in } \Omega \times (0, \infty) \\
u_{\varepsilon_1} \geq u_{\varepsilon_2} & \text{in } \Omega \times (0, \infty) \quad \forall \varepsilon_1 > \varepsilon_2 > 0 \\
u_{\varepsilon} \leq C_0 & \text{in } \overline{\Omega_\delta} \times [t_0, t'_0] \quad \forall 0 < \varepsilon \leq 1.\n\end{cases}
$$
\n(3.32)

Moreover u_{ε} will decrease monotonically to a solution *u* of [\(1.6\)](#page-3-0) as $\varepsilon \to 0$. By an argument similar to the proof of Theorem 1.1 of [\[HK2\]](#page-29-4) for any $T > 0$, $\delta_2 \in (0, \delta_1)$, there exists constants $C_1 = C_1(T) > 0, C_2 = C_2(T) > 0$, depending only on $\lambda_1, \dots, \lambda_{i_0}, \lambda'_1$ $'_{1'}\cdots$, λ'_{i_1} $\gamma'_{i_0}, \gamma_1, \cdots, \gamma_{i_0}, \gamma'_1$ $\frac{1}{1}$ \cdots , γ_i' u'_{i_0} , such that both *u* and u_{ε} satisfy [\(1.10\)](#page-4-2) for any $0 < \varepsilon < 1$.

Suppose *v* is another solution of [\(1.6\)](#page-3-0) which satisfies [\(1.10\)](#page-4-2) for some constants $C_1 > 0$, $C_2 > 0$. Since by [\(3.26\)](#page-17-0) and [\(3.27\)](#page-17-1),

$$
u_{0,\varepsilon} \ge \max(u_0, \varepsilon)
$$
 and $f_{\varepsilon} \ge \max(f, \varepsilon)$,

by Theorem [3.4,](#page-14-0)

$$
v \le u_{\varepsilon} \quad \text{in } \Omega \times (0, \infty) \quad \forall 0 < \varepsilon < 1
$$

\n
$$
\Rightarrow v \le u \quad \text{in } \Omega \times (0, \infty) \quad \text{as } \varepsilon \to 0.
$$

Hence u is the maximal solution of (1.6) .

Proof of (i) of Theorem [1.1](#page-4-0):

Suppose there exist constants $T'_0 > T_0 > 0$ and $\mu_1 > 0$ such that [\(1.11\)](#page-4-3) holds and $T_1 \in (T_0, T'_0)$ $_0^{\prime})$. Let $T_3 = (T_0 + T_1)/2$, $T = (T_1 - T_0)/2$ and $C_3 = T^{\frac{2}{1-m}}/\mu_1^2$. Let *q* and $\lambda_1 > 0$ be the first positive eigenfunction and the first eigenvalue of $-\Delta$ on Ω . By the proof of Theorem 2.2 of [\[H1\]](#page-29-1) there exists a constant $C_4 > 0$ such that the function

$$
w(x,t) = \frac{[m(t - T_3)]^{1/(1-m)}}{(C_3 + C_4 q(x))^{1/2}}
$$
\n(3.33)

is a subsolution of [\(1.1\)](#page-0-0) in $\Omega \times (T_3, \infty)$. Since $w(x, T_3) = 0$ in Ω and

$$
w(x,t) = \left(\frac{m(t-T_3)}{T}\right)^{1/(1-m)} \mu_1 \le f_{\varepsilon}(x,t) \quad \text{on } \partial\Omega \times [T_3, T_1],
$$

by Theorem [3.4,](#page-14-0)

$$
u_{\varepsilon}(x,t) \ge w(x,t) \quad \forall x \in \Omega \times (T_3, T_1], 0 < \varepsilon < 1
$$

\n
$$
\Rightarrow u(x,t) \ge w(x,t) \quad \forall x \in \Omega \times (T_3, T_1] \quad \text{as } \varepsilon \to 0
$$

\n
$$
\Rightarrow u(x,T_1) \ge \mu_3 := \left(\frac{m(T_1 - T_0)}{2}\right)^{1/(1-m)} (C_3 + C_4 ||q||_{\infty})^{-1/2} \quad \forall x \in \Omega
$$
 (3.34)

Let $\mu_2 = \min(\mu_1, \mu_3)$. Then by [\(1.11\)](#page-4-3), [\(3.34\)](#page-19-0) and Theorem [3.4,](#page-14-0)

$$
u_{\varepsilon}(x,t) \ge \mu_2 \quad \forall x \in \Omega \times [T_1, T'_0), 0 < \varepsilon < 1
$$

\n
$$
\Rightarrow \quad u(x,t) \ge \mu_2 \quad \forall x \in \Omega \times [T_1, T'_0) \quad \text{as } \varepsilon \to 0
$$

and (i) follows.

Proof of (ii) of Theorem [1.1](#page-4-0):

Suppose there exists a constant $T_2 \geq 0$ such that [\(1.13\)](#page-5-2) holds. Then f_{ε} is monotone decreasing in *t* on ∂Ω × (*T*2, ∞). Hence similar to Theorem 1.1 of [\[HK2\]](#page-29-4) both *u*ε,*^M* and *u*^ε satisfies [\(1.14\)](#page-5-3). Putting $u = u_{\varepsilon}$ in [\(1.14\)](#page-5-3) and letting $\varepsilon \to 0$, we get that *u* satisfies (1.14) and (ii) follows. \Box

By Lemma [3.2,](#page-14-1) Lemma [3.3](#page-14-2) and the construction of solution of [\(1.6\)](#page-3-0) in Theorem [1.1](#page-4-0) we recover Lemma 2.9 of [\[HK2\]](#page-29-4) and have the following results.

Lemma 3.6 (cf. Lemma 2.9 of [\[HK2\]](#page-29-4)). *Let* $n \ge 3$, $0 < m \le \frac{n-2}{n}$ $\frac{-2}{n}$, 0 ≤ f ∈ L[∞](∂Ω × [0, ∞)) and $0 \le u_0 \in L^p_{loc}(\overline{\Omega} \setminus \{a_1, \cdots, a_{i_0}\})$ for some constant $p > \frac{n(1-m)}{2}$ 2 *. Suppose u is a solution of* [\(1.6\)](#page-3-0)*. Then for any* $0 < \delta' < \delta < \delta_0$ *and* $0 < t_1 < t_2 < T$ *there exist constants* $C > 0$ *and* $\theta > 0$ *such that* [\(3.9\)](#page-14-8) *holds.*

Lemma 3.7. *Let* $n \geq 3$, $0 < m \leq \frac{n-2}{n}$ $\frac{-2}{n}$, 0 ≤ *f* ∈ *L*[∞](∂Ω×[0, ∞)) and 0 ≤ *u*₀ ∈ *L*^{*p*}_{*loc*}($\overline{\Omega} \setminus \{a_1, \cdots, a_{i_0}\}\}$ *for some constant p* > $\frac{n(1-m)}{2}$ $\frac{2}{2}$. Suppose u is a solution of [\(1.6\)](#page-3-0). Then for any $0 < \delta' < \delta < \delta_0$ and $0 < t_1 < t_2 < T$ there exist constants $C > 0$ and $\theta > 0$ such that [\(3.10\)](#page-14-9) holds.

Lemma 3.8. *Let n* ≥ 3, 0 < *m* ≤ $\frac{n-2}{n}$ $\frac{-2}{n}$, 0 ≤ *f* ∈ *L*[∞](∂Ω×[0, ∞)) and 0 ≤ *u*₀ ∈ *L*^{*p*}_{*loc*}($\overline{\Omega} \setminus \{a_1, \cdots, a_{i_0}\}\}$ *for some constant p* > $\frac{n(1-m)}{2}$ $\frac{2}{2}$. Suppose *u* is a solution of [\(1.6\)](#page-3-0). Then for any $0 < \delta' < \delta < \delta_0$ there *exists a constant C* > 0 *depending only on p, m,* δ *and* δ ′ *such that* [\(3.1\)](#page-11-0) *holds.*

Remark 3.9. *By an argument similar to the proof of Theorem [1.1](#page-4-0) but with Theorem [3.5](#page-16-0) replacing Theorem [3.4](#page-14-0) in the proof we get Theorem [1.2.](#page-5-0)*

By Theorem [3.4,](#page-14-0) Theorem [3.5](#page-16-0) and the construction of solution of [\(1.6\)](#page-3-0) in Theorem [1.1](#page-4-0) we have the following corollaries.

Corollary 3.10. *Let* $n \ge 3$, $0 < m < \frac{n-2}{n}$ $\frac{-2}{n}$, 0 < δ₁ < min(1, δ₀) *and T*₁ > 0*. Let* 0 ≤ *u*_{0,1} ≤ *u*_{0,2} ∈ $L^p_{loc}(\overline{\Omega}\setminus\{a_1, \cdots, a_{i_0}\})$ *for some constant p* > $\frac{n(1-m)}{2}$ $\frac{-m}{2}$ and f_1 , $f_2 \in C^3(\partial\Omega \times (0, T_1)) \cap L^\infty(\partial\Omega \times (0, T_1))$ *be such that*

$$
f_2 \ge f_1 \ge 0 \quad on \ \partial\Omega \times (0, T_1)
$$

holds. Let $\widehat{\Omega}$ be given by [\(1.2\)](#page-1-1). Suppose $u_1, u_2 \in L^{\infty}_{loc}(\widehat{\Omega} \setminus \{a_1, \ldots, a_{i_0}\}) \times (0, T_1) \cap C^{2,1}(\widehat{\Omega} \times (0, T_1))$ *are the maximal solutions of* [\(1.6\)](#page-3-0) *in* $\widehat{\Omega} \times (0, T_1)$ *with* $f = f_1, f_2$ *and* $u_0 = u_{0,1}$, $u_{0,2}$ *respectively such that for any constants* $0 < T < T_1$ *and* $\delta_2 \in (0, \delta_1)$ *there exist constants* $C_1 = C_1(T) > 0$ *,* $C_2 = C_2(T) > 0$, such that

$$
\frac{C_1}{|x-a_i|^{\gamma_i}} \le u_j(x,t) \le \frac{C_2}{|x-a_i|^{\gamma_i'}} \quad \forall 0 < |x-a_i| < \delta_2, 0 < t < T, i = 1,2,\ldots,i_0, j = 1,2 \quad (3.35)
$$

holds for some constants γ*ⁱ ,* γ ′ $\hat{a}_{i'}$ *i* = 1, ..., *i*₀, satisfying [\(1.9\)](#page-4-5). Then [\(3.15\)](#page-14-5) holds for any $x \in \Omega$, $0 < t < T_1$.

Corollary 3.11. *Let* $n \ge 3$, $0 < m < \frac{n-2}{n}$ $\frac{-2}{n}$, $0 < \delta_1 < \min(1, \delta_0)$ and $T_1 > 0$. Let $0 \le u_{0,1} \le u_{0,2} \in$ $L_{loc}^p(\overline{\Omega} \setminus \{a_1, \cdots, a_{i_0}\})$ *for some constant* $p > \frac{n(1-m)}{2}$ $\frac{(-m)}{2}$ and $0 \le f_1 \le f_2 \in L^{\infty}(\partial\Omega \times (0,T_1))$ *. Let* $\widehat{\Omega}$ be given by [\(1.2\)](#page-1-1). Suppose $u_1, u_2 \in L^{\infty}_{loc}(\overline{\Omega} \setminus \{a_1, \ldots, a_{i_0}\}) \times (0, \infty)) \cap C^{2,1}(\overline{\Omega} \times (0, \infty))$ are the maximal *solutions of* [\(1.6\)](#page-3-0) *in* $\Omega \times (0, T_1)$ *with* $f = f_1$, f_2 *and* $u_0 = u_{0,1}$, $u_{0,2}$ *respectively which satisfy* [\(3.13\)](#page-14-3) *such that for any constants* $0 < T < T_1$ *and* $\delta_2 \in (0, \delta_1)$ *there exist constants* $C_1 = C_1(T) > 0$ *,* $C_2 = C_2(T) > 0$, such that [\(3.35\)](#page-20-0) holds for some constants γ_i , γ'_i $\gamma'_{i'}$ *i* = 1, ..., *i*₀, satisfying [\(1.8\)](#page-4-1). *Then* [\(3.15\)](#page-14-5) *holds for any* $x \in \Omega$, $0 < t < T_1$.

4 Asymptotic behaviour of blow-up solutions

In this section we will prove the asymptotic behaviour of the maximal finite blow-up points solutions.

Proof of Theorem [1.3](#page-5-1): For any $0 < \varepsilon < 1$, let $u_{0,\varepsilon}$, f_{ε} and u_{ε} as in the proof of Theorem [1.1.](#page-4-0) Then

$$
u(x,t) \le u_{\varepsilon}(x,t) \quad \forall x \in \Omega, t > 0. \tag{4.1}
$$

By an argument similar to the proof of Theorem 1.1 of [\[HK2\]](#page-29-4) for any $T > 0$, $\delta_2 \in (0, \delta_1)$, there exists constants $C_1 = C_1(\overline{T}) > 0$, $C_2 = C_2(T) > 0$, depending only on λ_1 , \cdots , λ_{i_0} , λ'_1 $\frac{1}{1}$ \cdots , λ_i' *i*₀, γ₁, ···, γ_{iο}, γ'₁ $'_{1'}\cdots, \gamma'_{i_1}$ α_{ij} , such that [\(1.10\)](#page-4-2) holds with $u = u_{\varepsilon}$ for all $0 < \varepsilon < 1$. For any $0 < \delta < \delta_0$, let Ω_δ be given by [\(1.3\)](#page-1-2). By [\(1.8\)](#page-4-1) and Lemma 3.2 of [\[HK2\]](#page-29-4) for any constants $0 < \delta < \delta_0$, $t_0 > 0$, there exists a constant $C_{\delta} > 0$ such that

$$
u_{\varepsilon}(x,t) \le C_{\delta} \quad \forall x \in \overline{\Omega_{\delta}} \times [t_0, \infty), 0 < \varepsilon < 1. \tag{4.2}
$$

Let $\{t_i\}_{i=1}^{\infty} \subset \mathbb{R}^+$ be a sequence such that $t_i \to \infty$ as $i \to \infty$. Let $u_i(x, t) = u(x, t + t_i)$ and $u_{\varepsilon,i} = u_{\varepsilon}^{\overline{i-1}}(x, t + t_i)$. Let ϕ_{ε} be the solution of [\(1.15\)](#page-5-5) with g^m being replaced by $g^m + \varepsilon^m$. By Theorem 1.5 of [\[HK2\]](#page-29-4) and [\(1.16\)](#page-5-8), [\(3.26\)](#page-17-0), [\(3.27\)](#page-17-1),

$$
u_{\varepsilon} \to \phi_{\varepsilon}^{\frac{1}{m}}
$$
 uniformly in $C^2(K)$ as $t \to \infty$ (4.3)

for any compact subset $K \subset \overline{\Omega} \setminus \{a_1, \ldots, a_{i_0}\}.$

We now divide the proof into three cases.

Case (i): $g > 0$ on $\partial\Omega$.

Since min_{∂Ω} *g* > 0, we can choose a constant $\mu_1 \in (0, \min_{\partial \Omega} g)$. Then by [\(1.16\)](#page-5-8) there exists a constant $T_0 > 0$ such that [\(1.11\)](#page-4-3) holds with $T_0' = \infty$. Let $T_1 > T_0$. Then by Theorem [1.1](#page-4-0) there exists a constant $\mu_2 \in (0, \mu_1)$ such that [\(1.12\)](#page-4-4) holds with $T'_0 = \infty$. By Theorem 1.5 of [\[HK2\]](#page-29-4), [\(1.16\)](#page-5-8), [\(1.11\)](#page-4-3) and [\(1.12\)](#page-4-4), [\(1.17\)](#page-5-4) holds for any compact subset *K* of $\overline{\Omega}\setminus\{a_1,\ldots,a_{i_0}\}\$ and (i) follows.

Case (ii): $g \neq 0$ on $\partial\Omega$ and [\(1.18\)](#page-5-6), [\(1.19\)](#page-5-7) holds.

Since $f_{\varepsilon} \ge \max(g, \varepsilon)$ and the function $\phi^{1/m} \in C^1(\overline{\Omega}) \cap C^{2,1}(\Omega)$ satisfy [\(1.24\)](#page-8-3) with $f = g$ and $u_0 = \phi$, by [\(1.18\)](#page-5-6), [\(1.19\)](#page-5-7) and Theorem [3.5,](#page-16-0)

$$
u_{\varepsilon}(x,t) \ge \phi(x)^{1/m} \quad \forall x \in \Omega, t > 0, 0 < \varepsilon < 1
$$

\n
$$
\Rightarrow u(x,t) \ge \phi(x)^{1/m} \quad \forall x \in \Omega, t > 0 \quad \text{as } \varepsilon \to 0. \tag{4.4}
$$

Since $\phi(x) > 0$ on Ω , by [\(4.1\)](#page-20-1), [\(4.2\)](#page-20-2) and [\(4.4\)](#page-21-0) for any $N > 0$ the equation [\(1.1\)](#page-0-0) for the sequence $\{u_i\}_{i\geq N}$ is uniformly parabolic on any compact subset of $K \subset \Omega \times [-N, N]$. Hence by the parabolic Schauder estimates [\[LSU\]](#page-29-13) the sequence $\{u_i\}_{i \geq N}$ is uniformly continuous in $C^2(K)$ for any compact subset of $K \subset \Omega \times [-N, N]$. Thus by [\(4.1\)](#page-20-1), [\(4.3\)](#page-20-3), [\(4.4\)](#page-21-0), the Ascoli Theorem and a diagonalization argument the sequence {*ui*} has a subsequence which we may assume without loss of generality to be the sequence itself that converges uniformly in $C^2(K)$ for any compact subset of $K \subset \Omega \times (-\infty, \infty)$ to a solution *v* of [\(1.1\)](#page-0-0) in $\Omega \times (-\infty, \infty)$ which satisfies

$$
\phi(x)^{1/m} \le v(x, t) \le \phi_{\varepsilon}(x)^{1/m} \quad \forall x \in \overline{\Omega}, t > 0
$$

\n
$$
\Rightarrow v(x, t) = \phi(x)^{1/m} \quad \forall x \in \overline{\Omega}, t > 0 \quad \text{as } \varepsilon \to 0
$$

\n
$$
\Rightarrow u(x, t_i) \to v(x, 0) = \phi(x)^{1/m} \quad \text{uniformly on } C^2(K) \quad \text{as } i \to \infty
$$

for any compact subset $K \subset \Omega$. Since the sequence $\{t_i\}$ is arbitrary, we get [\(1.17\)](#page-5-4) and (ii) follows.

Case (iii): $g = 0$ on $\partial\Omega$.

By [\(4.1\)](#page-20-1), [\(4.2\)](#page-20-2) and Theorem 1.1 of [\[S\]](#page-30-8) for any $N > 0$ the sequence $\{u_i\}_{i \ge N}$ is uniformly continuous in *K* for any compact subset of $K \subset \Omega \times [-N, N]$. Thus by [\(4.1\)](#page-20-1), [\(4.2\)](#page-20-2), Theorem 1.1 of [\[S\]](#page-30-8), the Ascoli Theorem and a diagonalization argument the sequence {*ui*} has a subsequence which we may assume without loss of generality to be the sequence itself that converges uniformly in *K* for any compact subset of $K \subset \Omega \times (-\infty, \infty)$ to a continuous function *v* which satisfies

$$
0 \le v(x, t) \le \psi_{\varepsilon}(x)^{1/m} \quad \forall x \in \Omega, -\infty < t < \infty
$$

\n
$$
\Rightarrow v(x, t) = 0 \qquad \forall x \in \Omega \quad \text{as } \varepsilon \to 0.
$$

Hence

$$
u(x, t_i) = u_i(x, 0) \to 0 \quad \text{as } i \to \infty.
$$

Since the sequence $\{t_i\}$ is arbitrary, we get [\(1.20\)](#page-6-3) and (iii) follows.

By an argument similar to the proof of Theorem [1.3](#page-5-1) but with Remark 3.7 of [\[HK2\]](#page-29-4) replacing Theorem 1.5 of [\[HK2\]](#page-29-4) in the argument Theorem [1.4](#page-6-0) follows.

5 Existence of finite blow-up solutions that blow-up at the lateral boundary

In this section we will construct a solution of [\(1.6\)](#page-3-0) with appropriate lateral boundary value such that the finite blow-up points solution will oscillate between two given harmonic functions as $t \to \infty$. We will also prove the existence of finite blow-up solutions that blow-up at the lateral boundary of the bounded cylindrical domain.

Proof of Theorem [1.5](#page-6-1): Let $f_1 = g_1$ and u_1 be the maximal solution of [\(1.6\)](#page-3-0) given by Theorem [1.2](#page-5-0) with $f = f_1$. For any $0 < \delta < \delta_0$, let D_δ be given by [\(1.3\)](#page-1-2). Let $t_0 = 0$ and $\delta_k = \delta_1/k$ for any $k \in \mathbb{Z}^+$. Then by Theorem [1.4](#page-6-0) there exists a constant $t_1 > 0$ such that

$$
|u_1(x,t) - \phi_1(x)| < 1 \quad \forall x \in D_{\delta_1}, \, t \ge t_1. \tag{5.1}
$$

Let $f_2(x, t) = g_1(x)$ for $0 < t \le t_1$ and $f_2(x, t) = g_2(x)$ for $t > t_1$. Let u_2 be the maximal solution of [\(1.6\)](#page-3-0) with $f = f_2$. Then by Theorem [1.4,](#page-6-0) there exists a constant $t_2 > t_1 + 1$ such that

$$
|u_2(x,t) - \phi_2(x)| < \frac{1}{2} \quad \forall x \in D_{\delta_2}, t \ge t_2. \tag{5.2}
$$

By repeating the above argument there exist sequences $\{t_i\}_{i=1}^{\infty}$, $t_i + 1 < t_{i+1}$ for all $i \in \mathbb{Z}^+$, $\{f_i\}_{i=1}^{\infty} \subset L^{\infty}(\partial \Omega)$, such that $\forall i \in \mathbb{Z}^+$,

$$
f_{2i+1}(x,t) = \begin{cases} g_1(x) & \forall x \in \partial\Omega, t \in \cup_{k=0}^{i-1} (t_{2k}, t_{2k+1}] \cup (t_{2i}, \infty) \\ g_2(x) & \forall x \in \partial\Omega, t \in \cup_{k=1}^{i} (t_{2k-1}, t_{2k}] \end{cases}
$$
(5.3)

and

$$
f_{2i}(x,t) = \begin{cases} g_2(x) & \forall x \in \partial\Omega, t \in \cup_{k=1}^{i-1} (t_{2k-1}, t_{2k}] \cup (t_{2i-1}, \infty) \\ g_1(x) & \forall x \in \partial\Omega, t \in \cup_{k=1}^{i} (t_{2k-2}, t_{2k-1}] \end{cases}
$$
(5.4)

and a sequence ${u_i}_{i=1}^{\infty}$ of maximal solutions of [\(1.6\)](#page-3-0) with $f = f_i$ that satisfies

$$
\begin{cases} |u_{2i+1}(x,t) - \phi_1(x)| < \frac{1}{2i+1} & \forall x \in D_{\delta_{2i+1}}, t \ge t_{2i+1}, i \in \mathbb{Z}^+\\ |u_{2i}(x,t) - \phi_2(x)| < \frac{1}{2i} & \forall x \in D_{\delta_{2i}}, t \ge t_{2i}, i \in \mathbb{Z}^+.\end{cases}
$$
(5.5)

Let *u* be the maximal solution of [\(1.6\)](#page-3-0) with

$$
f(x,t) = \begin{cases} g_1(x) & \forall x \in \partial\Omega, t \in \bigcup_{k=0}^{\infty} (t_{2k}, t_{2k+1}] \\ g_2(x) & \forall x \in \partial\Omega, t \in \bigcup_{k=1}^{\infty} (t_{2k-1}, t_{2k}]. \end{cases}
$$
(5.6)

Then by [\(5.3\)](#page-22-0), [\(5.4\)](#page-22-1) and [\(5.6\)](#page-22-2),

$$
f(x,t) = f_i(x,t) \quad \forall x \in \partial \Omega, t \in (0,t_i), i \in \mathbb{Z}^+.
$$
 (5.7)

Hence by Corollary [3.11,](#page-20-4)

$$
u(x,t) = u_i(x,t) \quad \forall x \in \partial \Omega, t \in (0,t_i], i \in \mathbb{Z}^+.
$$
 (5.8)

By [\(5.5\)](#page-22-3) and [\(5.8\)](#page-23-0),

$$
\begin{cases} |u(x,t_{2i+1}) - \phi_1(x)| < \frac{1}{2i+1} & \forall x \in D_{\delta_{2i+1}}, i \in \mathbb{Z}^+ \\ |u(x,t_{2i}) - \phi_2(x)| < \frac{1}{2i} & \forall x \in D_{\delta_{2i}}, i \in \mathbb{Z}^+.\end{cases}
$$

Since $D_{\delta_i} \subset D_{\delta_{i+1}}$ for all $i \in \mathbb{Z}^+$ and $\widehat{\Omega} = \cup_{i=1}^{\infty} D_{\delta_i}$, for any $0 < \varepsilon < 1$ and compact subset *K* of $\widehat{\Omega}$ there exists $k_0 \in \mathbb{Z}^+$, $k_0 > \varepsilon^{-1}$, such that

$$
K\subset D_{\delta_{k_0}}\subset D_{\delta_i}\quad\forall i\geq k_0.
$$

Hence

$$
\begin{cases} |u(x, t_{2i+1}) - \phi_1(x)| < \varepsilon \quad \forall x \in K, i \ge k_0 \\ |u(x, t_{2i}) - \phi_2(x)| < \varepsilon \quad \forall x \in K, i \ge k_0 \end{cases}
$$

and the theorem follows.

Proof of Theorem [1.6](#page-6-2): For any $0 < \delta < \delta_0$, let D_δ be given by [\(1.3\)](#page-1-2). For any $k \in \mathbb{Z}^+$, let u_k be the maximal solution of [\(1.6\)](#page-3-0) with $f = k$ given by Theorem [1.1](#page-4-0) which satisfies [\(1.14\)](#page-5-3) with *T*₂ = 0. By Lemma [3.7](#page-19-1) and Corollary [3.10,](#page-20-5) for any $0 < \delta < \min(1, \delta_0)$, $t'_0 > t_0 > 0$, there exists a constant $C_{\delta} > 0$ such that

$$
\begin{cases} u_1(x,t) \le u_k(x,t) \le u_{k+1}(x,t) & \forall x \in (\overline{\Omega} \setminus \{a_1,\ldots,a_{i_0}\}) \times (0,\infty), k \in \mathbb{Z}^+\\ u_k(x,t) \le C_\delta & \forall x \in D_\delta, t_0 \le t \le t'_0, k \in \mathbb{Z}^+.\end{cases} (5.9)
$$

By Theorem [1.1,](#page-4-0) for any $T > 0$ and $\delta_2 \in (0, \delta_1)$ there exist a constant $C_1 = C_1(T) > 0$ such that

$$
u_1(x,t) \ge \frac{C_1}{|x-a_i|^{\gamma_i}} \quad \forall 0 < |x-a_i| < \delta_2, 0 < t < T, i = 1, 2, ..., i_0.
$$
 (5.10)

On the other hand by the proof of Lemma 2.3 of [\[HK2\]](#page-29-4) there exists a constant $A_0 > 0$ such that

$$
u_k(x,t) \le \frac{A_0(1+t)^{\frac{1}{1-m}}}{|x-a_i|^{\gamma'_i}(\delta_1-|x-a_i|)^{\frac{2}{1-m}}}\quad \forall 0<|x-a_i|<\delta_1, i=1,\ldots,i_0, k\in\mathbb{Z}^+.
$$
 (5.11)

Let $\widehat{\Omega}$ be given by [\(1.2\)](#page-1-1). By [\(5.9\)](#page-23-1) the equation [\(1.1\)](#page-0-0) for the sequence $\{u_k\}_{k=1}^{\infty}$ is uniformly parabolic on any compact subset *K* of $\widehat{\Omega}$ × (0, ∞). Hence by the parabolic Schauder

estimates [\[LSU\]](#page-29-13) the sequence ${u_k}_{k=1}^{\infty}$ is uniformly continuous in $C^2(K)$ for any compact subset $K \subset \Omega \times (0, \infty)$. Thus by [\(5.9\)](#page-23-1), [\(5.10\)](#page-23-2), [\(5.11\)](#page-23-3), the Ascoli Theorem and a diagonalization argument the sequence $\{u_k\}_{k=1}^{\infty}$ has a subsequence which we may assume without loss of generality to be the sequence itself that increases and converges uniformly in *C* 2 (*K*) for any compact subset $K \subset \Omega \times (0, \infty)$ to a solution *u* of [\(1.1\)](#page-0-0) in $\Omega \times (0, \infty)$ which satisfies

$$
u(x,t) \ge \frac{C_1}{|x-a_i|^{\gamma_i}} \quad \forall 0 < |x-a_i| < \delta_2, 0 < t < T, i = 1, 2, ..., i_0,
$$
 (5.12)

$$
u(x,t) \le \frac{A_0(1+t)^{\frac{1}{1-m}}}{|x-a_i|^{y_i'}(\delta_1-|x-a_i|)^{\frac{2}{1-m}}}\quad \forall 0 < |x-a_i| < \delta_1, i=1,\ldots,i_0
$$
 (5.13)

and

$$
u_k \le u \quad \text{in } \Omega \times (0, \infty) \quad \forall k \in \mathbb{Z}^+ \tag{5.14}
$$

and *u* also satisfies [\(1.14\)](#page-5-3) with $T_2 = 0$.

By [\(5.12\)](#page-24-0) and [\(5.13\)](#page-24-1) *u* satisfies [\(1.10\)](#page-4-2) for some constants $C_1 > 0$, $C_2 > 0$. Now by (i) of Theorem [1.1,](#page-4-0) Corollary [3.10](#page-20-5) and [\(5.9\)](#page-23-1), for any $T_0 > 0$ there exists a constant $0 < \mu_{T_0} < 1$ such that

$$
u_k(x,t) \ge u_1(x,t) \ge \mu_{T_0} \quad \forall x \in (\overline{\Omega} \setminus \{a_1,\ldots,a_{i_0}\}) \times [T_0,\infty), k \in \mathbb{Z}^+.
$$
 (5.15)

By Lemma [3.6](#page-19-2) and [\(5.15\)](#page-24-2), for any $k \in \mathbb{Z}^+$ the equation [\(1.1\)](#page-0-0) for u_k is uniformly parabolic on any compact subset $K \subset (\overline{\Omega} \setminus \{a_1, \ldots, a_{i_0}\}) \times (0, \infty)$. Hence by the parabolic Schauder estimates [\[LSU\]](#page-29-13), $u_k \in C^{2,1}((\overline{\Omega} \setminus \{a_1, \ldots, a_{i_0}\}) \times (0, \infty))$ for any $k \in \mathbb{Z}^+$. Thus

$$
\lim_{\substack{(y,s)\to(x,t)\\(y,s)\in\Omega\times(0,\infty)}} u(y,s) \ge \lim_{\substack{(y,s)\to(x,t)\\(y,s)\in\Omega\times(0,\infty)}} u_k(y,s) = k \quad \forall (x,t) \in \partial\Omega \times (0,\infty)
$$
\n
$$
\Rightarrow \lim_{\substack{(y,s)\to(x,t)\\(y,s)\in\Omega\times(0,\infty)}} u(y,s) = \infty \qquad \forall (x,t) \in \partial\Omega \times (0,\infty) \quad \text{as } k \to \infty. \tag{5.16}
$$

We will now show that *u* has initial value u_0 . Since u_k has initial value u_0 for all $k \in \mathbb{Z}^+$, by Lemma 3.1 of [\[HP\]](#page-29-11) and a compactness argument for any $0 < \delta < \delta_0$ there exists a constant $C > 0$ depending on δ such that

$$
\int_{D_{\delta}} (u_k(x, t) - u_1(x, t)) dx \leq Ct^{1/(1-m)} \quad \forall t > 0, k \in \mathbb{Z}^+
$$
\n
$$
\Rightarrow \int_{D_{\delta}} (u(x, t) - u_1(x, t)) dx \leq Ct^{1/(1-m)} \quad \forall t > 0 \quad \text{as } k \to \infty. \tag{5.17}
$$

Hence by [\(5.17\)](#page-24-3),

$$
\int_{D_{\delta}} |u(x, t) - u_0(x)| dx \le \int_{D_{\delta}} (u(x, t) - u_1(x, t)) dx + \int_{D_{\delta}} |u_1(x, t) - u_0(x)| dx
$$

\n
$$
\le Ct^{1/(1-m)} + \int_{D_{\delta}} |u_1(x, t) - u_0(x)| dx \quad \forall t > 0
$$

\n
$$
\Rightarrow \lim_{t \to 0} \int_{D_{\delta}} |u(x, t) - u_0(x)| dx = 0 \quad \forall 0 < \delta < \delta_0.
$$
 (5.18)

Hence by [\(1.10\)](#page-4-2), [\(5.16\)](#page-24-4) and [\(5.18\)](#page-24-5), *u* is a solution of [\(1.21\)](#page-7-1).

We will now use a modification of the proof of Lemma 2.9 of [\[H1\]](#page-29-1) and Theorem 1.1 of [\[H2\]](#page-29-2) to show that *u* is the minimal solution of [\(1.21\)](#page-7-1). Suppose *v* is another solution of [\(1.21\)](#page-7-1). Let $0 < \psi \in C^{\infty}(\overline{\Omega} \setminus \{a_1, \cdots, a_{i_0}\})$ be as in the proof of Theorem [3.4](#page-14-0) and let E_j be given by [\(1.4\)](#page-1-3). Let $T > t_1 > 0$ and $k \in \mathbb{Z}^+$. By Lemma [3.6](#page-19-2) $u_k \in L^{\infty}_{loc}((\overline{\Omega} \setminus \{a_1, \ldots, a_{i_0}\} \times (0, \infty))$. Hence by a compactness argument there exists $j_0 \in \mathbb{Z}^+$, $j_0 > 1/\overset{\infty}{\delta}_0$, such that

$$
\inf_{\substack{x \in \Omega \setminus E_j \\ t_1 \le t \le T}} v(x, t) > \sup_{\substack{x \in \Omega \setminus E_j \\ t_1 \le t \le T}} u_k(x, t) \quad \forall j \ge j_0 \tag{5.19}
$$

where E_j is given by [\(1.4\)](#page-1-3). Since $v > 0$ in $\widehat{\Omega} \times (0, \infty)$ and satisfies [\(1.10\)](#page-4-2),

$$
v(x, t) \ge \overline{\mu}_{j_0} \quad \forall x \in E_{j_0}, t_1 \le t \le T \tag{5.20}
$$

for some constant $\overline{\mu}_{j_0} > 0$. Hence by [\(5.15\)](#page-24-2), [\(5.19\)](#page-25-0) and [\(5.20\)](#page-25-1),

$$
v(x,t) \ge \min(\overline{\mu}_{j_0}, \mu_{t_1}) > 0 \quad \forall x \in \Omega, t_1 \le t \le T. \tag{5.21}
$$

By [\(5.21\)](#page-25-2) and an argument similar to the proof of Theorem 1.1 of [\[H2\]](#page-29-2) and the proof of Theorem [3.4](#page-14-0) we get

$$
\int_{E_j} (u_k - v)_+(x, t)\psi(x) dx \le \int_{E_j} (u_k - v)_+(x, t_1)\psi(x) dx + C \int_{t_1}^t \int_{E_j} (u_k - v)_+\psi(x) dx dt \qquad (5.22)
$$

where $C > 0$ is some constant for any $t_1 \le t < T$, $j \ge j_0$. By [\(5.22\)](#page-25-3) and the Gronwall inequality,

$$
\int_{E_j} (u_k - v)_+(x, t)\psi(x) dx \leq \frac{e^{Ct}}{C} \int_{E_j} (u_k - v)_+(x, t_1)\psi(x) dx \quad \forall t_1 \leq t < T, j \geq j_0.
$$
 (5.23)

Letting $j \rightarrow \infty$ in [\(5.22\)](#page-25-3),

$$
\int_{\widehat{\Omega}} (u_k - v)_+(x, t)\psi(x) dx \le \frac{e^{Ct}}{C} \int_{\widehat{\Omega}} (u_k - v)_+(x, t_1)\psi(x) dx \quad \forall t_1 \le t < T. \tag{5.24}
$$

We now fix $0 < \delta_2 < \delta_1$. Then by [\(1.10\)](#page-4-2) and [\(5.19\)](#page-25-0), $\forall 0 < \delta < \delta_2$, $j > j_0$,

$$
\int_{\widehat{\Omega}} (u_k - v)_+(x, t_1)\psi(x) dx
$$
\n
$$
\leq \int_{\bigcup_{i=1}^{i_0} B_{\delta}(a_i)} u_k(x, t_1)\psi(x) dx + \int_{E_j \setminus \bigcup_{i=1}^{i_0} B_{\delta}(a_i)} |u_k(x, t_1) - u_0(x)|\psi(x) dx
$$
\n
$$
+ \int_{E_j \setminus \bigcup_{i=1}^{i_0} B_{\delta}(a_i)} |v(x, t_1) - u_0(x)|\psi(x) dx \quad \forall 0 < \delta < \delta_1
$$
\n
$$
\leq C_2 \sum_{i=1}^{i_0} \int_{\bigcup_{i=1}^{i_0} B_{\delta}(a_i)} |x - a_i|^{\alpha - \gamma'_i} dx + \int_{E_j \setminus \bigcup_{i=1}^{i_0} B_{\delta}(a_i)} |u_k(x, t_1) - u_0(x)|\psi(x) dx
$$
\n
$$
+ \int_{E_j \setminus \bigcup_{i=1}^{i_0} B_{\delta}(a_i)} |v(x, t_1) - u_0(x)|\psi(x) dx
$$
\n
$$
\leq C' \delta^{\alpha + n - \gamma'_i} + \int_{E_j \setminus \bigcup_{i=1}^{i_0} B_{\delta}(a_i)} |u_k(x, t_1) - u_0(x)|\psi(x) dx + \int_{E_j \setminus \bigcup_{i=1}^{i_0} B_{\delta}(a_i)} |v(x, t_1) - u_0(x)|\psi(x) dx \quad (5.25)
$$

for some constant *C'* > 0. Letting first $t_1 \rightarrow 0$ and then $\delta \rightarrow 0$, $j \rightarrow \infty$, in [\(5.25\)](#page-26-0),

$$
\lim_{t_1 \to 0} \int_{\widehat{\Omega}} (u_k - v)_+(x, t_1) \psi(x) \, dx = 0. \tag{5.26}
$$

Letting $t_1 \to 0$ in [\(5.24\)](#page-25-4), by [\(5.26\)](#page-26-1),

$$
\int_{\widehat{\Omega}} (u_k - v)_+(x, t)\psi(x) dx = 0 \quad \forall 0 < t < T, k \in \mathbb{Z}^+
$$

\n
$$
\Rightarrow u_k(x, t) \le v(x, t) \quad \forall x \in \widehat{\Omega}, 0 < t < T, k \in \mathbb{Z}^+
$$

\n
$$
\Rightarrow u(x, t) \le v(x, t) \quad \forall x \in \widehat{\Omega}, 0 < t < T \quad \text{as } k \to \infty.
$$

Since $T > 0$ is arbitrary,

$$
u(x,t) \le v(x,t) \quad \forall x \in \Omega, t > 0.
$$

Hence u is the minimal solution of (1.21) .

We will now prove that [\(1.22\)](#page-7-2) holds. We choose $\overline{\gamma}_1,\dots,\overline{\gamma}_{i_0}$, such that

$$
\frac{2}{1-m} < \widetilde{\gamma}_i < \min\left(\frac{n-2}{m}, \gamma_i\right) \quad \forall i = 1, \ldots, i_0.
$$

and let

$$
\widetilde{u}_0(x) = \begin{cases} u_0(x) & \forall x \in \Omega \setminus \cup_{i=1}^{i_0} B_{\delta_1}(a_i) \\ \lambda_i |x - a_i|^{-\widetilde{\gamma}_i} & \forall 0 < |x - a_i| < \delta_1, i = 1, \ldots, i_0. \end{cases}
$$

Then

$$
\widetilde{u}_0(x) \le u_0(x) \quad \text{ in } \widehat{\Omega}.
$$

For any $k \in \mathbb{Z}^+$, let v_k be the maximal solution of

$$
\begin{cases}\n u_t = \Delta u^m & \text{in } \Omega \times (0, \infty) \\
u = k & \text{on } \partial \Omega \times (0, \infty) \\
u(a_i, t) = \infty & \forall t > 0, i = 1, 2..., i_0 \\
u(x, 0) = \widetilde{u}_0(x) & \text{in } \Omega\n\end{cases}
$$

given by Theorem [1.1.](#page-4-0) Then by Corollary [3.10,](#page-20-5)

$$
v_k \le u_k \quad \text{ in } \widehat{\Omega} \times (0, \infty) \quad \forall k \in \mathbb{Z}^+.
$$

Since by Theorem [1.3,](#page-5-1)

$$
v_k(x, t) \to k \quad \text{uniformly on } \Omega_\delta \quad \text{as } t \to \infty \tag{5.28}
$$

for any $0 < \delta < \delta_0$ and $k \in \mathbb{Z}^+$, by [\(5.14\)](#page-24-6) and [\(5.27\)](#page-27-6),

$$
\liminf_{\substack{x \in \Omega_{\delta} \\ t \to \infty}} u(x, t) \ge k \quad \forall k \in \mathbb{Z}^+.
$$
\n(5.29)

for any $0 < \delta < \delta_0$. Letting $k \to \infty$ in [\(5.29\)](#page-27-7), we get [\(1.22\)](#page-7-2) and the theorem follows.

 \Box

References

- [A1] G. Akagi, *Stability of non-isolated asymptotic profiles for fast di*ff*usion*, Commun. Math. Phys. 345 (2016), 77–100.
- [A2] G. Akagi, *Rates of convergence to non-degenerate asymptotic profiles for fast di*ff*usion via energy methods*, [arXiv:2109.03960.](http://arxiv.org/abs/2109.03960)
- [Ar] D.G. Aronson, *The porous medium equation*, CIME Lectures in Some problems in Nonlinear Diffusion, Lecture Notes in Mathematics 1224, Springer-Verlag, New York, 1986.
- [ArP] D.G. Aronson and L.A. Peletier, *Large time behaviour of solutions of the porous medium equation in bounded domains*, J. Differential Equations 39 (1981), 378–412.
- [BH] J.G. Berryman and C.J. Holland, *Stability of the separable solution for fast di*ff*usion*, Arch. Rat. Mech. Anal. 74 (1980), 379–388.
- [BBDGV] A. Blanchet, M. Bonfonte, J. Dolbeault, G. Grillo and J.L. Vazquez, *Asymptotics of the fast di*ff*usion equation via entropy estimates*, Arch. Rat. Mech. Anal. 191 (2009), 347–385.
- [BF] M. Bonfonte and A. Figalli, *Sharp extinction rates for fast di*ff*usion equations on generic bounded domains*, Comm. Pure Applied Math. 74 (2021), 744-789.
- [BGV1] M. Bonfonte, G. Grillo and J.L. Vazquez, *Special fast di*ff*usion with slow asymptotics entropy method and flow on a Riemann manifold*, Arch. Rat. Mech. Anal. 196 (2010), 631–680.
- [BGV2] M. Bonfonte, G. Grillo and J.L. Vazquez, *Behaviour near extinction for the Fast Di*ff*usion Equation on bounded domains*, J. Math. Pures Appl. 97 (2012), 1–38.
- [BV1] M. Bonfonte and J.L. Vazquez, *Positivity, local smoothing, and Harnack inequalities for very fast di*ff*usion equations*, Advances in Math. 223 (2010), 529–578.
- [BV2] M. Bonfonte and J.L. Vazquez, *Global positivity estimates and Harnack inequalities for the fast di*ff*usion equation*, J. Functional Analysis 240 (2006), 399–428.
- [CaV] J.A. Carrillo and J.L. Vazquez, Fine asymptotics for fast diffusion equations, Comm. Partial Differential Equations 28 (2003), nos. 5 & 6, 1023–1056.
- [CL] B. Choi and K. Lee, *Multi-D fast di*ff*usion equation via di*ff*usive scaling of generalized Carleman kinetic equation*, [arXiv:1510.08997.](http://arxiv.org/abs/1510.08997)
- [CMS] B. Choi , R.J. Mccann and C. Seis, *Asymptotics near extinction for nonlinear fast di*ff*usion on a bounded domain*, arxiv: 2202.02769v2.
- [DaK] B.E.J. Dahlberg and C.E. Kenig, *Nonnegative solutions of the initial -Dirichlet probem for generalized porous medium equations in cylinders*, J. Amer. Math. Soc. 1 (1988), no. 2, 401–412.
- [DK] P. Daskalopoulos and C.E. Kenig, *Degenerate di*ff*usion-initial value problems and local regularity theory*, Tracts in Mathematics 1, European Mathematical Society, 2007.
- [DS1] P. Daskalopoulos and N. Sesum, *On the extinction profile of solutions to fast di*ff*usion*, J. Reine Angew. Math. 622 (2008), 95–119.
- [DS2] P. Daskalopoulos and N. Sesum, *The classification of locally conformally flat Yamabe solitons*, Advances in Math. 240 (2013), 346-369.
- [DiK] E. Dibenedetto and Y.C. Kwong, *Harnack estimates and extinction profile for weak solutions of certain singular parabolic equations*, Trans. Amer. Math. Soc. 330 (1992), no. 2, 783–811.
- [FeS] E. Feireisl and F. Simondon, *Convergence for degenerate parabolic equations*, J. Differential Equations 152 (1999), 439–466.
- [FrK] A. Friedman and S. Kamin, *The Asymptotic behavior of gas in an n-dimensional porous medium*, Trans. Amer. Math. Soc. 262 (1980), no. 2, 551–563.
- [FMTY] M. Fila, P. Mackov´a, J. Takahashi and E. Yanagida *Anisotopic and isotropic persistent singularities of solutions of the the fast di*ff*usion equation*, [arXiv:2111.08068.](http://arxiv.org/abs/2111.08068)
- [GMP] G. Grillo, M. Muratori and F. Punzo, *Fast diffusion on noncompact manifolds: wellposedness theory and connections with semilinear elliptic equations*, Trans. Amer. Math. Soc. 374 (2021), no. 9, 6367–6396.
- [GS] F. Golse and F. Salvarani, *The nonlinear di*ff*usion limit for generalized Carleman models: the initial-boundary value problem*, Nonlinearity 20 (2007), 927-942.
- [HP] M.A. Herrero and M. Pierre, *The Cauchy problem for* $u_t = \Delta u^m$ *when* $0 < m < 1$, Transactions A. M. S. 291 (1985), no. 1, 145–158.
- [Hs] S.Y. Hsu, *Existence and asymptotic behaviour of solutions of the very fast di*ff*usion equation*, Manuscripta Math. 140 (2013), no. 3-4, 441-460.
- [H1] K.M. Hui, *Singular limit of solutions of the very fast di*ff*usion equation*, Nonlinear Analysis 68 (2008), 1120–1147.
- [H2] K.M. Hui, *Uniqueness and time oscillating behaviour of finite points blow-up solutions of the fast di*ff*usion equation*, Proceedings of the Royal Society of Edinburgh Section A: Mathematics 150 (2020), no. 6, 2849–2870.
- [HK1] K.M. Hui and S. Kim, *Existence of Neumann and singular solutions of the fast di*ff*usion equation*, Discrete Contin. Dyn. Syst. Series-A 35 (2015), no. 10, 4859-4887.
- [HK2] K.M. Hui and S. Kim, *Existence and large time behaviour of finite points blow-up solutions of the fast di*ff*usion equation*, Calc. Var. Partial Differential Equations 57 (2018), no. 5, Paper No. 112, 39 pp.
- [JX] T. Jin and J. Xiong, *Singular extinction profiles of solutions to some fast di*ff*usion equations*, J. Functional Analysis 283, issue 7 (2022), 109595.
- [K] Y.C. Kwong, *Boundary behavior of the fast di*ff*usion equation*, Trans. Amer. Math. Soc. 322 (1990), no. 1, 263–283.
- [LSU] O.A. Ladyzenskaya, V.A. Solonnikov and N.N. Uraltceva, *Linear and quasilinear equations of parabolic type*, Transl. Math. Mono. vol. 23, Amer. Math. Soc., Providence, R.I., U.S.A., 1968.
- [LZ] T. Luo and H. Zeng, *Global existence and smooth solutions and convergence to Barenblatt solutions for the physical vacuum free boundary problem of compressible Euler equations with damping*, Commun. on Pure and Applied Math. 69 (2016), no. 7, 1354–1396.
- [PD] M. del Pino and J. Dolbeault, *Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear di*ff*usions*, J. Math. Pures Appl. 81 (2002), 847–875.
- [PS] M. del Pino and M. Sáez, *On the extinction profile for solutions of* $u_t = \Delta u^{(N-2)/(N+2)}$, Indiana Univ. Math. J. 50 (2001), no. 1, 611-628.
- [S] P.E. Sacks, *Continuity of solutions of a singular parabolic equation*, Nonlinear Analysis TMA 7 (1983), no. 4, 378–409.
- [TY] J. Takahashi and H. Yamamoto, *Infinite-time incompleteness of noncompact Yamabe flow*, [arXiv:2111.03222v](http://arxiv.org/abs/2111.03222)1.
- [V1] J.L. Vazquez, *Asymptotic behaviour for the porous medium equation posed in the whole space*, J. Evol. Equ. 3 (2003), 67–118.
- [V2] J.L. Vazquez, *The Dirichlet problem for the porous medium equation in bounded domains. Asymptotic behavior*, Monatsh. Math. 142 (2004), 81-111.
- [V3] J.L. Vazquez, *Smoothing and Decay Estimates for Nonlinear Di*ff*usion Equations*, Oxford Lecture Series in Mathematics and its Applications 33, Oxford University Press, Oxford, 2006.
- [V4] J.L. Vazquez, *The porous medium equation. Mathematical theory.* Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007. xxii+624 pp.
- [VW1] J.L. Vazquez and M. Winkler, *The evolution of singularities in fast di*ff*usion equations: infinite-time blow-down*, SIAM J. Math. Anal. 43 (2011), no. 4, 1499-1535.
- [VW2] J.L. Vazquez and M. Winkler, *Highly time-oscillating solutions for very fast di*ff*usion equations.* J. Evol. Equ. 11 (2011), no. 3, 725-742.