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Abstract

Let n ≥ 3, 0 < m < n−2
n , i0 ∈ Z

+, Ω ⊂ Rn be a smooth bounded domain,

a1, a2, . . . , ai0 ∈ Ω, Ω̂ = Ω \ {a1, a2, . . . , ai0 }, 0 ≤ f ∈ L∞(∂Ω) and 0 ≤ u0 ∈ L
p

loc
(Ω̂) for some

constant p > n(1−m)
2 which satisfies λi|x − ai|

−γi ≤ u0(x) ≤ λ′
i
|x − ai|

−γ′
i ∀0 < |x − ai| < δ,

i = 1, . . . , i0 where δ > 0, λ′
i
≥ λi > 0 and 2

1−m < γi ≤ γ
′
i
< n−2

m ∀i = 1, 2, . . . , i0 are con-
stants. We will prove the asymptotic behaviour of the finite blow-up points solution u

of ut = ∆um in Ω̂ × (0,∞), u(ai, t) = ∞ ∀i = 1, . . . , i0, t > 0, u(x, 0) = u0(x) in Ω̂ and u = f
on ∂Ω× (0,∞), as t→∞. We will construct finite blow-up points solution in bounded
cylindrical domain with appropriate lateral boundary value such that the finite blow-
up points solution oscillates between two given harmonic functions as t→∞. We will

also prove the existence of the minimal solution of ut = ∆um in Ω̂×(0,∞), u(x, 0) = u0(x)

in Ω̂, u(ai, t) = ∞ ∀t > 0, i = 1, 2 . . . , i0 and u = ∞ on ∂Ω × (0,∞).

Keywords: finite blow-up points solutions, fast diffusion equation, asymptotic be-
haviour, blow-up at boundary
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1 Introduction

Recently there is a lot of study on the properties of the fast diffusion equation,

ut = ∆um (1.1)
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with 0 < m < 1 by P. Daskalopoulos, M. Fila, S.Y. Hsu, K.M. Hui, T. Jin, S. Kim, Y.C. Kwong,
P. Macková, M. del Pino, M. Sáez, N. Sesum, J. Takahashi, J.L. Vazquez, H. Yamamoto,
E. Yanagida, M. Winkler and J. Xiong, etc. [DS1], [DS2], [FMTY], [H1], [H2], [HK1], [HK2],
[Hs], [JX], [K], [PS], [TY], [VW1], [VW2]. The equation (1.1) arises in many physical models
and in geometry. When m > 1, (1.1) is called the porous medium equation which arises
in the modelling of gases passing through porous media and oil passing through sand
[Ar]. (1.1) also arises as the diffusive limit for the generalized Carleman kinetic equation
[CL], [GS], and as the large time asymptotic limit of the solution of the free boundary
compressible Euler equation with damping [LZ]. When m = 1, it is the heat equation.
When the dimension n ≥ 3 and m = n−2

n+2
, (1.1) arises in the study of the Yamabe flow [DS1],

[DS2], [PS].
Various fundamental results in Rn for the equation (1.1) are obtained recently by

A. Friedman and S. Kamin [FrK], and M. Bonfonte, J. Dolbeault, G. Grillo, M. del Pino and
J.L. Vazquez [BBDGV], [BGV1], [BV1], [BV2], [CaV], [PD], [V1]. Results for the equation
(1.1) in bounded domains are also obtained by D.G. Aronson and L.A. Peletier [ArP],
B.E.J. Dahlberg and C.E. Kenig [DaK], E. Dibenedetto and Y.C. Kwong [DiK], E. Feireisl
and F. Simondon [FeS], M. Bonfonte, G. Grillo and J.L. Vazquez [BGV2], [V2]. We refer
the readers to the books by P. Daskalopoulos and C.E. Kenig [DK] and J.L. Vazquez [V3],
[V4], for some recent results on the equation (1.1).

LetΩ ⊂ Rn be a smooth bounded domain, i0 ∈ Z
+, a1, a2, . . . , ai0 ∈ Ω and

Ω̂ = Ω \ {a1, a2, . . . , ai0}. (1.2)

Let δ0 =
1
3

min1≤i, j≤i0

(
dist(ai, ∂Ω),

∣∣∣ai − a j

∣∣∣
)
. For any δ > 0, let

Ωδ = Ω \
(
∪

i0
i=1

Bδ(ai)
)

and Dδ = {x ∈ Ωδ : dist (x, ∂Ω) > δ}. (1.3)

For any j ∈ Z+, let

E j = {x ∈ Ω̂ : dist (x, ∂Ω) > 1/ j} (1.4)

and j0 ∈ Z
+ be such that j0 > 1/δ0.

When n ≥ 3 and n−2
n
< m < 1, existence of positive smooth solution of the Cauchy

problem, {
ut =∆um in Rn × (0,∞)

u(x, 0) =u0(x) in Rn (1.5)

for any 0 ≤ u0 ∈ L1
loc

(Rn), u0 , 0, was proved by M.A. Herrero and M. Pierre in [HP]. This
implies that the diffusion for the solution of (1.5) when m < 1 must be very fast so that for
any t > 0 the solution u(x, t) is positive everywhere even though the initial value u0 may
only have compact support in Rn.

When m > 1, the Barenblatt solution

B(x, t) = t−α
(
C1 −

α(m − 1)|x|2

2mntα/n

) 1
m−1

+

, x ∈ Rn, t > 0
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where α = n
n(m−1)+2

and C1 > 0 is any constant is a solution of (1.1) inRn × (0,∞). Note that

the Barenblatt solution B(x, t) has compact support for any t > 0 and the diffusion for the
solution of (1.1) when m > 1 is slow. Hence the behaviour of the solution of (1.1) is very
different for m < 1 and m > 1.

Uniqueness of solutions of (1.5) for the case 0 < m < 1 and n ≥ 1 was also proved in
[HP]. This result was later extended by G. Grillo, M. Muratori and F. Punzo [GMP], to the
uniqueness of the strong solution of the equation

{
ut =∆um in M × (0,∞)

u(x, 0) =u0(x) in M

on a Riemannian manifold M whose Ricci curvatures satisfies some lower bound condi-
tion. Note that in the uniqueness theorems of [HP] and [GMP] the solutions considered
are strong solutions. That is the solution u satisfies

ut ∈ L1
loc(R

n × (0,∞)) in [HP]

and
ut ∈ L1

loc(M × (0,∞)) in [GMP].

However in the comparison results (Theorem 3.4 and Theorem 3.5) that we will prove in
this paper the subsolutions and the supersolutions that we consider are C2,1(Rn × (0,T))
functions and the condition ut ∈ L1

loc
(Rn × (0,T)) is automatically satisfied.

Asymptotic behaviour of the solution of



ut =∆um in Ω × (0,T)

u =0 on ∂Ω × (0,T)

u(x, 0) =u0(x) in Ω

which vanishes at time T > 0 where 0 < m < 1, n ≥ 3 and u0 ≥ 0 is a function on Ω was
studied by G. Akagi [A1], [A2], J.G. Berryman and C.J. Holland [BH], B. Choi , R.J. Mccann

and C. Seis [CMS], etc. Let µ0 > 0, µ0 ≤ f1 ∈ C1(Ω) and µ0 ≤ v0 ∈ C2(Ω \ {a1}) satisfies

λ1|x − a1|
−γ1 ≤ v0(x) ≤ λ′1|x − a1|

−γ′
1 ∀Ω \ {a1}

for some constants λ′
1
≥ λ1 > 0, γ′

1
≥ γ1 >

2
1−m

. When n ≥ 3 and 0 < m ≤ n−2
n

, existence and
asymptotic large time behaviour of the Dirichlet blow-up solution of



ut =∆um in (Ω \ {a1}) × (0,∞)

u = f1 on ∂Ω × (0,∞)

u(a1, t) =∞ ∀t > 0

u(x, 0) =v0(x) in Ω \ {a1}
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has been proved by J.L. Vazquez and M. Winkler in [VW1], [VW2]. When n ≥ 3 and
0 < m < n−2

n
, existence of finite blow-up points solution of



ut =∆um in Ω̂ × (0,∞)

u = f on ∂Ω × (0,∞)

u(ai, t) =∞ ∀t > 0, i = 1, 2 . . . , i0

u(x, 0) =u0(x) in Ω̂

(1.6)

for any 0 ≤ f ∈ L∞(∂Ω×(0,∞)) and 0 ≤ u0 ∈ L
p

loc
(Ω\{a1, . . . , ai0}) for some constant p > n(1−m)

2

which satisfies
u0(x) ≥ λi|x − ai|

−γi ∀|x − ai| < δ1, i = 1, . . . , i0

for some constants 0 < δ1 < δ0, λi > 0 and γi >
2

1−m
for any i = 1, . . . , i0, has been proved

by K.M. Hui and S. Kim [HK2]. When n ≥ 3, 0 < m < n−2
n

and f , u0, also satisfy f ≥ µ0 and
u0 ≥ µ0 for some constant µ0 > 0 and

u0(x) ≤ λ′i |x − ai|
−γ′

i ∀|x − ai| < δ1, i = 1, . . . , i0

for some constants λ′
i
≥ λi > 0, γ′

i
≥ γi >

2
1−m

, i = 1, . . . , i0, asymptotic large time behaviour
of the finite blow-up points solution of (1.6) has been proved by K.M. Hui and S. Kim in
[HK2] and [H2].

When n ≥ 3 and 0 < m ≤ n−2
n

, existence of finite blow-up points solutions of (1.1) in
bounded cylindrical domains was also proved by K.M. Hui and Sunghoon Kim in [HK1]
using a different method when the initial value u0 satisfies

u0(x) ≈ |x − ai|
−γi for x ≈ ai ∀i = 1, 2, . . . , i0

for some constants γi > max
(

n
2m
, n−2

m

)
, i = 1, 2, . . . , i0.

Outline of our results:

• We improve the existence theorems of [HK2] (Theorem 1.1 and Theorem 1.2 of [HK2])
to the existence of unique maximal solutions of (1.6) (Theorem 1.1 and Theorem 1.2).

• We extend the comparison theorems of [H2] (Theorem 1.1 and Theorem 1.2 of [H2])
by removing the requirement that the boundary values and the initial values must
be larger than some positive constant (Theorem 3.4 and Theorem 3.5).

• We extend the asymptotic large time behaviour of the finite blow-up points solutions
results of [HK2] and [H2] by removing the requirement that the boundary value f
and the initial value u0 must be larger than some positive constant (Theorem 1.3
and Theorem 1.4). More precisely we prove the asymptotic large time behaviour of
the finite blow-up points solution of (1.6) (Theorem 1.3 and Theorem 1.4) for any

0 ≤ f ∈ L∞(∂Ω × (0,∞)) and 0 ≤ u0 ∈ L
p

loc
(Ω \ {a1, . . . , ai0}) for some constant p > n(1−m)

2

which satisfies

λi

|x − ai|γi
≤ u0(x) ≤

λ′
i

|x − ai|
γ′

i

∀0 < |x − ai| < δ1, i = 1, · · · , i0 (1.7)

4



for some constants 0 < δ1 < δ0, λ1, · · · , λi0 , λ
′
1
, · · · , λ′

i0
∈ R+ and

2

1 −m
< γi ≤ γ

′
i <

n − 2

m
∀i = 1, 2, . . . , i0. (1.8)

• In the paper [H2] K.M. Hui constructed a solution of (1.6) which oscillates between
some fixed positive number and infinity as t → ∞. A natural question to ask is
whether there exist solutions of (1.6) which oscillate between some functions on
Ω. We answer this question in the affirmative. We will construct (Theorem 1.5) a
solution of (1.6) with appropriate lateral boundary value such that the solution of
(1.6) will oscillate between two given harmonic functions as t→∞.

• We will prove the existence of minimal finite blow-up points solutions of (1.1) in
bounded cylindrical domains (Theorem 1.6) which also blow-up everywhere on the
lateral boundary of the domain. Asymptotic large time behaviour of such solution
is also prove in Theorem 1.6.

More precisely we obtain the following results. The first four theorems are extensions
of Theorem 2.3, Theorem 2.4 of [H2] and Theorem 1.5 of [HK2].

Theorem 1.1. Let n ≥ 3, 0 < m < n−2
n

, 0 < δ1 < min(1, δ0), 0 ≤ f ∈ C3(∂Ω× (0,∞))∩L∞(∂Ω×

(0,∞)) and 0 ≤ u0 ∈ L
p

loc
(Ω \ {a1, · · · , ai0}) for some constant p > n(1−m)

2
be such that (1.7) holds

for some constants

γ′i ≥ γi >
2

1 −m
∀i = 1, 2, . . . , i0 (1.9)

and λ1, · · · , λi0 , λ
′
1
, · · · , λ′

i0
∈ R+. Let Ω̂ be given by (1.2). Then there exists a unique maximal

solution u of (1.6) such that for any constants T > 0 and δ2 ∈ (0, δ1) there exist constants
C1 = C1(T) > 0, C2 = C2(T) > 0, depending only on λ1, · · · , λi0 , λ

′
1
, · · · , λ′

i0
, γ1, · · · , γi0 , γ

′
1
, · · · ,

γ′
i0

, such that

C1

|x − ai|γi
≤ u(x, t) ≤

C2

|x − ai|
γ′

i

∀0 < |x − ai| < δ2, 0 < t < T, i = 1, 2, . . . , i0 (1.10)

holds. Moreover the following holds.

(i) If there exist constants T′0 > T0 > 0 and µ1 > 0 such that

f ≥ µ1 on ∂Ω × [T0,T
′
0), (1.11)

then for any T1 ∈ (T0,T′0) there exists a constant µ2 ∈ (0, µ1) such that

u(x, t) ≥ µ2 ∀x ∈ Ω̂,T1 ≤ t < T′0. (1.12)

5



(ii) If there exists a constant T2 ≥ 0 such that

f (x, t) is monotone decreasing in t on ∂Ω × (T2,∞), (1.13)

then u satisfies

ut ≤
u

(1 −m)(t − T2)
in Ω̂ × (T2,∞). (1.14)

Theorem 1.2. Let n ≥ 3, 0 < m < n−2
n

, 0 < δ1 < min(1, δ0), 0 ≤ f ∈ L∞(∂Ω × (0,∞)) and

0 ≤ u0 ∈ L
p

loc
(Ω \ {a1, · · · , ai0}) for some constant p > n(1−m)

2
be such that (1.7) holds for some

constants γi, γ′i , i = 1, . . . , i0, satisfying (1.8) and λ1, · · · , λi0 , λ
′
1
, · · · , λ′

i0
∈ R+. Let Ω̂ be given

by (1.2). Then there exists a unique maximal solution u of (1.6) such that for any constants T > 0
and δ2 ∈ (0, δ1) there exist constants C1 = C1(T) > 0, C2 = C2(T) > 0, depending only on λ1, · · · ,
λi0 , λ

′
1
, · · · , λ′

i0
, γ1, · · · , γi0 , γ

′
1
, · · · , γ′

i0
, such that (1.10) holds. Moreover the following holds.

(i) If there exists constants T′0 > T0 > 0 and µ1 > 0 such that (1.11) holds, then for any
T1 ∈ (T0,T′0) there exists a constant µ2 ∈ (0, µ1) such that (1.12) holds.

(ii) If there exists a constant T2 ≥ 0 such that (1.13) holds, then u satisfies (1.14).

Theorem 1.3. Let n ≥ 3 and 0 < m < n−2
n

. Let 0 ≤ g ∈ C3(∂Ω) and φ be the solution of

{
∆φ = 0 inΩ

φ = gm on ∂Ω.
(1.15)

Let 0 ≤ u0 ∈ L
p

loc

(
Ω \

{
a1, · · · , ai0

})
for some constant p > n(1−m)

2
be such that (1.7) holds for some

constants γi, γ′i , i = 1, . . . , i0, satisfying (1.8) and 0 < δ1 < min(1, δ0), λ1, · · · , λi0 , λ
′
1
, · · · ,

λ′
i0
∈ R+. Let f ∈ C3(∂Ω × (0,∞))) ∩ L∞(∂Ω × (0,∞))) be such that

f → g uniformly in C3 (∂Ω) as t→∞. (1.16)

Let Ω̂ be given by (1.2). Let u be the unique maximal solution of (1.6) given by Theorem 1.1. Then
the following holds.

(i) If g > 0 on ∂Ω, then

u(x, t)→ φ
1
m uniformly in C2(K) as t→∞ (1.17)

holds for any compact subset K of Ω \ {a1, . . . , ai0}.

(ii) If g . 0 on ∂Ω,
f ≥ g on ∂Ω × (0,∞) (1.18)

and
u0 ≥ φ

1
m on Ω̂ (1.19)

holds, then (1.17) holds for any compact subset K of Ω̂.

6



(iii) If g ≡ 0 on ∂Ω, then

u(x, t)→ 0 uniformly in K as t→∞ (1.20)

for any compact subset K of Ω̂.

Theorem 1.4. Let n ≥ 3 and 0 < m < n−2
n

. Let 0 ≤ g ∈ C(∂Ω) and φ be the solution of (1.15).

Let 0 ≤ u0 ∈ L
p

loc

(
Ω \

{
a1, · · · , ai0

})
for some constant p > n(1−m)

2
be such that (1.7) holds for some

constants γi, γ′i , i = 1, . . . , i0, satisfying (1.8) and 0 < δ1 < min(1, δ0), λ1, · · · , λi0 , λ
′
1
, · · · ,

λ′
i0
∈ R+. Let f ∈ L∞(∂Ω × (0,∞))) be such that

f → g uniformly in L∞ (∂Ω) as t→∞.

Let Ω̂ be given by (1.2). Let u be the unique maximal solution of (1.6) given by Theorem 1.2. Then
the following holds.

(i) If g > 0 on ∂Ω, then (1.17) holds for any compact subset K of Ω̂.

(ii) If g . 0 on ∂Ω and both (1.18) and (1.19) holds, then (1.17) holds for any compact subset K

of Ω̂.

(iii) If g ≡ 0 on ∂Ω, then (1.20) holds for any compact subset K of Ω̂.

Theorem 1.5. Let n ≥ 3 and 0 < m < n−2
n

. Let g1, g2 ∈ C(∂Ω), g2 > 0, g1 > 0, and φ1, φ2, be the
solutions of (1.15) with g = g1, g2, respectively. Let

0 < µ0 < min
(
min
∂Ω

g1,min
∂Ω

g2

)

be a constant. Let 0 ≤ u0 ∈ L
p

loc

(
Ω \

{
a1, · · · , ai0

})
for some constant p > n(1−m)

2
be such that (1.7)

holds for some constants γi, γ′i , i = 1, . . . , i0, satisfying (1.8) and 0 < δ1 < min(1, δ0), λ1, · · · , λi0 ,

λ′
1
, · · · , λ′

i0
∈ R+. Let Ω̂ be given by (1.2). Then there exist a function f ∈ L∞(∂Ω × (0,∞))) and

an increasing sequence {ti}
∞
i=1

, ti → ∞ as i → ∞, such that if u is the maximal solution of (1.6)
given by Theorem 1.2, then


u(x, t2i−1)→ φ

1
m

1
in C2(K) as i→∞

u(x, t2i)→ φ
1
m

2
in C2(K) as i→∞

for any compact subset K of Ω̂.

Theorem 1.6. Let n ≥ 3, 0 < m < n−2
n

, 0 < δ1 < min(1, δ0) and 0 ≤ u0 ∈ L
p

loc
(Ω\{a1, · · · , ai0}) for

some constant p > n(1−m)

2
be such that (1.7) holds for some constants γi, γ′i , i = 1, . . . , i0, satisfying

7



(1.9) and λ1, · · · , λi0 , λ
′
1
, · · · , λ′

i0
∈ R+. Then there exists a unique minimal solution u of



ut =∆um in Ω̂ × (0,∞)

u =∞ on ∂Ω × (0,∞)

u(ai, t) =∞ ∀t > 0, i = 1, 2 . . . , i0

u(x, 0) =u0(x) in Ω̂

(1.21)

such that for any constants T > 0 and δ2 ∈ (0, δ1) there exist constants C1 = C1(T) > 0,
C2 = C2(T) > 0, depending only on λ1, · · · , λi0 , λ

′
1
, · · · , λ′

i0
, γ1, · · · , γi0 , γ

′
1
, · · · , γ′

i0
, such that

(1.10) holds. Moreover u satisfies (1.14) with T2 = 0 and

u(x, t)→∞ uniformly onΩδ as t→∞ ∀0 < δ < δ0. (1.22)

Remark 1.7. The integrability condition 0 ≤ u0 ∈ L
p

loc
(Ω \ {a1, · · · , ai0}) for some constant

p > n(1−m)

2
is necessary since this condition together with f ∈ L∞(∂Ω × (0,∞)) implies that the

solution u of (1.6) locally satisfies a L∞ − Lp regularizing result in terms of the local Lp norm of
the initial value u0 and L∞ norm of f (Lemma 3.2 and Lemma 3.3).

Remark 1.8. In the proof of Theorem 1.1 and Theorem 1.2 we will construct the solution of (1.6)
as the limit of a monotone decreasing sequence of solutions of


ut =∆um in Ω̂ × (0,∞)

u(ai, t) =∞ ∀t > 0, i = 1, 2 . . . , i0

(1.23)

which have initial values strictly greater than u0 and lateral boundary values strictly greater than
f . Since there is comparison results (Theorem 3.4 and Theorem 3.5) between any solution of (1.6)
and this monotone decreasing sequence of solutions of (1.23). Hence this constructed solution
of (1.6) must be maximal solution of (1.6) by comparison argument. On the other hand if we
construct solution of (1.6) as the limit of a monotone increasing sequence of solutions of (1.23)
which have initial values less than u0 and lateral boundary values less than f . Since there is no
comparison result between any solution of (1.6) and this monotone increasing sequence of solutions
of (1.23). Hence it is not clear whether minimal solution of (1.6) exists.

The plan of the paper is as follows. For the readers’ convenience in section 2 we recall
some results of [H1], [H2] and [HK2] that is cited in this paper. In section 3 we will prove
Theorem 1.1 and Theorem 1.2. We will prove Theorem 1.3 and Theorem 1.4 in section 4.
We will prove Theorem 1.5 and Theorem 1.6 in section 5. Unless stated otherwise we will
assume that n ≥ 3 and 0 < m < n−2

n
for the rest of the paper.

We start with some definitions. For any a ∈ R+, let a+ = max(a, 0).

Definition 1.9. For any t2 > t1, we say that u is a solution (subsolution, supersolution respec-
tively) of (1.1) inΩ × (t1, t2) if u ∈ C2,1(Ω × (t1, t2)) is positive inΩ × (t1, t2) and satisfies

ut = ∆um inΩ × (t1, t2) (≤,≥, respectively).

8



Definition 1.10. For any 0 ≤ f ∈ L∞(∂Ω × (0,T)) and 0 ≤ u0 ∈ L1
loc

(Ω), we say that u is a
solution (subsolution, supersolution respectively) of



ut = ∆um inΩ × (0,T)

u = f on ∂Ω × (0,T)

u(x, 0) = u0(x) inΩ.

(1.24)

if u is a solution (subsolution, supersolution respectively) of (1.1) inΩ × (0,T) which satisfies

‖u(·, t) − u0‖L1(Ω) → 0 as t→ 0

and the boundary condition is satisfied in the sense that

∫ t2

t1

∫

Ω

(uηt + um
∆η) dx dt =

∫ t2

t1

∫

∂Ω

f m
∂η

∂ν
dσ dt +

∫

Ω

uη dx

∣∣∣∣∣
t2

t1

(≥,≤ respectively) holds for any 0 < t1 < t2 < T and η ∈ C2
c (Ω × (0,T)) satisfying η = 0 on

∂Ω × (0,T).

Definition 1.11. For any T > 0, 0 ≤ f ∈ L∞(∂Ω × (0,T)) and 0 ≤ u0 ∈ L1
loc

(Ω̂) where Ω̂ is given
by (1.2), we say that u is a solution (subsolution, supersolution respectively) of



ut = ∆um in Ω̂ × (0,T)

u(x, t) = f on ∂Ω × (0,T)

u(x, 0) = u0(x) in Ω̂.

(1.25)

if u is a solution (subsolution, supersolution respectively) of (1.1) in Ω̂ × (0,T) which satisfies

‖u(·, t) − u0‖L1(K) → 0 as t→ 0 (1.26)

for any compact set K ⊂ Ω \
{
a1, · · · , ai0

}
and

∫ t2

t1

∫

Ω̂

(
uηt + um

∆η
)

dxdt

=

∫ t2

t1

∫

∂Ω

f m
∂η

∂ν
dσdt +

∫

Ω̂

u(x, t2)η(x, t2) dx −

∫

Ω̂

u(x, t1)η(x, t1) dx

(≥,≤ respectively) for any 0 < t1 < t2 < T and η ∈ C2
c ((Ω \

{
a1, · · · , ai0

}
)× (0,T)) satisfying η ≡ 0

on ∂Ω × (0,T).

Definition 1.12. We say that u is a solution (subsolution, supersolution respectively) of (1.6) if
u is a solution (subsolution, supersolution respectively) of (1.25) and

u(x, t)→∞ as x→ ai ∀t > 0, i = 1, . . . , i0. (1.27)
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Definition 1.13. We say that u is a maximal solution of (1.6) if u is a solution of (1.6) and for

any solution v of (1.6), v ≤ u in Ω̂ × (0,T).

Definition 1.14. We say that u is a solution of (1.21) if u is a solution of (1.1) in Ω̂ × (0,∞)

which satisfies (1.26) for any compact set K ⊂ Ω̂, (1.27) and

lim
(y,s)→(x,t)

(y,s)∈Ω×(0,∞)

u(y, s) = ∞ ∀(x, t) ∈ ∂Ω × (0,∞).

Definition 1.15. We say that u is a minimal solution of (1.21) if u is a solution of (1.21) and for

any solution v of (1.21), v ≥ u in Ω̂ × (0,T).

2 Preliminaries

In this section we recall some results of [H1], [H2] and [HK2] that are cited in this paper.

Theorem 2.1 (Theorem 1.1 of [H2]). Let n ≥ 3, 0 < m < n−2
n

, 0 < δ1 < min(1, δ0), µ0 > 0,
f1, f2 ∈ C3(∂Ω × (0,∞)) ∩ L∞(∂Ω × (0,∞)) be such that f2 ≥ f1 ≥ µ0 on ∂Ω × (0,∞) and

µ0 ≤ u0,1 ≤ u0,2 ∈ L
p

loc
(Ω \ {a1, · · · , ai0}) for some constant p >

n(1 −m)

2
(2.1)

be such that

λi

|x − ai|
γi
≤ u0,1(x) ≤ u0,2 ≤

λ′
i

|x − ai|
γ′

i

∀0 < |x − ai| < δ1, i = 1, · · · , i0 (2.2)

holds for some constants λ1, · · · , λi0 , λ
′
1
, · · · , λ′

i0
∈ R+ and

γ′i ≥ γi >
2

1 −m
∀i = 1, 2, . . . , i0.

Suppose u1, u2, are the solutions of (1.6) with u0 = u0,1, u0,2, f = f1, f2, respectively which satisfy

u j(x, t) ≥ µ0 ∀x ∈ Ω̂, t > 0, j = 1, 2 (2.3)

such that for any constants T > 0 and δ2 ∈ (0, δ1) there exist constants C1 = C1(T) > 0,
C2 = C2(T) > 0, such that

C1

|x − ai|
γi
≤ u j(x, t) ≤

C2

|x − ai|
γ′

i

(2.4)

holds for any 0 < |x − ai| < δ2, 0 < t < T, i = 1, 2, . . . , i0, j = 1, 2. Suppose u1, u2, also satisfy

‖ui(·, t) − u0,i‖L1(Ωδ) → 0 as t→ 0 ∀0 < δ < δ0, i = 1, 2. (2.5)

Then
u1(x, t) ≤ u2(x, t) ∀x ∈ Ω̂, t > 0.
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Theorem 2.2 (Theorem 1.2 of [H2]). Let n ≥ 3, 0 < m < n−2
n

, 0 < δ1 < min(1, δ0), µ0 > 0,
µ0 ≤ f1 ≤ f2 ∈ L∞(∂Ω × (0,∞)) and (2.1), (2.2), hold for some constants λ1, · · · , λi0 , λ

′
1
, · · · ,

λ′
i0
∈ R+ satisfying (1.8). Suppose u1, u2, are the solutions of (1.6) with u0 = u0,1, u0,2, f = f1, f2,

respectively which satisfy (2.3) and (2.5) such that for any constants T > 0 and δ2 ∈ (0, δ1) there
exist constants C1 = C1(T) > 0, C2 = C2(T) > 0, such that (2.4) holds. Then

u1(x, t) ≤ u2(x, t) ∀x ∈ Ω̂, t > 0.

For any m ∈ R, we let φm(u) = um/m if m , 0 and φm(u) = log u if m = 0.

Lemma 2.3 (Lemma 1.7 of [H1]). Let m0 < 0 < ε1 < 1 and m ∈ [m0, 1 − ε1]. Suppose u is a
solution of

ut = ∆φm(u)

inΩ × (0,T) with initial value 0 ≤ u0 ∈ L
p

loc
(Ω) for some constant

p > max (1, (1 −m0) max(1, n/2)) .

Then for any BR1
(x0) ⊂ BR2

(x0) ⊂ Ω there exists a constant C > 0 such that
∫

BR1
(x0)

u(x, t)pdx ≤ C
{
tp/(1−m0)

+ tp/ε1 +

∫

BR2
(x0)

u
p

0
dx

}

holds for any 0 ≤ t < T, m ∈ [m0, 1 − ε1].

Theorem 2.4 (Theorem 1.1 of [HK2]). Let n ≥ 3, 0 < m < n−2
n

, 0 < δ1 < δ0, 0 ≤ f ∈

L∞(∂Ω × [0,∞)) and 0 ≤ u0 ∈ L
p

loc
(Ω \ {a1, · · · , ai0}) for some constant p > n(1−m)

2
be such that

u0(x) ≥
λi

|x − ai|
γi

∀0 < |x − ai| < δ1, i = 1, · · · , i0

holds for some constants λ1, · · · , λi0 ∈ R
+ and γ1, · · · , γi0 ∈ ( 2

1−m
,∞). Then there exists a solution

u of (1.6) such that for any T > 0 and δ2 ∈ (0, δ1) there exists a constant C1 > 0 such that

u(x, t) ≥
C1

|x − ai|γi
∀0 < |x − ai| < δ2, 0 < t < T.

Moreover if there exists a constant T2 ≥ 0 such that (1.13) holds, then u satisfies (1.14).

Theorem 2.5 (Theorem 1.5 of [HK2]). Suppose that n ≥ 3, 0 < m < n−2
n

and µ0 > 0.

Let µ0 ≤ u0 ∈ L
p

loc

(
Ω\

{
a1, · · · , ai0

})
for some constant p > n(1−m)

2
such that (1.7) holds for

some constants λ1, · · · , λi0 , λ
′
1
, · · · , λ′

i0
∈ R+ and γi, γ′i , i = 1, . . . , i0, satisfying (1.8). Let

f ∈ L∞(∂Ω × (0,∞)) ∩ C3(∂Ω × (T1,∞)) for some constant T1 > 0 satisfy

f ≥ µ0 on ∂Ω × (0,∞)

and (1.16) for some function g ∈ C3 (∂Ω), g ≥ µ0 on ∂Ω. Let u be the solution of (1.6) given
by Theorem 2.4. Let ψ be the solution of (1.15). Then (1.17) holds for any compact subset K of

Ω\
{
a1, · · · , ai0

}
.
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Lemma 2.6 (Lemma 2.9 of [HK2]). Let n ≥ 3, 0 < m ≤ n−2
n

, 0 ≤ f ∈ L∞(∂Ω × [0,∞)) and

0 ≤ u0 ∈ L
p

loc
(Ω \ {a1, · · · , ai0}) for some constant p > n(1−m)

2
. Suppose u is a solution of (1.25).

Then for any 0 < δ6 < δ5 < δ0 and 0 < t1 < T there exist constants C > 0 and θ > 0 such that

‖u‖L∞(Ωδ5
×[t1 ,T)) ≤ C


k

p

f
|Ω| +

∫

Ωδ6

u
p

0
dx



θ/p

+ k f

where k f = max(1, ‖ f ‖L∞).

Lemma 2.7 (Lemma 3.2 of [HK2]). Let n ≥ 3, 0 < m < n−2
n

, 0 < δ1 < min(1, δ0), 0 ≤ f ∈

L∞(∂Ω × [0,∞)) and 0 ≤ u0 ∈ L
p

loc
(Ω \ {a1, · · · , ai0}) for some constant p > n(1−m)

2
such that (1.7)

holds for some constants λ1, · · · , λi0 , λ
′
1
, · · · , λ′

i0
∈ R+ and γi, γ′i , i = 1, . . . , i0, satisfying (1.8).

Let u be the solution of (1.6) given by Theorem 2.4. Then for any 0 < δ2 < δ0 and t0 > 0 there
exist constants C2 > 0 and C3 > 0 such that

u(x, t) ≤ C2 ∀x ∈ Ωδ2
× [t0,∞)

and
u(x, t) ≤ C3|x − ai|

−γ′
i ∀0 < |x − ai| ≤ δ2, t ≥ t0, i = 1, · · · , i0

hold.

Remark 2.8 (Remark 3.7 of [HK2]). If f ∈ L∞(∂Ω × (0,∞)), g ∈ C(∂Ω) and

f (x.t)→ g(x) uniformly in L∞(∂Ω) as t→∞,

then the solution u of (1.6) given by Theorem 1.1 of [HK2] satisfy (1.17) for any compact set

K ⊂ Ω̂. Moreover

u(x, t)→ ψ
1
m in L∞loc(Ω\

{
a1, · · · , ai0

}
) as t→∞.

3 Existence of maximal blow-up solutions

In this section we will use a modification of the argument of [HK2] and [H2] to prove the
existence of maximal solution of (1.6). We first extend Theorem 1.1 and Theorem 1.2 of
[H2]. We start with a technical lemma.

Lemma 3.1. Let n ≥ 3, 0 < m < 1, p > n(1−m)

2
, 0 ≤ f ∈ L∞(∂Ω × (0,T)) and 0 ≤ u0 ∈ L∞(Ω).

Suppose u ∈ L∞(Ω × (0,T)) is a solution of (1.24). Then for any 0 < δ′ < δ < δ0 there exists a
constant C > 0 depending only on p, m, δ and δ′ such that

∫

Ωδ

u(x, t)p dx ≤ C

(∫

Ωδ′

u
p

0
dx + t

p
1−m + ‖ f ‖

p

L∞(∂Ω×(0,T))

)
∀0 < t < T (3.1)

whereΩδ,Ωδ′ , is given by (1.3).
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Proof. We will use a modification of the proof of Lemma 1.7 of [H1] to prove this lemma.

Let 0 ≤ φ1 ∈ C∞0 (Ω \ {a1, · · · , ai0}), 0 ≤ φ1 ≤ 1, be such that φ1(x) = 1 for any x ∈ Ωδ and

φ1(x) = 0 for any x ∈ Ω \Ωδ′ . Let φ2 = φα1 for some constant α >
2p

1−m
and k > ‖ f ‖L∞ . Let Ω̂

be given by (1.2). Then

∂

∂t

(∫

Ω̂

(u − k)
p
+φ2 dx

)

=p

∫

Ω̂

(u − k)
p−1
+ utφ2 dx

=p

∫

Ω̂

(u − k)
p−1
+ φ2∆um dx

= − p

∫

Ω̂

∇um · ∇[(u − k)
p−1
+ φ2] dx

= − pm

{
(p − 1)

∫

Ω̂

um−1(u − k)
p−2
+ |∇u|2φ2 dx +

∫

Ω̂

um−1(u − k)
p−1
+ ∇u · ∇φ2 dx

}
. (3.2)

Since
∣∣∣∣∣
∫

Ω̂

um−1(u − k)
p−1
+ ∇u · ∇φ2 dx

∣∣∣∣∣ ≤(p − 1)

∫

Ω̂

um−1(u − k)
p−2
+ |∇u|2φ2 dx

+
1

4(p − 1)

∫

Ω̂

um−1(u − k)
p
+|∇φ2|

2φ−1
2 dx,

by (3.2) and Hölder’s inequality with exponents
p

1−m
and

p

p+m−1
,

∂

∂t

(∫

Ω̂

(u − k)
p
+φ2 dx

)

≤
pm

4(p − 1)

∫

Ω̂

um−1(u − k)
p
+|∇φ2|

2φ−1
2 dx

≤
pm

4(p − 1)

∫

Ω̂

[(u − k)
p
+φ2]

p+m−1
p |∇φ2|

2φ
1−m

p −2

2
dx

≤
pm

4(p − 1)



∫

Ω̂

(
|∇φ2|

2φ
1−m

p −2

2

) p
1−m

dx




1−m
p

(∫

Ω̂

(u − k)
p
+φ2 dx

)1− 1−m
p

∀0 < t < T. (3.3)

Since

|∇φ2|
2φ

1−m
p −2

2
= α2φ

(1−m)α
p −2

1
|∇φ1|

2 ≤ α2|∇φ1|
2,

we have ∫

Ω̂

(
|∇φ2|

2φ
1−m

p −2

2

) p
1−m

dx ≤ α
2p

1−m

∫

Ω̂

|∇φ1|
2p

1−m dx < ∞.
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Then, by (3.3),

∂

∂t

(∫

Ω̂

(u − k)
p
+φ2 dx

)
≤ C

(∫

Ω̂

(u − k)
p
+φ2 dx

)1− 1−m
p

⇒

(∫

Ω̂

(u − k)
p
+φ2 dx

) 1−m
p −1

∂

∂t

(∫

Ω̂

(u − k)
p
+φ2 dx

)
≤ C. (3.4)

where Ω̂ is given by (1.2). Integrating (3.4) over (t1, t), 0 < t1 < t < T,

∫

Ω̂

(u(x, t) − k)
p
+φ2 dx ≤

Ct +

(∫

Ω̂

(u(x, t1) − k)
p
+φ2 dx

) 1−m
p



p
1−m

.

Hence

∫

Ωδ

(u(x, t) − k)
p
+ dx ≤

Ct +

(∫

Ωδ′

(u(x, t1) − k)
p
+ dx

) 1−m
p



p
1−m

≤C′
(∫

Ωδ′

u(x, t1)p dx + t
p

1−m + kp

)

holds for any 0 < t1 ≤ t < T, k > ‖ f ‖L∞(∂Ω×(0,T)). Thus
∫

Ωδ

u(x, t)p dx ≤C

(∫

Ωδ′

u(x, t1)p dx + t
p

1−m + kp

)
(3.5)

holds for any 0 < t1 ≤ t < T, k > ‖ f ‖L∞(∂Ω×(0,T)). Letting kց ‖ f ‖L∞(∂Ω×(0,T)) in (3.5),
∫

Ωδ

u(x, t)p dx ≤ C

(∫

Ωδ′

u(x, t1)p dx + t
p

1−m + ‖ f ‖
p

L∞(∂Ω×(0,T))

)
∀0 < t1 ≤ t < T. (3.6)

Let C1 = max(‖u0‖L∞(Ω), ‖u‖L∞(Ω×(0,T))). By the mean value theorem for any x ∈ Ωδ′ and
0 < t1 < T there exists a constant ξ between u(x, t1) and u0(x) such that

|u(x, t1)p − u0(x)p| = p|ξ|p−1|u(x, t1) − u0(x)| ≤ pC
p−1

1
|u(x, t1) − u0(x)|.

Hence ∣∣∣∣∣∣

∫

Ωδ′

u(x, t1)p dx −

∫

Ωδ′

u
p

0
dx

∣∣∣∣∣∣ ≤ pC
p−1

1

∫

Ωδ′

|u(x, t1) − u0(x)| dx (3.7)

holds for any 0 < t1 < T. Since u is a solution of (1.24) with initial value u0, letting t1 → 0
in (3.7) by Definition 1.10 we have,

lim
t1→0

∣∣∣∣∣∣

∫

Ωδ′

u(x, t1)p dx −

∫

Ωδ′

u
p

0
dx

∣∣∣∣∣∣ = 0

⇒ lim
t1→0

∫

Ωδ′

u(x, t1)p dx =

∫

Ωδ′

u
p

0
dx. (3.8)
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Since (3.6) holds for any t1 ∈ (0, t), letting t1 → 0 in (3.6), by (3.8) we get (3.1) and the
lemma follows.

�

By Lemma 3.1 and an argument similar to the proof of Corollary 1.8 of [H1] and a
compactness argument we have the following result.

Lemma 3.2. Let n ≥ 3, 0 < m ≤ n−2
n

, p > n(1−m)

2
, 0 ≤ f ∈ L∞(∂Ω × (0,T)) and 0 ≤ u0 ∈ L∞(Ω).

Suppose u ∈ L∞(Ω × (0,T)) is a solution of (1.24). Then for any 0 < δ′ < δ < δ0 and
0 < t1 < t2 < T there exist constants C > 0 and θ > 0 such that

‖u‖L∞(Ωδ×[t1,t2)) ≤ C

(
1 + ‖ f ‖

p

L∞
+

∫

Ωδ′

u
p

0
dx

)θ/p
+ ‖ f ‖L∞ (3.9)

whereΩδ,Ωδ′ , is given by (1.3).

By Lemma 1.7 of [H1] and a compactness argument we have the following result.

Lemma 3.3 (cf. Corollary 1.8 of [H1]). Let n ≥ 3, 0 < m ≤ n−2
n

, p > n(1−m)

2
, 0 ≤ f ∈

L∞(∂Ω × (0,T)) and 0 ≤ u0 ∈ L∞(Ω). Suppose u ∈ L∞(Ω × (0,T)) is a solution of (1.24). Then
for any 0 < δ′ < δ < δ0 and 0 < t1 < t2 < T there exist constants C > 0 and θ > 0 such that

‖u‖L∞(Dδ×[t1,t2)) ≤ C

(
1 +

∫

Dδ′

u
p

0
dx

)θ/p
(3.10)

where Dδ, Dδ′ , is given by (1.3).

Theorem 3.4. (cf. Theorem 1.1 of [H2]) Let n ≥ 3, 0 < m < n−2
n

, 0 < δ1 < min(1, δ0), µ0 > 0,
f1, f2 ∈ C3(∂Ω × (0,∞)) ∩ L∞(∂Ω × (0,∞)) be such that

f2 ≥ f1 ≥ 0 and f2 ≥ µ0 on ∂Ω × (0,∞) (3.11)

and

u0,1, u0,2 ∈ L
p

loc
(Ω \ {a1, · · · , ai0}), u0,2 ≥ u0,1 ≥ 0, u0,2 ≥ µ0 for some constant p >

n(1 −m)

2
.

(3.12)

Let Ω̂ be given by (1.2). Suppose u1, u2 ∈ L∞
loc

((Ω \ {a1, . . . , ai0}) × (0,∞)) ∩ C2,1(Ω̂ × (0,∞)) are
subsolution and supersolution of (1.6) with f = f1, f2 and u0 = u0,1, u0,2 respectively which satisfy

u2(x, t) ≥ µ0 ∀x ∈ Ω̂, t > 0 (3.13)

such that for any constants T > 0 and δ2 ∈ (0, δ1) there exist constants C1 = C1(T) > 0,
C2 = C2(T) > 0, such that

u1(x, t) ≤
C1

|x − ai|
γ′

i

and u2(x, t) ≥
C2

|x − ai|
γi
∀0 < |x − ai| < δ2, 0 < t < T, i = 1, 2, . . . , i0.

(3.14)
for some constants γi, γ′i , i = 1, . . . , i0, satisfying (1.9). Then

u1(x, t) ≤ u2(x, t) ∀x ∈ Ω̂, t > 0. (3.15)
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Proof. Since the proof of the theorem is a modification of the proof of Theorem 1.1 of [H2],
we will only sketch the proof here. Let

D+ = {(x, t) ∈ Ω̂ × (0,∞) : u1(x, t) > u2(x, t)}

and α > max(2 + n, γ′
1
, γ′2, . . . , γ

′
i0

). Then by (3.13) for any (x, t) ∈ D+,

u1(x, t) > u2(x, t) ≥ µ0.

Hence by the mean value theorem,

(um
1 − um

2 )+(x, t) ≤ mµm−1
0 (u1 − u2)+(x, t) ∀x ∈ Ω̂, t > 0. (3.16)

As in [H2] we choose ψ ∈ C∞(Ω\{a1, · · · , ai0}) such thatψ(x) = |x−ai|
α for any x ∈ ∪i0

i=1
Bδ0

(ai)
and

ψ(x) ≥ c1 ∀x ∈ Ω \ ∪i0
i=1

Bδ2
(ai) (3.17)

for some constant c1 > 0. Let T > 0. Since

u1, u2 ∈ L∞loc((Ω \ {a1, . . . , ai0}) × (0,∞)),

by (3.14) and the choice of α, we have for any i = 1, · · · , i0,
∫

Bδ2
(ai)

|x − ai|
α(u1 − u2)+(x, t) dx ≤CT

∫ δ2

0

ρα+n−γ′
i
−1 dρ

=C′Tδ
α+n−γ′

i

2
< ∞ ∀0 < t < T (3.18)

for some constants CT > 0, C′T > 0. Since by the same argument as the proof of Proposition
2.2 of [H2], the result of Proposition 2.2 of [H2] remains valid for u1, u2. That is

‖ui(·, t) − u0,i‖L1(Ωδ) → 0 as t→ 0 ∀0 < δ < δ0, i = 1, 2.

Hence there exists a constant C3(T) > 0 such that

‖ui(·, t) − u0,i‖L1(Ω\∪
i0
i=1

Bδ2
(ai))
≤ C3(T) ∀0 < t < T, i = 1, 2

⇒ ‖u1(·, t) − u2(·, t)‖
L1(Ω\∪

i0
i=1

Bδ2
(ai))
≤ 2C3(T) ∀0 < t < T. (3.19)

By (3.18) and (3.19),
∫

Ω̂

ψ(x)(u1 − u2)+(x, t) dx ≤ C′Tδ
α+n−γ′

i

2
+ 2C3(T) < ∞ ∀0 < t < T. (3.20)

By (3.14) and the mean value theorem for any |x − ai| ≤ δ2, 0 < t < T, i = 1, · · · , i0,

|x − ai|
α−2(um

1 − um
2 )+(x, t)

≤m|x − ai|
α−2u2(x, t)m−1(u1 − u2)+(x, t)

≤mC2(T)m−1|x − ai|
(1−m)γi−2+α(u1 − u2)+(x, t)

≤mC2(T)m−1δ
(1−m)γi−2

0
|x − ai|

α(u1 − u2)+(x, t)

≤mC2(T)m−1δ
(1−m)γi−2

0
ψ(x)(u1 − u2)+(x, t). (3.21)
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As in [H2] we now choose a nonnegative monotone increasing function φ ∈ C∞(R) such
that φ(s) = 0 for any s ≤ 1/2 and φ(s) = 1 for any s ≥ 1. For any 0 < δ < δ0, let
φδ(x) = φ(|x|/δ) and

wδ(x) = Πi0
i=1
φδ(x − ai).

Then by (3.16), (3.17), (3.20) and (3.21) and an argument similar to the proof of Theorem
1.1 of [H2],

∂

∂t

(∫

Ω̂

(u1 − u2)+ψwδ dx

)

≤C

∫

Ω\∪
i0
i=1

Bδ2
(ai)

(um
1 − um

2 )+(x, t) dx

+ C

∫

∪
i0
i=1

Bδ2
(ai)

|x − ai|
α−2(um

1 − um
2 )+(x, t) dx

≤C

∫

Ω̂

(u1 − u2)+(x, t)ψ(x) dx

+ C

∫

∪
i0
i=1

Bδ2
(ai)

|x − ai|
α−2(um

1 − um
2 )+(x, t) dx

≤CT

∫

Ω̂

(u1 − u2)+(x, t)ψ(x) dx. (3.22)

Integrating (3.22) over (0, t) as letting δ→ 0,

∫

Ω̂

(u1 − u2)+(x, t)ψ(x) dx ≤ CT

∫ t

0

∫

Ω̂

(u1 − u2)+(x, t)ψ(x) dx dt ∀0 < t < T. (3.23)

By (3.23) and the Gronwall inequality, we get (3.15) and the theorem follows. �

Theorem 3.5. (cf. Theorem 1.2 of [H2]) Let n ≥ 3, 0 < m < n−2
n

, 0 < δ1 < min(1, δ0), µ0 > 0,

f1, f2 ∈ L∞(∂Ω×(0,∞)), u0,1, u0,2 ∈ L
p

loc
(Ω\{a1, · · · , ai0}) for some constant p > n(1−m)

2
, be such that

(3.11) and (3.12) hold. Let Ω̂ be given by (1.2). Suppose u1, u2 ∈ L∞
loc

((Ω \ {a1, . . . , ai0})× (0,∞))∩

C2,1(Ω̂ × (0,∞)) are subsolution and supersolution of (1.6) with f = f1, f2 and u0 = u0,1, u0,2

respectively which satisfy (3.13) such that for any constants T > 0 and δ2 ∈ (0, δ1) there exists a
constant C2 = C2(T) > 0 such that

u j(x, t) ≤
C2

|x − ai|
γ′

i

∀0 < |x − ai| < δ2, 0 < t < T, i = 1, 2, . . . , i0, j = 1, 2 (3.24)

holds for some constants

2

1 −m
< γ′i <

n − 2

m
∀i = 1, 2, . . . , i0. (3.25)

Then (3.15) holds.
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Proof. Since the proof is similar to the proof of Theorem 1.2 of [H2], we will only sketch
the argument here. Similar to the proof of Theorem 1.2 of [H2] we let

A(x, t) =



u1(x, t)m − u2(x, t)m

u1(x, t) − u2(x, t)
∀x ∈ Ω̂, t > 0 satisfying u1(x, t) , u2(x, t)

mu2(x, t)m−1 ∀x ∈ Ω̂, t > 0 satisfying u1(x, t) = u2(x, t)

0 ∀x = ai, i = 1, · · · , i0, t > 0.

For any k ∈ Z+, let

αk(x, t) =



|u1(x, t)m − u2(x, t)m|

|u1(x, t) − u2(x, t)| + (1/k)
∀x ∈ Ω̂, t > 0

0 ∀x = ai, i = 1, · · · , i0, t > 0

and Ak(x, t) = αk(x, t) + k−1. We claim that the function A(x, t) ∈ L∞(Ω̂ × (0,∞)). We divide
the proof of this claim into two cases.
Case 1: u2(x, t) ≥ 2u1(x, t).
By (3.13),

|A(x, t)| ≤
u2(x, t)m

1
2
u2(x, t)

= 2u2(x, t)m−1 ≤ 2µm−1
0 .

Case 2: u2(x, t) < 2u1(x, t).
By (3.13) and the mean value theorem there exists a constant ξ = ξ(x, t) lying between
u1(x, t) and u2(x, t) such that

|A(x, t)| ≤ mξm−1 ≤ m(u2(x, t)/2)m−1 ≤ 21−mmµm−1
0 .

By case 1 and case 2, A(x, t) ∈ L∞(Ω̂ × (0,∞)). Since |αk(x, t)| ≤ |A(x, t)|, we get αk(x, t) ∈

L∞(Ω̂ × (0,∞)) and hence one can apply the same argument as the proof of Theorem 1.2
of [H2] to conclude that the theorem holds.

�

Proof of Theorem 1.1: Since the proof is similar to the proof of Theorem 1.1 of [HK2], we
will only sketch the argument here. For any M > 0, 0 < ε < 1, let


u0,ε(x) = (u0(x)m

+ εm)1/m

u0,ε,M(x) = (min (u0(x)m,Mm) + εm)1/m (3.26)

and
fε(x, t) =

(
f (x, t)m

+ εm)1/m
∀(x, t) ∈ ∂Ω × (0,∞). (3.27)

Let uε,M be the solution of


ut = ∆um in Ω × (0,T)

u = fε on ∂Ω × (0,T)

u(x, 0) = u0,ε,M(x) in Ω.

(3.28)
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Then {
uε,M2

≥ uε,M1
≥ ε in Ω × (0,∞) ∀M2 > M1 > 0, ε > 0

uε1,M ≥ uε2,M in Ω × (0,∞) ∀M > 0, ε1 > ε2 > 0.
(3.29)

By Lemma 3.2 for any 0 < δ′ < δ < δ0, t′0 > t0 > 0, there exists a constant C > 0 such that

∥∥∥uε,M
∥∥∥

L∞(Ωδ×[t0 ,t′0])
≤ C

(
1 + ‖ f ‖

p

L∞
+

∫

Ωδ′

u
p

0
dx

)θ/p
+ ‖ f ‖L∞ =: C0 (3.30)

holds for any 0 < ε ≤ 1 and M > 0 where Ωδ, Ωδ′ , is given by (1.3). As in [HK2], by (3.29)
and (3.30), as M→∞, uε,M will increase monotonically to some solution uε of



ut =∆um in Ω̂ × (0,∞)

u = fε on ∂Ω × (0,∞)

u(ai, t) =∞ ∀t > 0, i = 1, 2 . . . , i0

u(x, 0) =u0,ε(x) in Ω̂.

(3.31)

Letting M→∞ in (3.29) and (3.30),


uε ≥ ε in Ω̂ × (0,∞)

uε1
≥ uε2

in Ω̂ × (0,∞) ∀ε1 > ε2 > 0

uε ≤ C0 in Ωδ × [t0, t
′
0] ∀0 < ε ≤ 1.

(3.32)

Moreover uε will decrease monotonically to a solution u of (1.6) as ε→ 0. By an argument
similar to the proof of Theorem 1.1 of [HK2] for any T > 0, δ2 ∈ (0, δ1), there exists constants
C1 = C1(T) > 0, C2 = C2(T) > 0, depending only on λ1, · · · , λi0 , λ

′
1
, · · · , λ′

i0
, γ1, · · · , γi0 , γ

′
1
,

· · · , γ′
i0

, such that both u and uε satisfy (1.10) for any 0 < ε < 1.
Suppose v is another solution of (1.6) which satisfies (1.10) for some constants C1 > 0,

C2 > 0. Since by (3.26) and (3.27),

u0,ε ≥ max(u0, ε) and fε ≥ max( f , ε),

by Theorem 3.4,

v ≤ uε in Ω̂ × (0,∞) ∀0 < ε < 1

⇒ v ≤ u in Ω̂ × (0,∞) as ε→ 0.

Hence u is the maximal solution of (1.6).
Proof of (i) of Theorem 1.1:
Suppose there exist constants T′0 > T0 > 0 andµ1 > 0 such that (1.11) holds and T1 ∈ (T0,T′0).

Let T3 = (T0+T1)/2, T = (T1−T0)/2 and C3 = T
2

1−m /µ2
1
. Let q and λ1 > 0 be the first positive

eigenfunction and the first eigenvalue of −∆ on Ω. By the proof of Theorem 2.2 of [H1]
there exists a constant C4 > 0 such that the function

w(x, t) =
[m(t − T3)]1/(1−m)

(C3 + C4q(x))1/2
(3.33)
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is a subsolution of (1.1) in Ω × (T3,∞). Since w(x,T3) = 0 in Ω and

w(x, t) =

(
m(t − T3)

T

)1/(1−m)

µ1 ≤ fε(x, t) on ∂Ω × [T3,T1],

by Theorem 3.4,

uε(x, t) ≥ w(x, t) ∀x ∈ Ω̂ × (T3,T1], 0 < ε < 1

⇒ u(x, t) ≥ w(x, t) ∀x ∈ Ω̂ × (T3,T1] as ε→ 0

⇒ u(x,T1) ≥ µ3 :=

(
m(T1 − T0)

2

)1/(1−m)

(C3 + C4‖q‖∞)−1/2 ∀x ∈ Ω̂ (3.34)

Let µ2 = min(µ1, µ3). Then by (1.11), (3.34) and Theorem 3.4,

uε(x, t) ≥ µ2 ∀x ∈ Ω̂ × [T1,T
′
0), 0 < ε < 1

⇒ u(x, t) ≥ µ2 ∀x ∈ Ω̂ × [T1,T
′
0) as ε→ 0

and (i) follows.
Proof of (ii) of Theorem 1.1:
Suppose there exists a constant T2 ≥ 0 such that (1.13) holds. Then fε is monotone
decreasing in t on ∂Ω × (T2,∞). Hence similar to Theorem 1.1 of [HK2] both uε,M and uε
satisfies (1.14). Putting u = uε in (1.14) and letting ε→ 0, we get that u satisfies (1.14) and
(ii) follows. �

By Lemma 3.2, Lemma 3.3 and the construction of solution of (1.6) in Theorem 1.1 we
recover Lemma 2.9 of [HK2] and have the following results.

Lemma 3.6 (cf. Lemma 2.9 of [HK2]). Let n ≥ 3, 0 < m ≤ n−2
n

, 0 ≤ f ∈ L∞(∂Ω × [0,∞)) and

0 ≤ u0 ∈ L
p

loc
(Ω \ {a1, · · · , ai0}) for some constant p > n(1−m)

2
. Suppose u is a solution of (1.6). Then

for any 0 < δ′ < δ < δ0 and 0 < t1 < t2 < T there exist constants C > 0 and θ > 0 such that (3.9)
holds.

Lemma 3.7. Let n ≥ 3, 0 < m ≤ n−2
n

, 0 ≤ f ∈ L∞(∂Ω× [0,∞)) and 0 ≤ u0 ∈ L
p

loc
(Ω\{a1, · · · , ai0})

for some constant p > n(1−m)

2
. Suppose u is a solution of (1.6). Then for any 0 < δ′ < δ < δ0 and

0 < t1 < t2 < T there exist constants C > 0 and θ > 0 such that (3.10) holds.

Lemma 3.8. Let n ≥ 3, 0 < m ≤ n−2
n

, 0 ≤ f ∈ L∞(∂Ω× [0,∞)) and 0 ≤ u0 ∈ L
p

loc
(Ω\{a1, · · · , ai0})

for some constant p > n(1−m)

2
. Suppose u is a solution of (1.6). Then for any 0 < δ′ < δ < δ0 there

exists a constant C > 0 depending only on p, m, δ and δ′ such that (3.1) holds.

Remark 3.9. By an argument similar to the proof of Theorem 1.1 but with Theorem 3.5 replacing
Theorem 3.4 in the proof we get Theorem 1.2.

By Theorem 3.4, Theorem 3.5 and the construction of solution of (1.6) in Theorem 1.1
we have the following corollaries.
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Corollary 3.10. Let n ≥ 3, 0 < m < n−2
n

, 0 < δ1 < min(1, δ0) and T1 > 0. Let 0 ≤ u0,1 ≤ u0,2 ∈

L
p

loc
(Ω\ {a1, · · · , ai0}) for some constant p > n(1−m)

2
and f1, f2 ∈ C3(∂Ω× (0,T1))∩L∞(∂Ω× (0,T1))

be such that
f2 ≥ f1 ≥ 0 on ∂Ω × (0,T1)

holds. Let Ω̂ be given by (1.2). Suppose u1, u2 ∈ L∞
loc

((Ω\ {a1, . . . , ai0})× (0,T1))∩C2,1(Ω̂× (0,T1))

are the maximal solutions of (1.6) in Ω̂ × (0,T1) with f = f1, f2 and u0 = u0,1, u0,2 respectively
such that for any constants 0 < T < T1 and δ2 ∈ (0, δ1) there exist constants C1 = C1(T) > 0,
C2 = C2(T) > 0, such that

C1

|x − ai|γi
≤ u j(x, t) ≤

C2

|x − ai|
γ′

i

∀0 < |x − ai| < δ2, 0 < t < T, i = 1, 2, . . . , i0, j = 1, 2 (3.35)

holds for some constants γi, γ′i , i = 1, . . . , i0, satisfying (1.9). Then (3.15) holds for any x ∈ Ω̂,
0 < t < T1.

Corollary 3.11. Let n ≥ 3, 0 < m < n−2
n

, 0 < δ1 < min(1, δ0) and T1 > 0. Let 0 ≤ u0,1 ≤ u0,2 ∈

L
p

loc
(Ω \ {a1, · · · , ai0}) for some constant p > n(1−m)

2
and 0 ≤ f1 ≤ f2 ∈ L∞(∂Ω × (0,T1)). Let Ω̂ be

given by (1.2). Suppose u1, u2 ∈ L∞
loc

((Ω\ {a1, . . . , ai0})× (0,∞))∩C2,1(Ω̂× (0,∞)) are the maximal

solutions of (1.6) in Ω̂× (0,T1) with f = f1, f2 and u0 = u0,1, u0,2 respectively which satisfy (3.13)
such that for any constants 0 < T < T1 and δ2 ∈ (0, δ1) there exist constants C1 = C1(T) > 0,
C2 = C2(T) > 0, such that (3.35) holds for some constants γi, γ′i , i = 1, . . . , i0, satisfying (1.8).

Then (3.15) holds for any x ∈ Ω̂, 0 < t < T1.

4 Asymptotic behaviour of blow-up solutions

In this section we will prove the asymptotic behaviour of the maximal finite blow-up
points solutions.

Proof of Theorem 1.3: For any 0 < ε < 1, let u0,ε, fε and uε as in the proof of Theorem 1.1.
Then

u(x, t) ≤ uε(x, t) ∀x ∈ Ω̂, t > 0. (4.1)

By an argument similar to the proof of Theorem 1.1 of [HK2] for any T > 0, δ2 ∈ (0, δ1),
there exists constants C1 = C1(T) > 0, C2 = C2(T) > 0, depending only on λ1, · · · , λi0 , λ

′
1
,

· · · , λ′
i0

, γ1, · · · , γi0 , γ
′
1
, · · · , γ′

i0
, such that (1.10) holds with u = uε for all 0 < ε < 1. For any

0 < δ < δ0, let Ωδ be given by (1.3). By (1.8) and Lemma 3.2 of [HK2] for any constants
0 < δ < δ0, t0 > 0, there exists a constant Cδ > 0 such that

uε(x, t) ≤ Cδ ∀x ∈ Ωδ × [t0,∞), 0 < ε < 1. (4.2)

Let {ti}
∞
i=1
⊂ R+ be a sequence such that ti → ∞ as i → ∞. Let ui(x, t) = u(x, t + ti) and

uε,i = uε(x, t + ti). Let φε be the solution of (1.15) with gm being replaced by gm + εm. By
Theorem 1.5 of [HK2] and (1.16), (3.26), (3.27),

uε → φ
1
m
ε uniformly in C2(K) as t→∞ (4.3)
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for any compact subset K ⊂ Ω \ {a1, . . . , ai0}.
We now divide the proof into three cases.

Case (i): g > 0 on ∂Ω.
Since min∂Ω g > 0, we can choose a constant µ1 ∈ (0,min∂Ω g). Then by (1.16) there exists
a constant T0 > 0 such that (1.11) holds with T′0 = ∞. Let T1 > T0. Then by Theorem 1.1
there exists a constant µ2 ∈ (0, µ1) such that (1.12) holds with T′0 = ∞. By Theorem 1.5 of

[HK2], (1.16), (1.11) and (1.12), (1.17) holds for any compact subset K ofΩ \ {a1, . . . , ai0} and
(i) follows.
Case (ii): g . 0 on ∂Ω and (1.18), (1.19) holds.

Since fε ≥ max(g, ε) and the function φ1/m ∈ C1(Ω) ∩ C2,1(Ω) satisfy (1.24) with f = g and
u0 = φ, by (1.18), (1.19) and Theorem 3.5,

uε(x, t) ≥ φ(x)1/m ∀x ∈ Ω̂, t > 0, 0 < ε < 1

⇒ u(x, t) ≥ φ(x)1/m ∀x ∈ Ω̂, t > 0 as ε→ 0. (4.4)

Since φ(x) > 0 on Ω, by (4.1), (4.2) and (4.4) for any N > 0 the equation (1.1) for the

sequence {ui}ti>−N is uniformly parabolic on any compact subset of K ⊂ Ω̂× [−N,N]. Hence
by the parabolic Schauder estimates [LSU] the sequence {ui}ti>−N is uniformly continuous

in C2(K) for any compact subset of K ⊂ Ω̂ × [−N,N]. Thus by (4.1), (4.3), (4.4), the Ascoli
Theorem and a diagonalization argument the sequence {ui} has a subsequence which we
may assume without loss of generality to be the sequence itself that converges uniformly

in C2(K) for any compact subset of K ⊂ Ω̂× (−∞,∞) to a solution v of (1.1) in Ω̂× (−∞,∞)
which satisfies

φ(x)1/m ≤ v(x, t) ≤ φε(x)1/m ∀x ∈ Ω̂, t > 0

⇒ v(x, t) = φ(x)1/m ∀x ∈ Ω̂, t > 0 as ε→ 0

⇒ u(x, ti)→ v(x, 0) = φ(x)1/m uniformly on C2(K) as i→∞

for any compact subset K ⊂ Ω̂. Since the sequence {ti} is arbitrary, we get (1.17) and (ii)
follows.
Case (iii): g = 0 on ∂Ω.
By (4.1), (4.2) and Theorem 1.1 of [S] for any N > 0 the sequence {ui}ti>−N is uniformly

continuous in K for any compact subset of K ⊂ Ω̂× [−N,N]. Thus by (4.1), (4.2) , Theorem
1.1 of [S], the Ascoli Theorem and a diagonalization argument the sequence {ui} has a
subsequence which we may assume without loss of generality to be the sequence itself

that converges uniformly in K for any compact subset of K ⊂ Ω̂× (−∞,∞) to a continuous
function v which satisfies

0 ≤ v(x, t) ≤ ψε(x)1/m ∀x ∈ Ω̂,−∞ < t < ∞

⇒ v(x, t) = 0 ∀x ∈ Ω̂ as ε→ 0.

Hence
u(x, ti) = ui(x, 0)→ 0 as i→∞.

22



Since the sequence {ti} is arbitrary, we get (1.20) and (iii) follows.
�

By an argument similar to the proof of Theorem 1.3 but with Remark 3.7 of [HK2]
replacing Theorem 1.5 of [HK2] in the argument Theorem 1.4 follows.

5 Existence of finite blow-up solutions that blow-up at the

lateral boundary

In this section we will construct a solution of (1.6) with appropriate lateral boundary value
such that the finite blow-up points solution will oscillate between two given harmonic
functions as t → ∞. We will also prove the existence of finite blow-up solutions that
blow-up at the lateral boundary of the bounded cylindrical domain.

Proof of Theorem 1.5: Let f1 = g1 and u1 be the maximal solution of (1.6) given by Theorem
1.2 with f = f1. For any 0 < δ < δ0, let Dδ be given by (1.3). Let t0 = 0 and δk = δ1/k for
any k ∈ Z+. Then by Theorem 1.4 there exists a constant t1 > 0 such that

|u1(x, t) − φ1(x)| < 1 ∀x ∈ Dδ1
, t ≥ t1. (5.1)

Let f2(x, t) = g1(x) for 0 < t ≤ t1 and f2(x, t) = g2(x) for t > t1. Let u2 be the maximal solution
of (1.6) with f = f2. Then by Theorem 1.4, there exists a constant t2 > t1 + 1 such that

|u2(x, t) − φ2(x)| <
1

2
∀x ∈ Dδ2

, t ≥ t2. (5.2)

By repeating the above argument there exist sequences {ti}
∞
i=1

, ti + 1 < ti+1 for all i ∈ Z+,
{ fi}
∞
i=1
⊂ L∞(∂Ω), such that ∀i ∈ Z+,

f2i+1(x, t) =

{
g1(x) ∀x ∈ ∂Ω, t ∈ ∪i−1

k=0(t2k, t2k+1] ∪ (t2i,∞)

g2(x) ∀x ∈ ∂Ω, t ∈ ∪i
k=1(t2k−1, t2k]

(5.3)

and

f2i(x, t) =

{
g2(x) ∀x ∈ ∂Ω, t ∈ ∪i−1

k=1(t2k−1, t2k] ∪ (t2i−1,∞)

g1(x) ∀x ∈ ∂Ω, t ∈ ∪i
k=1(t2k−2, t2k−1]

(5.4)

and a sequence {ui}
∞
i=1

of maximal solutions of (1.6) with f = fi that satisfies



|u2i+1(x, t) − φ1(x)| <
1

2i + 1
∀x ∈ Dδ2i+1

, t ≥ t2i+1, i ∈ Z
+

|u2i(x, t) − φ2(x)| <
1

2i
∀x ∈ Dδ2i

, t ≥ t2i, i ∈ Z
+.

(5.5)

Let u be the maximal solution of (1.6) with

f (x, t) =

{
g1(x) ∀x ∈ ∂Ω, t ∈ ∪∞k=0(t2k, t2k+1]

g2(x) ∀x ∈ ∂Ω, t ∈ ∪∞k=1(t2k−1, t2k].
(5.6)
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Then by (5.3), (5.4) and (5.6),

f (x, t) = fi(x, t) ∀x ∈ ∂Ω, t ∈ (0, ti), i ∈ Z
+. (5.7)

Hence by Corollary 3.11,

u(x, t) = ui(x, t) ∀x ∈ ∂Ω, t ∈ (0, ti], i ∈ Z
+. (5.8)

By (5.5) and (5.8),



|u(x, t2i+1) − φ1(x)| <
1

2i + 1
∀x ∈ Dδ2i+1

, i ∈ Z+

|u(x, t2i) − φ2(x)| <
1

2i
∀x ∈ Dδ2i

, i ∈ Z+.

Since Dδi
⊂ Dδi+1

for all i ∈ Z+ and Ω̂ = ∪∞
i=1

Dδi
, for any 0 < ε < 1 and compact subset K of

Ω̂ there exists k0 ∈ Z
+, k0 > ε−1, such that

K ⊂ Dδk0
⊂ Dδi

∀i ≥ k0.

Hence {
|u(x, t2i+1) − φ1(x)| < ε ∀x ∈ K, i ≥ k0

|u(x, t2i) − φ2(x)| < ε ∀x ∈ K, i ≥ k0

and the theorem follows.
�

Proof of Theorem 1.6: For any 0 < δ < δ0, let Dδ be given by (1.3). For any k ∈ Z+, let uk be
the maximal solution of (1.6) with f = k given by Theorem 1.1 which satisfies (1.14) with
T2 = 0. By Lemma 3.7 and Corollary 3.10, for any 0 < δ < min(1, δ0), t′0 > t0 > 0, there
exists a constant Cδ > 0 such that

{
u1(x, t) ≤ uk(x, t) ≤ uk+1(x, t) ∀x ∈ (Ω \ {a1, . . . , ai0}) × (0,∞), k ∈ Z+

uk(x, t) ≤ Cδ ∀x ∈ Dδ, t0 ≤ t ≤ t′0, k ∈ Z
+.

(5.9)

By Theorem 1.1, for any T > 0 and δ2 ∈ (0, δ1) there exist a constant C1 = C1(T) > 0 such
that

u1(x, t) ≥
C1

|x − ai|γi
∀0 < |x − ai| < δ2, 0 < t < T, i = 1, 2, . . . , i0. (5.10)

On the other hand by the proof of Lemma 2.3 of [HK2] there exists a constant A0 > 0 such
that

uk(x, t) ≤
A0(1 + t)

1
1−m

|x − ai|
γ′

i (δ1 − |x − ai|)
2

1−m

∀0 < |x − ai| < δ1, i = 1, . . . , i0, k ∈ Z
+. (5.11)

Let Ω̂ be given by (1.2). By (5.9) the equation (1.1) for the sequence {uk}
∞
k=1

is uniformly

parabolic on any compact subset K of Ω̂ × (0,∞). Hence by the parabolic Schauder
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estimates [LSU] the sequence {uk}
∞
k=1

is uniformly continuous in C2(K) for any compact

subset K ⊂ Ω̂×(0,∞). Thus by (5.9), (5.10), (5.11), the Ascoli Theorem and a diagonalization
argument the sequence {uk}

∞
k=1

has a subsequence which we may assume without loss of
generality to be the sequence itself that increases and converges uniformly in C2(K) for

any compact subset K ⊂ Ω̂ × (0,∞) to a solution u of (1.1) in Ω̂ × (0,∞) which satisfies

u(x, t) ≥
C1

|x − ai|γi
∀0 < |x − ai| < δ2, 0 < t < T, i = 1, 2, . . . , i0, (5.12)

u(x, t) ≤
A0(1 + t)

1
1−m

|x − ai|
γ′

i (δ1 − |x − ai|)
2

1−m

∀0 < |x − ai| < δ1, i = 1, . . . , i0 (5.13)

and
uk ≤ u in Ω̂ × (0,∞) ∀k ∈ Z+ (5.14)

and u also satisfies (1.14) with T2 = 0.
By (5.12) and (5.13) u satisfies (1.10) for some constants C1 > 0, C2 > 0. Now by (i) of

Theorem 1.1, Corollary 3.10 and (5.9), for any T0 > 0 there exists a constant 0 < µT0
< 1

such that

uk(x, t) ≥ u1(x, t) ≥ µT0
∀x ∈ (Ω \ {a1, . . . , ai0}) × [T0,∞), k ∈ Z+. (5.15)

By Lemma 3.6 and (5.15), for any k ∈ Z+ the equation (1.1) for uk is uniformly parabolic

on any compact subset K ⊂ (Ω \ {a1, . . . , ai0}) × (0,∞). Hence by the parabolic Schauder

estimates [LSU], uk ∈ C2,1((Ω \ {a1, . . . , ai0}) × (0,∞)) for any k ∈ Z+. Thus

lim
(y,s)→(x,t)

(y,s)∈Ω×(0,∞)

u(y, s) ≥ lim
(y,s)→(x,t)

(y,s)∈Ω×(0,∞)

uk(y, s) = k ∀(x, t) ∈ ∂Ω × (0,∞)

⇒ lim
(y,s)→(x,t)

(y,s)∈Ω×(0,∞)

u(y, s) = ∞ ∀(x, t) ∈ ∂Ω × (0,∞) as k→∞. (5.16)

We will now show that u has initial value u0. Since uk has initial value u0 for all k ∈ Z+, by
Lemma 3.1 of [HP] and a compactness argument for any 0 < δ < δ0 there exists a constant
C > 0 depending on δ such that

∫

Dδ

(uk(x, t) − u1(x, t)) dx ≤ Ct1/(1−m) ∀t > 0, k ∈ Z+

⇒

∫

Dδ

(u(x, t) − u1(x, t)) dx ≤ Ct1/(1−m) ∀t > 0 as k→∞. (5.17)

Hence by (5.17),
∫

Dδ

|u(x, t) − u0(x)| dx ≤

∫

Dδ

(u(x, t) − u1(x, t)) dx +

∫

Dδ

|u1(x, t) − u0(x)| dx

≤Ct1/(1−m)
+

∫

Dδ

|u1(x, t) − u0(x)| dx ∀t > 0

⇒ lim
t→0

∫

Dδ

|u(x, t) − u0(x)| dx =0 ∀0 < δ < δ0. (5.18)
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Hence by (1.10), (5.16) and (5.18), u is a solution of (1.21).
We will now use a modification of the proof of Lemma 2.9 of [H1] and Theorem 1.1

of [H2] to show that u is the minimal solution of (1.21). Suppose v is another solution of

(1.21). Let 0 < ψ ∈ C∞(Ω \ {a1, · · · , ai0}) be as in the proof of Theorem 3.4 and let E j be given

by (1.4). Let T > t1 > 0 and k ∈ Z+. By Lemma 3.6 uk ∈ L∞
loc

((Ω \ {a1, . . . , ai0}× (0,∞)). Hence
by a compactness argument there exists j0 ∈ Z

+, j0 > 1/δ0, such that

inf
x∈Ω\E j

t1≤t≤T

v(x, t) > sup
x∈Ω\E j

t1≤t≤T

uk(x, t) ∀ j ≥ j0 (5.19)

where E j is given by (1.4). Since v > 0 in Ω̂ × (0,∞) and satisfies (1.10),

v(x, t) ≥ µ j0
∀x ∈ E j0 , t1 ≤ t ≤ T (5.20)

for some constant µ j0
> 0. Hence by (5.15), (5.19) and (5.20),

v(x, t) ≥ min(µ j0
, µt1

) > 0 ∀x ∈ Ω̂, t1 ≤ t ≤ T. (5.21)

By (5.21) and an argument similar to the proof of Theorem 1.1 of [H2] and the proof of
Theorem 3.4 we get

∫

E j

(uk − v)+(x, t)ψ(x) dx ≤

∫

E j

(uk − v)+(x, t1)ψ(x) dx + C

∫ t

t1

∫

E j

(uk − v)+ψ(x) dx dt (5.22)

where C > 0 is some constant for any t1 ≤ t < T, j ≥ j0. By (5.22) and the Gronwall
inequality,

∫

E j

(uk − v)+(x, t)ψ(x) dx ≤
eCt

C

∫

E j

(uk − v)+(x, t1)ψ(x) dx ∀t1 ≤ t < T, j ≥ j0. (5.23)

Letting j→∞ in (5.22),

∫

Ω̂

(uk − v)+(x, t)ψ(x) dx ≤
eCt

C

∫

Ω̂

(uk − v)+(x, t1)ψ(x) dx ∀t1 ≤ t < T. (5.24)
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We now fix 0 < δ2 < δ1. Then by (1.10) and (5.19), ∀0 < δ < δ2, j > j0,

∫

Ω̂

(uk − v)+(x, t1)ψ(x) dx

≤

∫

∪
i0
i=1

Bδ(ai)

uk(x, t1)ψ(x) dx +

∫

E j\∪
i0
i=1

Bδ(ai)

|uk(x, t1) − u0(x)|ψ(x) dx

+

∫

E j\∪
i0
i=1

Bδ(ai)

|v(x, t1) − u0(x)|ψ(x) dx ∀0 < δ < δ1

≤C2

i0∑

i=1

∫

∪
i0
i=1

Bδ(ai)

|x − ai|
α−γ′

i dx +

∫

E j\∪
i0
i=1

Bδ(ai)

|uk(x, t1) − u0(x)|ψ(x) dx

+

∫

E j\∪
i0
i=1

Bδ(ai)

|v(x, t1) − u0(x)|ψ(x) dx

≤C′δα+n−γ′
i +

∫

E j\∪
i0
i=1

Bδ(ai)

|uk(x, t1) − u0(x)|ψ(x) dx +

∫

E j\∪
i0
i=1

Bδ(ai)

|v(x, t1) − u0(x)|ψ(x) dx (5.25)

for some constant C′ > 0. Letting first t1 → 0 and then δ→ 0, j→∞, in (5.25),

lim
t1→0

∫

Ω̂

(uk − v)+(x, t1)ψ(x) dx = 0. (5.26)

Letting t1 → 0 in (5.24), by (5.26),

∫

Ω̂

(uk − v)+(x, t)ψ(x) dx = 0 ∀0 < t < T, k ∈ Z+

⇒ uk(x, t) ≤ v(x, t) ∀x ∈ Ω̂, 0 < t < T, k ∈ Z+

⇒ u(x, t) ≤ v(x, t) ∀x ∈ Ω̂, 0 < t < T as k→∞.

Since T > 0 is arbitrary,

u(x, t) ≤ v(x, t) ∀x ∈ Ω̂, t > 0.

Hence u is the minimal solution of (1.21).
We will now prove that (1.22) holds. We choose γ̃1, . . . , γ̃i0 , such that

2

1 −m
< γ̃i < min

(
n − 2

m
, γi

)
∀i = 1, . . . , i0.

and let

ũ0(x) =


u0(x) ∀x ∈ Ω \ ∪i0

i=1
Bδ1

(ai)

λi|x − ai|
−γ̃i ∀0 < |x − ai| < δ1, i = 1, . . . , i0.

Then
ũ0(x) ≤ u0(x) in Ω̂.
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For any k ∈ Z+, let vk be the maximal solution of



ut =∆um in Ω̂ × (0,∞)

u =k on ∂Ω × (0,∞)

u(ai, t) =∞ ∀t > 0, i = 1, 2 . . . , i0

u(x, 0) =ũ0(x) in Ω̂

given by Theorem 1.1. Then by Corollary 3.10,

vk ≤ uk in Ω̂ × (0,∞) ∀k ∈ Z+. (5.27)

Since by Theorem 1.3,

vk(x, t)→ k uniformly on Ωδ as t→∞ (5.28)

for any 0 < δ < δ0 and k ∈ Z+, by (5.14) and (5.27),

lim inf
x∈Ωδ
t→∞

u(x, t) ≥ k ∀k ∈ Z+. (5.29)

for any 0 < δ < δ0. Letting k→∞ in (5.29), we get (1.22) and the theorem follows.
�

References

[A1] G. Akagi, Stability of non-isolated asymptotic profiles for fast diffusion, Commun. Math.
Phys. 345 (2016), 77–100.

[A2] G. Akagi, Rates of convergence to non-degenerate asymptotic profiles for fast diffusion via
energy methods, arXiv:2109.03960.

[Ar] D.G. Aronson, The porous medium equation, CIME Lectures in Some problems in
Nonlinear Diffusion, Lecture Notes in Mathematics 1224, Springer-Verlag, New York,
1986.

[ArP] D.G. Aronson and L.A. Peletier, Large time behaviour of solutions of the porous medium
equation in bounded domains, J. Differential Equations 39 (1981), 378–412.

[BH] J.G. Berryman and C.J. Holland, Stability of the separable solution for fast diffusion,
Arch. Rat. Mech. Anal. 74 (1980), 379–388.

[BBDGV] A. Blanchet, M. Bonfonte, J. Dolbeault, G. Grillo and J.L. Vazquez, Asymptotics
of the fast diffusion equation via entropy estimates, Arch. Rat. Mech. Anal. 191 (2009),
347–385.

28

http://arxiv.org/abs/2109.03960


[BF] M. Bonfonte and A. Figalli, Sharp extinction rates for fast diffusion equations on generic
bounded domains, Comm. Pure Applied Math. 74 (2021), 744-789.

[BGV1] M. Bonfonte, G. Grillo and J.L. Vazquez, Special fast diffusion with slow asymptotics
entropy method and flow on a Riemann manifold, Arch. Rat. Mech. Anal. 196 (2010),
631–680.

[BGV2] M. Bonfonte, G. Grillo and J.L. Vazquez, Behaviour near extinction for the Fast
Diffusion Equation on bounded domains, J. Math. Pures Appl. 97 (2012), 1–38.

[BV1] M. Bonfonte and J.L. Vazquez, Positivity, local smoothing, and Harnack inequalities for
very fast diffusion equations, Advances in Math. 223 (2010), 529–578.

[BV2] M. Bonfonte and J.L. Vazquez, Global positivity estimates and Harnack inequalities for
the fast diffusion equation, J. Functional Analysis 240 (2006), 399–428.

[CaV] J.A. Carrillo and J.L. Vazquez, Fine asymptotics for fast diffusion equations, Comm.
Partial Differential Equations 28 (2003), nos. 5 & 6, 1023–1056.

[CL] B. Choi and K. Lee, Multi-D fast diffusion equation via diffusive scaling of generalized
Carleman kinetic equation, arXiv:1510.08997.

[CMS] B. Choi , R.J. Mccann and C. Seis, Asymptotics near extinction for nonlinear fast
diffusion on a bounded domain, arxiv: 2202.02769v2.

[DaK] B.E.J. Dahlberg and C.E. Kenig, Nonnegative solutions of the initial -Dirichlet probem
for generalized porous medium equations in cylinders, J. Amer. Math. Soc. 1 (1988), no. 2,
401–412.

[DK] P. Daskalopoulos and C.E. Kenig, Degenerate diffusion-initial value problems and local
regularity theory, Tracts in Mathematics 1, European Mathematical Society, 2007.

[DS1] P. Daskalopoulos and N. Sesum, On the extinction profile of solutions to fast diffusion,
J. Reine Angew. Math. 622 (2008), 95–119.

[DS2] P. Daskalopoulos and N. Sesum, The classification of locally conformally flat Yamabe
solitons, Advances in Math. 240 (2013), 346-369.

[DiK] E. Dibenedetto and Y.C. Kwong, Harnack estimates and extinction profile for weak
solutions of certain singular parabolic equations, Trans. Amer. Math. Soc. 330 (1992), no.
2, 783–811.

[FeS] E. Feireisl and F. Simondon, Convergence for degenerate parabolic equations, J. Differ-
ential Equations 152 (1999), 439–466.

[FrK] A. Friedman and S. Kamin, The Asymptotic behavior of gas in an n-dimensional porous
medium, Trans. Amer. Math. Soc. 262 (1980), no. 2, 551–563.

29

http://arxiv.org/abs/1510.08997
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