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Abstract

Let k be a �eld with separable closure k̄ ⊃ k, and let X be a qcqs k-scheme. We use the
theory of pro�nite Galois categories developed by Barwick–Glasman–Haine to provide a quick
conceptual proof that the sequences

Πét
<∞(Xk̄)→ Πét

<∞(X)→ BGal(k̄∕k) and Π̂ét
∞(Xk̄)→ Π̂ét

∞(X)→ BGal(k̄∕k)

of protruncated and pro�nite étale homotopy types are �ber sequences. This gives a common
conceptual reason for the following twophenomena: �rst, the higher étale homotopy groups of
X and the geometric �berXk̄ are isomorphic, and second, ifXk̄ is connected, then the sequence
of pro�nite étale fundamental groups 1→ π̂ét1 (Xk̄)→ π̂ét1 (X)→ Gal(k̄∕k)→ 1 is exact. It also
proves the analogous results for the groupe fondamental élargi of SGA3.
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0 Introduction
Let k be a �eld with separable closure k̄ ⊃ k, and let X be a qcqs k-scheme. Write Xk̄ for the
basechange of X to k̄. The fundamental exact sequence for étale fundamental groups asserts that
if Xk̄ is connected, then the natural sequence of pro�nite groups

(0.1) 1 π̂ét1 (Xk̄) π̂ét1 (X) Gal(k̄∕k) 1

is exact [STK, Tag 0BTX; SGA 1, Exposé IX, Théorème 6.1]. The purpose of this paper is to explain
a simple argument that extends this short exact sequence to a �ber sequence of étale homotopy
types in the sense of Artin–Mazur–Friedlander [1; 10, Chapter 4]. To do this, we make use of
Barwick, Glasman, and Haine’s new description of the étale homotopy type in terms of pro�nite
Galois categories [3, Theorem 12.5.1; 12].
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Given a scheme Y, there are two variants of the étale homotopy type relevant to the present
work: the �rst is the (protruncated) étale homotopy type Πét

<∞(Y). This is a prospace which is
not generally pro�nitely complete. The fundamental progroup of Πét

<∞(Y) recovers the groupe
fondamental élargi of SGA3 [SGA 3ii, Exposé X, §6]. The second is the pro�nite completion of
Πét
<∞(Y), which we denote by Π̂ét

∞(Y). The fundamental progroup of Π̂ét
∞(Y) recovers the usual

pro�nite étale fundamental group π̂ét1 (Y). The pro�nite étale homotopy type also comes equipped
with a natural comparison morphism Πét

<∞(Y)→ Π̂ét
∞(Y). If Y is geometrically unibranch, both

variants coincide: in this case, the comparison morphism Πét
<∞(Y)→ Π̂ét

∞(Y) is an equivalence
[DAG XIII, Theorem 3.6.5; 1, Theorem 11.1; 10, Theorem 7.3]. See §1.2 for a short recollection of
the modern perspective on the étale homotopy type and how it relates to the classical de�nition.

The following are the main results of this paper. We note that with our methods, the only
thing particular to working over a �eld that we need is that Spec(k) is 0-dimensional. Write
Pro(Spc) for the ∞-category of prospaces and Pro(Spcπ) ⊂ Pro(Spc) for the full subcategory
spanned by the pro�nite spaces.

0.2 Theorem (Corollary 3.12). Let f∶ X → S be a morphism between qcqs schemes, and let
s̄ → S be a geometric point of S. If dim(S) = 0, then the naturally null sequence

(0.3) Πét
<∞(Xs̄) Πét

<∞(X) Πét
<∞(S)

is a �ber sequence in the∞-category Pro(Spc).
For a 0-dimensional scheme S, the prospace Πét

<∞(S) is already pro�nitely complete (see Exam-
ple 1.28). Hence the following property of pro�nite completion implies that (0.3) remains a �ber
sequence after pro�nite completion.

0.4 Proposition (Proposition 3.18). The functor (−)∧π ∶ Pro(Spc) → Pro(Spcπ) that carries a
prospace to its pro�nite completion preserves pullbacks along maps between pro�nite spaces.

0.5 Corollary (Corollary 3.21). With the same notation as Theorem 0.2, if dim(S) = 0, then the
naturally null sequence

Π̂ét
∞(Xs̄) Π̂ét

∞(X) Π̂ét
∞(S)

is a �ber sequence in the∞-category Pro(Spcπ).
By taking homotopy groups, Corollary 0.5 recovers the fundamental exact sequence (0.1). To

explain this, we �rst introduce the following notation:

0.6 Notation. Given a qcqs scheme Y and geometric point ȳ → Y, write π0(Y) for the pro�nite
set of connected components of Π̂ét

∞(Y) and π̂étn (Y, ȳ) for the n-th pro�nite homotopy group of
Π̂ét
∞(Y) at ȳ. (Equivalently, π0(Y) is the pro�nite set of connected components of Y.)

Choose a geometric point x̄ of Xs̄ with image x in X. Since the higher étale homotopy groups
of a 0-dimensional qcqs scheme vanish (see Example 1.28), Corollary 0.5 shows that the higher
étale homotopy groups of X are geometric: for n ≥ 2, the natural homomorphism of pro�nite
groups

π̂étn (Xs̄, x̄)→ π̂étn (X, x)
is an isomorphism. Moreover, without assuming that the geometric �ber Xs̄ is connected, we
obtain an exact sequence of pointed pro�nite sets

1 π̂ét1 (Xs̄, x̄) π̂ét1 (X, x) π̂ét1 (S, s̄) π0(Xs̄) π0(X) π0(S) .

2



Theorem 0.2 implies the analogous isomorphisms and exact sequence in the category of pointed
prosets for the homotopy prosets of the protruncated étale homotopy types of Xs̄, X, and S. See
also [20, Corollary 4.10].

0.7 Example. Take S to be the spectrum of a �eld k with separable closure k̄ ⊃ k. Corollary 0.5
provides a natural �ber sequence of pro�nite étale homotopy types

Π̂ét
∞(Xk̄) Π̂ét

∞(X) BGal(k̄∕k) .

As a consequence, the sequence of pointed pro�nite sets

1 π̂ét1 (Xk̄, x̄) π̂ét1 (X, x) Gal(k̄∕k) π0(Xk̄) π0(X) 1

is exact. Sincewe do notmake use of the fundamental exact sequence (0.1), Corollary 0.5 provides
a new proof of the fundamental exact sequence.

0.1 Proof overview
To prove Theorem 0.2, we use Barwick, Glasman, and Haine’s description of the étale homo-
topy type in terms of pro�nite Galois categories [3, Theorem 12.5.1; 12]. Let us brie�y recall
this description. Given a qcqs scheme Y, Barwick–Glasman–Haine gave the category of points
of the étale topos of Y the structure of a pro-object in the category of categories with �nitely
manymorphisms. Since it globalizes the absolute Galois groups of the residue �elds of the points
of Y, they denote the resulting procategory by Gal(Y). Using Hoyois’ description of the étale
homotopy type [15, Corollary 5.6] via Lurie’s shape theory [HTT, §7.1.6; HA, §A.1; SAG, §E.2],
Barwick–Glasman–Haine showed that the prospace Πét

<∞(Y) can be recovered as the protrun-
cated classifying space of the procategory Gal(Y). See §1.2 for more details.

Via this perspective, proving Theorem 0.2 amounts to showing that a sequence of classifying
prospaces is a �ber sequence. The geometric input we need is the following: for any morphism
between qcqs schemesf∶ X → S and geometric point s̄ → S, the sequence of pro�nite categories

Gal(Xs̄) Gal(X) Gal(S)

is a �ber sequence (see §2). If dim(S) = 0, then the pro�nite categoryGal(S) is already a pro�nite
1-groupoid. Theorem 0.2 then follows from the assertion that taking protruncated classifying
spaces preserves pullbacks along morphisms between pro�nite 1-groupoids. In §3, we prove
these categorical facts as well as Proposition 0.4. See Example 3.7 and Corollary 3.11.

0.2 Related work
Let k be a �eld with separable closure k̄ ⊃ k, and letX be a qcqs k-scheme.WriteGk ≔ Gal(k̄∕k).
Theorem 0.2 generalizes work of Schmidt–Stix. In the proof of [29, Proposition 2.3], Schmidt
and Stix showed that the sequence of protruncated étale homotopy types

Πét
<∞(Xk̄) Πét

<∞(X) BGk

is a �ber sequence, provided that X is separated, locally noetherian, and of �nite type over k.
Their proof uses Friedlander’s description of the étale homotopy type of a locally noetherian
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scheme via rigid hypercovers. It also strongly relies on the assumptions that X is of �nite type
and that the base is a �eld. At the time it was not known if their work implied Corollary 0.5
(under these assumptions); Proposition 0.4 shows that this is indeed the case.

Corollary 0.5 generalizes work of Cox, Quick, and Chough. Extending work of Cox over R
[8, Theorem 1.1], and Quick for varieties over general �elds [25, Theorem 3.5], Chough showed
the natural map

Π̂ét
∞(Xk̄)→ Π̂ét

∞(X)
realizes Π̂ét

∞(X) as the quotient Π̂ét
∞(Xk̄) ⫽ Gk of the pro�nite étale homotopy type of Xk̄ by the

natural Gk-action [6, Theorem 5.1.26]. Chough’s proof uses the relative étale homotopy type [13,
§9.2.3; 2, §8.1].

Since Chough’s thesis, Lurie proved the following: given a pro�nite group G, there is an
equivalence of∞-categories between pro�nite spaces with a continuous G-action and pro�nite
spaces with a map to the pro�nite classifying space BG [SAG, Theorem E.6.5.1]. This equiva-
lence sends a pro�nite space U with G-action to the quotient U ⫽ G and a map of pro�nite
spaces '∶ V → BG to the �ber �b(') over the unique point of BG. In light of this dictionary,
Corollary 0.5 is equivalent to the presentation Π̂ét

∞(X) ≃ Π̂ét
∞(Xk̄)⫽Gk. Note that our method of

proof is completely di�erent from Chough’s and works over more general bases.
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1 Background
We begin by collecting some background and notation on pro-objects, étale homotopy types, and
pro�nite Galois categories.

1.1 Pro-objects
In this subsection, we set our notation for pro-objects and the various completion functors relat-
ing the∞-categories of pro-objects relevant to this paper. We refer the unfamiliar reader to [SAG,
§A.8.1] for more background on pro-objects, [3, §4.1; 16, §3] for background on protruncated
objects, and [SAG, Appendix E; 3, §4.4] for background on pro�nite spaces.

1.1 Notation. We write Spc for the∞-category of spaces and Cat∞ for the∞-category of∞-
categories.

1.2 Notation. Given an ∞-category C, we write Pro(C) for the ∞-category of pro-objects in
C obtained by formally adjoining co�ltered limits to C. The existence of Pro(C) is a special
case of (the dual of) [HTT, Proposition 5.3.6.2]. Given a functor F∶ C → D, we simply write
F∶ Pro(C)→ Pro(D) for the co�ltered-limit-preserving extension of F.
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1.3. Note that an adjunction L∶ C ⇄ D ∶R extends along co�ltered limits to an adjunction
L∶ Pro(C)⇄ Pro(D) ∶R.

1.4 Observation. If C admits co�ltered limits, then the identity C→ C extends to a co�ltered-
limit-preserving functor lim∶ Pro(C) → C. This functor sends a prosystem {Ui}i∊I to the limit
limi∊I Ui computed in C. Moreover, the functor lim∶ Pro(C)→ C is right adjoint to the Yoneda
embedding C↪ Pro(C).

We are mostly interested in (localizations of) the ∞-categories Pro(Cat∞) of pro-∞-cate-
gories and Pro(Spc) of prospaces. Equivalences in Pro(Spc) cannot be detected on homotopy
prosets; thus one wants to work with the localization of Pro(Spc) at the π∗-isomorphisms. Since
there are nontrivial prospaces with no points, instead of working with homotopy progroups, it
is better to work with truncations.

1.5 Notation. Given an integer n ≥ 0, write Spc≤n ⊂ Spc for the full subcategory spanned by
the n-truncated spaces. Write τ≤n ∶ Spc → Spc≤n for the left adjoint to the inclusion. Given a
space U we call τ≤n(U) the n-truncation of U.

We say that a space U is truncated if U is n-truncated for some integer n ≥ 0. We write
Spc<∞ ⊂ Spc for the full subcategory spanned by the truncated spaces.

1.6 Notation (protruncation). The inclusion Pro(Spc<∞) ⊂ Pro(Spc) admits a left adjoint

τ<∞ ∶ Pro(Spc)→ Pro(Spc<∞)

de�ned as follows. The functor τ<∞ is the unique co�ltered-limit-preserving extension of the
fully faithful functor Spc ↪ Pro(Spc<∞) that sends a space U to the co�ltered diagram given
by its Postnikov tower {τ≤n(U)}n≥0. We refer to Pro(Spc<∞) as the∞-category of protruncated
spaces and τ<∞ as the protruncation functor.

1.7. Said di�erently, a map of prospaces U → V becomes an equivalence after protruncation if
and only if for each n ≥ 0, the induced map of prospaces τ≤n(U)→ τ≤n(V) is an equivalence.

1.8. By [16, Remark 3.2; 17, Corollary 7.5], amap of pointed connected prospacesU → V becomes
an equivalence after protruncation if and only if for each n ≥ 1, the induced map of homotopy
progroups πn(U)→ πn(V) is an isomorphism.

We are also interested in pro�nite completions of prospaces.

1.9 Notation (pro�nite completion). A space U is π-�nite if U is truncated, π0(U) is �nite, and
all homotopy groups of U are �nite. We write Spcπ ⊂ Spc for the full subcategory spanned by
the π-�nite spaces. Again, the inclusion Pro(Spcπ) ⊂ Pro(Spc) admits a left adjoint

(−)∧π ∶ Pro(Spc)→ Pro(Spcπ) .

See [SAG, Remark E.2.1.3]. We call Pro(Spcπ) the∞-category of pro�nite spaces and (−)∧π the
pro�nite completion functor. Note that since Spcπ ⊂ Spc<∞, the pro�nite completion functor
factors through Pro(Spc<∞).

We are also interested in various types of classifying spaces for pro-∞-categories.

1.10 Notation. We denote the left adjoint to the inclusion Spc ⊂ Cat∞ by B∶ Cat∞ → Spc.
Given an∞-category C, we call BC the classifying space of C.
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We make use of the description of classifying spaces as geometric realizations.

1.11 Recollection. The nerve construction de�nes a fully faithful right adjoint

Cat∞ ↪ Fun(�op, Spc)

from the∞-category of∞-categories to the∞-category of simplicial spaces [HA, Proposition
A.7.10; SAG, §A.8.2; 18; 22, §1; 26]. Objects in the image of this embedding are often called
complete Segal spaces. Under this embedding, the subcategory Spc ⊂ Cat∞ corresponds to the
constant functors �op → Spc. Moreover, the localization B∶ Cat∞ → Spc is given by geometric
realization.

1.12 Notation (classifying prospaces). Write B<∞ for the composite

Pro(Cat∞) Pro(Spc) Pro(Spc<∞) .
B τ<∞

The functor B<∞ is left adjoint to the inclusion Pro(Spc<∞) ⊂ Pro(Cat∞). Given a pro-∞-cate-
gory C, we refer to B<∞(C) as the protruncated classifying space of C. Write B∧π for the composite

Pro(Cat∞) Pro(Spc) Pro(Spcπ) .
B (−)∧π

The functor B∧π is left adjoint to the inclusion Pro(Spcπ) ⊂ Pro(Cat∞). Given a pro-∞-category
C, we refer to B∧π(C) as the pro�nite classifying space of C.

1.2 Étale homotopy types & Galois categories
We now set our conventions for étale homotopy types and their re�nements to pro�nite Galois
categories. For background on étale homotopy types, the unfamiliar reader should refer to [1; 2;
10, Chapter 4; 13; 28] for the more classical perspective and to [3, Chapters 4 & 11; 5, §2; 4, §2;
15; 16] for the more modern perspective using Lurie’s shape theory. The reader should refer to
[3, Chapter 12] for more background on pro�nite Galois categories.

We begin by recalling a bit about the modern interpretation of the étale homotopy type. The
point is that the original de�nition only made sense for locally noetherian schemes, but Lurie’s
shape theory allows one to de�ne the étale homotopy type of arbitrary schemes. We emphasize
that the reader does not need to be familiar with ∞-topoi or shape theory to understand the
proofs in this paper; all of our results make use of the description of the étale homotopy type
provided by Theorem 1.27.

1.13 Recollection. Let Y be a locally noetherian scheme. Using hypercovers, Artin and Mazur
[1, §9] constructed a pro-object in the homotopy category of spaces called the étale homotopy
type of Y. Friedlander [10, §4] re�ned this construction, producing a pro-object in simplicial
sets which he called the étale topological type of Y. Hoyois provided a modern interpretation of
Friedlander’s construction: Friedlander’s étale topological type corepresentes the shape of the
∞-topos of étale hypersheaves of spaces on Y [15, Corollary 5.6].

1.14 Remark. From the modern perspective, it is more natural to consider the shape of the
∞-topos of étale sheaves of spaces (with no hyperdescent conditions) on Y. This is only a minor
departure from the Artin–Mazur–Friedlander étale homotopy type: by [3, Example 4.2.8], the
protruncations of the shapes of the∞-topoi of étale hypersheaves and étale sheaves on Y agree.
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Since Lurie’s shape theory makes sense for arbitrary∞-topoi, it provides a de�nition of the
étale homotopy type of any scheme.

1.15 Notation. Given a scheme Y, we write Πét
∞(Y) ∊ Pro(Spc) for the shape of the∞-topos

of étale sheaves of spaces on Y. We simply refer to Πét
∞(Y) as the étale homotopy type of Y. We

write Πét
<∞(Y) ∊ Pro(Spc<∞) for the protruncation of Πét

∞(Y), and write Π̂ét
∞(Y) for the pro�nite

completion of Πét
∞(Y).

Nowwe set the context for pro�nite Galois categories. To do this, we need to �x some notation
and recall a bit about points in the étale topology.

1.16 Notation. We write RTop for the (2, 1)-category of topoi and (right adjoints in) geometric
morphisms. For a scheme Y, we write Yét for the small étale topos of Y. Given a morphism of
schemes f∶ X → S, we write f∗ ∶ Xét → Sét for the induced geometric morphism of étale topoi.

1.17 Notation. Let Y be a scheme and ȳ → Y a geometric point. We write y ∊ Y for the
underlying point of ȳ.

1.18 Recollection. Let Y be a qcqs scheme. The Grothendieck School [SGA 4ii, Exposé VIII,
Théorème 7.9] computed the category Pt(Yét) of points of the étale topos of Y:

(1.18.1) Objects of Pt(Yét) are geometric points ȳ → Y.

(1.18.2) Given geometric points s̄ → Y and �̄ → Y a morphism s̄ → �̄ in Pt(Yét) is an étale spe-
cialization s̄ ⇜ �̄: a morphism of Y-schemes Spec(Osh

Y,�)→ Spec(Osh
Y,s) between spectra

of strictly henselian local rings.

Importantly, there is a natural isomorphism of sets

(1.19) HomPt(Yét)(ȳ, ȳ) ≅ Gal(κ(ȳ)∕κ(y)) .

Barwick–Glasman–Haine gave Pt(Yét) the structure of a pro�nite category:

1.20 Notation. We say that a 1-category C is �nite if C has �nitely many objects up to isomor-
phism and �nite Hom sets. We write Cat1,π ⊂ Cat∞ for the full subcategory spanned by the
�nite 1-categories and refer to objects of Pro(Cat1,π) as pro�nite categories.

1.21 Remark. Since the inclusion Cat1,π ⊂ Cat∞ preserves �nite limits, the induced inclusion
Pro(Cat1,π) ⊂ Pro(Cat∞) preserves all limits.

1.22 Notation. Given a qcqs scheme Y, we write Gal(Y) ∊ Pro(Cat1,π) for the pro�nite Galois
category of Y introduced by Barwick–Glasman–Haine [3, De�nitions 10.1.4 & 12.1.3].

1.23 Remark. Like the étale homotopy type, the pro�nite Galois category Gal(Y) only depends
on the étale topos of Y. Moreover, the composite

Schqcqs Pro(Cat∞) Cat∞
Gal lim

is identi�ed with the functor Y ↦ Pt(Yét). With this extra structure of a pro�nite category,
the isomorphism (1.19) re�nes to an isomorphism of pro�nite sets. See [3, Lemma 10.3.2 &
Construction 12.1.5].
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For this article, the details of the de�nition ofGal(Y) are not so important; it is only necessary
to know a few of the basic properties of pro�nite Galois categories. In the remainder of this
subsection, we review all of the properties of pro�nite Galois categories used in this paper.

1.24 Remark. By Remark 1.23 and [3, De�nition 4.1.5 & Theorem 10.3.3] the assignment
Gal(Y) ↦ Pt(Yét) is conservative. Also note that the functor Pt∶ RTop → Cat1 preserves
limits. Therefore, given a diagram Y∙ ∶ I◃ → Schqcqs, if the induced diagram of étale topoi
Y∙,ét ∶ I◃ → RTop is a limit diagram, then so is the diagram

Gal(Y∙)∶ I◃ → Pro(Cat∞)

of pro�nite Galois categories.

The following is immediate from the de�nition of the pro�nite Galois category.

1.25Observation. LetY be a qcqs scheme. Then dim(Y) = 0 if and only if the pro�nite category
Gal(Y) is a pro�nite 1-groupoid (i.e., lies in the subcategory Pro(Spcπ) ⊂ Pro(Cat∞)).

1.26 Example. Let k be a �eld. A choice of separable closure k̄ ⊃ k provides an equivalence

Gal(Spec(k))⥲ BGal(k̄∕k)

between the pro�nite Galois category of Spec(k) and the 1-object pro�nite 1-groupoid with
pro�nite automorphism group given by Gal(k̄∕k).

A key tool we make use of is the following description of the étale homotopy type in terms
of classifying prospaces:

1.27 Theorem [3, Theorem 12.5.1; 12]. Let Y be a qcqs scheme. There are natural equivalences
of prospaces

Πét
<∞(Y)⥲ B<∞(Gal(Y)) and Π̂ét

∞(Y)⥲ B∧π(Gal(Y)) .

1.28 Example. Let S be a 0-dimensional qcqs scheme.1 In light of Observation 1.25, Theo-
rem 1.27 shows that

Πét
<∞(S) ≃ Gal(S) .

In particular, the protruncated étale homotopy type Πét
<∞(S) is 1-truncated and pro�nite.

2 Galois categories of geometric �bers
In this section, we explain why the formation of étale topoi (hence Galois categories, see Re-
mark 1.24) commutes with taking geometric �bers (Corollary 2.4). Since the formation of étale
topoi does not preserve general pullbacks of schemes [21, Remark 1.5], this is not immediate. To
prove this, we break the problem up into two steps: �rst we pull back to the strictly henselian
local ring, then to the geometric point.

2.1 Notation. Let S be a scheme and s̄ → S a geometric point. We write

S(s̄) ≔ Spec(Osh
S,s)

1By Serre’s cohomological characterization of a�neness, every 0-dimensional qcqs scheme is a�ne.
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for the strict localization of S at s̄. Given a morphism of schemes f∶ X → S, we write Xs̄ and
X(s̄) for the pullbacks of schemes

Xs̄ X(s̄) X

s̄ S(s̄) S .

⌟ ⌟
f

2.2. If S is the spectrum of a �eld k and s̄ is the spectrum of a separable closure k̄ ⊃ k, then
S(s̄) = Spec(k̄) and X(s̄) = Xs̄ = Spec(k̄) ×

Spec(k)
X .

2.3 Proposition. Let f∶ X → S be a morphism between qcqs schemes and s̄ → S a geometric
point. Then both of the squares in the diagram of étale topoi

Xs̄,ét X(s̄),ét Xét

s̄ét S(s̄),ét Sét

f∗

are pullback squares in RTop.

Proof. First we prove that the right-hand square is a pullback. Recall that the strict localization
S(s̄) is isomorphic (over S) to the limit limU∊Nbd(s̄)U over the co�ltered system Nbd(s̄) of a�ne
étale neighborhoods of s̄ in S [SGA 4ii, Exposé VIII, 4.5]. Hence

X(s̄) ≅ lim
U∊Nbd(s̄)

U ×S X .

Since the functor (−)ét ∶ Sch → RTop preserves limits of co�ltered diagrams of qcqs schemes
with a�ne transition morphisms [SGA 4ii, Exposé VII, Lemme 5.6; 7, Lemma 3.3] as well as
pullbacks along étale morphisms, we see that

X(s̄),ét ≃ lim
U∊Nbd(s̄)

Uét ×Sét
Xét ≃ S(s̄),ét ×Sét

Xét .

To see that the left-hand square is a pullback, note that the morphism of schemes s̄ → S(s̄)
is a closed immersion and the functor (−)ét ∶ Sch → RTop preserves pullbacks along closed
immersions. See [HTT, Proposition 7.3.2.12; SAG, Proposition 3.1.4.1; SGA 4ii, Exposé VIII,
Théorème 6.3; 23, Chapter II, Theorem 3.1].

Since s̄ is the spectrum of a separably closed �eld, we haveGal(s̄) ≃ ∗. In light of Remark 1.24,
Proposition 2.3 implies:

2.4 Corollary. Let f∶ X → S be a morphism between qcqs schemes and s̄ → S a geometric point.
Then both of the squares in the diagram

Gal(Xs̄) Gal(X(s̄)) Gal(X)

∗ Gal(S(s̄)) Gal(S)

are pullback squares in Pro(Cat∞).
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3 The fundamental �ber sequence
Let f∶ X → S be a morphism between qcqs schemes and s̄ → S a geometric point. We have
seen that there is a �ber sequence of pro�nite categories

Gal(Xs̄) Gal(X) Gal(S) .

Our goal is to show that if dim(S) = 0, then this �ber sequence remains a �ber sequence after
applying the localizations

B<∞ ∶ Pro(Cat∞)→ Pro(Spc<∞) and B∧π ∶ Pro(Cat∞)→ Pro(Spcπ) .

Since the functors B<∞ and B∧π do not generally preserve �bers, this is not immediate from the
de�nitions. Instead, themain technical results of this section are that these localizations preserve
pullbacks along morphisms between pro�nite spaces in the following sense:

3.1 Recollection. Let C be an∞-category with pullbacks and D ⊂ C a full subcategory such
that the inclusion admits a left adjoint L∶ C → D. We say that the localization L is locally
cartesian if for any cospan U →W ← V in C with U,W ∊ D, the natural map

L(U ×W V)→ U ×W L(V)

is an equivalence. See [11, §1.2; 14, §3.2].

In §3.1, we explain why the classifying prospaces functor B∶ Pro(Cat∞) → Pro(Spc) is lo-
cally cartesian (Example 3.7). From this and Corollary 2.4, we deduce a version of the fundamen-
tal �ber sequence for classifying prospaces of Galois categories (Corollary 3.8). Subsection 3.2
shows that the protruncation functor τ<∞ ∶ Pro(Spc)→ Pro(Spc<∞) actually preserves all lim-
its (Proposition 3.9). From this we deduce the fundamental �ber sequence for protruncated
étale homotopy types (Corollary 3.12). In §3.3, we show that the pro�nite completion functor
is locally cartesian (Proposition 3.18) and deduce the fundamental �ber sequence for pro�nite
étale homotopy types (Corollary 3.21).

3.1 Local cartesianness of classifying prospaces
We now show that the localization B∶ Pro(Cat∞) → Pro(Spc) is locally cartesian. Using the
embedding of Cat∞ into simplicial spaces, we �rst treat the localization B∶ Cat∞ → Spc.

3.2. Let ℐ be a weakly contractible ∞-category (e.g., ℐ = �op). Let C be an ∞-category with
ℐ-shaped colimits. Since ℐ is weakly contractible, the constant functor C → Fun(ℐ,C) is fully
faithful. Hence its left adjoint colimℐ ∶ Fun(ℐ,C)→ C is a localization.

The following is a direct reformulation of the de�nitions.

3.3 Lemma. Let ℐ be a weakly contractible∞-category and let C be an∞-category with ℐ-shaped
colimits and pullbacks. Then the following are equivalent:

(3.3.1) ℐ-shaped colimits are universal in the∞-category C.

(3.3.2) The localization colimℐ ∶ Fun(ℐ,C)→ C is locally cartesian.

3.4 Example. Since geometric realizations of simplicial objects are universal in Spc, in light of
Recollection 1.11, the localization B∶ Cat∞ → Spc is locally cartesian.
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Now note that passing to pro-objects preserves locally cartesian localizations.

3.5 Lemma. Let C be an ∞-category with pullbacks and let L∶ C → D be a locally cartesian
localization. Then the induced localization L∶ Pro(C)→ Pro(D) is locally cartesian.
Proof. We need to show that given a cospan U → W ← V in Pro(C) with U,W ∊ Pro(D), the
natural morphism

(3.6) L(U ×W V)→ U ×W L(V)

is an equivalence in Pro(D). Since L∶ Pro(C)→ Pro(D) preserves co�ltered limits, it su�ces to
prove that (3.6) is an equivalence in the special case thatU,W ∊ D and V ∊ C. This now follows
from the assumption that the localization L∶ C→ D is locally cartesian.

3.7 Example. The localization B∶ Pro(Cat∞)→ Pro(Spc) is locally cartesian.
3.8 Corollary. Let f∶ X → S be a morphism between qcqs schemes, and let s̄ → S be a geometric
point of S. If dim(S) = 0, then the natural square

BGal(Xs̄) BGal(X)

∗ BGal(S)

is a pullback square in the∞-category Pro(Spc).
Proof. Since dim(S) = 0, the pro�nite category Gal(S) is a pro�nite space (Observation 1.25).
The claim follows by applying the locally cartesian localization B∶ Pro(Cat∞) → Pro(Spc) to
the large pullback square appearing in Corollary 2.4.

3.2 Local cartesianness of protruncated classifying spaces
In this subsection, we prove that the protruncation functor preserves all limits and deduce the
fundamental �ber sequence for protruncated étale homotopy types (Corollary 3.12).

3.9 Proposition. The protruncation functor τ<∞ ∶ Pro(Spc)→ Pro(Spc<∞) preserves limits.

Proof. By de�nition, the functor τ<∞ preserves co�ltered limits and the terminal object; hence
it su�ces to show that τ<∞ preserves pullbacks. Since τ<∞ preserves co�ltered limits, we are
reduced to showing that given a cospan U →W ← V of spaces, the induced morphism

τ<∞(U ×W V)→ τ<∞(U) ×
τ<∞(W)

τ<∞(V)

is an equivalence in Pro(Spc<∞). That is, we need to show that for each integer k ≥ 0, the natural
morphism

(3.10) τ≤k(U ×W V) ≃ τ≤k τ<∞(U ×W V)⟶ τ≤k ( τ<∞(U) ×
τ<∞(W)

τ<∞(V))

is an equivalence. By de�nition,

τ≤k ( τ<∞(U) ×
τ<∞(W)

τ<∞(V)) ≃ {τ≤k ( τ≤n(U) ×
τ≤n(W)

τ≤n(V))}
n≥0

.
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By [9, Proposition 4.13], the natural map

U ×W V → τ≤n(U) ×
τ≤n(W)

τ≤n(V)

is (n − 1)-connected. Hence for n ≥ k + 1, the map

τ≤k(U ×W V)⟶ τ≤k ( τ≤n(U) ×
τ≤n(W)

τ≤n(V))

is an equivalence. Thus the morphism (3.10) is an equivalence, as desired.

By Example 3.7 and Proposition 3.9 we see:

3.11 Corollary. The localization B<∞ ∶ Pro(Cat∞)→ Pro(Spc<∞) is locally cartesian.
3.12 Corollary. Let f∶ X → S be amorphism between qcqs schemes, and let s̄ → S be a geometric
point of S. If dim(S) = 0, then the naturally null sequence

Πét
<∞(Xs̄) Πét

<∞(X) Πét
<∞(S)

is a �ber sequence in the∞-category Pro(Spc<∞).
Proof. Combine Theorem 1.27, Corollary 3.8, and Proposition 3.9.

3.3 Local cartesianness of pro�nite completion
We now explain why pro�nite completion is locally cartesian (Proposition 3.18). From this we
deduce the fundamental �ber sequence for pro�nite étale homotopy types (Corollary 3.21).

Since the proof is exactly the same (andweneed it in futurework), we record themore general
statement that completion at a set of primes is locally cartesian. To do so, we �rst introduce some
de�nitions.

3.13 De�nition. Let Σ be a set of prime numbers.

(3.13.1) A �nite group G is an Σ-group if the order of G is in the multiplicative closure of Σ.

(3.13.2) A space U is Σ-�nite if U is π-�nite and all homotopy groups of U are Σ-groups. We
write SpcΣ ⊂ Spcπ for the full subcategory spanned by the Σ-�nite spaces.

3.14 Notation (Σ-completion). The inclusion Pro(SpcΣ) ⊂ Pro(Spc) admits a left adjoint

(−)∧Σ ∶ Pro(Spc)→ Pro(SpcΣ)

called Σ-completion. Write B∧Σ for the composite

Pro(Cat∞) Pro(Spc) Pro(SpcΣ) .
B (−)∧Σ

3.15 Observation. In light of Observation 1.4, the composite Σ-completion functor

Spc Pro(Spc) Pro(SpcΣ)
(−)∧Σ

is a left adjoint.
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In order to show that Σ-completion is locally cartesian, we make use of the following gener-
alization of [SAG, Theorem E.6.0.7 & Corollary E.6.0.8]. See also [DAG XIII, Proposition 3.2.4].

3.16 Theorem. Let Σ be a set of prime numbers.

(3.16.1) LetU be an Σ-�nite space. Then the functor

colimU ∶ Fun(U,Pro(SpcΣ))→ Pro(SpcΣ)∕U

is an equivalence of∞-categories.

(3.16.2) Given a mapU →W of Σ-�nite spaces, the functor

U ×W (−)∶ Pro(SpcΣ)∕W → Pro(SpcΣ)∕U

preserves limits and colimits.

Lurie only states Theorem 3.16 when Σ is the set of all primes (so SpcΣ = Spcπ) or a single prime.
However, the proofs given in [SAG, §E.6.1 & §E.6.2] work verbatim in this more general setting.

The next lemma helps us compare Σ-completions of pullbacks with pullbacks of Σ-comple-
tions.

3.17 Lemma. Let Σ be a set of prime numbers andU →W a map of spaces. Then:

(3.17.1) The functor (U ×W (−))∧Σ ∶ Spc→ Pro(SpcΣ) preserves colimits.

(3.17.2) IfU andW areΣ-�nite, then the functorU×W (−)∧Σ ∶ Spc→ Pro(SpcΣ) preserves colimits.

Proof. For (3.17.1), note that colimits are universal inSpc and the functor (−)∧Σ ∶ Spc→ Pro(SpcΣ)
preserves colimits (Observation 3.15).

For (3.17.2), note that since U andW are Σ-�nite, the pullback functor

U ×W (−)∶ Pro(SpcΣ)∕W → Pro(SpcΣ)∕U

preserves colimits. Thus the claim follows from the fact that the functor (−)∧Σ ∶ Spc→ Pro(SpcΣ)
preserves colimits.

3.18 Proposition. Let Σ be a set of prime numbers. Then the localization

(−)∧Σ ∶ Pro(Spc)→ Pro(SpcΣ)

is locally cartesian.

Proof. Given a cospan U →W ← V in Pro(Spc) with U,W ∊ Pro(SpcΣ), we need to show that
the natural map

(3.19) (U ×W V)∧Σ → U ×W V∧
Σ

is an equivalence. Since Σ-completion preserves co�ltered limits, we are reduced to the case
where U,W ∊ SpcΣ and V ∊ Spc. In this case, Lemma 3.17 shows that both sides of (3.19)
preserve colimits in V. Since Spc is generated under colimits by the point, we are reduced to
showing that (3.19) is an equivalence when V = ∗; this is true because ∗ is Σ-�nite.

By Example 3.7 and Proposition 3.18 we see:
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3.20Corollary. LetΣ be a set of primenumbers. Then the localizationB∧Σ ∶ Pro(Cat∞)→ Pro(SpcΣ)
is locally cartesian.

3.21 Corollary. Let f∶ X → S be amorphism between qcqs schemes, and let s̄ → S be a geometric
point of S. If dim(S) = 0, then the naturally null sequence

(3.22) Π̂ét
∞(Xs̄) Π̂ét

∞(X) Π̂ét
∞(S)

is a �ber sequence in the∞-category Pro(Spcπ).
Proof. Combine Theorem 1.27, Corollary 3.8, and Proposition 3.18.

3.23 Warning. The �ber sequence (3.22) need not remain a �ber sequence after completion
at a set of primes. To see this, let k be a �eld with separable closure k̄ ⊃ k and absolute Galois
group G ≔ Gal(k̄∕k). Set S ≔ Spec(k) and X ≔ Spec(k̄). Note that since Π̂ét

∞(Xk̄) ≃ ΩBG is a
pro�nite set, it is already Σ-complete. WriteGΣ for the maximal pro-Σ quotient ofG. In this case,
[1, Corollary 3.7] implies that the natural map

ΩBG ≃ Πét
∞(Xk̄)∧Σ⟶ Ω

(
Πét
∞(S)∧Σ

)
≃ Ω

(
(BG)∧Σ

)

induces the quotient map G↠ GΣ on π0.
Using the local cartesianness of Σ-completion, we see that the failure of Gal(k̄∕k) to be a

pro-Σ group is the only obstruction to (3.22) remaining a �ber sequence after Σ-completion:

3.24 De�nition. Let Σ be a set of prime numbers and let k be a �eld. We say that k is Σ-closed2
if for every �nite Galois extension K ⊃ k and prime l ∊ Σ, the degree of K over k is not divisible
by l.
3.25. Given a set of prime numbers Σ, write Σ′ for the complement of Σ in the set of all primes.
By the fundamental theorem of Galois theory, a �eld k is Σ′-closed if and only if for any separable
closure k̄ ⊃ k, the Galois group Gal(k̄∕k) is a pro-Σ group.

Logic provides a source of examples of Σ-closed �elds:

3.26 Example.

(3.26.1) If k is a real closed �eld, then k is 2′-closed.

(3.26.2) Let k be a �eld of characteristicp > 0. If k is in�nite and does not have the independence
property (i.e., is a NIP �eld), then k is p-closed [19, Corollary 4.4; 27]

3.27 Observation. Let S be a 0-dimensional qcqs scheme and let Σ be a set of prime numbers.
Since the pro�nite étale homotopy type Π̂ét

∞(S) is a pro�nite 1-groupoid with automorphism
groups the absolute Galois groups of the residue �elds of S, the pro�nite space Π̂ét

∞(S) is Σ-com-
plete if and only if each residue �eld of S is Σ′-closed.
3.28 Corollary. Let f∶ X → S be a morphism between qcqs schemes, let s̄ → S be a geometric
point of S, and let Σ be a set of prime numbers. If dim(S) = 0 and each residue �eld of S is Σ′-closed,
then the naturally null sequence

Πét
∞(Xs̄)∧Σ Πét

∞(X)∧Σ Πét
∞(S)∧Σ

is a �ber sequence in the∞-category Pro(SpcΣ).
2For a prime p, the notion of a p-closed �eld used here is stronger than the one introduced in [24, Chapter VI, §1].
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Proof. By assumption, Π̂ét
∞(S) is Σ-complete; thus the conclusion follows from Proposition 3.18

and Corollary 3.21.
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