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Abstract. We consider the following list coloring with separation
problem: Given a graph G and integers a, b, find the largest integer
c such that for any list assignment L of G with |L(v)| = a for any
vertex v and |L(u) ∩ L(v)| ≤ c for any edge uv of G, there exists
an assignment ϕ of sets of integers to the vertices of G such that
ϕ(u) ⊂ L(u) and |ϕ(v)| = b for any vertex u and ϕ(u) ∩ ϕ(v) = ∅
for any edge uv. Such a value of c is called the separation number
of (G, a, b). Using a special partition of a set of lists for which we
obtain an improved version of Poincaré’s crible, we determine the
separation number of the complete graph Kn for some values of
a, b and n, and prove bounds for the remaining values.

1. Introduction

Let a, b, c be integers and let G be a graph. A a-list assignment L
of G is a function which associates to each vertex a set of a integers.
The list assignment L is c-separating if for any uv ∈ E(G), |L(u) ∩
L(v)| ≤ c. The graph G is (a, b, c)-choosable if for any c-separating
a-list assignment L, there exists an (L, b)-coloring of G, i.e. a coloring
function ϕ on the vertices of G that assigns to each vertex v a subset
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2 LIST COLORING WITH SEPARATION OF THE COMPLETE GRAPH

of b elements from L(v) in such a way that ϕ(u) ∩ ϕ(v) = ∅ for any
uv ∈ E(G).

The list coloring problem with restrictions on the list intersections
has been introduced by Kratochv́ıl, Tuza and Voigt [13]. Notice that
Kratochv́ıl et al. [13, 14] defined (a, b, c)-choosability a bit differently,
requiring for a c-separating a-list assignment L that the lists of two
adjacent vertices u and v satisfy |L(u) ∩ L(v)| ≤ a − c. Among the
first results on the topic, a complexity dichotomy was presented [13]
and general properties given [14]. These first papers were followed by
a series of papers considering choosability with separation of planar
graphs, mainly for the case b = 1 [3, 4, 5, 6, 7, 12, 16]. While the fact
that planar graphs are (4, 1, 2)-choosable was proved very recently [17],
a still open question is whether all planar graphs are (3, 1, 1)-choosable
or not. Other recent papers concern balanced complete multipartite
graphs and k-uniform hypergraphs (for the case b = 1) [10]; bipartite
graphs (for the case b = c = 1) [9]; a study with an extended separation
condition [15], and cycles and outerplanar graphs for arbitrary b [11].

In this paper, we concentrate on choosability with separation of com-
plete graphs. As a (a, b, c)-choosable graph is also (a, b, c′)-choosable
for any c′ < c, our aim is to determine, for given a, b, a ≥ b, the largest
c such that G is (a, b, c)-choosable. Following our previous work on
cycles [11], we define the (list) separation number sep(G, a, b) of G as

sep(G, a, b) = max{c, G is (a, b, c)-choosable}.

Notice that we have 0 ≤ sep(G, a, b) ≤ a for any graph G and a ≥ b,
hence this parameter is well defined.

In our setting, we know that any planar graphG satisfies sep(G, 5, 1) =
5 (Thomassen’s Theorem), sep(G, 4, 1) ≥ 2 [17] ; but we do not know if
sep(G, 3, 1) ≥ 1 holds for all planar graphs G. For the complete graph,

Kratochv́ıl et al. [14] proved that sep(Kn, ⌊
√

n− 11/4 + 3/2⌋, 1) ≥ 1.
Moreover, the separation number of the cycle is determined and bounds
are given for catuses and outerplanar graphs [11].

The following Hall-type condition that we call the amplitude condi-
tion is necessary for a graph G to be (L, b)-colorable:

∀H ⊂ G,
∑

k∈C

α(H,L, k) ≥ b|V (H)|,

where C =
⋃

v∈V (H) L(v) and α(H,L, k) is the independence number
of the subgraph of H induced by the vertices containing k in their
color list. Notice that H can be restricted to be a connected induced
subgraph of G. As shown by Cropper et al. [8] (in the more general
context of weighted list coloring), this condition is also sufficient when
the graph is a complete graph or a path (or some other specific graphs).
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For a list assignment L on a graph G of order n with vertex set
V (G) = {v1, v2, . . . , vn} and for S ⊂ [1, n], we write ΣS(L) =

∑

k∈C α(H,L, k),
where H is the subgraph of G induced by {vi, i ∈ S}.

Remark that if G is a complete graph, then α(H,L, k) = 1 for any
k. Hence the amplitude condition for Kn becomes

(1) ∀S ⊂ [1, n],ΣS(L) = | ∪i∈S L(xi)| ≥ b|S|
Example 1. For the complete graph K4 with vertex set {v1, v2, v3, v4},
let L be the 3-separating 5-list assignment defined by:
L(v1) = {1, 2, 3, 4, 5}, L(v2) = {1, 2, 3, 6, 7}, L(v3) = {3, 4, 6, 7, 8}, and
L(v4) = {4, 6, 8, 9, 10}.

We have L(v1)∪L(v2)∪L(v3) = {1, 2, 3, 4, 5, 6, 7, 8}, hence Σ{1,2,3}(L) =
|{1, 2, 3, 4, 5, 6, 7, 8}| = 8. Therefore K4 is not (L, 3)-colorable since
Σ{1,2,3}(L) = 8 < 3b = 9. (Note that we also have Σ[1,4](L) = 10 <
4b = 12 in this case.)

For the separation number of the complete graph, the following prop-
erties are easy to prove:

Property 1. Let a, b, n be integers. Then

• for fixed b, n, the function sep(Kn, a, b) is increasing with a;
• for fixed a, b, the function sep(Kn, a, b) is decreasing with n.

Moreover, we observed (and will prove it in the case b ≤ a < 2b and
(n−1)b ≤ a < nb) that for any a, b, n, sep(Kn, a+1, b) ≤ sep(Kn, a, b)+
2.

In Section 2, we introduce proper intersections of set systems and
show some of their properties and use them to partition the lists of
colors of the vertices of Kn, allowing to simplify the computations.
In Section 3, we propose a general coloring algorithm and two special
types of list assignments with nice properties that will be used mainly
for finding good counter-examples. Then in Section 4, we determine
bounds and exact values for the separation number of the complete
graph Kn, depending on a, b and n, and finnish with a conjecture. The
algebra that allowed us to find the counter examples of Section 4 is
given in Appendix A.

2. Algebraic preliminaries on set systems intersections

2.1. Proper intersections and Poincaré’s crible improvment.

Let n ≥ 1 be an integer and [n] = [1, n]. For sets of elements A1, A2, . . . , An,
we define the following: For any i ≥ 1 and Si = {α1, α2, . . . , αi} ⊂ [n],
the proper intersection Ip(Si) of Aα1

, Aα2
, . . . , Aαi

is given by

Ip(Si) =

(

i
⋂

k=1

Aαk

)

\





⋃

β∈[n]\Si

Aβ



 .
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Notice that for any set S ∈ [n], the whole n sets Ai are present in
the formulae of the proper intersection of S. For example, for n = 5,
Ip({1}) = A1\(A2∪A3∪A4∪A5) ; Ip({2, 3}) = (A2∩A3)\(A1∪A4∪A5);
Ip({1, 2, 5}) = (A1 ∩A2 ∩A5) \ (A3 ∪A4); Ip({2, 3, 4, 5}) = (A2 ∩A3 ∩
A4 ∩A5) \ A1 and Ip({1, 2, 3, 4, 5}) = A1 ∩ A2 ∩A3 ∩A4 ∩ A5.

Then the classical intersection can be described in terms of proper
intersections:

Property 2. For any S ⊂ [n],
⋂

i∈S

Ai =
⋃

S⊂S′⊂[n]

Ip(S
′).

Proof. The proof is by double inclusion. First, by construction, For
any S ′ ⊃ S, any x in Ip(S

′) is also an element of ∩i∈SAi. Next, if
x ∈ ∩i∈SAi, then either x ∈ Ip(S) and we are done or x 6∈ Ip(S). In
this latter case, let S be the set of indices j of [n] \S for which x ∈ Aj .
Then, by construction, we have x ∈ Ip(S

′), for S ′ = S ∪ S. �

Thanks to this property, we obtain the fact that the proper intersec-
tions form a partition of ∪n

i=1Ai.

Property 3. For any S, S ′ ⊂ [n] such that S 6= S ′, we have

Ip(S) ∩ Ip(S ′) = ∅.
Proof. At least one of S−S ′ or S ′ −S is non empty. Let us say S−S ′

is not empty and let s ∈ S − S ′. Let x ∈ Ip(S) ∩ Ip(S ′). Then x ∈ As,
but x ∈ Ip(S

′) and s 6∈ S ′. Hence x 6∈ As, a contradiction and therefore
the intersection is empty. �

We thus have the following à-la-Poincaré result:

Theorem 4.
n
⋃

i=1

Ai =
⋃

S⊂[n],S 6=∅

Ip(S).

Proof. By Property 2 for |S| = 1, we have Ai =
⋃

S′⊂[n]\{i} Ip({i}∪ S ′).

Therefore
⋃n

i=1Ai =
⋃n

i=1

⋃

S′⊂[1,n]\{i} Ip({i} ∪ S ′) =
⋃

S⊂[n],S 6=∅ Ip(S).
�

By Property 3 and Theorem 4, we obtain the following crible which
can be seen as an improvment of Poincaré’s crible as we only do addi-
tions (compared to Poincaré’s crible where additions and substractions
alternate):
Corollary 5.

∣

∣

∣

∣

∣

n
⋃

i=1

Ai

∣

∣

∣

∣

∣

=
∑

S⊂[n],S 6=∅

|Ip(S)|.
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2.2. List assignments of Kn and proper intersections. We will
use proper intersections on list assignments of Kn. Let V (Kn) = [n].
For a list assignment L of Kn, we let Ai = L(i), for 1 ≤ i ≤ n.

In a basic way, L is a set of n lists of size a. Using proper intersection
tools from the previous subsection, the list assignment L can now be
represented by the vector of proper intersections cardinals V(L) of
dimension 2n − 1 (ordered by set inclusion and alphanumeric order).

Then we have

(2) ∀i ∈ [n]
∑

S⊂[n],i∈S

|Ip(S)| = |L(i)|.

And the cardinality of the intersection between two lists is given by

(3) ∀i, j ∈ [n], i 6= j,
∑

S⊂[n],i,j∈S

|Ip(S)| = |L(i) ∩ L(j)|.

Moreover, thanks to Corollary 5, the total amplitude of L is given
by

(4) Σ[n](L) =
∑

S⊂[n]

|Ip(S)|.

Example 2. For the complete graph K4 and the list assignment L
defined in Example 1, we have : Ip({1}) = {5}, Ip({4}) = {9, 10},
Ip({1, 2}) = {1, 2}, Ip({2, 3}) = {7}, Ip({3, 4}) = {8}, Ip({1, 2, 3}) =
{3}, Ip({1, 3, 4}) = {4}, and Ip({2, 3, 4}) = {6}. Hence the vector
V(L) = (1, 0, 0, 2, 2, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0).

Consequently, from these equations, we obtain an ILP-formulation
of the problem of finding smallest counter examples (c-separating a-list
assignments L of Kn for which no (L, b)-coloring exists): For S ⊂ [n],
we consider the variable xS = |Ip(S)|. Then the goal is to minimize c
subject to the constraints:

(5) ∀i ∈ [n],
∑

S⊂[n],i∈S

xS = a,

(6) ∀i, j ∈ [n], i 6= j,
∑

S⊂[n],i,j∈S

xS ≤ c,

and
∑

S⊂[n]

xS < nb.

This formulation allows to use ILP-solvers to help us finding counter-
examples.

Remark 6. Assuming that the colors are taken from the set {1, . . . , na}
(this is always possible, up to a color renumbering), we can count the
number of different list assignments associated to the same vector of
proper intersections V(L): Considering any ordering S1, S2, . . . , S2n−1
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of the non-empty subsets of [n], this number of list assignments is given
by

2n−1
∏

i=1

(

na−∑j<i |Ip(Sj)|
|Ip(Sj)|

)

=
(na)!

(na−∑i |Ip(Si)|)!(
∏

i |Ip(Si)|!)
.

For instance, if all proper intersections are equal to zero execpt Ip([n]) =
a, then we obtain

(

na
a

)

lists.

2.3. Counting list assigments up to proper intersection equiv-

alence. In order to compute the gain of working with proper intersec-
tions instead of list assignments, we are now going to count the total
number of a-list assignments up to proper intersection equivalence. Let
L(n, a) be the set of all a-list assignments on n vertices up to proper
intersection. The cardinal of L(n, a) can be compared with the total
number of a-list assignments on na colors, which is

(

na
a

)n
.

For n = 2, it is easy to see that there are only a+1 different lists up to
proper intersections, hence |L(2, a)| = a+1. We define L(n, a, [n] = 0)
as the subset of L(n, a) for which Ip([n]) = ∅ and L(n, a, [n] > 0) as
the subset of L(n, a) for which |Ip([n])| > 0.

Lemma 7. For integers a ≥ 1, n ≥ 1, we have :

|L(n, a)| = |L(n, a− 1)|+ |L(n, a, [n] = 0)|.
Proof. It is easily seen that L(n, a) = L(n, a, [n] > 0) ∪ L(n, a, [n] =
0). Now, note that there is a trivial isomorphism between lists of
L(n, a, [n] > 0) and that of L(n, a− 1). To see this, represent each list
by the vector of the cardinals of their proper intersections, ordered by
the size. Then since the last element of each vector is positive, its value
can be decreased by one, obtaining a vector corresponding with a list
assignment of L(n, a− 1). �

Remark that any element of L(n, a) must satisfy Equation 5 for each
vertex and reciprocally any solution of this set of n equations gives a
list assigment L(n, a). Hence the set of all solutions is a subspace of
dimension 2n − 1− n of a vectorial space of this equation set.

Lemma 8. For all S = {a1, a2, . . . , ai} ⊂ [n], |S| ≥ 2, the vectors

vS = eS −∑i
j=1 eaj form a canonical base of L(n, a).

Proof. As we have 2n − 1 proper intersections, then the space is of
dimension 2n−1. But we have n linear equations (Equation 5) and since
they are linearly independent, thus L(n, a) is of dimension 2n − 1− n.
It then suffices to prove that the family of vS is free. For any S ⊂
[n], |S| ≥ 2, let αS, such that

∑

αSvS = 0. We have
∑

αSvS =
∑n

i=1 βiei +
∑

|S|≥2 αSeS = 0. As the eS are vectors of the canonical
base, then αS = 0 for every S. Hence the family is free. �
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There exists a trivial solution to the set of equations, it is the list
assignment with vector T = (a, a, . . . , a, 0, . . . , 0) with n values equal
to a. Then any list assignment solution can be written as the trivial
solution plus a linear combination of these base vectors eS. Hence a list
assignment solution can be identified by a linear sum of base vectors.
We therefore only have to work on linear sums of base vectors. But, as
the entries of a solution have to be non negative, we only have a finite
number of solutions. We define the set of list assignments L(n,= a)
as the set of list assignments such that there exists some i ∈ [n] for
which the sum of coefficients αS over all S containing i in the linear
combination is equal to a in the vectorial representation (i.e., such that
Ip({i}) = ∅) and for which Ip([n]) = ∅.
Lemma 9.

|L(n, a, [n] = 0)| = |L(n, a− 1, [n] = 0)|+ |L(n,= a)|.
Proof. The set L(n, a, [n] = 0) trivially decomposes into the set A of
list assignments for which all the first n entries of the vector are strictly
positive and the set of which there is at least a zero in the first n entries
of the vector, i.e., L(n,= a). But there is a natural bijection between
A and L(n, a− 1, [n] = 0), hence the recursion formulae. �

Lemma 10.

|L(3,= a)| =
{

3/4a2 + 3/2a+ 1 a even
3/4a2 + 3/2a+ 3/4 a odd.

Proof. For n = 3, we have only 3 vectors: S = (1, 2), (1, 3), and
(2, 3). Hence any solution can be represented by a triplet of vectors
(α1, α2, α3). Starting from (a, 0, 0), we count the triplets by equiva-
lence classes such that the first coefficient is maximum, the second one
is greater than or equal to the third one and then we count the number
of elements in the class of equivalence. We then have three cases: if
the three numbers are different then there are 3! = 6 different combina-
tions; if exactly two numbers are different then we have 3 combinations
and only one if the three numbers are all identical. Hence each solution
is of the form (a− x, x, y) with 0 ≤ x ≤ a/2 and y ≤ x. Therefore, we
obtain the following formulae:

|L(3,= a)| =
{

1 + 3a/2 +
∑a

i=a/2+1(3 + 6(a− i)), a even
∑a

i=(a+1)/2(3 + 6(a− i)), a odd.

Hence, using simple calculations, we obtain the formulae of the
lemma.

�

Proposition 11. For n = 3, we have

|L(n, a)| = 1

16
(a4 + 8a3 + 24a2 + 32a+ 16− ǫ(a)),
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where ǫ(a) = 1 if a is odd and ǫ(a) = 0 otherwise.

Proof. Combining the two recursion formulas of Lemmas 7 and 9, we
obtain the formulae for the residue, allowing to find the general poly-
nomial. �

Conjecture 12. |L(n, a)| is a polynomial in a of degree n + 1, with
coefficients being functions of Bernouilli’s numbers.

Proposition 11 (and Conjecture 12, if true) says that using proper in-
tersections allows to go from an exponential number of list assignments
to treat to a polynomial number.

3. (a, b, c)-choosability of Kn

3.1. General coloring algorithm. We provide an algorithm that,
given a list assigment L of Kn, produces a multi-coloring. We conjec-
ture that this algorithm is optimal (i.e., produces an (L, b)-coloring if
Kn is (L, b)-colorable).
Algorithm ColorSym: Taking an arbitrary list-assignment L as input,
we consider at each step the vector w = (w1, . . . , wn), with wi = being
the number of colors given to vi so far.

Step 1. Color every proper intersections of sets of size 1 : vi gets
|Ip({i})| colors. Thus wi = |Ip({i})|.

Step i ≥ 2. If wi ≥ b for each i or i = n + 1, then Stop. Otherwise,
for each set S with |S| = i, consider |Ip(S)| and let j ∈ S be the index
for which w(j) is minimum (if more than one j with minimum w, then
take the smallest index). Remove a color from Ip(S) and assign it to
vj . Goto Step i until Ip(S) is empty.

3.2. Symetrical list assignments on Kn. Let L be a a-list assign-
ment on Kn. We say that L is symetrical if for any i, 1 ≤ i ≤ n, and
any S, S ′ ⊂ [n] such that |S| = |S ′|, we have |Ip(S)| = |Ip(S ′)|. For
such a list assignment, we let xi = |Ip(S)| for S ⊂ [n], |S| = i and
x(L) = (x1, x2, . . . , xn).

Considering symetrical list assignments allows to reduce the number
of variables in the linear program from 2n − 1 to n and to simplify
Equation 5 into

(7)
n
∑

i=1

(

n− 1

i− 1

)

xi = a,

and Equation 6 into

(8)

n
∑

i=2

(

n− 2

i− 2

)

xi ≤ c,
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and for the total amplitude:

(9)
n
∑

i=1

(

n

i

)

xi ≥ nb.

As we will see, symetrical list assignments have the nice property
that Equation 9 is sufficient to guarantee an (L, b)-coloring of Kn. We
will first prove how to find a balanced coloring of a set of subsets of
[n]. We define P(i, n) as the set of all subsets of cardinality i of the set
{1, . . . , n}. Observe that |P(i, n)| =

(

n
i

)

. Let also P(n) = ∪n
i=1P(i, n).

For a weight vector w = (w1, . . . , wn), with wi ≥ 0 for all i, 1 ≤ i ≤ n,
let P(n)w be the multiset obtained from the empty set by adding to it
wi times the set P(i, n) for any i, 1 ≤ i ≤ n.

A partition (or coloring) P1, . . . , Pn of a subset S of P(n)w is balanced
if for any i, j, 1 ≤ i 6= j ≤ n, ||Pi| − |Pj|| ≤ 1 and for any X ∈ Pj ,
j ∈ X .

Lemma 13. For any integer n ≥ 3 and any wheight vector w of size
n, there exists a balanced partition of P(n)w.

Proof. Observe that P(n)w is the union of sets P(i, n). Let Sn be the
group of permutations of n elements. Remark that Sn acts on P(i, n).
Let g be the n-elements cycle. Hence P(i, n) can be viewed as the set
of its orbits by g and P(n)w as a multiset of orbits.

The general idea to prove the lemma is to color P(n)w by coloring
each orbit of each set P(i, n) one after the other in any order while
ensuring that at each step, the partial coloring is balanced. The key
idea for showing this is possible is the following observation:

Claim 14. For any integers i and j, 1 ≤ i, j ≤ n, any orbit O of
P(i, n) can be colored with colors j, j + 1, . . . , j + |O| (with n+ 1 = 1).

proof. Observe first that all elements of [n] are present at least once
in O. Hence, there exists oj ∈ O such that oj contains j. Color oj by
color j and color each remaining element gk(oj) of O with color j + k
for k ∈ {1, . . . , n− 1} (j + k − n if j + k > n).

The algorithm for obtaining a balanced coloring ϕ consists in coloring
the orbits of P(n)w in any order and, when coloring the elements of a
new orbit, to start with the color j such that |ϕ−1(j)| < |ϕ−1(j − 1)| if
such a j exists and j = 1 otherwise and use Claim 14. After each such
step, we can observe that the (partial) coloring ϕ remains balanced.
Therefore, after having colored the last element of the last orbit, ϕ is
a balanced coloring of P(n)w.

�

Corollary 15. Let L be a symetrical list assignment of Kn. If Kn is
(L, b)-colorable, then Algorithm ColorSym produces an (L, b)-coloring.

Proof. To any symetrical list assignment L, we can make correspond
a set S ⊂ P(n)x (each set S ⊂ [n], |S| = i, is present xi times in
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S). Hence by Lemma 13, there exists a balanced coloring of S, and
thus a coloring ϕ from L which is balanced, i.e., for any i, j ∈ [n],
||ϕ(vi)| − |ϕ(vj)|| ≤ 1. Therefore the amplitude condition has only to
be verified globally, i.e., it suffices to show that Equation 9 is satisfied in
order Kn to be (L, b)-colorable. As Equation 9 is a necessary condition,
if an (L, b)-coloring ofKn exists then Algorithm ColorSym ends up with
such a coloring. �

3.3. Quasi-symetrical list assignments. Let L be a a-list assign-
ment on Kn. We say that L is quasi-symetrical if for any i, 1 ≤ i ≤ n,
and any S, S ′ ⊂ [n] such that |S| = |S ′|, we have −1 ≤ |Ip(S)| −
|Ip(S ′)| ≤ 1.

The vector of cardinality-support cs(S) of a set S = {S1, S2, . . . , Sk}
of subsets of [n] is defined by cs(S) = (β1, . . . , βn), with βi = |{i ∈
Sj, j ∈ {1, . . . , k}}|.
Lemma 16. For any n, k with n ≥ 4, k ≥ 2 and n ≥ (2k − 1 +√
8k + 1)/2, there exist a set of k + 1 k-subsets {S ′

1, S
′
2, . . . , S

′
k+1} of

[n] and a set of k (k+1)-subsets {S1, S2, . . . , Sk} of [n] having the same
cardinality-support vector.

Proof. Let n, k be as in the statment of the Lemma. We consider two
cases : 2 ≤ k ≤ n/2 and n/2 < k ≤ n− 2.

Case 1 : 2 ≤ k ≤ n/2. For 1 ≤ i ≤ k, set S ′
i = {1, . . . , k, k + i}

For 1 ≤ j ≤ k, set Sj = S ′
j \ {j} and Sk+1 = {1, . . . , k}.

By construction, they have the same cardinality support vector that
starts with k times the entry k and k times the entry 1, i.e., cs(S) =
(k, k, ..., k, 1, ..., 1, 0, ..., 0).

Case 2 : k ≥ n/2. For 1 ≤ i ≤ k, set S ′
i = {1, . . . , k−1, xi, yi}, with

{xi, yi} ⊂ [k, n] and xi 6= yi. We choose for each S ′
i a different couple.

This is always possible since there are

(

n− k + 1

2

)

such couples and

we have

(

n− k + 1

2

)

≥ k since n ≥ (2k − 1 +
√
8k + 1)/2.

For 1 ≤ j ≤ k − 1, Sj = S ′
j \ {j} and Sk = S ′

k \ {xk} and Sk+1 =
{1, . . . , k − 1, xk}. Again, by construction, both families of sets have
the same cardinality support vector.

�

Proposition 17. Let a, b, n, x be integers such that x ≤ n and a = xb
is a multiple of

(

n−1
x−1

)

. Then Kn is not (a, b, ax−1
n−1

+ 1)-colorable.

Proof. Let a = p
(

n−1
x−1

)

for some p ≥ 1. We first construct a symetrical
list assignment L by setting |Ip(Sx)| = p for every set Sx ⊂ [n] with
|Sx| = x and |Ip(S)| = 0 for |S| 6= x.

We check that for every j ∈ [n], |L(j)| = a and that
∑

(L) = nb. In

fact, there are

(

n

x

)

x-subsets of [n] and

(

n− 1

x− 1

)

of them containing
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some j ∈ [n]. Hence |L(j)| = p

(

n− 1

x− 1

)

= a and Σ(L) = p

(

n

x

)

=

p

(

n− 1

x− 1

)

n
x
= an

x
= bn. Moreover, observe that for any i, j ∈ [n], we

have |L(i) ∩ L(j)| = p

(

n− 2

x− 2

)

= p

(

n− 1

x− 1

)

x−1
n−1

= ax−1
n−1

.

Now, by Lemma 16, there exists a set of x + 1 x-subsets of [n] and
a set of x (x + 1)-subsets of [n] with the same cardinality support
vector cs. Let S and S ′, respectively, be such sets as defined in the
proof of Lemma 16. Hence, we can decrease |Ip(S)| by one for every
S ∈ S (hence |Ip(S)| = p − 1 for such set) and increase |Ip(S ′)| by
one for every S ′ ∈ S ′ (hence |Ip(S ′)| = 1 for such set). Let L′ be
the quasi-symetrical resulting list assignment. Since the cardinality
support vector is the same for S and S ′, L′ is a a-list assignment.
We now prove that the amplitude of L′ is

∑

(L′) = nb − 1 and that
L′ is c′-separating, with c′ = ax−1

n−1
+ 1. For the amplitude, we have

Σ(L′) = p

(

n

x

)

− (x+1)+x = p

(

n

x

)

− 1 = Σ(L)− 1 = nb− 1. For the

separation condition, if i ∈ [n] such that cs(i) = 0, then we have, for
any j ∈ [n], |L′(i) ∩ L′(j)| = |L(i) ∩ L(j)| ≤ c. Otherwise, if i, j ∈ [n]
are such that cs(i) > 0 and cs(j) > 0, then we are going to prove that
|L′(i) ∩ L′(j)| ≤ |L(i) ∩ L(j)| + 1 ≤ c + 1. First, consider the case
2 ≤ x ≤ n/2. If 1 ≤ i, j,≤ x, then, by the construction of the proof of
Lemma 16, there are x−2+1 = x−1 sets in S and x sets in S ′ containing
i, j, hence |L′(i)∩L′(j)| = |L(i)∩L(j)|−(x−1)+x = |L(i)∩L(j)|+1 =
c′. Otherwise (i > x or j > x), then |L′(i) ∩ L′(j)| = |L(i) ∩ L(j)|.
Second, consider the case x > n/2. If 1 ≤ i, j,≤ x − 1, then, by the
construction of the proof of Lemma 16, there are x − 2 + 1 = x − 1
sets in S and x sets in S ′ containing i, j, hence |L′(i)∩L′(j)| = |L(i)∩
L(j)| − (x− 1)+x = |L(i)∩L(j)|+1 = c′. Otherwise, if 1 ≤ i ≤ x− 1
and j ≥ x, then there is one more set in S ′ than in S containing both
i and j, hence |L′(i)∩L′(j)| = |L(i)∩L(j)|+1 = c′. Otherwise (i ≥ x
and j ≥ x), we have |L′(i) ∩ L′(j)| = |L(i) ∩ L(j)|.

In conclusion, we have built a c′-separating a-list assignment L′ for
which the amplitude condition is not fulfilled and thus sep(Kn, a, b) <
c′. �

Proposition 18. For integers a, b, n such that a ≥ 2b and a is a mul-
tiple of ⌊ a2

2b(n−1)
⌋, Kn is (a, b, ⌊ a2

2b(n−1)
⌋)-choosable.

Proof. Let c = ⌊ a2

2b(n−1)
⌋ and L be a c-separating a-list assignment with

a = λc for some λ ≥ 1. Let S be an i-subset of [n]. We are going to
show that the amplitude condition is satisfied for S. We consider two
cases.
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If i ≤ λ, then since L is c-separating, the amplitude satisfies

ΣS(L) ≥ a+ (a− c) + . . .+ (a− (i− 1)c) = ia− 1

2
i(i− 1)c.

Since ic ≤ λc ≤ a and a ≥ 2b, we obtain ΣS(L) ≥ ia − 1
2
(i − 1)a =

1
2
(i+ 1)a ≥ ib.
If i > λ, then the amplitude satisfies

ΣS(L) ≥ a+(a−c)+. . .+(a−λc) = (λ+1)a−1

2
λ(λ+1)c = (λ+1)a−1

2
λa =

1

2
(λ+1)a.

Since c = ⌊ a2

2b(n−1)
⌋ ≤ a2

2b(n−1)
, then λ = a

c
≥ 2b(n−1)

a
.

The above inequality with a ≥ 2b induces

ΣS(L) ≥
1

2
(λ+ 1)a ≥ 2b(n− 1) + a

2a
a = bn +

a− 2b

2
≥ bn.

Therefore the amplitude condition is satisfied and thus Kn is (L, b)-
colorable. �

4. Separation number of Kn

For K2, it is easily seen that sep(K2, a, b) = a − b if a ≤ 2b and
sep(K2, a, b) = a if a ≥ 2b.

For K3 = C3, the separation number follows from results about the
cycle from [11]:

Theorem 19 ( [11]). For any p ≥ 1 and any a, b such that a ≥ b ≥ 1,

sep(C2p+1, a, b) =







a− b, b ≤ a < 2b
b+ (p+ 1)(a− 2b), 2b ≤ a ≤ 2b+ b

p

a, a ≥ 2b+ b
p
.

Hence for K3 = C3 we have:

Corollary 20.

sep(K3, a, b) =







a− b, b ≤ a < 2b
2a− 3b, 2b ≤ a < 3b
a, a ≥ 3b.

For arbitrary values of n, we are (only) able to prove some bounds
and two exact results for the remaining cases.

First, combining Propositions 17 and 18 allows to obtain the follow-
ing bounds for the separation number when 2b ≤ a ≤ nb (note the
(roughly) factor two between the lower and upper bound):

Proposition 21. For integers a, b, n, x such that a = xb is a multiple
of both

(

n−1
x−1

)

and ⌊ a2

2b(n−1)
⌋, we have

⌊

a
x

2(n− 1)

⌋

≤ sep(Kn, a, b) ≤ a
x − 1

n− 1
.
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Proof. Proposition 17 gives sep(Kn, a, b) ≤ ax−1
n−1

and Proposition 18
with x = a/b gives the lower bound. �

Proposition 22. For any n ≥ 3 and , a, b such that b ≤ a ≤ 2b, we

have sep(Kn, a, b) = ⌊2(a−b)
n−1

⌋.

Proof. Let a, b such that b ≤ a ≤ 2b and let c = ⌊2(a−b)
n−1

⌋. Consider a
c-separating a-list assignment L of Kn, for n ≥ 3.

From the hypothesis, we have (n− 1)c ≤ 2(a− b) < a.
By the separation condition, the amplitude of L on vertices from

S ⊂ [n], |S| = i, satisfies

ΣS(L) ≥ a+ (a− c) + . . .+ (a− (i− 1)c) = ia− 1

2
i(i− 1)c.

Therefore, as c ≤ 2(a− b)/(n− 1), we obtain

ΣS(L) ≥ ia− 1

2
i(i− 1)

2(a− b)

n− 1
= ia

n− i

n− 1
+ ib

i− 1

n− 1
≥ ib.

Hence the amplitude condition is satified for any i, 1 ≤ i ≤ n and thus
Kn is (L, b)-colorable.

For proving the upper bound, we construct counter-examples to show
that, for c′ = c + 1, there exists c′-separating a a-list assignment L′

that do not satisfy the amplitude condition, hence for which no (L′, b)-
coloring exists.

First, if a ≥ (n−1)c′, then L′ is the quasi-symetrical list assignment
constructed by setting for any i ∈ [n], |Ip({i})| = a − (n − 1)c′ and
for any i, j ∈ [n], i 6= j, |Ip({i, j})| = c′, the other proper intersections
being empty.

Then, by Equation 1 and Corollary 5, we have

Σ[n](L
′) =

∑

i∈[n]

|Ip({i})|+
∑

i,j∈[n],i<j

|Ip({i, j})| = na−n(n−1)c′+n
n− 1

2
c′ = na−nn− 1

2
c′.

As c′ = c+ 1 > 2(a− b)/(n− 1), we obtain

Σ[n](L
′) < na− n

n− 1

2

2(a− b)

n− 1
= nb.

Hence the amplitude condition is not satisfied and Kn is not (L′, b)-
colorable.

Now, if (n−1)c ≤ a < (n−1)c′, then let α such that a = (n−1)c′−α,
with 1 ≤ α ≤ n − 1. Then L′ is the quasi-symetrical list assignment
constructed by setting for any i ∈ [n], |Ip({i})| = a − (n − 1)c + α
and for any i, j ∈ [n], i 6= j, |Ip({i, j})| = c′ if i < j ≤ i + α and
|Ip({i, j})| = c′ − 1 otherwise, the other proper intersections being
empty.

It is easy to observe that each vertex has a list of a − (n − 1)c′ +
α+ α(c′ − 1) + (n− 1− α)c′ = a colors and that the list assignment is
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c′-separating. But, the amplitude of the full list is

Σ[n](L
′) =

∑

i∈[n]

|Ip({i})|+
∑

i,j∈[n],i<j

|Ip({i, j})| = na−n(n−1)c′+nα+
n

2
(c′−1)α+

n

2
(n−1−α)c′

= na− n

2
(n− 1)c′ − n

2
α.

As c′ = c+ 1 > 2(a− b)/(n− 1), we obtain

Σ[n](L
′) < na− n

2
(n− 1)

2(a− b)

n− 1
− n

2
α = nb− n

2
α.

Hence the amplitude condition is not satisfied and Kn is not (L′, b)-
colorable.

�

Proposition 23. For any n ≥ 3 and , a, b such that (n−1)b ≤ a ≤ nb,
we have sep(Kn, a, b) = 2a− nb.

Proof. Let a, b such that (n− 1)b ≤ a ≤ nb and c = 2a− nb. Consider
a c-separating a-list assignment L of Kn, for n ≥ 3.

By the separation condition, the amplitude of L on vertices from
S ⊂ [n], |S| = 2, satisfies

ΣS(L) ≥ a + (a− c) = 2a− c = 2a− 2a+ nb = nb.

Hence, for any S ⊂ [n], |S| ≥ 1, ΣS(L) ≥ |S|b and the amplitude
condition is satisfied.

Now, we construct a counter example for c′ = c+ 1 = 2a− nb+ 1 of
a c′-separating a-list assignment L′ for which no (L, b)-coloring exists.
Let L′ be constructed by setting for any i ∈ [n], |Ip([n] \ {i})| = a− c′

and |Ip([n])| = (n−1)c′− (n−2)a, the other proper intersections being
empty. Note that (n−1)c′−(n−2)a = (n−1)(2a−nb+1)−(n−2)a =
a(2n− 2− n+2)− (n− 1)(nb− 1) = n(a− (n− 1)b) +n− 1 ≥ 0 since
a ≥ (n− 1)b by the hypothesis. Then, by Equation 1 and Corollary 5,
we have

Σ[n](L
′) = n(a−c′)+(n−1)c′−(n−2)a = 2a−c′ = 2a−2a+nb−1 = nb−1 < nb.

Thus the amplitude condition is not satisfied and Kn is not (L′, b)-
colorable.

�

Remark that Corollary 20 can also be deduced from Propositions 22
and 23.

Putting all the partial results together and the computations made,
we propose the following conjecture:

Conjecture 24. for any n ≥ 4, a, b, p with 2 ≤ p ≤ n − 2 and pb ≤
a < (p+ 1)b, we have

sep(Kn, a, b) =

⌈

2pa− p(p+ 1)b

n− 1

⌉

+ ǫ,
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with ǫ ∈ {−1, 0}.
Let us explain how we arrive to this conjecture: First, as the degree

of every vertex in Kn is n−1, then, for a balanced distribution of colors
among vertices, they should be grouped by packets of n − 1. Hence
the separation number must be (the ceiling of) a certain function of
a, b, p divided by n − 1. By Property 1, this function must also be
close to an affine function. Second, supported by Proposition 17, we
conjecture that when a = pb, then sep(Kn, a, b) = a(p−1)/(n−1). All
this together lead us to propose the above conjecture, with ǫ being the
correcting term depending on a, b, n.

In particular, for n = 4, the following refinment is conjectured, where
only the case 2b ≤ a < 3b remains to be verified:

Conjecture 25.

sep(K4, a, b) =















⌊2(a−b)
3

⌋, b ≤ a < 2b
⌈4a−6b−1

3
⌉, 2b ≤ a < 3b

2a− 4b, 3b ≤ a < 4b
a, a ≥ 4b.
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Appendix A. Vectorial solution of the ILP problem for

symetrical list assignments

In this section, we show how the counter examples can be found
using an algebraic formulation.

Let e1, . . . , en be a canonical base of the vectorial space of dimension
n.

We define the vector

a =
n
∑

i=1

(

n− 1

i− 1

)

ei.

We can remark that a is symetrical. For a vector x ∈ R
n, we define

the linear application ϕa(x) = a× x.
We also define the antisymetrical vectors ∀i ∈ [1, ⌊n

2
⌋],

as(i) = ei − en+1−i and, ∀i ∈ [3, ⌈n
2
⌉], the Pascal’s triangle vectors

tp(i) = ei + ei−1 −
(

n
i−1

)

e1.

Lastly, we define the binomial vector bn =
∑n

i=1 ei − 2n−1e1.

Lemma 26. The kernel ker (ϕa) has {{as(i)}, {tp(i)},bn} as basis
and is thus of dimension n− 1.

Proof. By construction, it is easy to observe that Fa = {{as(i)}, {tpi},bn} ⊂
ker (ϕa). As the number of elements of Fa is equal to the dimension
of ker (ϕa), it suffices to show that Fa is a family of free vectors. We
consider two cases depending on the parity of n.

• Case n even. Let αi, 1 ≤ i ≤ n
2
and βj , 3 ≤ j ≤ n

2
and γ ∈ R

such that

https://doi.org/10.1002/jgt.21754
https://doi.org/10.7151/dmgt.2398
https://doi.org/10.1016/j.disc.2015.01.008
https://doi.org/10.1016/S0012-365X(98)00101-0
https://doi.org/10.1002/(SICI)1097-0118(199801)27:1<43::AID-JGT7>3.0.CO;2-G
https://doi.org/10.1016/j.disc.2017.10.022
 https://arxiv.org/abs/2203.16314
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n/2
∑

i=1

αias(i) +

n/2
∑

j=3

βjtp(j) + γbn = 0.

For the k-th coordinate of the left side of the above equality,
with k ∈ [n

2
+ 1, n], we have −αn+1−k + γ = 0, thus γ = α1 =

α2 = . . . = αn/2.
For k = 2, α2 + β3 + γ = 0 ⇒ β3 = −2γ.
For k ∈ [3, n

2
−1], αk+βk+βk+1+γ = 0 ⇒ β4 = . . . = βn/2 =

0.
For k = n/2, αk + βk + γ = 0 ⇒ αn/2 = −γ. But we have

seen that αn/2 = γ, hence γ = 0.
Consequently, we obtain that all coefficients are equal to zero.

• Case n odd. Let αi, 1 ≤ i ≤ n−1
2

and βj, 3 ≤ j ≤ n+1
2

and
γ ∈ R such that

(n−1)/2
∑

i=2

αias(i) +

(n+1)/2
∑

j=3

βjtp(j) + γbn = 0.

For the k−th coordinate of the left side of the above equality,
k ∈ [n+3

2
, n − 1], we have −αn+1−k + γ = 0. Thus γ = α1 =

. . . = α(n−1)/2.
For k = (n+ 1)/2, βk + γ = 0 ⇒ β(n+1)/2 = −γ.
For k ∈ [3, n−1

2
− 1], αk + βk + βk+1 + γ = 0. Hence βk =

−αk = −γ.
Finally, for k = 2, α2 + β3 + γ = 0 ⇒ γ = 0.

�

Similarly, for the separation condition, we define the vector

c =
n
∑

i=2

(

n− 2

i− 2

)

ei

and the linear application ϕc(x) = c× x.
We also define the vectors

• ∀i ∈ [2, ⌊n
2
⌋], asc(i) = ∆(i, n)as(1) + as(i),

with ∆(i, n) =
(

n−2
i−2

)

−
(

n−2
n−1−i

)

=
(

n−2
i−2

)

−
(

n−2
i−1

)

.

• ∀i ∈ [3, ⌈n
2
⌉], tpc(i) =

(

n−1
i−2

)

as(1) + tp(i).

• bnc = 2n−2as(1) + bn.

Lemma 27. The intersection of kernels ker (ϕa)∩ker (ϕc) has {{asc(i)}, {tpc(i)},bnc}
as a basis and is thus of dimension n− 2.

Proof. It is easy to see that Fac = {{asc(i)}, {tpc(i)},bnc} ⊂ ker (ϕa)∩
ker (ϕc) and has n−2 vectors. Since the dimension of ker (ϕa)∩ker (ϕc)
is equal to n − 2 too, it suffices to show that Fac is a free family. We
consider two cases depending on the parity of n.
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• Case n even. Let αi, 2 ≤ i ≤ n
2
and βj , 3 ≤ j ≤ n

2
and γ ∈ R

such that

n/2
∑

i=2

αiasc(i) +

n/2
∑

j=3

βjtpc(j) + γbnc = 0.

For k ∈ [n
2
+ 1, n − 1], −αn+1−k + γ = 0 ⇒ γ = α2 = α3 =

. . . = αn/2−1 = αn/2.
For k = n/2, αk + βk + γ = 0 ⇒ βn/2 = −2γ.
For k ∈ [3, n

2
− 1], αk + βk + βk+1 + γ = 0 ⇒ β3 = . . . =

βn/2−1 = 0.
Finally, for k = 2, α2 + β3 + γ = 0 ⇒ 2γ = 0 ⇒ γ = 0.

• Case n odd. Let αi, 2 ≤ i ≤ n+1
2

and βj, 3 ≤ j ≤ n+1
2

and
γ ∈ R such that

(n+1)/2
∑

i=2

αiasc(i) +

(n+1)/2
∑

j=3

βjtpc(j) + γbnc = 0.

For k ∈ [n+3
2
, n − 1], −αn+1−k + γ = 0 ⇒ γ = α2 = α3 =

. . . = α(n−1)/2.
For k = (n+ 1)/2, −α(n−1)/2 + βk + γ = 0 ⇒ β(n+1)/2 = 0.
For k ∈ [3, n−1

2
− 1], αk + βk + βk+1γ = 0 ⇒ β(n−1)/2 =

2γ, β(n−3)/2 = 0, β(n−5)/2 = 2γ, . . ..
Finally, for k = 2, α2+β3+γ = 0 ⇒ β3 = −2γ. If (n+1)/2 ≡

3 mod 4 then γ = 0. Otherwise ((n + 1)/2 6≡ 3 mod 4), then
2γ = −2γ and thus γ = 0.

In both cases, we have shown that all coefficients are equal to zero,
proving that the set of vectors forms a free family. �

We define ψ =
∑n

i=1

(

n
i

)

ei which is the measure of the amplitude
and E(a, c) = {x such that ϕa(x) = a and ϕc(x) = c}.

Now, using the maximum principle, we define the two optimal solu-
tion vectors xi, i = 1, 2.

• If a ≥ (n− 1)c, we define x1 = (a− (n− 1)c)e1 + ce2.
We can observe that x1 ∈ E(a, c). In fact E(a, c) = x1 +

ker(ϕa) ∩ ker(ϕc). This solution corresponds to the counter-
example used in proof of Proposition 22.

• If a ≤ n−1
n−2

c, x2 = (a− c)en−1 + ((n− 1)c− (n− 2)a)en.
We can observe that x2 ∈ E(a, c). In fact E(a, c) = x2 +

ker(ϕa) ∩ ker(ϕc). This solution corresponds to the counter-
example used in proof of Proposition 23.
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