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RECOVERY OF A SPATIALLY-DEPENDENT COEFFICIENT

FROM THE NLS SCATTERING MAP

JASON MURPHY

Abstract. We follow up on work of Strauss, Weder, and Watanabe concern-
ing scattering and inverse scattering for nonlinear Schrödinger equations with
nonlinearities of the form α(x)|u|pu.

1. Introduction

This note is intended to follow up on some previous works [16, 20, 22, 24] con-
cerning nonlinear Schrödinger equations of the form

(i∂t +∆)u = α(x)|u|pu, (t, x) ∈ R× R
d. (1.1)

These works considered the problems of (i) scattering for a suitable class of data
and (ii) the determination of the nonlinearity from knowledge of the scattering map.

In [16], Strauss established a small-data scattering theory for (1.1) in Hs, with
p an integer in the mass-supercritical regime (i.e. p > 4

d
), s sufficiently large,

and α ∈ W s,∞. The need for high regularity was essentially a consequence of
estimating solutions using the L∞-norm, with the nonlinear term in the Duhamel
formula being estimated directly via the dispersive estimate. After establishing the
small-data scattering theory, Strauss further demonstrated that knowledge of the
scattering map suffices to determine integrals of the form

∫

R

〈α|eit∆ϕ|peit∆ϕ, eit∆ψ〉 dt,

which may be used to recover the coefficient α pointwise. The result of [16] was
extended in works of Weder [22, 24], who considered equations of the form

(i∂t +∆)u = V0(x)u +

∞
∑

k=k0

Vk(x)|u|
2ku

and used the small-data scattering map to determine the functions Vk, including
the potential V0. The constant k0 was chosen so that the lowest power in the nonlin-
earity exceeded the so-called Strauss exponent (allowing for some mass-subcritical
nonlinearities); scattering was obtained in Hs for some integer s > d

2 − 1 (s = 1
in d = 1); and the coefficients were assumed to satisfy Vk ∈ W s,∞. Weder also
relied primarily on dispersive estimates (of the type obtained in [23]) to estimate
the nonlinear terms.

In [20], Watanabe established a large-data H1 scattering theory for (1.1) in the
3d intercritical regime ( 4

d
< p < 4

d−2) for (1.1) with decaying coefficients α satisfying

a repulsivity condition. He then adapted techniques from [7] to the setting of (1.1),
1
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evaluating the scattering map on data of the form eiρθ·xϕ with ρ≫ 1 to determine
integrals of the form

∫

R

〈α(·+ 2tθ)|ϕ|pϕ, ψ〉 dt,

which then determine the X-ray transform of α.
Our first contribution is to revisit the approach of [16, 22, 24] and to lower the

regularity assumptions by utilizing Strichartz estimates instead of directly using
the dispersive estimate. This is similar to the approach taken in the related work
[3], although in this latter work the authors were primarily concerned with the
analyticity of the scattering operator, and correspondingly the results concerning
NLS were restricted to the case p ∈ 2N and α constant. We further extend the work
of [16, 22, 23] by establishing analogous results in the full mass-subcritical regime.

Our second contribution is to extend the results of [20] to the mass-critical and
mass-subcritical regime in dimensions d ≥ 3. We follow essentially the same strat-
egy to recover α from the scattering map. In contrast to [20], however, we formulate
the original scattering problem as a small-data problem in a suitable weighted space.
This construction directly provides us with the key estimate needed to control the
nonlinear error term in the reconstruction argument. The formulation as a small-
data problem also removes the need for any sign or repulsivity conditions on the
coefficient. After presenting our approach, we will also discuss some challenges
associated to this problem in the mass-supercritical regime.

Our main results appear below as follows:

• Theorem 3.1 - small-data scattering in H1 in the intercritical case;
• Theorem 3.2 - small-data scattering in L2 in the mass-critical and mass-
subcritical case;

• Theorem 3.3 - scattering in L2 in the mass-critical and mass-subcritical
case with boosted data;

• Theorem 4.1 and Corollary 4.2 - recovery of the nonlinearity from the scat-
tering map in the setting of Theorem 3.1 and Theorem 3.2;

• Theorem 4.3 and Corollary 4.4 - recovery of the nonlinearity from the scat-
tering map in the setting of Theorem 3.3.

Our results fit in the broader context of the recovery of the nonlinear terms from
scattering data for nonlinear dispersive equations. For some further results of this
type (primarily in the NLS setting), we refer the reader to [1, 3, 12–15,21–25]. We
also mention the related works [2, 10], which considered the recovery of spatially-
dependent coefficients in the nonlinearity using particular solutions rather than the
scattering map.

Acknowledgments. The author was supported in part by NSF DMS-2137217. I
am grateful to Rowan Killip, Monica Visan, Michiyuki Watanabe, and John Singler
for helpful discussions related to this work.

2. Preliminaries

We write A . B to denote the inequality A ≤ CB for some C > 0. We denote
dependence on parameters by subscripts, e.g. A .ℓ B means A ≤ CB for some
C = C(ℓ) > 0. We utilize the standard space-time Lebesgue spaces, i.e.

‖u‖Lq
tL

r
x(I×Rd) =

∥

∥‖u(t, ·)‖Lr
x(R

d)

∥

∥

L
q
t (I)

.
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We use H1,r
x for the Sobolev space with norm

‖u‖H1,r = ‖u‖Lr + ‖∇u‖Lr .

We write q′ for the Hölder dual of q. The Fourier multiplier operator with symbol
m is denoted by m(i∇). Finally, we write 〈x〉 =

√

1 + |x|2.
The free Schrödinger group is denoted eit∆. We have the following identity for

boosted initial data: for v ∈ Rd,

[eit∆eiv·xϕ](x) = e−i|v|2teiv·x[eit∆ϕ](x− 2tv). (2.1)

The Schrödinger group also obeys the following dispersive estimates

‖eit∆ϕ‖L∞ . |t|−
d
2 ‖ϕ‖L1, ‖eit∆ϕ‖L2 = ‖ϕ‖L2,

which (by interpolation) yield the following (Lorentz-improved) estimates

‖eit∆ϕ‖Lr,2 . |t|−( d
2−

d
r
)‖ϕ‖Lr′,2 , 2 ≤ r <∞. (2.2)

We will also make use of the standard Strichartz estimates for eit∆. We call a
pair (q, r) admissible if 2 ≤ q, r ≤ ∞, 2

q
+ d

r
= d

2 , and (q, r, d) 6= (2,∞, 2).

Theorem 2.1 (Strichartz estimates, [8,11,17]). For any admissible (q, r) and any

ϕ ∈ L2, we have

‖eit∆ϕ‖Lq
tL

r
x(R×Rd) . ‖ϕ‖L2.

For any admissible (q, r) and (q̃, r̃) and F ∈ L
q̃′

t L
r̃′

x (R× Rd), we have

∥

∥

∥

∥

∫ t

−∞

ei(t−s)∆F (s) ds

∥

∥

∥

∥

L
q
tL

r
x(R×Rd)

. ‖F‖
L

q̃′

t Lr̃′
x (R×Rd)

.

2.1. Weighted estimate for boosted data. The following estimate concerning
boosted solutions to the linear Schrödinger equation will play a key role in Theo-
rem 3.3 and Theorem 4.3 below. The estimate is modeled closely after estimates
appearing in [6, 7, 20].

Given s ∈ [0, d2 ), we introduce the space Xs(Rd) via the norm

‖ϕ‖Xs = ‖〈x〉sϕ‖L2 + ‖|∇|sϕ‖
L

2d
d+2s

. (2.3)

Proposition 2.2. Let q : Rd → C satisfy |q(x)| . 〈x〉−s for some s ∈ (0, d2 ). Then

‖q eit∆eiv·xϕ‖L2 . 〈tv〉−s‖ϕ‖Xs uniformly in t ∈ R.

We begin with a mismatch-type estimate (also found in [6, 7]).

Lemma 2.3. Let g ∈ C∞
c (Rd) satisfy supp g ⊂ {|ξ| ≤ N} for some N ≥ 1. Let

t ∈ R and suppose S, S′ ⊂ R
d are measurable sets satisfying

dist(S, S′) = R ≥ 4N |t|. (2.4)

Then for any ℓ ≥ 0,

‖χS′eit∆g(i∇)χS‖L2→L2 .ℓ,g (1 +R)−ℓ.

The estimate is uniform in t ∈ R.
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Proof. We begin by observing that for a bounded continuous function m, we have

‖χS′m(i∇)χS‖L2→L2 . min{‖m‖L∞, ‖m̌‖L1(|x|>R)}.

The L∞ bound follows from Plancherel. For the remaining estimate, one may
proceed by expanding the definition of

‖χS′m(i∇)χSf‖
2
L2, f ∈ L2,

and using the inequality

|f(y)| |f(z)| ≤ 1
2 [|f(y)|

2 + |f(z)|2]

along with the assumption (2.4) (see [6, Lemma 2.1]). In the present setting, we

take m(ξ) = e−it|ξ|2g(ξ) and seek to estimate

m̌(x) =

∫

eixξ−it|ξ|2g(ξ) dξ, |x| > R.

According to our assumptions, the phase has no stationary points, and hence re-
peated integration by parts leads to bounds of the form Cℓ|x− 2tξ|−ℓ for arbitrary
ℓ. In the present setting, we have

|x− 2tξ| ≥ |x| − 2t|ξ| ≥ 1
2 |x| ≥

1
2R,

and hence we obtain

‖m̌‖L1(|x|>R) .ℓ R
−ℓ

for any ℓ ≥ 0. �

Proof of Proposition 2.2. We let v ∈ Rd\{0} and s ∈ (0, d2 ). By (2.1), it is enough
to show that

‖q(·+ 2tv)eit∆ϕ‖L2 .s 〈tv〉
−s‖ϕ‖Xs . (2.5)

We split ϕ into low and high frequencies via

ϕ = P≤Nϕ+ P>Nϕ, N := 1
4 |v|.

We first estimate the low frequencies. We set

S = {|x| ≤ 1
10 |tv|}

and use the triangle inequality to obtain

‖q(·+ 2tv)eit∆P≤Nϕ‖L2 ≤ ‖q(·+ 2tv)eit∆P≤N [1− χS ]ϕ‖L2 (2.6)

+ ‖[1− χS(·+ 2tv)]q(·+ 2tv)eit∆P≤NχSϕ‖L2 (2.7)

+ ‖χS(·+ 2tv)q(·+ 2tv)eit∆P≤NχSϕ‖L2 . (2.8)

For (2.6), we estimate

‖q(·+ 2tv)eit∆P≤N [1− χS ]ϕ‖L2 . ‖q‖L∞‖ϕ‖L2(|x|> 1
10 |tv|)

. 〈tv〉−s‖〈x〉sϕ‖L2 ,

which is acceptable.
For (2.7), we use the decay assumption on q to obtain

‖[1− χS(·+ 2tv)]q(·+ 2tv)eit∆P≤NχSϕ‖L2 . 〈tv〉−s‖ϕ‖L2,

which is acceptable.
For (2.8) we introduce

S′ = {|x+ 2tv| ≤ 1
10 |tv|}
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and observe that
dist(S, S′) ≥ |v|t = 4N |t|.

Thus, Lemma 2.3 implies that

‖χS(·+ 2tv)q(·+ 2tv)eit∆P≤NχSϕ‖L2 . ‖q‖L∞‖χS′eit∆P≤NχSϕ‖L2

. 〈tv〉−s‖ϕ‖L2 ,

which is acceptable.
It remains to estimate the high frequencies. As it is straightforward to obtain

the bound
‖q(·+ 2tv)eit∆P>Nϕ‖L2 . ‖q‖L∞‖ϕ‖L2 . ‖ϕ‖L2,

it suffices to obtain the |tv|−s bound. To this end, we use Hölder’s inequality (in
Lorentz spaces), the dispersive estimate (2.2), the embedding Lr →֒ Lr,2 for r ≤ 2,
and Bernstein’s inequality (recalling |v| = 4N) to obtain

‖q(·+ 2tv)eit∆P>Nϕ‖L2 . ‖〈x〉−s‖
L

d
s
,∞‖eit∆P>Nϕ‖

L
2d

d−2s
,2

. |t|−s‖P>Nϕ‖
L

2d
d+2s

,2

. |tv|−s‖|∇|sϕ‖
L

2d
d+2s

,

which is acceptable. �

3. The Direct Problem

In this section we prove several scattering results for (1.1). We first establish
scattering for small data in Sobolev spaces. We utilize standard contraction map-
ping arguments based on Strichartz estimates (see e.g. [4]). In the intercritical
regime ( 4

d
≤ p ≤ 4

d−2 ), the coefficient α and its gradient are estimated in L∞. In

the mass-subcritical regime (p < 4
d
) we impose a decay assumption on α.

Throughout the rest of the paper, we will regularly make use of the admissible
pair

(q, r) = (p+ 2, 2d(p+2)
d(p+2)−4 ) (3.1)

(note that we will restrict to p ≥ 2 in dimension d = 1).

Theorem 3.1. Let d ≥ 1 and suppose p satisfies
{

4
d
≤ p ≤ 4

d−2 d ≥ 3,
4
d
≤ p <∞ d ∈ {1, 2}.

Let α be a continuous function with α,∇α ∈ L∞. There exists η > 0 sufficiently

small that for any u− ∈ H1 with ‖u−‖H1 < η, there exists a unique global solution

u to (1.1) and final state u+ ∈ H1 satisfying

‖u‖
L

q
tH

1,r
x (R×Rd) . ‖u−‖H1 and lim

t→±∞
‖u(t)− eit∆u±‖H1 = 0, (3.2)

where (q, r) is as in (3.1).

Proof. Let u− ∈ H1. We will prove that if ‖u−‖H1 is sufficiently small, the map

u 7→ Φ(u) = eit∆u− − i

∫ t

−∞

ei(t−s)∆α|u(s)|pu(s) ds (3.3)

is a contraction on a suitable metric space. To this end, we define

X = {u : R× R
d → C | ‖u‖Lq

tH
1,r
x (R×Rd) ≤ 2C‖u−‖H1},
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which we equip with the metric

d(u, v) = ‖u− v‖Lq
tL

r
x(R×Rd).

The constant C encodes implicit constants appearing in estimates such as Strichartz
and Sobolev embedding. Throughout the proof, all space-time norms will be taken
over R× Rd unless indicated otherwise.

We define rc =
dp(p+2)

4 and observe that by Sobolev embedding

‖u‖Lrc
x

. ‖|∇|scu‖Lr
x
. ‖u‖H1,r

x
, where sc =

d
2 − 2

p
∈ [0, 1].

Now let u ∈ X . By Strichartz, Hölder, the chain and product rules, we have

‖Φ(u)‖Lq
tH

1,r
x

. ‖u−‖H1 + ‖[α|u|pu]‖
L

q′

t H
1,r′
x

. ‖u−‖H1 + (‖α‖L∞ + ‖∇α‖L∞)‖u‖p
L

q
tL

rc
x
‖u‖

L
q
tH

1,r
x

. ‖u−‖H1 + ‖u‖p+1

L
q
tH

1,r
x

. ‖u−‖H1 + ‖u−‖
p+1
H1 .

It follows that for ‖u−‖H1 sufficiently small, Φ : X → X .
Given u, v ∈ X , we similarly estimate

‖u− v‖Lq
tL

r
x
. ‖α[|u|pu− |v|pv]‖

L
q′

t Lr′
x

. ‖α‖L∞{‖u‖p
L

q
tL

rc
x

+ ‖v‖p
L

q
tL

rc
x
}‖u− v‖Lq

tL
r
x

. ‖u−‖
p

H1‖u− v‖Lq
tL

r
x
,

which shows that Φ is a contraction provided ‖u−‖H1 is sufficiently small.
We conclude that Φ has a unique fixed point u ∈ X , yielding the desired solution

to (1.1). The convergence e−it∆u(t) → u− inH1 as t→ −∞ follows by construction
and the estimates above. To prove the existence of a scattering state as t→ ∞, we
estimate as above to obtain

‖e−it∆u(t)− e−is∆u(s)‖H1 . (‖α‖L∞ + ‖∇α‖L∞)‖u‖p+1

L
q
tH

1,r
x ((s,t)×Rd)

→ 0 as s, t→ ∞.

Thus {e−it∆u(t)} is Cauchy and so converges to a unique u+ ∈ H1 as t→ ∞. �

We next consider the mass-subcritical regime. Assuming that α belongs to a
suitable Lebesgue space, we can first establish scattering for small L2 data. In
fact, this result (as well as Theorem 3.3 below) allows for p to go below the usual
long-range exponent p = 2

d
.

Theorem 3.2. Let d ≥ 1 and suppose p satisfies
{

0 < p ≤ 4
d

d ≥ 2,

2 ≤ p ≤ 4 d = 1.

Let α be a continuous function with α ∈ L∞∩L
2d

4−dp . There exists η > 0 sufficiently

small that for any u− ∈ L2 with ‖u−‖L2 < η, there exists a unique global solution

u to (1.1) and final state u+ ∈ L2 satisfying

‖u‖Lq
tL

r
x(R×Rd) . ‖u−‖L2 and lim

t→±∞
‖u(t)− eit∆u±‖L2 = 0, (3.4)

where (q, r) is as in (3.1).
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Proof. We show that Φ defined in (3.3) is a contraction on the complete metric
space

X = {u : R× R
d → C | ‖u‖Lq

tL
r
x(R×Rd) ≤ 2C‖u−‖L2},

with metric given by

d(u, v) = ‖u− v‖Lq
tL

r
x(R×Rd).

Once again C encodes implicit constants appearing in the estimates below.
The essential step is the following nonlinear estimate: by Strichartz and Hölder’s

inequality, we have
∥

∥

∥

∥

∫ t

−∞

ei(t−s)∆α(x)|u(s)|pu(s) ds

∥

∥

∥

∥

L
q
tL

r
x

. ‖α|u|pu‖
L

q′

t Lr′
x

. ‖α‖
L

2d
4−dp

‖u‖p+1
L

q
tL

r
x

.

With this estimate in hand, the proof exactly parallels that of Theorem 3.1. The
constraint p ≥ 2 in in d = 1 is necessary to use the space Lq

tL
r
x for u (see (3.1)) as

well as the space L
2d

4−dp for α �

We next establish a mass-critical and mass-subcritical scattering theory for a
class of data adapted to the setting of [20], namely, data of the form u− = eiv·xϕ

with |v| ≫ 1. By working with a suitably weighted space (and imposing further
decay assumptions on α), we can recast the scattering problem for such data as a
small-data problem.

Given a ≥ 0 and s ∈ [0, d2 ) we introduce the space Xa,s via the norm

‖ϕ‖Xa,s = ‖|∇|aϕ‖L2 + ‖ϕ‖Xs , (3.5)

where Xs is as in (2.3). To simplify the formulas below, we also introduce the
parameter

c = c(p, d) = 4−p(d−2)
2(p+2) . (3.6)

Theorem 3.3. Let d ≥ 3 and 0 < p ≤ 4
d
. Let σ satisfy

max{ 2
4−p(d−2) ,

4−dp
4−p(d−2)} < σ < d

2 (3.7)

and suppose that α is a continuous function satisfying

〈x〉(p+1)cσα ∈ L
2d(p+2)
4−dp . (3.8)

Let ϕ ∈ X1,σ. For |v| sufficiently large, there exists a unique global solution to (1.1)
and final state u+ ∈ L2 satisfying

‖〈x〉−cσu‖
L

p+2
t,x (R×Rd) . |v|−

1
p+2 ‖ϕ‖X1,σ (3.9)

and

lim
t→±∞

‖u(t)− eit∆u±‖L2 = 0, where u− = eiv·xϕ.

Proof. We wish to close a contraction mapping argument for the map Φ in (3.3) in
the space

Y = {u : R× R
d → C | ‖〈x〉−cσu‖

L
p+2
t,x

≤ 2C|v|−
1

p+2 ‖ϕ‖X1,σ}

with metric

d(u, v) = ‖〈x〉−cσ[u− v]‖
L

p+2
t,x

.
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The constant C encodes implicit constants appearing in several inequalities, includ-
ing the Strichartz estimates and the inequality in Proposition 2.2.

We begin with the linear term in the definition of Φ (see (3.3)). By Hölder’s
inequality, we have

‖〈x〉−cσeit∆eiv·xϕ‖
L

p+2
x

. ‖〈x〉−σeit∆eiv·xϕ‖cL2
x
‖eit∆eiv·xϕ‖1−c

L
2d

d−2
x

.

Using (2.1) and Sobolev embedding, we obtain

‖eit∆eiv·xϕ‖
L

2d
d−2

. ‖eit∆ϕ‖
L

2d
d−2

. ‖ϕ‖Ḣ1 ,

while Proposition 2.2 implies

‖〈x〉−σeit∆eiv·xϕ‖L2 . 〈vt〉−σ‖ϕ‖Xσ .

Thus, by (3.7) and a change of variables, we obtain

‖〈x〉−cσeit∆eiv·xϕ‖
L

p+2
t,x

. ‖〈vt〉−cσ‖
L

p+2
t

‖ϕ‖X1,σ . |v|−
1

p+2 ‖ϕ‖X1,σ .

We turn to the nonlinear estimate. We will use the same Strichartz pair (q, r)
as in the proofs of Theorem 3.1 and Theorem 3.2; see (3.1). We also observe that
(3.7) guarantees

〈x〉−cσ ∈ L
2d(p+2)
4−dp .

Thus, given u ∈ Y , we use Hölder’s inequality, Strichartz, and (3.8) to obtain
∥

∥

∥

∥

〈x〉−cσ

∫ t

−∞

ei(t−s)∆α|u|pu(s) ds

∥

∥

∥

∥

L
p+2
t,x

. ‖〈x〉−cσ‖
L

2d(p+2)
4−dp

∥

∥

∥

∥

∫ t

−∞

ei(t−s)∆α(x)|u|pu(s) ds

∥

∥

∥

∥

L
q
tL

r
x

. ‖α|u|pu‖
L

q′

t Lr′
x

. ‖〈x〉(p+1)cσα‖
L

2d(p+2)
4−dp

‖〈x〉−cσu‖p+1

L
p+2
t,x

. |v|−
p+1
p+2 ‖ϕ‖p+1

X1,σ .

Choosing |v| sufficiently large we obtain Φ : Y → Y .
Using similar estimates, we find that for u, v ∈ Y ,

‖〈x〉−cσ[Φ(u)− Φ(v)]‖
L

p+2
t,x

. ‖〈x〉(p+1)cσα‖
L

2d(p+2)
4−dp

{‖〈x〉−cσu‖p
L

p+2
t,x

+ ‖〈x〉−cσv‖p
L

p+2
t,x

}

× ‖〈x〉−cσ[u− v]‖
L

p+2
t,x

. |v|−
p

p+1 ‖〈x〉−cσ[u− v]‖
L

p+2
t,x

,

so that Φ is a contraction provided |v| is sufficiently large. We therefore obtain the
global solution u to (1.1) satisfying (3.9).

The L2 convergence e−it∆u(t) → u− as t → −∞ follows from the estimates
above. It remains to prove the existence of the L2 scattering state u+. In fact, by
the estimates above, we have

‖e−it∆u(t)− e−is∆u(s)‖L2 . ‖α|u|pu‖
L

q′

t Lr′
x ((s,t)×Rd)

. ‖〈x〉−cσu‖p+1

L
p+2
t,x ((s,t)×Rd)

→ 0

as s, t→ ∞, which yields the result. �
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4. The Inverse Problem

Theorems 3.1, 3.2, and 3.3 show that under suitable assumptions on (p, α) we
can define final states u+ corresponding to data u− via the solution to (1.1). We
denote the scattering map sending u− to u+ by

S = Sp,α : A→

{

H1 in Theorem 3.1,

L2 in Theorems 3.2 and 3.3.

The proof of Theorem 3.1 shows that we may take

A = {ϕ ∈ H1 : ‖ϕ‖H1 < η} in Theorem 3.1,

with η = η(α) sufficiently small. Similarly, we may take

A = {ϕ ∈ L2 : ‖ϕ‖L2 < η} in Theorem 3.2,

with η = η(α) sufficiently small. Finally, choosing σ > 0 satisfying (3.7), the proof
of Theorem 3.3 shows that we may take

A =
⋃

M>0

{eiv·xϕ : ‖ϕ‖X1,σ ≤M, |v| > CMp+2} in Theorem 3.3,

where C = C(α) is sufficiently large.
In all cases, we have the following implicit formula for S:

Su− = u− − i

∫

R

e−it∆α|u|pu(t) dt,

where u is the solution to (1.1) that scatters backward in time to u−. We wish to
show that knowledge of S is sufficient to determine the nonlinearity in (1.1).

We first consider the case of Theorem 3.1 and Theorem 3.2 and prove a result
similar to the one appearing in [16].

Theorem 4.1. Let (d, p, α) satisfy the assumptions of Theorem 3.1 or Theorem 3.2

Let S denote the corresponding scattering map. Let

ϕ ∈

{

H1 in the case of Theorem 3.1,

L2 in the case of Theorem 3.2,

and let ψ ∈ L2. Then

lim
ε→0

iε−(p+1)〈(S − I)(εϕ), ψ〉 =

∫

R

〈α|eit∆ϕ|peit∆ϕ, eit∆ψ〉 dt.

Proof. Given ε > 0 sufficiently small, we set u− = εϕ ∈ A and let u be the
corresponding solution to (1.1) constructed in Theorem 3.1 or Theorem 3.2. We
write

i〈(S − I)(εϕ), ψ〉 =

∫

R

〈α|u|pu, eit∆ψ〉 dt

= εp+1

∫

R

〈α|eit∆ϕ|peit∆ϕ, eit∆ψ〉 dt

+

∫

〈α[|u|pu− |eit∆εϕ|peit∆εϕ], eit∆ψ〉 dt. (4.1)

To complete the proof, we will show that |(4.1)| = o(εp+1).
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We begin by using the Duhamel formula (cf. (3.3)) to obtain the estimate

|(4.1)| . ‖αeit∆ψ
[

|u|p + |eit∆εϕ|p
] [

u− eit∆εϕ
]

‖L1
t,x

.

∥

∥

∥

∥

αeit∆εψ
[

|u|p + |eit∆εϕ|p
]

[
∫ t

−∞

ei(t−s)∆α|u|pu(s) ds

]
∥

∥

∥

∥

L1
t,x

We first consider the setting of Theorem 3.1. Using the estimates appearing in
the proof of that theorem, we apply Hölder’s inequality, Strichartz, and (3.2) to
obtain

|(4.1)| . ‖α‖L∞‖eit∆ψ[|u|p + |eit∆εϕ|p]‖
L

q′

t Lr′
x

∥

∥

∥

∥

∫ t

0

ei(t−s)∆α|u|pu(s) ds

∥

∥

∥

∥

L
q
tL

r
x

. ‖eit∆ψ‖Lq
tL

r
x

[

‖u‖p
L

q
tL

rc
x

+ ‖eit∆εϕ‖p
L

q
tL

rc
x

]

‖α|u|pu‖
L

q′

t Lr′
x

. ‖ψ‖L2‖εϕ‖2p+1
H1 . ε2p+1,

which is acceptable.
We next consider the setting of Theorem 3.2. Applying the estimates used to

prove that theorem and (3.4), we obtain

|(4.1)| . ‖αeit∆ψ[|u|p + |eit∆εϕ|p]‖
L

q′

t Lr′
x

∥

∥

∥

∥

∫ t

0

ei(t−s)∆α|u|pu(s) ds

∥

∥

∥

∥

L
q
tL

r
x

. ‖α‖
L

2d
4−dp

‖eit∆ψ‖Lq
tL

r
x

[

‖u‖p
L

q
tL

r
x
+ ‖eit∆ϕ‖p

L
q
tL

r
x

]

‖α|u|pu‖
L

q′

t Lr′
x

. ‖ψ‖L2‖εϕ‖2p+1
L2 . ε2p+1,

which is acceptable. �

Corollary 4.2. Let d ≥ 1 and suppose (p, α) and (p̃, α̃) satisfy the assumptions

of Theorem 3.1 or Theorem 3.2. Let S : A → L2 and S̃ : Ã → L2 denote the

corresponding scattering maps.

If S(f) = S̃(f) for all f ∈ A ∩ Ã, then p = p̃ and α = α̃.

Proof. Fix ϕ ∈ S. The proof of Theorem 4.1 shows that

〈(S − I)(2εϕ), ϕ〉

〈(S − I)(εϕ), ϕ〉
=

2p+1εp+1C +O(ε2p+1)

εp+1C +O(ε2p+1)
→ 2p+1 as ε→ 0,

where

C = C(α, ϕ, p) :=

∫∫

α(x)|eit∆ϕ|p+2 dx dt.

Similarly,

〈(S̃ − I)(2εϕ), ϕ〉

〈(S̃ − I)(εϕ), ϕ〉
→ 2p̃+1 as ε→ 0.

Thus if S = S̃, we first obtain p = p̃.
Applying Theorem 4.1, we further obtain
∫∫

α(x)|eit∆ϕ|p+2 dx dt =

∫∫

α̃(x)|eit∆ϕ|p+2 dx dt for all ϕ ∈ S. (4.2)

It therefore suffices to prove that if
∫∫

α(x)|eit∆ϕ(x)|p+2 dx dt = 0 for all ϕ ∈ S, (4.3)

then α ≡ 0. To prove this, we utilize an argument appearing in [5] (see also [12]).
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First, given ϕ ∈ S, we define

Kϕ(x) =

∫

R

|eit∆ϕ(x)|p+2 dt

and claim that Kϕ ∈ L2(Rd). To prove this, we use Minkowski’s integral inequality,
Sobolev embedding, and the dispersive estimate to obtain the following:

‖ ‖eit∆ϕ‖p+2

L
p+2
t

‖L2
x
. ‖eit∆ϕ‖p+2

L
2(p+2)
x L

p+2
t

. ‖eit∆ϕ‖p+2

L
p+2
t L

2(p+2)
x

.ϕ ‖〈t〉−[ d2−
d

2(p+2)
]‖p+2

L
p+2
t

.ϕ 1

provided p > max{ 2
d
− 1, 0}.

We now specialize to the case

ϕ(x) = exp{− |x|2

4 }, so that eit∆ϕ(x) =
(

1 + it)−
d
2 exp{− |x|2

4(1+it)}

(see [18]). In particular, we have

Kϕ(x) =

∫

R

(1 + t2)−
d(p+2)

4 exp{− (p+2)|x|2

4(1+t2) } dt,

and so by translation invariance for the linear Schrödinger equation, (4.3) implies
∫

α(x)Kϕ(x− x0) dx = 0 for all x0 ∈ R
d.

To see that this implies α ≡ 0, it therefore suffices to verify that K̂ϕ 6= 0 almost

everywhere. In fact, for any ξ 6= 0, we can compute K̂ϕ(ξ) as a Gaussian integral:

K̂ϕ(ξ) = (2π)−
d
2

∫

R

(1 + t2)−
d(p+2)

4

∫

Rd

exp{−ix · ξ − p+2
4(1+t2) |x|

2} dx dt

= cd,p

∫

R

(1 + t2)−
dp
4 exp{− (1+t2)|ξ|2

p+2 } dt.

As K̂ϕ(ξ) is the integral of a positive function, we conclude that K̂ϕ(ξ) > 0 for all
ξ 6= 0. �

We next consider the case of Theorem 3.3 and prove a result similar to the one
appearing in [20]. We recall the spaces Xa,s defined in (3.5), (2.3).

Theorem 4.3. Let d ≥ 3. Suppose (p, α) satisfy the assumptions of Theorem 3.3

and choose σ satisfying (3.7). Assume additionally that

|α(x)| . 〈x〉−s for some s ∈ (1, d2 ). (4.4)

Let S : A→ L2 denote the corresponding scattering map, and let ϕ, ψ ∈ X
d
2+,σ.

For any θ ∈ Sd−1,

lim
ρ→∞

iρ〈(S − I)(eiρθ·xϕ), eiρθ·xψ〉 =

∫

R

〈α(·+ 2tθ)|ϕ|pϕ, ψ〉 dt.
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Proof. We fix θ ∈ Sd−1, let ρ ≫ 1, and set v = ρθ. Let u− = eiv·xϕ ∈ A, and let
u be the corresponding solution to (1.1) constructed in Theorem 3.3. We begin by
writing

i〈(S−I)(eiv·xϕ), eiv·xψ〉

=

∫

R

〈α|u|pu, eit∆eiv·xψ〉 dt

=

∫

R

〈α|eit∆eiv·xϕ|peit∆eiv·xϕ, eit∆eiv·xψ〉 dt (4.5)

+

∫

R

〈α[|u|pu− |eit∆eiv·xϕ|peit∆eiv·xϕ], eit∆eiv·xψ〉 dt. (4.6)

We will extract the main term from (4.5) and estimate (4.6) as an error term.
Using (2.1) and a change of variables, we first obtain

(4.5) =

∫

R

〈α(·) |eit∆ϕ(· − 2ρθt)|peit∆ϕ(· − 2ρθt), eit∆ψ(· − 2ρθt)〉 dt

= 1
ρ

∫

R

〈α(· + 2θt)|ei
t
ρ
∆ϕ|pei

t
ρ
∆ϕ, ei

t
ρ
∆ψ〉 dt.

We now define

hρ(t) = 〈α(· + 2θt)|ei
t
ρ
∆ϕ|pei

t
ρ
∆ϕ, ei

t
ρ
∆ψ〉,

ℓ(t) = 〈α(· + 2θt)|ϕ|pϕ, ψ〉.

We will prove that for all t ∈ R, we have

lim
ρ→∞

hρ(t) = ℓ(t), and (4.7)

|hρ(t)| . 〈t〉−s ∈ L1
t . (4.8)

To this end, first observe that

|hρ(t)− ℓ(t)| ≤ |〈α(· + 2θt)|ei
t
ρ
∆ϕ|pei

t
ρ
∆ϕ− |ϕ|pϕ, ei

t
ρ
∆ψ〉| (4.9)

+ |〈α(·+ 2θt)|ϕ|pϕ, ei
t
ρ
∆ψ − ψ〉|. (4.10)

To estimate these terms, we use the pointwise bound

|e−iτ |ξ|2 − 1| ≤ |τ |
1
2 |ξ|.

In particular, using H
d
2+ →֒ L2(p+1),

(4.10) ≤ ( |t|
ρ
)

1
2 ‖α‖L∞‖ϕ‖p+1

L2(p+1)‖∇ψ‖L2 → 0 as ρ→ ∞.

Similarly, using Sobolev embedding to control the free evolution in L∞,

(4.9) ≤ ‖α‖L∞{‖ei
t
ρ
∆ϕ‖pL∞ + ‖ϕ‖pL∞}‖ei

t
ρ
∆ϕ− ϕ‖L2‖ei

t
ρ
∆ψ‖L2

. ( |t|
ρ
)

1
2 ‖α‖L∞‖ϕ‖p

H
d
2
+
‖∇ϕ‖L2‖ψ‖L2 → 0 as ρ→ ∞.

This proves (4.7).
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Next, we use (2.1), Hölder’s inequality, Sobolev embedding, and Proposition 2.2
(in the form (2.5)), to obtain

|hρ(t)| = |〈α |ei
t
ρ
∆eiθ·xϕ|pei

t
ρ
∆eiθ·xϕ, ei

t
ρ
∆eiθ·xψ〉|

. ‖ei
t
ρ
∆ϕ‖p+1

L2(p+1)‖αe
i t
ρ
∆eiθ·xψ‖L2

. ‖ϕ‖p+1

H
d
2
+
‖α(·+ 2 t

ρ
v)ei

t
ρ
∆ψ‖L2 . 〈t〉−s,

which proves (4.8).
By the dominated convergence theorem, we therefore obtain

lim
ρ→∞

ρ · (4.5) =

∫

R

〈α(· + 2θt)|ϕ|pϕ, ψ〉 dt,

which yields the main term.
To complete the proof, it remains to prove that

|(4.6)| = o(ρ−1) as ρ→ ∞.

We begin with the estimate

|(4.6)| . ‖α[eit∆eiv·xψ][|u|p + |eit∆eiv·xϕ|p] [u− eit∆eiv·xϕ]‖L1
t,x

.

∥

∥

∥

∥

α[eit∆eiv·xψ][|u|p + |eit∆eiv·xϕ|p]

[
∫ t

−∞

ei(t−s)∆α|u|pu(s) ds

]∥

∥

∥

∥

L1
t,x

.

We utilize Strichartz and the estimates appearing in the proof of Theorem 3.3
to obtain

|(4.6)| . ‖α[eit∆eiv·xψ][|u|p + |eit∆eiv·xϕ|p]‖
L

q′

t Lr′
x

‖α|u|pu‖
L

q′

t Lr′
x

. ‖〈x〉(p+1)cσα‖2

L
2d(p+2)
4−dp

‖〈x〉−cσeit∆eiv·xψ‖
L

p+2
t,x

×
[

‖〈x〉−cσu‖p
L

p+2
t,x

+ ‖〈x〉−cσeit∆eiv·xϕ‖p
L

p+2
t,x

]

‖〈x〉−cσu‖p+1

L
p+2
t,x

. ρ−2 p+1
p+2 = o(ρ−1) as ρ→ ∞,

as was needed to show. �

Corollary 4.4. Let d ≥ 3 and suppose (p, α), (p̃, α̃) satisfy the assumptions of

Theorem 3.3 and Theorem 4.3. Let S : A → L2 and S̃ : Ã → L2 denote the

corresponding scattering maps.

If S(f) = S̃(f) for all f ∈ A ∩ Ã, then p = p̃ and α = α̃.

Proof. Fix ϕ ∈ S and θ ∈ Sd−1. Then Theorem 4.3 implies

〈(S − I)(2eiρθ·xϕ), eiρθ·xϕ〉

〈(S − I)(eiρθ·xϕ), eiρθ·xϕ〉
→ 2p+1 as ρ→ ∞.

Thus if S = S̃, we first obtain p = p̃.
Applying Theorem 4.3 once again, we obtain

∫

R

∫

Rd

α(x + 2θt)|ϕ(x)|p+2 dx dt =

∫

R

∫

Rd

α̃(x+ 2θt)|ϕ(x)|p+2 dx dt (4.11)

for all θ ∈ S
d−1 and ϕ ∈ X

d
2+,σ.
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We now fix θ ∈ Sd−1 and y ∈ Rd. We then choose a nonnegative, compactly
supported ϕ ∈ L1 with

∫

ϕ = 1 and set ϕn(x) = ndϕ(nx). By (4.11), we have
∫∫

α(x+2θt)ϕn(x−y) dx dt =

∫∫

α̃(x+2θt)ϕn(x−y) dx dt for all n. (4.12)

Now consider the functions

gn(t) =

∫

Rd

α(x+ 2θt)ϕn(x− y) dx.

By approximate identity arguments, we have that

gn(t) → α(y + 2θt) as n→ ∞ for all t ∈ R.

Furthermore, recalling (4.4) and noting that |x−y| . 1 on the support of ϕn(x−y),
we have

|gn(t)| .

∫

〈x+ 2θt〉−sϕn(x− y) dx .

∫

h(t)ϕn(x− y) dx . h(t),

where h ∈ L1
t is defined by

h(t) :=

{

1 |t| . |y|

〈t〉−s |t| ≫ |y|.

Thus, by the dominated convergence theorem, we have
∫

R

∫

Rd

α(x+ 2θt)ϕn(x− y) dx dt →

∫

R

α(y + 2θt) dt as n→ ∞.

Arguing similarly for α̃ and recalling (4.12), we deduce
∫

R

α(y + θt) dt =

∫

R

α̃(y + θt) dt.

As θ ∈ Sd−1 and y ∈ Rd were arbitrary, the fact that α = α̃ now follows from the
injectivity of the X-ray transform (see e.g. [9, Chapter I]). �

4.1. Challenges in the mass-supercritical regime. The approach taken in
Theorem 3.3 and Theorem 4.3 is to formulate the scattering problem as a small-
data problem, capitalizing on the fact that highly boosted data become small in
weighted spaces (a consequence of Proposition 2.2). This construction guarantees
that the corresponding nonlinear solutions inherit the weighted estimates enjoyed
by the boosted linear solutions. Such estimates then play an essential role in the
proof of Theorem 4.3, particularly in the estimation of the error term (4.6).

Extending this approach to the mass-supercritical regime seems to lead to some
significant difficulties. Indeed, in this setting the small-data contraction map-
ping argument to construct the scattering solutions requires some estimates on the
derivatives of solutions; however, the derivatives of highly boosted data will become
very large. Thus, while it seems possible to extend Theorem 3.3 and Theorem 4.3
into the slightly mass-supercritical regime, the full intercritical and energy-critical
regime appear to be out of reach for now.

In [20], Watanabe proceeded by imposing a positivity and repulsivity condition
on the coefficient α, which allowed for the use of Morawetz estimates to establish
an intercritical scattering theory for (1.1) for arbitrarily large H1 data (including
boosted data). As in the proof of Theorem 4.3, the recovery problem subsequently
required the estimation of an error term like (4.6). The approach of [20] was based
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on the intertwining property and an implicit formula for the wave operator Ω−;
however, it appears that the formula for Ω− in [20, Lemma 3.2] is missing a factor
of Ω− in the nonlinear term. In the absence of this factor, one is ultimately faced
with estimating only a linear term, for which an estimate such as Proposition 2.2
is sufficient. Restoring the missing factor of Ω−, one is instead led to a term
involving the full (nonlinear) solution. It then seems necessary to prove that even
in this setting, the scattering solutions inherit the weighted estimates satisfied by
the boosted linear solutions. At present, the author is not aware of a method to
obtain such estimates in the intercritical setting. On the other hand, Theorem 3.3
and Theorem 4.3 demonstrate that in the mass-critical and mass-subcritical regime,
the scattering problem does admit a formulation as a small-data problem that is
well-adapted to the approach found in [20].
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