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A NOTE ON MORITA EQUIVALENCE TO GRAPH

INVERSE SEMIGROUPS

MARTHA DU PREEZ, ROBERT GRIMLEY, EVAN LIRA, DAVID MILAN,
AND SHREYAS RAMAMURTHY

Abstract. We characterize the inverse semigroups that are Morita
equivalent to graph inverse semigroups. We also consider a generaliza-
tion to inverse semigroups associated with left cancellative categories.

1. Introduction

We characterize the inverse semigroups that are Morita equivalent to
graph inverse semigroups. They are the combinatorial inverse semigroups S
with 0 satisfying two additional conditions on the semilattice of idempotents:
(1) if e, f are incomparable idempotents with e, f ≤ g for some g ∈ E(S),
then ef = 0, and (2) for 0 6= e ≤ f there are finitely many idempotents
between e and f in the natural partial order. A key tool in our proof is a
graph ΓS associated with any combinatorial inverse semigroup S satisfying
(2). We show that if S is Morita equivalent to some graph inverse semigroup
S(Γ) then the graph Γ must be isomorphic to ΓS (Corollary 3.8).

We also consider a generalization of these results to inverse semigroups
associated with left cancellative categories. We show that the path category
defined in [2] characterizes Morita equivalence of such inverse semigroups.

2. Preliminaries

An inverse semigroup is a semigroup S such that for each s in S there
exists a unique s∗ in S such that

s = ss∗s and s∗ = s∗ss∗.

The set of idempotents of S, denoted E(S), is a commutative subsemigroup
of S. The natural partial order is defined on S by s ≤ t if and only if s = te

for some e ∈ E(S). Green’s relations are quite simple to define for inverse
semigroups: we have s L t if and only if s∗s = t∗t, s R t if and only if
ss∗ = tt∗, and H=L ∩ R. Moreover, s D t if and only if there exists x ∈ S

such that s∗s = x∗x and tt∗ = xx∗. For e, f ∈ E(S) we have e D f if and
only if there exists x ∈ S with e = x∗x and f = xx∗.
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A directed graph Γ = (Γ0,Γ1, r, s) consists of sets Γ0, Γ1 and functions
r, s : Γ1 → Γ0 called the range and source maps, respectively. The elements
of Γ0 are called vertices, and the elements of Γ1 are called edges. Given
an edge e, r(e) denotes the range vertex of e and s(e) denotes the source
vertex. We denote by Γ∗ the collection of finite directed paths in Γ. The
range and source maps r, s can be extended to Γ∗ by defining r(α) = r(αn)
and s(α) = s(α1) for a path α = αnαn−1 · · ·α1 in Γ∗. If α = αnαn−1 · · ·α1

and β = βmβm−1 · · · β1 are paths with s(α) = r(β), we write αβ for the
path αn · · ·α1βm · · · β1.

The graph inverse semigroup of the directed graph Γ is the set

SΓ = {(α, β) ∈ Γ∗ × Γ∗ : s(α) = s(β)} ∪ {0}

with products defined by

(α, β)(µ, ν) =







(αµ′, ν) if µ = βµ′

(α, νβ′) if β = µβ′

0 otherwise

The inverse is given by (α, β)∗ = (β, α).
Let T be an inverse subsemigroup of an inverse semigroup S. Lawson

[5] defined S to be an enlargement of T if STS = S and TST = T and
made the case that the concept of enlargement should be part of a larger
theory of Morita equivalence for inverse semigroups. Later, Steinberg [7]
developed a general theory of Morita equivalence of inverse semigroups which
is motivated by similar definitions in the theory of C∗-algebras and depends
on the notion of a Morita context.

Definition 2.1. A Morita context consists of a 5-tuple (S, T,X, 〈, 〉, [, ])
where S and T are inverse semigroups, X is a set equipped with a left
action by S and a right action by T that commute, and

〈 , 〉 : X ×X → S, [ , ] : X ×X → T

are surjective functions satisfying the following for x, y, z in X, s in S, and
t in T :

(1) 〈sx, y〉 = s〈x, y〉,
(2) 〈y, x〉 = 〈x, y〉∗,
(3) 〈x, x〉x = x,
(4) [x, yt] = [x, y]t,
(5) [y, x] = [x, y]∗,
(6) x[x, x] = x, and
(7) 〈x, y〉z = x[y, z].

We say that S and T are strongly Morita equivalent if there exists a Morita
context (S, T,X, 〈, 〉, [, ]). There is a useful characterization of this concept
in terms of category equivalence. The idempotent splitting (also called the
Cauchy completion or the Karoubi envelope) of an inverse semigroup S is a
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category C(S) with objects E(S) and morphisms {(e, s, f) : e, f ∈ E(S), s ∈
eSf}. Composition is given by

(e, s, f)(f, t, g) = (e, st, g).

An important subcategory is L(S) which has the same set of objects
but only the morphisms of the form (f, s, s∗s) where ss∗ ≤ f . Note that
s ∈ eSf if and only if ss∗ ≤ e and s∗s ≤ f . The isomorphisms in C(S)
(and in L(S)) are the elements of the form (s∗s, s, ss∗). It follows that two
objects e, f ∈ E(S) are isomorphic in either category if and only if eDf .
The following theorem was proved in [4] but also relies on [7, Corollary 5.2]
and results from [3].

Theorem 2.2 (Funk, Lawson, Steinberg). Let S and T be inverse semi-
groups. The following are equivalent:

(1) S and T are strongly Morita equivalent.
(2) The categories C(S) and C(T ) are equivalent.
(3) The categories L(S) and L(T ) are equivalent.

We shall say that S and T are Morita equivalent if any of the above
conditions hold. As alluded to above, if S and T are inverse semigroups
where S is an enlargement of T , then S is Morita equivalent to T . This fact
will be important in the proof of our main theorem (Theorem 3.6).

Morita equivalent inverse semigroups S and T share a number of alge-
braic properties that will be useful in this paper. For example, given an
idempotent e in S, there is an idempotent f in T such that eSe ∼= fTf

[7]. A semigroup of the form eSe is called a local submonoid of S. If P is
some property of inverse semigroups, we say that S satisfies P locally if eSe
satisfies P for each idempotent e in S. We record here a well-known fact
about local submonoids.

Proposition 2.3. Suppose S is an inverse semigroup and e, f are idempo-
tents in S such that eDf . Then there is an isomorphism π : eSe → fSf

such that sD π(s) for all s ∈ eSe.

Proof. Choose x in S such that e = x∗x and f = xx∗. Then the map
π(s) = xsx∗ satisfies the conclusions of the proposition. �

3. Morita Equivalence of Graph Inverse Semigroups

We want to characterize the inverse semigroups that are Morita equiv-
alent to graph inverse semigroups. Costa and Steinberg proved that two
graph inverse semigroups are Morita equivalent if and only if the underlying
graphs are isomorphic [1, Corollary 8.5]. This result would seem to imply
that one can recover the directed graph Γ from any inverse semigroup that
is Morita equivalent to the graph inverse semigroup S(Γ). We start this
section by doing just that. Given an inverse semigroup S satisfying some
additional conditions on the idempotent semilattice, we define a directed
graph ΓS whose vertices are the nonzero D-classes of S. When S is Morita
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equivalent to the inverse semigroup of a directed graph Γ, ΓS is isomor-
phic to Γ (Corollary 3.8). We then use ΓS as a tool to characterize those
inverse semigroups that are Morita equivalent to graph inverse semigroups
(Theorem 3.6).

Let S be an inverse semigroup with 0. Jones and Lawson [6] define S to
be a Perrot inverse semigroup if it satisfies the following properties:

(P1) The semilattice of idempotents is unambiguous.
(P2) For each nonzero idempotent e there are finitely many idempotents

above e in the natural partial order.
(P3) S admits unique maximal idempotents.
(P4) Each nonzero D-class of S contains a maximal idempotent.

Also, S is a proper Perrot inverse semigroup if it satisfies the above prop-
erties and, in addition, there is a unique maximal idempotent in any nonzero
D-class. Jones and Lawson obtained the following characterization [6]:

Theorem 3.1 (Jones, Lawson). The graph inverse semigroups are precisely
the combinatorial proper Perrot semigroups.

The semilattice of an inverse semigroup with 0 is unambiguous if for any
idempotents e, f such that ef 6= 0, e and f are comparable in the natural
partial order. Now, if S is Morita equivalent to a graph inverse semigroup,
it must satisfy (P1) locally and (P2) locally. This follows since any local
submonoid of S is isomorphic to some local submonoid of the graph inverse
semigroup. Notice that we can express the conditions that S satisfies (P1)
locally and (P2) locally respectively by:

(P1L) for e, f, g ∈ E(S) with e, f ≤ g and ef 6= 0, e, f are comparable.
(P2L) for 0 6= e ≤ f , there are finitely many idempotents between e and f .

Let S be an inverse semigroup with zero satisfying (P2L). Define a di-
rected graph ΓS = (Γ0

S ,Γ
1
S , r, s) as follows. First, let Γ0

S to be the set of
nonzero D-classes of S. Denote by [f ] the D-class of an idempotent f .
Next, for each v ∈ Γ0

S, choose a nonzero idempotent ev ∈ E(S) such that
v = [ev ]. We write e ≪ f and say e lies directly under f if and only if e < f

and there is no idempotent g with e < g < f . Since evSev satisfies (P2),

e
↓
v − {ev} = {f ∈ E(S) : f < ev} contains a set

Av = {f ∈ E(S) : 0 6= f ≪ ev}

of nonzero maximal idempotents. Moreover, every nonzero idempotent
strictly below ev lies under some element of Av . For each f ∈ Av we include
an edge xv,f with source [f ] and range v. That is,

Γ1
S =

⋃

v∈Γ0
S

{xv,f : f ∈ Av}

and for each xv,f ∈ Γ1
S , we define s(xv,f ) = [f ] and r(xv,f ) = v. In this

construction we made a choice of representative ev for each D-class v. By
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Proposition 2.3, the number of idempotents f with f ≪ ev and their cor-
responding D-classes are the same regardless of the choice of ev. Thus the
directed graph ΓS does not depend on the choice of representatives.

Now, suppose that S is a combinatorial inverse semigroup with 0 satisfying
(P2L). Based on these assumptions we define a set {sα : α ∈ Γ∗

S} in S as
follows:

(1) for v ∈ Γ0
S , sv := ev.

(2) for each edge x = xv,f in Γ1
S , sx is defined to be the unique element

of S such that s∗xsx = e[f ] and sxs
∗
x = f ; and

(3) for each path α = x1x2 · · · xn, define sα := sx1
sx2

· · · sxn .

Also, given a path α, define eα := sαs
∗
α. First, we introduce some impor-

tant lemmas:

Lemma 3.2. Let S be a combinatorial inverse semigroup that satisfies
(P2L) and let ΓS be the associated directed graph. Define {sα : α ∈ Γ∗

S}
as above. For α ∈ ΓS, we have s∗αsα = es(α). Also, for each nonzero idem-
potent e ≤ ev, there is a path α in Γ∗

S such that e = eα and r(α) = v.

Proof. Let α = x1x2 · · · xn be a path where xi = xvi,fi and vi+1 = [fi] for
i ≤ n−1. Notice that s∗xi

sxi
= e[fi] = evi+1

. Also, since sxi
s∗xi

≤ evi we have
s∗xi

evisxi
= s∗xi

sxi
for all i. So

s∗αsα = s∗xn
· · · s∗x2

(s∗x1
sx1

)sx2
· · · sxn

= s∗xn
· · · s∗x2

(ev2)sx2
· · · sxn

= s∗xn
· · · (s∗x2

sx2
) · · · sxn

· · ·

= s∗xn
sxn = es(α)

For the second claim, suppose that 0 6= e ≤ ev for some v ∈ Γ0
S . By (P2L)

there are idempotents ei for 1 ≤ i ≤ n such that e = e1 ≪ e2 ≪ . . . en−1 ≪
en = ev. We will induct on n. In the case n = 1, e = ev and we are done. For
n > 1 we assume that e2 = eα′ where α′ ∈ Γ∗

S with r(α′) = v. Let u = s(α′).
As in Proposition 2.3, the map s 7→ s∗α′ssα′ defines an isomorphism from
e2Se2 to euSeu. In particular, f := s∗α′esα′ ≪ eu. Thus xu,f ∈ Γ1

S with
r(xu,f) = u. We have α = α′xu,f ∈ ΓS

∗ with r(α) = v. Finally,

eα = sαs
∗
α = sα′sxu,f

s∗xu,f
s∗α′ = sα′fs∗α′ = sα′s∗α′esα′s∗α′ = e

since e ≤ e2 = sα′s∗α′ .
�

As a consequence of the lemma we note that for each path α ∈ Γ∗
S we

have sα 6= 0 and eα 6= 0, since otherwise es(α) = s∗αsα = 0.
For what follows we will need the additional assumption that there is an

orthogonal set of idempotent representatives of the nonzero D-classes of S.
That is, euev = 0 for u 6= v. Note that it is not possible to choose such a
set for general S, but we will overcome this difficulty later.
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Lemma 3.3. Let S be a combinatorial inverse semigroup that satisfies
(P1L) and (P2L), and suppose that {ev : v ∈ Γ0

S} is an orthogonal set
of idempotent representatives of the nonzero D-classes of S. Let ΓS be the
associated directed graph, and let {sα : α ∈ Γ∗

S} be as defined above. Then
for α, β be in Γ∗,

s∗αsβ =







sβ′ if β = αβ′

s∗α′ if α = βα′

0 otherwise

Proof. Suppose α, β in Γ∗. If β = αβ′, then sβ = sαsβ′ = sα(s
∗
αsα)(sβ′s∗β′)sβ′ .

As remarked above, sβ 6= 0, so es(α)(sβ′s∗β′) = (s∗αsα)(sβ′s∗β′) 6= 0. We have
sβ′s∗β′ ≤ er(β′). Then er(β′)es(α) 6= 0 and by orthogonality er(β′) = es(α).

Thus sβ′s∗β′ ≤ s∗αsα. So s∗αsβ = s∗αsαsβ′ = (s∗αsα)(sβ′s∗β′)sβ′ = (sβ′s∗β′)sβ′ =
sβ′

The case where α = βα′ is similar.
For the last case, first suppose that x = xv,f , x

′ = xu,g ∈ Γ1
S are edges such

that s∗xsx′ 6= 0. We will show that x = x′. Notice that (sxs
∗
x)(s

′
xs

′∗
x ) 6= 0,

so f ≪ ev, g ≪ eu, and fg 6= 0. Since we chose an orthogonal set of
representatives, u = v. Since S satisfies (P1L), f and g are comparable.
But both idempotents lie directly under eu, so f = g. Thus x = x′.

Now suppose α is not a subpath of β and β is not a subpath of α. The
cases where one or both of α and β are trivial paths (vertices) is left to
the reader. We assume α and β are nontrivial paths. Then for some paths
w, q, q′ and distinct edges x 6= x′, we have α = wxq and β = wx′q′. Then,

s∗αsβ = s∗qs
∗
x(s

∗
wsw)sx′sq′ ≤ s∗qs

∗
xsx′sq′ = s∗q(s

∗
xsx′)sq′ = 0,

as desired. �

Lemma 3.4. Let S be a combinatorial inverse semigroup that satisfies
(P1L) and (P2L), and suppose that {ev : v ∈ Γ0

S} is an orthogonal set
of idempotent representatives of the nonzero D-classes of S. Let ΓS be the
associated directed graph, and let {sα : α ∈ Γ∗

S} be as defined above. If α, β
are paths in Γ∗

S, then α = β if and only if eα = eβ .

Proof. If α = β, then eα = eβ by definition. Suppose for paths α and β that
eα = eβ. Then

eα = eαeβ = sαs
∗
αsβs

∗
β 6= 0,

so s∗αsβ 6= 0 and α is a subpath of β or β is a subpath of α. For the sake of
contradiction, assume α is a proper subpath of β. That is, β = αx1x2 . . . xk
for some edges x1, x2, . . . , xk. From, eα = eβ, we have sαs

∗
α = sβs

∗
β and

hence

es(α) = s∗αsα = s∗α(sβs
∗
β)sα = (s∗αsβ)(s

∗
βsα) = sx1x2...xk

s∗x1x2...xk

= sx1
sx2

. . . sxk
s∗xk

s∗xk−1
. . . s∗x1

≤ sx1
s∗x1

≪ er(x1)

This is a contradiction, since by our hypothesis on the D-class representa-
tives we know that either es(α) = er(x1) or es(α)er(x1) = 0. The other case is
similar, so we have shown that α = β. �
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Theorem 3.5. Let S be a combinatorial inverse semigroup that satisfies
(P1L) and (P2L), and suppose that {ev : v ∈ Γ0

S} is an orthogonal set of
idempotent representatives of the nonzero D-classes of S. Then the map
(α, β) 7→ sαs

∗
β and 0 7→ 0 defines an embedding of the graph inverse semi-

group of ΓS into S.

Proof. First we show that the map π : SΓS
→ S defined by π((α, β)) = sαs

∗
β

and π(0) = 0 is a homomorphism. Let (α, β), (µ, ν) ∈ SΓS
. It follows from

Lemma 3.3 that

sαs
∗
βsµs

∗
ν =







sαµ′s∗ν if µ = βµ′

sαs
∗
νβ′ if β = µβ′

0 otherwise

Comparing this with the multiplication operation in a graph inverse semi-
group (see section 2), we quickly see that π is a homomorphism. Let
t1 = sαs

∗
β and t2 = sµs

∗
ν and suppose that t1 = t2. Notice

t∗1t1 = sβs
∗
αsαs

∗
β = sβes(α)s

∗
β = sβes(β)s

∗
β = sβs

∗
β = eβ

since s∗βsβ = es(β). Similarly t1t
∗
1 = eα, t

∗
2t2 = eν , and t2t

∗
2 = eµ. We have

eα = eµ and eβ = eν . Thus α = µ and β = ν by Lemma 3.4. Therefore π is
injective.

�

Of course, not every inverse semigroup will admit an orthogonal set of
idempotent representatives of its nonzero D-classes. To overcome this ob-
stacle, we work with an enlarged version of S. Given an inverse semigroup
S with 0, define

S′ = {(e, s, f) : ss∗ ≤ e, s∗s ≤ f, and s 6= 0} ∪ {0}

with multiplication given by

(e, s, f)(g, t, h) =

{

(e, st, h) if f = g and st 6= 0
0 otherwise

Then S′ is an inverse semigroup with 0 that is Morita equivalent to S

(See section 6 of [2]). The nonzero idempotents of S′ are exactly (e, f, e)
such that 0 6= f ≤ e. Moreover, if {ev : v ∈ Γ0} is a collection of idempotent
representatives of the nonzero D-classes of S, then {(ev , ev, ev) : v ∈ Γ0} is an
orthogonal set of representatives of the nonzero D-classes of S′. Moreover,
each representative is maximal in the natural partial order. Notice that S′

has an additional useful property: given two idempotents x, y in S′ with
nonzero product, there is an idempotent z in S′ such that x, y ≤ z.

We are now prepared to prove our main theorem.

Theorem 3.6. An inverse semigroup S is Morita equivalent to a graph
inverse semigroup if and only if S is combinatorial, has a 0, and satisfies
(P1L) and (P2L).
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Proof. As discussed at the beginning of this section, any inverse semigroup
that is Morita equivalent to a graph inverse semigroup satisfies (P1L) and
(P2L). Such semigroups must also be combinatorial and contain a zero by
[7, Corollary 5.2].

Suppose that S is combinatorial, has a 0, and satisfies (P1L) and (P2L).
Then S′ is Morita equivalent to S and hence satisfies the same hypotheses.
Moreover, S′ contains an orthogonal set of idempotent representatives {ev :
v ∈ Γ0

S′} of its nonzero D-classes such that each ev is maximal in the natural
partial order. It suffices to show that S′ is Morita equivalent to a graph
inverse semigroup. By Theorem 3.5, T = {sαs

∗
β : (α, β) ∈ SΓS′

} ∪ {0} is an

inverse subsemigroup of S′ that is isomorphic to the graph inverse semigroup
of ΓS′ .

We show that T is Morita equivalent to S′ by showing that S′ is an
enlargement of T . That is, we prove that S′ = S′TS′ and T = TS′T . Note
that the containments S′TS′ ⊆ S′ and T ⊆ TS′T are immediate. Next,
suppose that s ∈ S′. If s = 0 then we know s ∈ S′TS′. Otherwise there
exists v ∈ Γ0

S′ and x ∈ S′ such that ss∗ = xx∗ and ev = x∗x. But then
s = ss∗ss∗s = xx∗xx∗s = x(ev)x

∗s ∈ S′TS′.
Next, let y = t1st2 with t1, t2 ∈ T and s ∈ S′. Write t1 = sαs

∗
β and

t2 = sµs
∗
ν . If y = 0, then y ∈ T . Otherwise we have sβs

∗
βss

∗ 6= 0. Thus
er(β)ss

∗ 6= 0. As remarked before the theorem, there is an idempotent z

such that er(β), ss
∗ ≤ z. As er(β) is a maximal idempotent in S′, er(β) = z

and we have that ss∗ ≤ er(β). By Lemma 3.2, there is a path ǫ ∈ Γ∗
S′

with r(ǫ) = r(β) such that ss∗ = sǫs
∗
ǫ . Similarly there exists a path δ with

r(δ) = r(µ) such that s∗s = sδs
∗
δ . Thus sHsǫs

∗
δ . As S

′ is combinatorial, we
have s = sǫs

∗
δ ∈ T and hence y ∈ T .

Therefore S is Morita equivalent to a graph inverse semigroup.
�

Remark 3.7. Though we proved in the last theorem that S is Morita equiv-
alent to the inverse semigroup of the graph ΓS′ , we note that this directed
graph is the same as ΓS. To see this, first notice that the map s 7→ (ev, s, ev)
defines an isomorphism from evSev to (ev, ev , ev)S

′(ev , ev , ev). Moreover for
s, t in evSev , sDt if and only if (ev, s, ev)D(ev , t, ev). Since the directed graph
of an inverse semigroup is defined based on the nonzero D-class representa-
tives and theD-classes of the idempotents directly below each representative,
we have that ΓS is isomorphic to ΓS′ .

Corollary 3.8. Let S be an inverse semigroup that is Morita equivalent to
the graph inverse semigroup SΓ. Then ΓS is isomorphic to Γ.

Proof. By Theorem 3.6 and the remark that follows the theorem, SΓS
is

Morita equivalent to SΓ. Thus by [1, Corollary 8.5] we have ΓS is isomorphic
to Γ. �

Finally, we note a useful consequence of the results in this section that
allow us to quickly check Morita equivalence of two inverse semigroups.
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Corollary 3.9. Let S and T be combinatorial inverse semigroups with 0
that satisfy (P1L) and (P2L). Then S is Morita equivalent to T if and only
if ΓS is isomorphic to ΓT .

4. Path Categories

In this section we consider a generalization of graph inverse semigroups
to those semigroups associated with left cancellative categories. The case
was made in [2] that the path category plays a role similar to that of the
paths in the directed graph for inverse semigroups that admit unique max-
imal idempotents. To what extent do the results in the previous section
extend to these inverse semigroups? In fact, every inverse semigroup with
0 is Morita equivalent to an inverse semigroup satisfying (P3) and (P4) [2,
Corollary 6.2]. Also, any semigroup satisfying (P3) and (P4) is isomorphic
to the canonical inverse semigroup associated with its path category. So
Theorem 3.6 has the rather decisive (but not new) generalization that every
inverse semigroup is Morita equivalent to an inverse semigroup associated
with a left cancellative category. It is interesting to determine whether the
path category alone can be used to characterize Morita equivalence for such
semigroups.

If S is an inverse semigroup satisfying (P3), then for each nonzero idem-
potent e there is a unique maximal idempotent e◦ such that e ≤ e◦. We
recall the definition of the path category P (S) from [2]. The objects are
the maximal idempotents of S. The arrows in P (S) are the pairs (e, s) such
that s∗s is maximal and (ss∗)◦ = e. Composition is given by

(e, s)(f, t) = (e, st)

provided s∗s = f .

Proposition 4.1. Suppose S is an inverse semigroup with 0 satisfying (P3)
and (P4). Then P (S) is equivalent to L(S).

Proof. It is straightforward to verify that P (S) embeds in L(S) as the sub-
category of triples (e, s, s∗s) where e and s∗s are maximal idempotents. As
remarked in the preliminaries section, two objects e, f in L(S) are isomor-
phic if and only if eDf . Therefore, by (P4), the inclusion of P (S) into L(S)
is an equivalence of categories. �

Thus we quickly derive the following corollary as a consequence of the
result of Funk, Lawson, and Steinberg (see Theorem 2.2).

Corollary 4.2. Suppose S and T are inverse semigroups with 0 satisfying
(P3) and (P4). Then S is Morita equivalent to T if and only if P (S) is
equivalent to P (T ).
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