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Variations on theorems of Mertens
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Abstract

We present variations on theorems of Mertens as special cases of
Density Hypothesis. Moreover, we study a Serre’s estimate concerning
Lang-Weil estimate.

1 Introduction

In 1874 Mertens [M] proved the following theorems:

Theorem A(Mertens) .

∏

p≤t

(

1− 1

p

)

∼ e−γ(log t)−1

as t → ∞, where p runs over prime numbers.

Theorem B(Mertens) .

∏

p:odd prime

(

1− (−1)
p−1

2

p

)

=
4

π
.

In this paper we present an interpretation to these theorems as special
cases of the following expectation:

Density Hypothesis(DH) . Let X be an algebraic variety over the rational
number field Q. Define the density function for t > 0 as

||X||t =
∏

p≤t

|X(Fp)|
pdim(X)

.
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Then there would exist a positive constant C(X) and an integer r(X) satis-
fying

||X||t ∼ C(X)(log r)r(X)

as t → ∞.

Theorem 0. Theorem A and Theorem B are cases
(1) X = Gm = GL(1)

and
(2) X = C = {(x, y)|x2 + y2 = 1} (circle).

Proof of Theorem 0. (1) Let X = Gm = GL(1). Then we have

|X(Fp)| = |GL(1,Fp)| = p− 1.

Thus we have

||X||t = ||GL(1)||t =
∏

p≤t

|GL(1,Fp)|
p

=
∏

p≤t

(1− p−1).

(2) Let X = {(x, y)|x2 + y2 = 1}. Then we have

|X(Fp)| =







2 · · · p = 2,
p− 1 · · · p ≡ 1 mod 4,
p+ 1 · · · p ≡ 3 mod 4.

Thus we have

||X||t =
∏

p≤t

|X(Fp)|
p

∼
∏

p:odd prime

p− (−1)
p−1

2

p
(t → ∞).

Hereafter we explain many examples satisfying DH. We remark that DH
is quite difficult in general. For example let X be an abelian variety (e.g.
elliptic curve), then DH is the original version of BSD [BS] with r(X) =
rankX(Q) and it will imply the Riemann hypothesis for the associated L-
function L(s,X) as indicated by [G] (at least for dim(X) = 1.) We remark
that the Deep Riemann Hypothesis is studied in [KK, KKK].

2



Theorem 1 (GL(n)).

C(GL(n)) = e−γ
n
∏

k=2

ζ(k)−1.

r(GL(n)) = −1.

Theorem 2 (SL(n)).

C(SL(n)) =

n
∏

k=2

ζ(k)−1.

r(SL(n)) = 0.

Theorem 3 (Sp(n)).

C(Sp(n)) =

n
∏

k=1

ζ(2k)−1.

r(Sp(n)) = 0.

Theorem 4 (An).

C(An) = 1.

r(An) = 0.

Theorem 5 (Pn).

C(Pn) = eγζ(n+ 1)−1.

r(Pn) = 1.

Theorem 6 (Gr(n,m) : n > m > 1).

C(Gr(n,m)) = eγ
∏m

k=2 ζ(k)
∏n

k=n−m+1 ζ(k)
.

r(Gr(n,m)) = 1.

For a monic polynomial f(x) ∈ Z[x] we define

||f ||t =
∏

p≤t

f(p)

pdeg(f)

and study the property

||f ||t ∼ C(f)(log t)r(f)

as t → ∞. Then Theorems 1-6 are essentially reduced to the case of the
cyclotomic polynomial Φn.
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Theorem 7.

C(Φn) = e−γµ(n)
∏

d|n
d>1

ζ(d)−µ(n
d
).

γ(Φn) = −µ(n).

Now we recall a Serre’s estimate [S] concerning Lang-Weil estimate [LW].

Theorem C(Serre) . Let X be an algebraic variety over the rational num-
ber field Q. Then we have

∣

∣

∣

∣

|X(Fp)| − pdim(X)

∣

∣

∣

∣

≤ Bpdim(X)− 1

2 ,

where B is a constant independent of p.

We notice that

∣

∣

∣

∣

|X(Fp)| − pdim(X)

∣

∣

∣

∣

≤ Bpdim(X)− 1

2 can be written as

∣

∣

∣

∣

|X(Fp)|
pdim(X)

− 1

∣

∣

∣

∣

≤ B√
p
.

Let A(p) be a numerical sequence satisfying

lim
p→∞

A(p)

pd
= 1

with d ∈ Z≥0. Then we define

b(p) =
√
p

(

A(p)

pd
− 1

)

,

that is,
A(p)

pd
= 1 +

b(p)√
p
.

We notice that by Theorem C b(p) is finite (|b(p)| ≤ B) if b(p) = bX(p)
with A(p) = |X(Fp)|.

Theorem 8 (Pn). Let X = Pn. Then

bX(p) =
1√
p

1− p−n

1− p−1
(> 0).
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Theorem 9 (An). Let X = An. Then

bX(p) = 0.

Theorem 10 (GL(1)). Let X = GL(1). Then

bX(p) = − 1√
p
(< 0)

Theorem 11 (GL(2)). Let X = GL(2). Then

bX(p) = − 1√
p
− 1

p
√
p
+

1

p2
√
p
(< 0)

Theorem 12 (SL(2)). Let X = SL(2). Then

bX(p) = − 1

p
√
p
(< 0)

The following theorem gives an example where b(p) is not necessarily
finite.

Theorem 13. Let A(p) = pd + pd−
1

3 . Then b(p) is not finite.

Finally, we calculate bX(p) for elliptic curve X over Q with A(p) =
|X(Fp)|.

Theorem 14. For sufficiently large p (p is “good”) we have

−2 < bX(p) < 3.

2 Proof of Main results

Proof of Theorem 1. Using

|GL(1,Fp)| = p− 1

and Theorem A, we have

||GL(1)||t =
∏

p≤t

|GL(1,Fp)|
p

=
∏

p≤t

{(1 − p−1)}

∼ e−γ · (log t)−1 (t → ∞).
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Let n ≥ 2. Using

|GL(n,Fp)| = pn
2

(1− p−1)(1− p−2) · · · (1− p−n)

and Theorem A, we have

||GL(n)||t =
∏

p≤t

|GL(n,Fp)|
pn

2

=
∏

p≤t

{(1 − p−1)(1− p−2) · · · (1− p−n)}

=
∏

p≤t

(1− p−1)
∏

p≤t

{(1− p−2) · · · (1− p−n)}

∼ e−γ
n
∏

k=2

ζ(k)−1 · (log t)−1 (t → ∞).

Proof of Theorem 2. Using

|SL(n,Fp)| =
|GL(n,Fp)|

p− 1

=
pn

2

(1− p−1)(1 − p−2) · · · (1− p−n)

p− 1

= pn
2−1(1− p−2) · · · (1− p−n),

we have

||SL(n)||t =
∏

p≤t

|SL(n,Fp)|
pn

2−1

=
∏

p≤t

{(1 − p−2) · · · (1− p−n)}

∼
n
∏

k=2

ζ(k)−1 (t → ∞).

Proof of Theorem 3. Using

|Sp(n,Fp)| = pn(2n+1)(1− p−2)(1 − p−4) · · · (1− p−2n),
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we have

||Sp(n)||t =
∏

p≤t

|Sp(n,Fp)|
pn(2n+1)

=
∏

p≤t

{(1− p−2)(1 − p−4) · · · (1− p−2n)}

∼
n
∏

k=1

ζ(2k)−1 (t → ∞).

Proof of Theorem 4. Using

An(Fp) = (Fp)
n,

we have

||An||t =
∏

p≤t

|An(Fp)|
pn

= 1

∼ 1 (t → ∞).

Proof of Theorem 5. Using

|Pn(Fp)| = 1 + p+ · · · + pn =
pn+1 − 1

p− 1

and Theorem A, we have

||Pn||t =
∏

p≤t

|Pn(Fp)|
pn

=
∏

p≤t

1− p−(n+1)

1− p−1

∼ eγ

ζ(n+ 1)
· log t (t → ∞).
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Proof of Theorem 6. Using

|Gr(n,m)(Fp)| =
(pn − 1) · · · (pn−m+1 − 1)

(pm − 1) · · · (p − 1)

and Theorem A, we have

||Gr(n,m)||t =
∏

p≤t

|Gr(n,m)(Fp)|
pm(n−m)

=
∏

p≤t

(1− p−(n−m+1)) · · · (1− p−n)

(1− p−1) · · · (1− p−m)

∼ eγ
ζ(2) · · · ζ(m)

ζ(n−m+ 1) · · · ζ(n) · log t (t → ∞).

Proof of Theorem 7. Using

Φn(t) =
∏

d|n

(td − 1)µ(
n
d
)

and Theorem A, we have

||Φn||t =
∏

p≤t

Φn(p)

pdeg(Φn)

=
∏

p≤t

∏

d|n(p
d − 1)µ(

n
d
)

pϕ(n)

=
∏

p≤t

∏

d|n(p
d − 1)µ(

n
d
)

p
∑

d|n µ(n
d
)d

=
∏

p≤t

∏

d|n

(1− p−d)µ(
n
d
)

=
∏

p≤t

(1− p−1)µ(n)
∏

d|n
d>1

(1− p−d)µ(
n
d
)

∼ (e−γ(log t)−1)µ(n)
∏

d|n
d>1

ζ(d)−µ(n
d
) (t → ∞)

= e−γµ(n)
∏

d|n
d>1

ζ(d)−µ(n
d
) · (log t)−µ(n).

8



Proof of Theorem 8. Since

|X(Fp)| = pn + pn−1 + · · ·+ 1,

we have

|X(Fp)|
pn

= 1 +
1

p
+ · · · + 1

pn

= 1 +
bX(p)√

p
.

Thus we have

bX(p) =
√
p(

1

p
+

1

p2
+ · · ·+ 1

pn
)

=
1√
p
(1 +

1

p
+ · · ·+ 1

pn−1
)

=
1√
p

1− p−n

1− p−1
.

Proof of Theorem 9. Since

|X(Fp)| = pn,

we have

bX(p) =
√
p(
|X(Fp)|

pn
− 1)

= 0.

Proof of Theorem 10. Since

|X(Fp)| = p− 1,

we have

|X(Fp)|
p

=
p− 1

p

= 1− 1

p

= 1 +
bX(p)√

p
.
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Thus we have

bX(p) = − 1√
p
.

Proof of Theorem 11. Since

|X(Fp)| = p4(1− p−1)(1 − p−2),

we have

|X(Fp)|
p4

= (1− p−1)(1 − p−2)

= 1− p−1 − p−2 + p−3

= 1 +
bX(p)√

p
.

Thus we have

bX(p) = − 1√
p
− 1

p
√
p
+

1

p2
√
p
.

Proof of Theorem 12. Since

|X(Fp)| = p3(1− p−2),

we have

|X(Fp)|
p3

= 1− p−2

= 1 +
bX(p)√

p
.

Thus we have

bX(p) = − 1

p
√
p
.

Proof of Theorem 13. Since

b(p) =
√
p(

A(p)

pd
− 1)

=
√
p(

pd + pd−
1

3

pd
− 1)

= p
1

6 ,
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we have
lim
p→∞

b(p) = ∞.

Proof of Theorem 14. For

A(p) = |X(Fp)| = p+ 1− a(p)

using Hasse’s theorem on elliptic curves we can write

a(p) = 2
√
p cos(θ(p))

with θ(p) ∈ [0, π]. So we obtain

bX(p) =
√
p(

A(p)

p
− 1)

=
1√
p
− 2 cos(θ(p)).

Since −2 ≤ 2 cos(θ(p)) ≤ 2, we have

bX(p) ≤ 1√
2
+ 2 < 3,

bX(p) > −2 cos(θ(p)) ≥ −2.
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