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UNIFORMLY BOUNDED SPHERICAL HARMONICS AND QUANTUM

ERGODICITY ON S
2

XIAOLONG HAN

Abstract. On the two-dimensional unit sphere, we construct uniformly bounded spherical
harmonics of arbitrary degree, under a condition of point distribution on the sphere. It extends
the results on odd-dimensional spheres by Bourgain [Bo1, Bo2], Shiffman [Sh], and Marzo-
Ortega-Cerdà [MOC]. Moreover, we show that the spherical harmonics constructed in this
paper are equidistributed in the phase space, i.e., they are quantum ergodic. It provides the first
example of Laplacian eigenfunctions which are both uniformly bounded and quantum ergodic.

1. Introduction

Spherical harmonics on the unit sphere Sd ⊂ Rd+1 are homogeneous and harmonic polynomials
in Rd+1 restricted to Sd. We are concerned with the existence of uniformly bounded spherical
harmonics (normalized in L2(Sd)) of arbitrary degree. Some results were previously known.
In particular, S3 can be regarded as the boundary of the unit ball in the complex space C

2;
Bourgain constructed an orthonormal basis of uniformly bounded homogeneous and holomorphic
polynomials, which are also spherical harmonics on S3 [Bo1]. He then extended his result to S5,
similarly regarded as the boundary of the unit ball in C3 [Bo2]. On more general compact Kähler
manifolds, Shiffman [Sh] and Marzo-Ortega-Cerdà [MOC] proved the existence of uniformly
bounded holomorphic sections. (However, the sections in [Sh, MOC] do not form a basis in
the complex domain.) Applying to unit spheres in the complex space, we know that there are
uniformly bounded spherical harmonics of arbitrary degree on any odd-dimensional sphere. The
arguments in [Bo1, Sh, Bo2, MOC] do not apply to even-dimensional spheres.
In the first part of this paper, we develop a different approach to construct uniformly bounded

spherical harmonics on S2.

Theorem 1. Assume Condition 4 of point distribution on S2 in Section 2. Then there exists an
absolute constant L > 0 such that for any N ∈ N, there is an L2-normalized spherical harmonic
uN of degree N on S

2 which satisfies that ‖uN‖L∞(S2) ≤ L.

Remark. Bourgain independently obtained the same result (unpublished) as in Theorem 1, see
[Bo3]. We thank C. Demeter and P. Varjú for informing us.

We shall make some comments about the number of the uniformly bounded spherical harmon-
ics in Theorem 1 and in [Bo1, Sh, Bo2, MOC]. Denote SHd

N the space of spherical harmonics of
degree N on Sd. It is well known that on Sd,

dim SH
d
N = CNd−1 +Od(N

d−2), (1.1)

in which C = C(d) > 0, see Sogge [So, Section 3.4]. Since d = 2 in Theorem 1, the density of
the uniformly bounded spherical harmonics in SH

2
N is O(N−1)→ 0 as N →∞.
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In comparison, the space of homogeneous and holomorphic polynomials of degree N on Sd ⊂
C(d+1)/2 has dimension

(

N + d+1
2
− 1

N

)

= Od

(

N
d−1

2

)

for odd d. (1.2)

Bourgain’s construction provides an orthonormal basis of uniformly bounded holomorphic and
homogeneous polynomials on the unit spheres in C2 and C3 [Bo1, Bo2]; in the general complex
setting, Shiffman [Sh] and Marzo-Ortega-Cerdà [MOC] provide a family of uniformly bounded
holomorphic sections which has (asymptotically) positive density in an orthonormal basis. How-
ever, due to the different dimensions of the bases in (1.1) and (1.2), these holomorphic functions
can not form a basis for the spherical harmonics. In [Bo1, Sh, Bo2, MOC], the density of the uni-
formly bounded spherical harmonics in SH

d
N for odd d is O(N (d−1)/2/Nd−1) = O(N−(d−1)/2)→ 0

as N →∞.
We see that the spherical harmonics in all of these examples (Theorem 1 and [Bo1, Sh, Bo2,

MOC]) have density asymptotically zero. It is unclear whether these results can be improved.

Problem 2. Determine whether there exist uniformly bounded spherical harmonics with (asymp-
totically) positive density in an orthonormal basis and whether there exists an orthonormal basis
of uniformly bounded spherical harmonics.

Spherical harmonics arise naturally in mathematics and physics as the eigenfunctions of the
Laplacian ∆Sd on the sphere Sd (with round metric). That is, if u ∈ SH

d
N , then

−∆Sdu = N(N + d− 1)u.

Hence, the L∞ estimate of spherical harmonics is subject to Hörmander’s (pointwise) Weyl law
on compact manifolds [Ho]: For all u ∈ SH

d
N ,

‖u‖L∞(Sd) ≤ CN
d−1

2 ‖u‖L2(Sd), (1.3)

in which C = C(d) > 0. See Sogge [So] and Zelditch [Ze4] for the board area of Laplacian
eigenfunction studies on manifolds. In particular, a fundamental but largely unanswered problem
is to find and characterize the eigenfunctions with minimal L∞ norm growth, i.e., ‖u‖L∞ ≤
C‖u‖L2, see Toth-Zelditch [TZ] for an overview of this problem and some characterization results
under certain condition of “quantum integrability”. (The reverse inequality, ‖u‖L2 ≤ C‖u‖L∞,
is automatically true on compact manifolds by Hölder’s inequality.)
In the second part of this paper, we characterize the density distribution of the uniformly

bounded spherical harmonics in Theorem 1.
The only manifolds other than the spheres currently known to support uniformly bounded

eigenfunctions of arbitrarily large eigenvalues are the tori Td = Rd/Λ, in which Λ is a lattice
such as Zd. (One can also consider the eigenfunctions on a fundamental domain of Rd/Λ with
suitable boundary conditions.) In fact, there is a basis of uniformly bounded eigenfunctions
uλ(x) = ei〈λ,x〉 in L2(Td). Here, x ∈ Td and λ ∈ Λ⋆, the dual lattice of Λ. The apparent feature
of their density distribution is that they are equidistributed on Td, i.e., for any open set Ω ⊂ Td,

lim
λ→∞

∫

Ω

|uλ|2 dx = Vol(Ω).

That is, |uλ|2 dx as λ → ∞ defines a measure that coincides with the Lebesgue measure on
Td. The same conclusion also holds for the real-valued eigenfunctions cos〈λ, x〉 and sin〈λ, x〉.
However, these eigenfunctions are not equidistributed in the phase space. In addition, there
are other uniformly bounded eigenfunctions on the tori which fail equidistribution in the phase
space, such as cos(2πNx1) sin(2πy) as N →∞ on R2/Z2, see Jakobson [J] for more details.
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To describe the distribution property of eigenfunctions in the phase space, we use the semi-
classical measures. We recall the setup briefly here and refer to Section 4.1 for more background.
Let M be a compact manifold and T ∗M = {(x, ξ) : x ∈ M, ξ ∈ T ∗

xM} be its cotangent bundle.
Fix h0 ∈ (0, 1) and denote h ∈ (0, h0) the semiclassical parameter. We say that a sequence of
functions {uhk

}∞k=1 ⊂ L2(M) induce a semiclassical measure µ in T ∗
M if for any a ∈ C∞

0 (T ∗
M),

〈Ophk
(a)uhk

, uhk
〉 →

∫

T ∗M

a dµ as hk → 0,

in which Oph(a) is the semiclassical pseudo-differential operator with symbol a. Taking a =
a(x) ∈ C∞(M), we have that Oph(a) = a so 〈Oph(a)uh, uh〉 =

∫

M
a|uh|2. Therefore, the semi-

classical measure is the lift of the measure defined by |uh|2 on the physical space M to the phase
space T ∗M, which then describes the distribution of |uh|2 in T ∗M.
Consider the eigenfunctions of the semiclassical Laplacian, (h2∆M+1)uh = 0. It is well known

that the semiclassical measure induced by any sequence of Laplacian eigenfunctions is supported
on the cosphere bundle S∗

M = {(x, ξ) ∈ T ∗
M : |ξ|x = 1} and is invariant under the geodesic

flow on S∗M. See Zworski [Zw, Section 5.2].

Example (Toral eigenfunctions). On the torus Td, consider the eigenfunctions

uhk
(x) = ei〈λk ,x〉 = e

i|λk|
〈

λk
|λk|

,x
〉

= e
ih−1

k

〈

λk
|λk|

,x
〉

,

in which the semiclassical parameter hk = |λk|−1. If λk/|λk| → ξ0 as |λk| → ∞ for some fixed
ξ0 ∈ Sd−1, then

〈Ophk
(a)uhk

, uhk
〉 →

∫

Td

a(x, ξ0) dx as hk → 0,

that is, the corresponding semiclassical measure is dxδξ=ξ0, which is supported on the invariant
set Td×{ξ0} ⊂ S∗Td. This shows that while these toral eigenfunctions ei〈λk ,x〉 are equidistributed
on Td, they are highly localized in the frequency space so are not equidistributed in the phase
space.

The canonical uniform measure on S∗M is the Liouville measure µL and we normalize it
so that µL(S

∗M) = 1. We say that a sequence of L2-normalized eigenfunctions {uhk
}∞k=1 is

equidistributed in the phase space if the corresponding semiclassical measure is µL, i.e., for all
a ∈ C∞

0 (T ∗M),

〈Ophk
(a)uhk

, uhk
〉 →

∫

S∗M

a dµL as hk → 0.

It is obvious that equidistribution in the phase space is a stronger condition than the one in the
physical space.
The celebrated Quantum Ergodicity Theorem states that if the geodesic flow is ergodic on

S∗M, then any orthonormal basis of eigenfunctions contains a full density subsequence that is
equidistributed in the phase space, see Šnirel’man [Sn], Zelditch [Ze1], and Colin de Verdière
[CdV]. Because the Laplacian eigenfunctions are the stationary states in the quantum system of
the geodesic flow, the eigenfunctions which are equidistributed in the phase space are also said
to be quantum ergodic.
Let u ∈ SH

2
N . Then in the semiclassical setup,

(

h2
N∆S2 + 1

)

u = 0,

in which the semiclassical parameter

hN =
1

√

N(N + 1)
≈ N−1 → 0 as N →∞.
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With the help of semiclassical measures, we now characterize the density distribution of the uni-
formly bounded spherical harmonics in Theorem 1: Our second main theorem asserts that they
are quantum ergodic. This is in sharp contrast with the uniformly bounded toral eigenfunctions
discussed above, which are highly localized in the phase space.

Theorem 3. Assume Condition 4 of point distribution on S2 in Section 2. Then there is a
sequence of uniformly bounded and quantum ergodic spherical harmonics {uN}∞N=1, uN ∈ SH

2
N ,

that is, for any a ∈ C∞
0 (T ∗S2),

lim
N→∞

〈OphN
(a)uN , uN〉 =

∫

S∗S2

a dµL.

To the author’s knowledge, these spherical harmonics are the first example of Laplacian eigen-
functions which are both uniformly bounded and quantum ergodic. It is interesting to ask
whether the uniformly bounded spherical harmonics in [Bo1, Sh, Bo2, MOC] are also quantum
ergodic and whether the ones in Problem 2, if exist, can also be quantum ergodic.

Remark (Random spherical harmonics). We put Theorems 1 and 3 in the random setting to
describe how typical the properties of uniform boundedness and quantum ergodicity are. First,
there exists an absolute constant c > 0 such that almost surely the spherical harmonics u of
degree N from a random orthonormal basis satisfy that ‖u‖L∞(S2) ≥ c

√
logN for all N ∈ N.

Secondly, the whole sequence of the random basis is quantum ergodic almost surely. See Zelditch
[Ze2], VanderKam [V], and Burq-Lebeau [BuLe] for these results in the precise probabilistic
setup. Therefore, the uniformly bounded spherical harmonics in Theorems 1 are very atypical,
yet they can still display quantum ergodicity as shown in Theorem 3.

Remark (Hecke eigenfunctions). On an arithmetic hyperbolic surface, there is an orthonormal
basis of Laplacian eigenfunctions which satisfies certain symmetric conditions associated with
the arithmetic structure, see Rudnick-Sarnak [RS]. The whole sequence of these “Hecke eigen-
functions” are known to be quantum ergodic. This phenomenon is called arithmetic quantum
unique ergodicity and was proved by Lindenstrauss [L], Silbermann-Venkatesh [SV], Holowinsky-
Soundararajan [HS], and Brooks-Lindenstrauss [BrLi]. For the L2-normalized Hecke eigenfunc-
tions, Iwaniec-Sarnak [IS, Theorem 0.1(b)] proved that there is an absolute constant c > 0 such
that ‖u‖L∞ ≥ c

√
log log λ, in which λ is the eigenvalue of u. So the Hecke eigenfunctions are

not uniformly bounded and this lower bound is consistent with the above random model.

Outline of the proofs. The proofs of Theorem 1 and 3 are both based on Gaussian beams,
a special type of spherical harmonics that are highly localized around oriented great circles on
the sphere. In particular, each oriented great circle Gp ⊂ S2 is uniquely determined by a pole
p ∈ S2 and gives rise a (L2-normalized) Gaussian beam Qp ∈ SH

2
N that localizes around Gp.

This means that 〈Qj , Qk〉 is smaller when their corresponding oriented great circles Gj and Gk

are more separated, i.e., the two poles pj and pk have a larger distance on S2. We construct
uN ∈ SH

2
N as a linear combination of a family of Gaussian beams {Qj}mj=1 ⊂ SH

2
N with properly

chosen poles {pj}mj=1 ⊂ S2:

FN =
m
∑

j=1

Qj and uN =
FN

‖FN‖L2(S2)

.

• Theorem 1: To have uniformly bounded uN , we need to control the L2 and L∞ norms of
FN . On one hand, we need sufficiently many Gaussian beams so that ‖FN‖L2(S2) can be large in
the denominator; on the other hand, we can not have too many of them so |FN | can potentially
be too large in the numerator. Therefore, the choice of the number m of Gaussian beams is
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a delicate balance to meet both requirements. In addition, the separation of the poles {pj}mj=1

dictates the interactions among the Gaussian beams {Qj}mj=1, which are crucial for the L2 as
well as the L∞ estimates of FN . In Section 3, we prove that

‖FN‖2L2(S2) = m+O
(

N−∞
)

and ‖FN‖L∞(S2) = O
(√

m
)

, (1.4)

for appropriate m = O(N1/2) and under the condition that the poles are separated by distance
at least m−1/2 and never cluster around any great circle.
• Theorem 3: To have quantum ergodic uN , we compute that

〈OphN
(a)uN , uN〉

=
1

‖FN‖2L2(S2)

m
∑

j,k=1

〈OphN
(a)Qj , Qk〉

=
1

‖FN‖2L2(S2)

m
∑

j,k=1,j 6=k

〈OphN
(a)Qj , Qk〉+

1

‖FN‖2L2(S2)

m
∑

j=1

〈OphN
(a)Qj, Qj〉.

Notice that OphN
(a) is microlocal and does not change the localization of Qj (which is around the

oriented great circle Gj). Hence, the off-diagonal terms in the first summation are small, from the
well-separation of the poles {pj}mj=1. The diagonal terms 〈OphN

(a)Qj , Qj〉 induce a semiclassical
measure as the normalized arclength measure dl/(2π) on Gj. Therefore, the second summation
above tends to

1

m

m
∑

j=1

1

2π

∫

Gj

a dl,

in the view of the L2 estimate in (1.4). Next, if the collection of poles {pj}mj=1 tend to be

equidistributed on S2, then

1

m

m
∑

j=1

1

2π

∫

Gj

a dl→ 1

Area(S2)

∫

S2

(

1

2π

∫

Gp

a dl

)

dp as m→∞, (1.5)

which in turn leads to
∫

S∗S2
a dµL. This is because S

∗S2 can be naturally identified by the space
of oriented great circles {Gp}p∈S2, each of which is indexed by p ∈ S2. Quantum ergodicity of
{uN}∞N=1 thus follows.
From the outline of the proofs of Theorems 1 and 3, we see that the consequential condition of

the Gaussian beams is how their poles are distributed on the sphere. In Section 2, we introduce
such a condition about the collections of the poles. In Sections 3 and 4, this condition is used
to construct the uniformly bounded spherical harmonics and to prove that they are quantum
ergodicity, respectively.
Finally, we remark that the arguments in this paper are restricted to S2. Extending to higher

dimensions seems possible but requires new input.

2. Point distribution on the sphere

The appropriate condition of distribution of poles for the Gaussian beams is summarized as
follows.

Condition 4. There exist absolute constants c, C > 0 such that for any positive integer m, there
is a collection of points {pmj }mj=1 ⊂ S2 such that the following holds.
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(i). [Well-separation] For any j, k = 1, ..., m and j 6= k,

dist S2(pj, pk) ≥
c√
m
,

in which dist S2 is the geodesic distance on S2.
(ii). [No clustering around great circles] For any great circle G ⊂ S2,

#

{

j : dist S2(G, pj) ≤
1

m

}

≤ C,

(iii). [Equidistribution] For any f ∈ C∞(S2),

lim
m→∞

1

m

m
∑

j=1

f
(

pmj
)

=
1

4π

∫

S2

f(p) dp.

There is a large literature about the point distribution on the sphere, see, e.g., Lubotzky-
Phillips-Sarnak [LPS] and Saff-Kuijlaars [SK]. In particular, it is well known that points on
the sphere which satisfy (i) well-separation and (iii) equidistribution in Condition 4 can be
constructed explicitly. However, (ii) no clustering around great circles is a rather unconventional
requirement in the current literature. Notice that the m−1-neighborhood of any great circle G
has area

Area

({

p ∈ S
2 : dist S2(G, p) ≤ 1

m

})

≤ 2π · 2
m

=
4π

m
.

Thus, on average of all great circles G, the number of points from {pj}mj=1 which are contained

in the m−1-neighborhood of G is uniformly bounded. That is, Property (ii) is expected in a
certain average sense. Nevertheless, the construction of points on the sphere which satisfy (i),
(ii), and (iii) is unknown to the author. Therefore, Theorems 1 and 3 are both conditional. More
precisely, Theorem 1 is a consequence of (i) and (ii), while the proof of Theorem 3 uses (i) and
(iii).

Remark. We refer to Saff-Kuijlaars [SK] for explicit examples of collections of points on the
sphere which satisfy (i) well-separation and (iii) equidistribution in Condition 4. Using these
collections, one can construct explicit spherical harmonics that are quantum ergodic, by the
same argument as the one for Theorem 3.
As mentioned in the Introduction, a random eigenbasis of spherical harmonics is quantum

ergodic almost surely [Ze2, V, BuLe]. So the existence of quantum ergodic spherical harmonics
was known, though only implicitly.
Property (ii) no clustering around great circles is necessary for our construction of the uni-

formly bounded and quantum ergodic spherical harmonics.

3. Proof of Theorem 1

In this section, we construct uniformly bounded spherical harmonics of arbitrary degree. De-
note the spherical coordinates S2 ∋ x = (x1, x2, x3) = (sin φ cos θ, sinφ sin θ, cosφ), in which
φ ∈ [0, π] and θ ∈ [0, 2π). Let N ∈ N. Then (x1 + ix2)

N ∈ SH
2
N when restricted to S2. Write

Q0(x) = CNN
1

4 (x1 + ix2)
N = CNN

1

4 (sinφ)NeiNθ, (3.1)

in which CN > 0 is chosen so that ‖Q0‖L2(S2) = 1. Then there is an absolute constant c1 > 0
(i.e., independent of N) such that CN ≤ c1 for all N ∈ N. See Zelditch [Ze4, Section 4.4.5].
It is obvious that the spherical harmonic Q0 is concentrated around the equator G0 = {φ =

π/2}, the great circle perpendicular to the north pole p0 (i.e., φ = 0), and decreases in φ
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exponentially in the transverse direction. For this reason, it is usually referred as a Gaussian
beam or a highest weight spherical harmonic. In addition, Q0 propagates in the counter-clockwise
direction by the right-hand rule and we say that Q0 has pole as p0. (In Section 4, we describe the
“microlocalization” of Gaussian beams in the phase space, which simultaneously characterizes
the localization on S

2 and in the frequency space.)
Since any rotation of Q0 with respect to an element in SO(3) remains a spherical harmonic,

for any p ∈ S2, there is a Gaussian beami Qp ∈ SHk with pole p. For example, the Gaussian
beam

CNN
1

4 (x1 − ix2)
N = CNN

1

4 (sinφ)Ne−iNθ

has pole as the south pole φ = π and is orthogonal with Q0. (It has the same concentration
around the equator G0 as Q0 but propagates in the opposite direction along G0.)

Let D > 0 be chosen later and m be the nearest even integer to
N

1

2

D2
. (3.2)

By Condition 4, there is a collection of points {pmj }mj=1 which satisfy all properties (i), (ii), (iii).
However, we only need (i) well-separation and (ii) no clustering around great circles in this
section for Theorem 1. For notational simplicity, we drop the superscript m. Assign Qj as a
Gaussian beam with pole pj , j = 1, ..., m. Write

FN =

m
∑

j=1

Qj. (3.3)

Set uN = FN/‖FN‖L2(S2). In the view of (1.3), Theorem 1 follows from the following L2 and L∞

estimates of FN for sufficiently large N .

Proposition 5. There exist absolute constants D,N0, c2, c3 > 0 such that if N ≥ N0, then

‖FN‖L2(S2) ≥ c2N
1

4 and ‖FN‖L∞(S2) ≤ c3N
1

4 .

Remark (Comparison with the arguments in [Bo1, Bo2]). Bourgain’s construction of uniformly
bounded spherical harmonics on S3 and S5 uses the fact that the spheres are odd-dimensional.
For example, use the coordinates (x1, x2, x3, x4) on S3 ⊂ C2. Then the space of the homogeneous
and holomorphic polynomials is spanned by {zjwN−j, j = 0, ..., N}. Here, z = x1 + ix2 and
w = x3 + ix4. Let

FN =

N
∑

j=0

ajz
jwN−j,

in which the coefficients are chosen explicitly that depend on the Rudin-Shapiro sequence [R].
Observe that the polynomials zjwN−j are mutually orthogonal for different j’s. Hence, the L2

norm of FN is straightforward to estimate. On the other hand, each of zjwN−j is Gaussian (of
different degrees) in both variables z and w. A carefully chosen set of coefficients depending
on the Rudin-Shapiro sequence help to control the L∞ norm of FN . In this way, Bourgain was
able to construct uniformly bounded homogeneous and holomorphic polynomials, which are of
course also spherical harmonics.
On even-dimensional spheres such as S2, these holomorphic polynomials are no longer avail-

able. In our construction, the Gaussian beams in (3.3) are not orthogonal. However, we show
that they are almost orthogonal (so the L2 norm of FN can be controlled) when the poles are

iIn fact, one can find a family of Gaussian beams with pole p. These functions differ by a phase shift. See
[Ha] for a detailed discussion.
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well-separated. On the other hand, the L∞ norm of FN can be estimated by the properties of
well-separation and no clustering around great circles of the poles.

Remark. The estimates in Proposition 5 highly depend on the well-separation and no clustering
around great circles of the poles of the Gaussian beams. One can generate a rich variety of
spherical harmonic behaviors by arranging the poles in different patterns. For example, one
can put ≈ N1/2 poles on the equator with separation ≈ N−1/2 such that the resulting spherical
harmonic in (3.3) has the maximal L∞ growth rate ofN1/2 as the one in (1.3). See Guo-Han-Tacy
[GHT, Section 4.2].

3.1. L2 estimate. The L2 estimate of FN in (3.3) is a consequence of (i) well-separation of poles
in Condition 4. That is, by (i), the distance between any pair pmj and pmk for j 6= k,

βm
jk ≥

c√
m
≥ c0DN− 1

4 , (3.4)

in which c0 > 0 is an absolute constant. Then the Gaussian beams {Qj}mj=1 are “almost orthog-
onality”. Indeed, from [Ha, Lemma 5],

|〈Qj , Qk〉| ≤
(

cos
βjk

2

)2N

, (3.5)

in which βjk is the distance between the poles pj and pk on S2. (In the special case when βjk = π,
the poles are antipodal and the two corresponding Gaussian beams are orthogonal.) Since Qj ’s
are L2-normalized in (3.1),

‖FN‖2L2(S2) =
m
∑

k,j=1

〈Qj , Qk〉

=
m
∑

j=1

‖Qj‖2L2(S2) +
m
∑

k,j=1,j 6=k

〈Qj, Qk〉

= m+

m
∑

k,j=1,j 6=k

〈Qj, Qk〉.

Since βjk ≥ c0DN−1/4 by (3.4), we have by (3.5) that
m
∑

k,j=1,j 6=k

|〈Qj , Qk〉| ≤ m2
[

cos
(

c0DN− 1

4

)]2N

≤ 4N

D4
exp

[

2N log

(

1− c20D
2N− 1

2

3

)]

≤ 4N

D4
exp

[

−2c
2
0D

2N
1

2

3

]

= OD

(

N−∞
)

as N →∞ for any fixed D > 0.

Here, we use the fact that

cos(β) = 1− β2

2
+O(β4) ≤ 1− β2

3
for 0 ≤ β ≤ 1

2
. (3.6)
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Therefore,

‖FN‖2L2(S2) = m+
m
∑

k,j=1,j 6=k

〈Qj, Qk〉 = m+OD

(

N−∞
)

as N →∞. (3.7)

Recall that m is the nearest even integer to N1/2/D2 by (3.2). Hence, for any D > 0, there exist
positive constants N0 = N0(D) and c2 = c2(D) such that if N ≥ N0, then

‖FN‖L2(S2) =
√

m+OD (N−∞) ≥ c2N
1

4 .

3.2. L∞ estimate. The L∞ estimate of FN in (3.3) is a consequence of (i) well-separation
of poles and (ii) no clustering around great circles in Condition 4. To this end, we estimate
FN(p0) at the north pole p0 without loss of generality. (One can always rotate FN such that the
maximum is achieved at p0.) By (3.1),

|FN(p0)| =
∣

∣

∣

∣

∣

m
∑

j=1

Qj(p0)

∣

∣

∣

∣

∣

≤
m
∑

j=1

|Qj(p0)| = CNN
1

4

m
∑

j=1

|sinφj|N ≤ c1N
1

4

m
∑

j=1

(cosαj)
N , (3.8)

in which φj is the distance between the poles pj and p0 and αj = |π/2 − φj|, i.e., the angle
between pj and the equator {φ = π/2}. To prove the L∞ estimate in Proposition 5, we need
to show that the above summation is uniformly bounded if D is chosen to be sufficiently large.
Recall that the distance between poles is at least c0DN−1/4 by (3.4), this means that the poles
are more separated as D increases while remaining in the order of N−1/4.
We partition the poles {pj}mj=1 into three groups:

(I). G1 = {αj ≤ m−1}. Since the poles are not clustered around the equator by (iii) in
Condition 4, there are uniformly bounded number of poles in Group I. Since (cosαj)

N ≤ 1,
the summation in Group I is uniformly bounded.

(II). G2 = {m−1 < αj ≤ 1/3}. We further divide this group into poles from strips of width
m−1. Each strip also contains uniformly bounded number of poles from {pj}mj=1. The
estimate of the summation in this group follows from choosing D sufficiently large in
m ≈ N1/2/D2.

(III). G3 = {αj > 1/3}. Since (cosαj)
N decreases exponentially in N , the summation in Group

III is well controlled.

Group I. By (iii) in Condition 4, we have that

#

{

j : αj ≤
1

m

}

≤ C.

Hence,
∑

αj∈G1

(cosαj)
N ≤ C.

Group II. We further divide G2 into poles from strips Sl that are orthogonal to the z-axis and
of width m−1. Each strip Sl can be covered by W great circles (not necessarily from {Gk}mk=1),
in which W > 0 is a universal constant. By (3.6), we then compute that

∑

αj∈G2

(cosαj)
N ≤ 2

⌊m−1/3⌋+1
∑

l=1

∑

αj∈Sl

(cosαj)
N

≤ 2
∞
∑

l=1

[

cos
(

lm−1
)]N
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≤ 2

∞
∑

l=1

exp

[

N log

(

1− l2m−2

3

)]

≤ C

∞
∑

l=1

exp

[

−cl
2D4

3

]

= o(1) as D →∞.

Here, we used that fact that m ≈ N1/2/D2.
Group III. The number of poles in Group III is trivially bounded by m. We have that

∑

αj∈G3

(cosαj)
N ≤ m

(

cos
1

3

)N

≤ 2N
1

2

D2

(

cos
1

3

)N

= OD

(

N−∞
)

as N →∞ for any fixed D > 0.
Combining the three groups, there exists D > 0 such that

m
∑

j=1

(cosαj)
N ≤ c3

for some c3 = c3(D) > 0 and N ≥ N0 = N0(D). So ‖FN‖L∞(S2) ≤ c3N
1/4 as stated in Proposition

5.

Remark. A diagram of dependence among the parameters might be helpful: Recall the constant
L in Theorem 1. Then

c2
ւ տ

D ← N0 L
տ ւ

c3

.

4. Proof of Theorem 3

In this section, we prove that the spherical harmonics {uN}∞N=1 constructed in Section 3
are quantum ergodic. Recall that in the semiclassical setting, (h2

N∆S2 + 1)uN = 0 with hN =

1/
√

N(N + 1) ≈ N−1. For notational simplicity, we drop the subscript and set h = N−1 without
affecting the proof. We then need to show that

〈Oph(a)uN , uN〉 =
∫

S∗S2

a dµL + oa(1) as h→ 0,

in which µL is the Liouville measure on S∗S2 normalized such that µL(S
∗S2) = 1. By (3.3),

〈Oph(f)uN , uN〉

=
1

‖FN‖2L2(S2)

m
∑

j,k=1,j 6=k

〈Oph(a)Qj , Qk〉+
1

‖FN‖2L2(S2)

m
∑

j=1

〈Oph(a)Qj , Qj〉. (4.1)

Here, the poles {pj}mj=1 of the Gaussian beams {Qj}mj=1 ⊂ SH
2
N are chosen according to Condition

4. Indeed, we use (i) well-separation and (iii) equidistribution of these poles. That is, the poles
are separated by distance at least c0DN−1/4 and the collection {pj}mj=1 tend to be equidistributed
on S2 asm→∞. In Section 3, we prove that {uN}∞N=1 is uniformly bounded if we set the absolute
constant D > 0 to be sufficiently large. In this section, D is fixed.
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Proof of Theorem 3.
The estimates of the matrix elements 〈Oph(a)Qj , Qk〉 in (4.1) are in order. If Oph(a) is

replaced by the identity operator, then 〈Qj , Qk〉 is controlled by the explicit estimate (3.5) used
in Section 3. For the general Oph(a) in this section, it is no longer available and the estimates
are instead based on the concentration of the Gaussian beams Qj in the phase space T ∗

S
2, i.e.,

the microlocalization. For example, we identify the oriented great circle which is perpendicular
to the north pole p0 by

{

(φ, θ, ξφ, ξθ) ∈ T ∗
S
2 : φ =

π

2
, θ ∈ [0, 2π), ξφ = 0, ξθ = 1

}

⊂ S∗
S
2,

and still denote it by G0, i.e., the equator with an orientation given by the covector (ξφ, ξθ) =
(0, 1). Then the Gaussian beams in (3.1)

Q0(φ, θ) = CN(sin φ)
NeiNθ = CN(sin φ)

1

h eiθ/h as h→ 0,

can be represented by a semiclassical Lagrangian distribution that is associated with G0. More
precisely, Q0 is microlocalized in the hρ-neighborhood of G0 for any ρ ∈ [0, 1/2), see Lemma
6 for the precise statement. Similar to Q0, the Gaussian beam Gj is microlocalized in the
hρ-neighborhood of Gj , the oriented great circle with the pole pj.
We now discuss the off-diagonal terms and the diagonal terms in (4.1), separately.

(I). Off-diagonal term estimate: Since pseudo-differential operators are microlocal, Oph(a)Qj

is also microlocalized in the hρ-neighborhood of Gj. From the construction in Section 3,
the great circles Gj and Gk are separated by distance at least c0DN−1/4 ≈ h1/4 ≫ hρ if
we set 1/4 < ρ < 1/2. This indicates that the microlocal regions of Oph(a)Qj and Qk

are disjoint so the off-diagonal terms are small. In Proposition 7, we prove that for any
j 6= k,

〈Oph(a)Qj , Qk〉 = Oa (h
∞) as h→ 0. (4.2)

(II). Diagonal term estimate: In Proposition 8, we prove that,

〈Oph(a)Qj, Qj〉 =
1

2π

∫

Gj

a dl +Oa(h) as h→ 0, (4.3)

in which dl is the arclength measure on Gj .

Putting (I) and (II) together, (4.1) becomes

〈Oph(a)uN , uN〉 =
1

‖FN‖2L2(S2)

m
∑

j=1

〈Oph(a)Qj, Qj〉+Oa(h) =
1

m

m
∑

j=1

1

2π

∫

Gj

a dl +Oa(h),

in the view of (3.7) that ‖FN‖2L2(S2) = m+O(h∞).

(III). Each oriented great circle Gp is uniquely determined by its pole p ∈ S2. According to
(iii) in Condition 4, the poles {pj}mj=1 tend to be equidistributed on S2 as m→∞:

1

m

m
∑

j=1

f(pj) =
1

4π

∫

S2

f(p) dp+ of(1) as h→ 0.

Setting

f(p) =
1

2π

∫

Gp

a dl,
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we derive that

1

m

m
∑

j=1

1

2π

∫

Gj

a dl =
1

8π2

∫

S2

∫

Gp

a dldp+ oa(1) .

To finish the proof of Theorem 3, we observe that the cosphere bundle S∗S2 can be
identified by the space of oriented great circles: For any a ∈ C∞(S∗S2),

1

8π2

∫

S2

∫

Gp

a dldp =

∫

S∗S2

a dµL. (4.4)

See Jakobson-Zelditch [JZ, Section 3]. The constant 1/(8π2) on the left-hand-side of
(4.4) is from the normalization that µL(S

∗S2) = 1 and can be easily checked by setting
a = 1 on S∗S2.

�

To complete the proof of Theorem 3, it is therefore left for us to prove the matrix element esti-
mates (4.2) and (4.3). We review some necessary tools from semiclassical analysis in Subsection
4.1 and then prove these estimates in Subsection 4.2.

Remark. Step (III) above is largely inspired by Jakobson-Zelditch [JZ, Theorem 1.1], which
states that any probability measure µ that is invariant under the geodesic flow on S∗

S
d is a

semiclassical measure for some sequence of spherical harmonics. To this end, they first reduce µ
to the one on the space of oriented great circles. It then can be recovered by linear combinations
of the measures on the oriented great circles, each of which is a semiclassical measure induced
by the corresponding Gaussian beams. Finally, the linear combinations of the Gaussian beams
with the same degree (which are still spherical harmonics) must induce a semiclassical measure
as µ.
In our case on S2 when the oriented great circles tend to be equidistributed, we recover the

Liouville measure on S∗S2. Of course, we also need the quantitative control on the separation (at
the scale of h1/4) of these great circles so the linear combination of the corresponding Gaussian
beams can produce uniformly bounded spherical harmonics in Theorem 1. It in turn requires
finer analysis (i.e., at proper scales depending on h) on the interactions between Gaussian beams
than [JZ].

4.1. Semiclassical preliminaries. In this subsection, we collect some standard facts from
semiclassical analysis and refer to Zworski [Zw] for a complete treatment on this topic. In
particular, we only use symbols with compact support which are sufficient for our purpose.
Let h0 ∈ (0, 1) be fixed and ρ ∈ [0, 1/2). We say that a(x, ξ; h) ∈ C∞

0 (T ∗M× [0, h0)) is in the
symbol class Scomp

ρ (M) if for each multi-indices α and β,

sup
x∈M,ξ∈TxM

|∂α
x∂

β
ξ a| ≤ Ch−ρ(|α|+|β|),

in which C = C(α, β) > 0 is independent of h. The infimum C(α, β) for which the above
estimates hold are called the seminorms of a. Clearly, if a(x, ξ) ∈ C∞

0 (T ∗M) is independent of
h, then a ∈ Scomp

0 (M).
We associate symbols in Scomp

ρ (M) with semiclassical pseudo-differential operators as follows.

First, for a ∈ Scomp
ρ (Rd), choose the (left-)quantization

Oph(a)u(x) =
1

(2πh)d

∫

Rd

∫

Rd

ei〈ξ,x−y〉/ha(x, ξ)u(y) dξdy, (4.5)
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in which u ∈ C∞
0 (Rd). Then, for a ∈ Scomp

ρ (M), the semiclassical pseudo-differential operator
Oph(a) can be defined via local charts on M. The correspondence between the operators and the
symbols depends on the quantization rule (4.5) and is not one-to-one. However, the following
are true. See Dyatlov-Guillarmou [DG, Section 3] for a concise introduction of these results.
• [L2 boundedness] Let ρ ∈ [0, 1/2) and a ∈ Scomp

ρ (M). Then

‖Oph(a)‖L2(M)→L2(M) ≤ C, (4.6)

in which C = C(a) > 0 depends on finite number of seminorms of a and is independent of h.
• [Product] Let ρ1, ρ2 ∈ [0, 1/2) and ρ1+ρ2 < 1/2. If a1 ∈ Scomp

ρ1
(M) and a2 ∈ Scomp

ρ2
(M), then

there exists a ∈ Scomp
ρ1+ρ2(M) such that

Oph(a1)Oph(a2) = Oph(a) +OL2(M)→L2(M)(h
∞), (4.7)

in which a− a1a2 ∈ h1−ρ1−ρ2Sρ1+ρ2(M) and supp a ⊂ supp a1 ∩ supp a2.
• [Adjoint] Let ρ ∈ [0, 1/2) and a ∈ Scomp

ρ (M). Denote Oph(a)
⋆ the adjoint of Oph(a) in

L2(M). Then there exists b ∈ Scomp
ρ (M) such that

Oph(a)
⋆ = Oph(b) +OL2(M)→L2(M)(h

∞), (4.8)

in which b− a ∈ h1−2ρScomp
ρ (M) and supp b ⊂ supp a.

• [Microlocalization] Let (h2∆M +1)uh = 0 and a ∈ C∞
0 (T ∗M) such that a = 1 in a neighbor-

hood of S∗M. Then
‖Oph(a)uh − uh‖L2(M) = O(h∞). (4.9)

The implied constants of the terms O(h∞) in (4.7), (4.8), and (4.9) are all independent of h and
only depend on finite number of seminorms of the symbols involved.

4.2. Estimates of the matrix elements. In this subsection, we provide the estimates of
the matrix elements 〈Oph(a)Qj , Qk〉 in (4.1). The main tool is the following description of
microlocalization of Gaussian beams in the phase space T ∗M at scales hρ with 0 ≤ ρ < 1/2.

Lemma 6. Let ρ ∈ [0, 1/2) and b ∈ Scomp
ρ (S2).

(i). If dist (supp b, G0) ≥ hρ, then

〈Oph(b)Q0, Q0〉 = O(h∞).

(ii). If b = 1 in the hρ-neighborhood of G0, then

〈Oph(b)Q0, Q0〉 = 1 +O(h∞).

The implied constants in O(h∞) depend on finite number of seminorms of b and are independent
of h.

Here, dist is the distance function in T ∗M that is equipped with the Sasaki metric, see e.g.,
Ballmann [Ba, Section IV.1].

Proof. Use the coordinates (φ, θ, ξφ, ξθ) for elements in T ∗M. Let χφ,h ∈ C∞
0 (S2 × (0, h0)) be

independent of θ such that 0 ≤ χφ,h ≤ 1 and

χφ,h =

{

1 if
∣

∣φ− π
2

∣

∣ ≤ 1
4
hρ,

0 if
∣

∣φ− π
2

∣

∣ ≥ 1
3
hρ.

Then

|〈Oph(b)Q0, Q0〉|
≤ |〈Oph(b)(χφ,hQ0), χφ,hQ0〉|+ |〈Oph(b)(χφ,hQ0), (1− χφ,h)Q0〉|
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+ |〈Oph(b)((1− χφ,h)Q0), χφ,hQ0〉|+ |〈Oph(b)((1− χφ,h)Q0), (1− χφ,h)Q0〉| . (4.10)

The last three terms in (4.10) are straightforward to estimate: If |φ−π/2| ≥ hρ/4, then by (3.1)
and (3.6) we have that

|Q0| ≤ CNN
1

4 |sinφ|N ≤ c1h
− 1

4 cos

(

hρ

4

)
1

h

≤ c1h
− 1

4 e−
h2ρ−1

48 = O(h∞),

since 0 ≤ ρ < 1/2. Since supp (1− χφ,h) ⊂ {|φ− π/2| ≥ hρ/4},
‖(1− χφ,h)Q0‖L2(S2) = O(h∞).

Together with the L2 mapping norm estimate of Oph(b) in (4.6), we have that

|〈Oph(b)(χφ,hQ0), (1− χφ,h)Q0〉| ≤ C‖χφ,hQ0‖L2(S2)‖(1− χφ,h)Q0‖L2(S2) = Ob(h
∞).

For the same reason, the last two terms in (4.10) are also Ob(h
∞).

It is left to estimate the first term in (4.10). Recall that G0 = {(φ, θ, ξφ, ξθ) ∈ S∗S2 : φ =
π/2, θ ∈ [0, 2π), ξφ = 0, ξθ = 1}. If (φ, θ) ∈ suppχφ,h and (φ, θ, ξφ, ξθ) ∈ supp b, then |ξθ − 1| ≥
hρ/3 if h < h0 for sufficiently small h0.
Let χθ ∈ C∞

0 (S2) depend only on the θ-variable so we can use a local chart on S
2 that

Oph(b) (χφ,hQ0χθ) (φ, θ)

=
1

(2πh)2

∫

R2

∫

R2

ei(〈ξφ,φ−φ̃〉+〈ξθ ,θ−θ̃〉)/hb(φ, θ, ξφ, ξθ)χφ,h

(

φ̃
)

Q0(φ̃, θ̃)χθ

(

θ̃
)

dξφdξθdφ̃dθ̃

=
CNh

− 1

4

(2πh)2

∫

R2

∫

R2

ei(〈ξφ,φ−φ̃〉+〈ξθ ,θ−θ̃〉)/h)b(φ, θ, ξφ, ξθ)χφ,h

(

φ̃
)

χθ

(

θ̃
)(

sin φ̃
)

1

h

eiθ̃/h dξφdξθdφ̃dθ̃,

in which the integral with respect to the θ̃-variable is
∫

R

ei〈1−ξθ ,θ̃〉)/h)χθ

(

θ̃
)

dθ̃.

Because |1 − ξθ| ≥ hρ/3 with 0 ≤ ρ < 1/2 and χθ is independent of h, we can perform the
stationary phase argument to deduce that this integral is Ob(h

∞). See Zworski [Zw, Section 3.4].
Therefore, Oph(b) (χφ,hQ0χθ) (φ, θ) = Ob(h

∞) in any local chart so Oph(b)(χφ,hQ0) = Ob(h
∞).

The first term in (4.10) becomes

|〈Oph(b)(χφ,hQ0), χφ,hQ0〉| ≤ ‖Oph(b)(χφ,hQ0)‖L2(S2)‖χφ,hQ0‖L2(S2) = Ob(h
∞),

and (i) in this lemma follows.
To prove (ii), choose χ0 ∈ C∞

0 (T ∗S2) such that χ0 = 1 in the 1/2-neighborhood of S∗S2. Since
b = 1 in the hρ-neighborhood of G0, b− χ0 = 0 in this region. By (4.9),

‖Oph(b)Q0 −Q0‖L2(S2) ≤ ‖Oph(b)Q0 −Oph(χ0)Q0‖L2(S2) + ‖Oph(χ0)Q0 −Q0‖L2(S2)

≤ ‖Oph(b− χ0)Q0‖L2(S2) +O(h∞)

≤ Ob(h
∞),

in which the last inequality follows (i) since dist (supp (b− χ0), G0) ≥ hρ. �

Immediately, we have that

Proposition 7 (Off-diagonal term estimate). Let a ∈ C∞
0 (T ∗

S
2). Then for Qj and Qk in (4.2)

with j 6= k,
〈Oph(a)Qj, Qk〉 = Oa(h

∞).
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Proof. We assume that Qk = Q0 without loss of generality. Since Gj and G0 are separated in
T ∗S2 by distance at least c0DN−1/4 = c0Dh1/4 by (3.4), their 2hρ-neighborhoods are disjoint if
1/4 < ρ < 1/2 and 0 < h < h0 for some absolute constant 0 < h0 ≤ 1. Therefore, there is a
function b ∈ Scomp

ρ (S2) such that b is supported in the 2hρ-neighborhood of G0, equals 1 in the
hρ-neighborhood of G0, but vanishes in the hρ-neighborhood of Gj . By (ii) in Lemma 6, we have
that

Q0 = Oph(b)Q0 +OL2(S2) (h
∞) ,

in which the implied constant depends on finite number of seminorms of b and is independent
of h. Then

〈Oph(a)Qj , Q0〉 = 〈Oph(a)Qj ,Oph(b)Q0〉+O(h∞)

= 〈Op(b̃)⋆Oph(a)Qj , Q0〉+O(h∞)

= 〈Op(g)Qj, Q0〉+Oa(h
∞).

Here, b̃ ∈ Scomp
ρ (S2) and supp b̃ ⊂ supp b by (4.8), g ∈ Scomp

ρ (S2) and supp g ⊂ supp b̃ ∩ supp a ⊂
supp b by (4.7). It then follows that dist (supp g,Gj) ≥ dist (supp b, Gj) ≥ hρ. According to (i)
in Lemma 6,

〈Oph(g)Qj, Q0〉 = Oa(h
∞),

so 〈Oph(a)Qj , Qk〉 = Oa(h
∞) for all j 6= k. �

Proposition 8 (Diagonal term estimate). Let a ∈ C∞
0 (T ∗S2). Then for Qj in (4.3),

〈Oph(a)Qj , Qj〉 =
1

2π

∫

Gj

a dl +Oa(h).

Proof. This is a special case of the semiclassical measure computed in Zelditch [Ze3, Proposition
12.1]:

〈Oph(a)Q0, Q0〉 =
1

2π

∫

G0

a dl +Oa(h).

See also Zworski [Zw, Example 2 in Section 5.1]. The constant 1/(2π) can be easily verified by
choosing a = 1 in a neighborhood of G0. The case for Qj in (4.3) follows by a rotation. �
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