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THE COLORED JONES POLYNOMIAL

OF THE FIGURE-EIGHT KNOT

AND A QUANTUM MODULARITY

HITOSHI MURAKAMI

Abstract. We study the asymptotic behavior of the N-dimensional colored
Jones polynomial of the figure-eight knot evaluated at exp

(

(u+2pπ
√

−1)/N
)

,
where u is a small real number and p is a positive integer. We show that it
is asymptotically equivalent to the product of the p-dimensional colored Jones
polynomial evaluated at exp

(

4Nπ2/(u + 2pπ
√

−1)
)

and a term that grows
exponentially with growth rate determined by the Chern–Simons invariant.
This indicates a quantum modularity of the colored Jones polynomial.

1. Introduction

Let K be an oriented knot in the three-sphere S3. For a positive integer N , we
denote by JN (K; q) the colored Jones polynomial associated with the irreducible N -
dimensional representation of the Lie algebra sl(2;C). Here we normalize JN (K; q)
so that JN (U ; q) = 1 for the unknot U .

Let us consider an evaluation JN

(

K; e2π
√
−1/N

)

. It is well known that it co-

incides with Kashaev’s invariant 〈K〉N [12, 25]. R. Kashaev conjectured that his
invariant grows exponentially as N → ∞, and that its growth rate gives the hyper-
bolic volume of the knot complement when K is a hyperbolic knot, that is, S3 \K
possesses a (unique) complete hyperbolic structure with finite volume [13]. In [25],
Kashaev’s conjecture was generalized to any knot replacing the hyperbolic volume
with simplicial volume (also known as Gromov’s norm [8]).

Conjecture 1.1 (Volume conjecture). Let K ⊂ S3 be any knot. Then we have

lim
N→∞

1

N
log
∣

∣JN (K; e2π
√
−1/N )

∣

∣ =
1

2π
Vol(S3 \K),

where Vol(S3 \K) is the simplicial volume of S3 \K.

So far, Kashaev’s conjecture is proved for the figure-eight knot by T. Ekholm,
and for knots with up to seven crossings [31, 33, 32]. The volume conjecture is
proved for hyperbolic knots with up to seven crossings as above, for all the torus
knots by Kashaev and O. Tirkkonen [14], for the Whitehead doubles of the torus
knots by H. Zheng [37], and the (2, 2k + 1)-cable of the figure-eight knot by T. Le
and A. Tran [18].

J. Murakami, M. Okamoto, T. Takata, Y. Yokota, and the author complexified
Kashaev’s conjecture as follows [26, Conjecture 1.2]:

Date: September 19, 2022.
2020 Mathematics Subject Classification. Primary 57K14 57K10 57K16.
Key words and phrases. colored Jones polynomial, volume conjecture, figure-eight knot,

Chern–Simons invariant, Reidemeister torsion, quantum modularity.
This work was supported by JSPS KAKENHI Grant Numbers JP22H01117, JP20K03601,

JP20K03931.

1

http://arxiv.org/abs/2209.07751v1
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Conjecture 1.2. For a hyperbolic knot K in S3, we have

JN (K; e2π
√
−1/N ) ∼

N→∞

N

2π
CV(K),

where CV(K) := Vol(S3 \K) +
√
−1CSSO(3)(S3 \K) is the complex volume with

CSSO(3) the SO(3) Chern–Simons invariant [21].

For a hyperbolic knot K ⊂ S3, let ρ : π1(S
3 \ K) → SL(2;C) be an irre-

ducible representation that is a small deformation of the holonomy representa-
tion corresponding to the complete hyperbolic structure. Note that ρ corresponds
to an incomplete hyperbolic structure [35]. Up to conjugation, we may assume

that ρ sends the meridian of K to

(

eu/2 ∗
0 e−u/2

)

and the preferred longitude to
(

−ev(u)/2 ∗
0 −e−v(u)/2

)

(see for example [30]). Associated with u, we can define the

SL(2;C) Chern–Simons invariant CSu,v(u)(ρ) and the cohomological adjoint Reide-
meister torsion TK(u). See [29, Chapter 5] for example. Note that in [29] we define
the homological adjoint Reidemeister torsion (it is called the twisted Reidemeister
torsion there). So we need to take its inverse to define the cohomological torsion.

Note also that Vol(S3 \K)+
√
−1CSSO(3)(S3 \K) in Conjecture 1.2 coincides with√

−1CS0,0(ρ0) for a hyperbolic knot K with holonomy representation ρ0.
In [28], Yokota and the author proved that for the figure-eight knot E, the limit

limN→∞
1
N log JN

(

E; e(u+2π
√
−1)/N

)

exists if the complex number u is in a small

neighborhood of 0 (and not a rational multiple of π
√
−1). Moreover the limit

determines the holomorphic function f(u) introduced in [30, Theorem 2]. In other

words, the asymptotic behavior of JN (E; e(u+2π
√
−1)/N ) determines the SL(2;C)

Chern–Simons invariant associated with u.
For a general hyperbolic knot K, the following conjecture was proposed in [24]

(see also [2, 9]).

Conjecture 1.3. Let K ⊂ S3 be a hyperbolic knot. Then there exists a neighbor-

hood U ⊂ C of 0 such that if u ∈ U \ π
√
−1Q, then we have

JN

(

K; e(u+2π
√
−1)/N

)

∼
N→∞

√
−π

2 sinh(u/2)
TK(u)1/2

(

N

u+ 2π
√
−1

)1/2

exp

(

N × SK(u)

u+ 2π
√
−1

)

,

where TK(u) is the cohomological adjoint Reidemeister torsion, and CSu,v(u)(ρ) =

SK(u)− uπ
√
−1− 1

4uv(u) is the Chern–Simons invariant, both associated with u.

In [24], we proved that the conjecture is true for the figure-eight knot and a
positive real number u < arccosh(3/2).

In this paper, we study the colored Jones polynomial of the figure-eight knot eval-
uated at q = exp

(

(u+2pπ
√
−1)/N

)

for a real number u with 0 < u < arccosh(3/2)
and a positive integer p. We will show

Theorem 1.4. Let E be the figure-eight knot and put ξ := u+ 2pπ
√
−1. Then we

have

(1.1) JN

(

E; eξ/N
)

=

√
−π

2 sinh(u/2)
TE(u)

1/2Jp

(

E; e4Nπ2/ξ
)

(

N

ξ

)1/2

e
N
ξ
×SE(u)

(

1 +O(N−1)
)
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as N → ∞, where we put

SE(u) := Li2

(

e−u−ϕ(u)
)

− Li2

(

e−u+ϕ(u)
)

+ u
(

ϕ(u) + 2π
√
−1
)

,

TE(u) :=
2

√

(2 coshu+ 1)(2 coshu− 3)
.

Here Li2(z) := −
∫ z

0
log(1−w)

w dw is the dilogarithm function and we put

ϕ(u) := log

(

coshu− 1

2
− 1

2

√

(2 coshu+ 1)(2 coshu− 3)

)

.

Remark 1.5. The case where p = 1 was proved in [24].

Remark 1.6. When p = 0, the author proved that for the figure-eight knot E,
JN
(

E; eu/N
)

converges to 1/∆(E; eu), where ∆(K; t) is the Alexander polynomial

of a knot K normalized so that ∆(K; t) = ∆(K; t−1) and ∆(U ; t) = 1 [23]. Soon
after, it was generalized by S. Garoufalidis and T. Le to any knot in S3. See [5, 4, 6].

As a corollary we have the following asymptotic equivalence.

Corollary 1.7. We have

(1.2)
JN
(

E; eξ/N
)

Jp
(

E; e4Nπ2/ξ
) ∼

N→∞

√
−π

2 sinh(u/2)
TE(u)

1/2

(

N

ξ

)1/2

e
N
ξ
×SE(u).

This indicates a quantum modularity for the colored Jones polynomial.

Conjecture (Conjecture 7.3). Let K be a hyperbolic knot. For a small complex

number u that is not a rational multiple of π
√
−1, and positive integers p and N ,

put ξ := u + 2pπ
√
−1 and X := 2Nπ

√
−1

ξ . Then for any η =

(

a b
c d

)

∈ SL(2;Z)

with c > 0, the following asymptotic equivalence holds.

JcN+dp

(

K; e2π
√
−1η(X)

)

Jp
(

K; e2π
√
−1X

) ∼
N→∞

CK,η(u)

√
−π

2 sinh(u/2)

(

TK(u)

~η(X)

)1/2

exp

(

SK(u)

~η(X)

)

for CK,η(u) ∈ C that does not depend on p, where we put η(X) := aX+b
cX+d and

~η(X) := 2cπ
√
−1

cX+d .

Compare it with Zagier’s quantum modularity conjecture for Kashaev’s invariant
[36].

Conjecture (Conjecture 7.1). Let K, η, N , and p as above. If we put X0 := N
p ,

the following holds.

JcN+dp

(

K; e2π
√
−1η(X0)

)

Jp
(

K; e2π
√
−1X0

) ∼
N→∞

CK,η

(

2π

~η(X0)

)3/2

exp

(√
−1CV(K)

~η(X0)

)

,

where CK,η is a complex number depending only on η and K.

The paper is organized as follows.
In Section 2, we define the colored Jones polynomial and introduce a quantum

dilogarithm. We express the colored Jones polynomial as a sum of the quantum
dilogarithms assuming (p,N) = 1 in Section 3. In Section 4, we approximate it
by using the dilogarithm function by using the fact that the quantum dilogarithm
converges to the dilogarithm. We use the Poisson summation formula á la Ohtsuki
[31] to replace the sum with an integral in Section 5. In Section 6, we prove the
main theorem (Theorem 1.4). We discuss a quantum modularity of the colored
Jones polynomial in Section 7. Section 8 is devoted to proofs of lemmas used in
the other sections. In Appendix, we calculate the colored Jones polynomial in the
case where (p,N) 6= 1.
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2. Preliminaries

Let JN (K; q) be the N -dimensional colored Jones polynomial of K ⊂ S3 asso-
ciated with the N -dimensional irreducible representation of the Lie algebra sl2(C),
where N is a positive integer and q is a complex parameter [16, 34, 15]. It is normal-
ized so that JN (U ; q) = 1 for the unknot U . In particular, J2(K; q) is (a version) of
the original Jones polynomial [11]. More precisely, J2(K; q) satisfies the following
skein relation:

qJ2

(

; q
)

− q−1J2

(

; q
)

=
(

q1/2 − q−1/2
)

J2

(

; q
)

.

K. Habiro [10, P. 36 (1)] (see also [19, Theorem 5.1]) and T. Le [17, 1.2.2. Exam-
ple, P. 129] gave a simple formula for the colored Jones polynomial of the figure-eight
knot E as follows:

JN (E; q) =

N−1
∑

k=0

k
∏

l=1

(

q(N+l)/2 − q−(N+l)/2
)(

q(N−l)/2 − q−(N−l)/2
)

(2.1)

=

N−1
∑

k=0

q−kN
k
∏

l=1

(

1− qN+l
) (

1− qN−l
)

.(2.2)

For a real number u with 0 < u < κ := arccosh(3/2) = 0.962424 . . . , and a positive
integer p, we put ξ := u+ 2pπ

√
−1. Then we have

(2.3) JN

(

E; eξ/N
)

=

N−1
∑

k=0

e−kξ
k
∏

l=1

(

1− e(N+l)ξ/N
)(

1− e(N−l)ξ/N
)

.

We want to replace the products in (2.3) with some values of a continuous func-
tion. To do that we introduce a so-called quantum dilogarithm following [3].

Put
⌢
R:= (−∞,−1] ∪ {z ∈ C | |z| = 1, Im z ≥ 0} ∪ [1,∞) and orient it from left

to right. We consider the integral
∫

⌢
R

e(2z−1)x

x sinh(x) sinh(γx) dx, where γ := ξ
2Nπ

√
−1

.

Lemma 2.1. The integral
∫

⌢
R

e(2z−1)x

x sinh(x) sinh(γx) dx converges if −p/(2N) < Re z <

1 + p/(2N).

A proof is given in § 8. Note that the poles of the integrand is

{x ∈ C | x = kπ
√
−1 (k ∈ Z)} ∪ {x ∈ C | x = lπ

√
−1/ξ (l ∈ Z)}

and so
⌢
R avoids the poles.

We define

TN (z) :=
1

4

∫

⌢
R

e(2z−1)x

x sinh(x) sinh(γx)
dx.

We also consider three related integrals
∫

⌢
R

e(2z−1)x

xk sinh(x)
dx (k = 0, 1, 2), which con-

verge if 0 < Re z < 1 by similar reasons to Lemma 2.1.

Definition 2.2. We put

L0(z) :=

∫

⌢
R

e(2z−1)x

sinh(x)
dx,

L1(z) :=
−1

2

∫

⌢
R

e(2z−1)x

x sinh(x)
dx,

L2(z) :=
π
√
−1

2

∫

⌢
R

e(2z−1)x

x2 sinh(x)
dx

for z with 0 < Re z < 1.



THE COLORED JONES POLYNOMIAL OF THE FIGURE-EIGHT KNOT 5

Their derivatives are given as follows.

dL2(z)

d z
= −2π

√
−1L1(z),

dL1(z)

d z
= −L0(z).

We also have the following lemma.

Lemma 2.3. If 0 < Re z < 1, then we have

L0(z) =
−2π

√
−1

1− e−2π
√
−1z

,

L1(z) = log
(

1− e2π
√
−1z
)

,

L2(z) = Li2

(

e2π
√
−1z
)

.

Here we use the branch of logw so that −π < Im logw ≤ π and Li2(w) has branch

cut at (1,∞).

Proof. As [27, Lemma 2.5], we can prove the following equalities:

L0(z) =
−2π

√
−1

1− e−2π
√
−1z

,

L1(z) =







log
(

1− e2π
√
−1z
)

if Im z ≥ 0,

π
√
−1(2z − 1) + log

(

1− e−2π
√
−1z
)

if Im z < 0,

L2(z) =







Li2

(

e2π
√
−1z
)

if Im z ≥ 0,

π2

3 (6z2 − 6z + 1)− Li2

(

e−2π
√
−1z
)

if Im z < 0.

So we need to prove the lemma for the case where Im z < 0.
There is nothing to prove for L0(z).
If 0 < Re z < 1, then using the identity (see for example [20])

(2.4) Li2(w
−1) = −Li2(w) −

π2

6
− 1

2

(

log(−w)
)2
,

we have

Li2

(

e−2π
√
−1z
)

= −Li2

(

e2π
√
−1z
)

− π2

6
− 1

2

(

2π
√
−1z − π

√
−1
)2

= −Li2

(

e2π
√
−1z
)

+ 2π2z2 +
π2

3
,

where we use the fact that 0 < Im(2π
√
−1z) < 2π. Therefore we have

L2(z) = −Li2

(

e−2π
√
−1z
)

+
π2

3

(

6z2 − 6z + 1
)

= Li2

(

e2π
√
−1z
)

as required.

As for L1(z), since log
(

eπ
√
−1(2z−1)

)

= 2π
√
−1z − π

√
−1, we have

log
(

1− e−2π
√
−1z
)

+ π
√
−1(2z − 1) = log

(

1− e−2π
√
−1z
)

+ log
(

eπ
√
−1(2z−1)

)

= log
(

1− e2π
√
−1z
)

,

completing the proof. �

We can prove that TN(z) converges to N
ξ Li2

(

e2π
√
−1z
)

. More precisely we have
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Lemma 2.4. For any positive real number M and a sufficiently small positive real

number ν, we have

TN (z) =
N

ξ
Li2

(

e2π
√
−1z
)

+O(1/N)

as N → ∞ in the region

{z ∈ C | ν ≤ Re z ≤ 1− ν, | Im z| ≤ M}.

In particular TN (z) uniformly converges to N
ξ Li2

(

e2π
√
−1z
)

in the region above.

A proof is also given in § 8.
The following lemma is essential in the paper. Put EN (z) := eTN (z).

Lemma 2.5. If 0 < Re z < 1, then we have

EN (z − γ/2)

EN (z + γ/2)
= 1− e2π

√
−1z.

Proof. Recalling that γ = ξ
2Nπ

√
−1

, we have

TN(z − γ/2)− TN(z + γ/2) =
1

4

∫

⌢
R

e(2z−γ−1)x − e(2z+γ−1)x

x sinh(x) sinh(γx)
dx

= −
∫

⌢
R

e(2z−1)x

2x sinh(x)
dx = L1(z).

Taking the exponentials of both sides, the lemma follows from Lemma 2.3. �

As a corollary, we have

Corollary 2.6. Let n be an integer. If nN/p < j < (n+ 1)N/p, we have

EN

(

(j − 1/2)γ − n
)

EN

(

(j + 1/2)γ − n
) = 1− e2jγπ

√
−1,

and

EN

(

n+ 1− (j + 1/2)γ
)

EN

(

n+ 1− (j − 1/2)γ
) = 1− e−2jγπ

√
−1.

Proof. Since Re γ = p/N , we have 0 < Re(jγ−n) < 1. Therefore putting z := jγ−n
in Lemma 2.5, we have the first equality. Similarly, putting z := n + 1 − jγ, we
have the second equality. �

We prepare other two lemmas.

Lemma 2.7. For a complex number w with |Rew| < Re γ, we have

EN

(

w + γ/2
)

EN

(

w − γ/2 + 1
) =

1− e2π
√
−1w/γ

1− e2π
√
−1w

.

Proof. By definition, we have

TN(w + γ/2)− TN(w − γ/2 + 1)

=
1

4

∫

⌢
R

e(2w+γ−1)t − e(2w−γ+1)t

t sinh(t) sinh(γt)
dt

=
1

2

∫

⌢
R

e2wt cosh(t)

t sinh(t)
dt− 1

2

∫

⌢
R

e2wt cosh(γt)

t sinh(γt)
dt

=
1

4

∫

⌢
R

e(2w+1)t

t sinh(t)
dt+

1

4

∫

⌢
R

e(2w−1)t

t sinh(t)
dt
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− 1

4

∫

⌢
R

e(2w+γ)t

t sinh(γt)
dt− 1

4

∫

⌢
R

e(2w−γ)t

t sinh(γt)
dt

=− 1

2
L1(w + 1)− 1

2
L1(w) +

1

2
L1(w/γ + 1) +

1

2
L1(w/γ).

Taking the exponentials, we have the lemma from Lemma 2.3. �

Lemma 2.8. For a complex number z with |Re z| < Re γ/2, we have

EN (z)

EN (z + 1)
= 1 + e2π

√
−1z/γ .

Proof. By definition, we have

TN (z)− TN(z + 1)

=
1

4

∫

⌢
R

e(2z−1)t − e(2z+1)t

t sinh(t) sinh(γt)
dt

=− 1

2

∫

⌢
R

e2zt

t sinh(γt)
dt

=− 1

2

∫

γ
⌢
R

e2zs/γ

s sinh(s)
ds

=L1(z/γ + 1/2).

Taking the exponentials, we get the lemma from Lemma 2.3. �

3. Summation

In this section, we express JN
(

E; eξ/N
)

in terms of the quantum dilogarithm
TN(z).

We assume that p andN are coprime. See Appendix for the case with (p,N) 6= 1.
If k < N/p, then from Corollary 2.6 with (j, n) = (N − l, p − 1) and (j, n) =

(N + l, p), we have

k
∏

l=1

(1 − e(N−l)ξ/N )(1− e(N+l)ξ/N )

=

k
∏

l=1

(1 − e2(N−l)γπ
√
−1)(1 − e2(N+l)γπ

√
−1)

=

k
∏

l=1

EN

(

(N − l − 1/2)γ − p+ 1
)

EN

(

(N − l + 1/2)γ − p+ 1
)

×
k
∏

l=1

EN

(

(N + l− 1/2)γ − p
)

EN

(

(N + l+ 1/2)γ − p
)

=
EN

(

(N − k − 1/2)γ − p+ 1
)

EN

(

(N − 1/2)γ − p+ 1
)

EN

(

(N + 1/2)γ − p
)

EN

(

(N + k + 1/2)γ − p
)

=
1− e4pπ

2N/ξ

1− eξ
× EN

(

(N − k − 1/2)γ − p+ 1
)

EN

(

(N + k + 1/2)γ − p
) ,

where we use Lemma 2.7 with w = Nγ − p in the last equality.
Similarly, if k satisfies mN/p < k < (m+ 1)N/p, then we have

k
∏

l=1

(1− e(N−l)ξ/N )(1 + e(N+l)ξ/N )(3.1)
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=

m−1
∏

j=0





⌊(j+1)N/p⌋
∏

l=⌊jN/p⌋+1

EN

(

(N − l − 1/2)γ − p+ j + 1
)

EN

(

(N − l + 1/2)γ − p+ j + 1
)

×
⌊(j+1)N/p⌋
∏

l=⌊jN/p⌋+1

EN

(

(N + l − 1/2)γ − p− j
)

EN

(

(N + l + 1/2)γ − p− j
)





×
k
∏

l=⌊mN/p⌋+1

EN

(

(N − l − 1/2)γ − p+m+ 1
)

EN

(

(N − l + 1/2)γ − p+m+ 1
)

×
k
∏

l=⌊mN/p⌋+1

EN

(

(N + l − 1/2)γ − p−m
)

EN

(

(N + l + 1/2)γ − p−m
)

=

m−1
∏

j=0

EN

(

(N − ⌊(j + 1)N/p⌋ − 1/2)γ − p+ j + 1
)

EN

(

(N − ⌊jN/p⌋ − 1/2)γ − p+ j + 1
)

×
m−1
∏

j=0

EN

(

(N + ⌊jN/p⌋+ 1/2)γ − p− j
)

EN

(

(N + ⌊(j + 1)N/p⌋+ 1/2)γ − p− j
)

× EN

(

(N − k − 1/2)γ − p+m+ 1
)

EN

(

(N − ⌊mN/p⌋ − 1/2)γ − p+m+ 1
)

× EN

(

(N + ⌊mN/p⌋+ 1/2)γ − p−m
)

EN

(

(N + k + 1/2)γ − p−m
)

=
1− e4pNπ2/ξ

1− eξ





m
∏

j=1

(

1− e4(p−j)Nπ2/ξ
)(

1− e4(p+j)Nπ2/ξ
)





× EN

(

(N − k − 1/2)γ − p+m+ 1
)

EN

(

(N + k + 1/2)γ − p−m
) ,

where we use Lemma 2.7 with w = Nγ−p, and Lemma 2.8 with z = (N−⌊lN/p⌋−
1/2)γ − p+ l and z = (N + ⌊lN/p⌋+ 1/2)γ − p− l (l = 1, 2, . . . ,m).

Remark 3.1. Since Re γ = p/N , we have Re
(

(N − ⌊lN/p⌋ − 1/2)γ − p +

l
)

= − p
N ⌊ lN

p ⌋ − p
2N + l. Since lN/p is not an integer, we have lN/p −

1 < ⌊lN/p⌋ < lN/p (the equality ⌊lN/p⌋ = lN/p does not hold). So
∣

∣Re
(

(N − ⌊lN/p⌋ − 1/2)γ − p+ l
)∣

∣ < Re γ/2 and the assumption of Lemma 2.8
holds.

Therefore, from (2.3) we have

JN

(

E; eξ/N
)

(3.2)

=

p−1
∑

m=0

∑

mN/p<k<(m+1)N/p

e−kξ
k
∏

l=1

(

1− e(N+l)ξ/N
)(

1− e(N−l)ξ/N
)

=
1− e4pNπ2/ξ

1− eξ

p−1
∑

m=0





m
∏

j=1

(

1− e4(p−j)Nπ2/ξ
)(

1− e4(p+j)Nπ2/ξ
)

×
∑

mN/p<k<(m+1)N/p

e−kξEN

(

(N − k − 1/2)γ − p+m+ 1
)

EN

(

(N + k + 1/2)γ − p−m
)
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=
1− e−4pNπ2/ξ

2 sinh(u/2)

×
p−1
∑

m=0



βp,m

∑

mN/p<k<(m+1)N/p

exp

(

N × fN

(

2k + 1

2N
− 2mπ

√
−1

ξ

))



 ,

where we put

βp,m := e−4mpNπ2/ξ
m
∏

j=1

(

1− e4(p−j)Nπ2/ξ
)(

1− e4(p+j)Nπ2/ξ
)

,

fN (z) :=
1

N
TN

(

ξ(1− z)

2π
√
−1

− p+ 1

)

− 1

N
TN

(

ξ(1 + z)

2π
√
−1

− p

)

(3.3)

− uz +
4pπ2

ξ
.

Remark 3.2. Since we have

Re

(

ξ(1± z)

2π
√
−1

)

= p(1± Re z)± u

2π
Im z,

the function fN (z) is defined in the region
{

z ∈ C

∣

∣

∣ − 1

2N
<

u

2pπ
Im z +Re z <

1

p
+

1

2N

}

from Lemma 2.1.

4. Approximation

In the previous section, we express JN
(

E; eξ/N
)

as a sum of the function fN (z).
In this section, we approximate it by using a function that does not depend on N .

Since TN(z)/N uniformly converges to Li2

(

e2π
√
−1z
)

/ξ (Lemma 2.4), fN (z)

uniformly converges to

F (z) :=
1

ξ
Li2

(

eξ(1−z)
)

− 1

ξ
Li2

(

eξ(1+z)
)

− uz +
4pπ2

ξ

in the region

(4.1)

{

z ∈ C

∣

∣

∣

ν

p
≤ Re z +

u

2pπ
Im z ≤ 1

p
− ν

p
,

∣

∣

∣

∣

Re z − 2pπ

u
Im z

∣

∣

∣

∣

≤ 2Mπ

u
+ 1

}

.

By using the identity (2.4), if z is in the region

U0 :=

{

z ∈ C

∣

∣

∣ 0 < Re z +
u

2pπ
Im z <

1

p

}

,

we have

Li2

(

eξ(1−z)
)

= −Li2

(

e−ξ(1−z)
)

− π2

6
− 1

2

(

log
(

−e−ξ(1−z)
))2

= −Li2

(

e−ξ(1−z)
)

− π2

6
− 1

2
(−ξ(1− z) + (2p− 1)π

√
−1)2

since Im ξ(1 − z) = 2pπ − (uy + 2pπx). Similarly, we have

Li2

(

eξ(1+z)
)

= −Li2

(

e−ξ(1+z)
)

− π2

6
− 1

2

(

log
(

−e−ξ(1+z)
))2

= −Li2

(

e−ξ(1+z)
)

− π2

6
− 1

2
(−ξ(1 + z) + (2p+ 1)π

√
−1)2
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since Im ξ(1 + z) = 2pπ + (uy + 2pπx). Therefore, F (z) can also be written as

F (z) =
1

ξ
Li2

(

e−ξ(1+z)
)

− 1

ξ
Li2

(

e−ξ(1−z)
)

+ uz − 2π
√
−1

in U0.
The first derivative of F (z) is

(4.2)
d

d z
F (z) = log

(

1− e−u−ξz
)

+ log
(

1− e−u+ξz
)

+ u = log
(

eu + e−u − eξz − e−ξz
)

because −π < arg
(

1− e−u−ξz)
)

+ arg
(

1− e−u+ξz)
)

< π when u is real from the
lemma below. Here we choose the branch of arg so that −π < arg ζ ≤ π for any
ζ ∈ C. Note that e±ξz ∈ R if and only if Im(ξz) = u Im z + 2pπRe z = 2kπ for
some k ∈ Z, which implies that if z ∈ U0 then e±ξz 6∈ R.

Lemma 4.1. Let a be a positive real number, and w be a complex number with

w 6∈ R. Then we have −π < arg(1 − aw) + arg(1− aw−1) < π.

Proof. We may assume that Imw > 0 without loss of generality. Then we can
easily see that −π < arg(1 − aw) < 0 and that 0 < arg(1 − aw−1) < π, which
implies the result. �

The second derivative of F (z) equals

d2

d z2
F (z) =

ξ
(

e−ξz − eξz
)

eu + e−u − eξz − e−ξz
.

Now, define

(4.3) ϕ(u) := log

(

coshu− 1

2
− 1

2

√

(2 coshu+ 1)(2 coshu− 3)

)

,

where we take the square root as a positive multiple of
√
−1, recalling that coshu <

3/2. Note that ϕ(u) satisfies the equality

eu + e−u − eϕ(u) − e−ϕ(u) = 1.

Lemma 4.2. If 0 < u < κ = arccosh(3/2), then ϕ(u) is purely imaginary with

−π/3 < Imϕ(u) < 0.

Proof. First note that eϕ(u) is a solution to the following quadratic equation:

x2 − (2 coshu− 1)x+ 1 = 0.

Therefore
∣

∣eϕ(u)
∣

∣ = 1 and we conclude that ϕ(u) is purely imaginary. Put θ :=
Imϕ(u).

Since 0 < u < κ, we see that 1 < 2 coshu−1 < 2. Then since e−θ
√
−1 is the other

solution to the quadratic equation above, we have 2 cos θ = 2 coshu− 1. Therefore
we see that −π/3 < θ < 0 because the argument of log in (4.3) is in the fourth
quadrant. �

As in the proof above, we put θ := Imϕ(u). We also put σ0 := (θ+2π)
√
−1

ξ . Since

we have

Reσ0 +
u

2pπ
Imσ0 =

θ + 2π

2pπ

and 0 > θ > −π/3, we see that σ0 ∈ U0.
We have

d

d z
F (σ0) = log

(

eu + e−u − eϕ(u) − e−ϕ(u)
)

= 0.

We also have
d2

d z2
F (σ0) = ξ

√

(2 coshu+ 1)(2 coshu− 3).
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Therefore we conclude that F (z) is of the form

(4.4) F (z) = F (σ0) + a2(z − σ0)
2 + a3(z − σ0)

3 + a4(z − σ0)
4 + · · ·

with a2 := 1
2ξ
√

(2 coshu+ 1)(2 coshu− 3).
Now, the sum

(4.5)
∑

m/p<k/N<(m+1)/p

exp

(

N × fN

(

2k + 1

2N
− 2mπ

√
−1

ξ

))

can be approximate by the sum

∑

m/p<k/N<(m+1)/p

exp

(

N × Φm

(

2k + 1

2N

))

,

where we put

Φm(z) := F

(

z − 2mπ
√
−1

ξ

)

.

Moreover, in the next section we approximate the sum (4.5) by the integral

N
∫ (m+1)/p

m/p eNΦm(z) dz.

Note that the function Φm(z) is defined in the region

Um :=

{

z ∈ C

∣

∣

∣

m

p
< Re z +

u

2pπ
Im z <

m+ 1

p

}

.

Put σm := σ0 +
2mπ

√
−1

ξ . Then we see that

Reσm +
u

2pπ
Imσm = Reσ0 +

u

2pπ
Imσ0 +

m

p
=

θ + 2(m+ 1)π

2pπ
,

and so we have σm ∈ Um. From (4.4), we conclude that Φm(z) is of the form

(4.6) Φm(z) = F (σ0) + a2(z − σm)2 + a3(z − σm)3 + a4(z − σm)4 + · · · .

5. The Poisson summation formula

First of all, note that the function fN

(

z − 2mπ
√
−1

ξ

)

uniformly converges to

Φm(z) in the region
(5.1)
{

z ∈ C

∣

∣

∣

m

p
+

ν

p
≤ Re z +

u

2pπ
Im z ≤ m+ 1

p
− ν

p
,

∣

∣

∣

∣

Re z − 2pπ

u
Im z

∣

∣

∣

∣

≤ 2Mπ

u
+ 1

}

from (4.1). So we expect that the sum (4.5) is approximated by the inte-

gral N
∫ (m+1)p

m/p
eNΦm(z) dz by using the Poisson summation formula [31, Propo-

sition 4.2]. To do that we will show the following proposition, which confirms the
assumption of [31, Proposition 4.2].

Proposition 5.1. Let m be an integer with 0 ≤ m ≤ p− 1. Put b−m := m/p+ ν/p
and b+m := (m+ 1)/p− ν/p.

Define

Bm :=

{

k

N
∈ R

∣

∣

∣ k ∈ Z, b−m ≤ k

N
≤ b+m

}

,

Cm := {t ∈ R | b−m ≤ t ≤ b+m},
Dm := {z ∈ C | ReΦm(z) < ReΦm(σm)},
Em := {z ∈ C | b−m ≤ Re z ≤ b+m, | Im z| ≤ 2 Imσm} ∩ Um

Then the following hold.
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(1). The region Em contains σm and Φm(z) is a holomorphic function in Em

of the form

F (σ0) + a2(z − σm)2 + a3(z − σm)3 + a4(z − σm)4 + · · ·
with Re a2 < 0.

(2). Dm ∩ Em has two connected components.

(3). b+m and b−m are in different components of Dm ∩ Em and moreover

ReΦm(b±m) < ReΦm(σm)− εm for some εm > 0.
(4). Both b+m and b−m are in a connected component of

Rm := {x+ y
√
−1 ∈ C | b−m ≤ x ≤ b+m,

y ∈ [0, 2 Imσm],ReΦm(x+ y
√
−1) < ReΦm(σm) + 2πy} ∩ Um.

(5). Both b+m and b−m are in a connected component of

Rm := {x− y
√
−1 ∈ C | b−m ≤ x ≤ b+m,

y ∈ [0, 2 Imσm],ReΦm(x− y
√
−1) < ReΦm(σm) + 2πy} ∩ Um.

See Figure 1 for a contour plot of ReΦm(z) with p = 3, m = 2, and u = 0.5.

0.70 0.75 0.80 0.85 0.90 0.95 1.00

-0.04

-0.02

0.00

0.02

0.04

Figure 1. A contour plot of ReΦm(z) in Em by Mathematica for
p = 3, m = 2, and u = 0.5. The region Rm (Rm, respectively)
is indicated by yellow (green, respectively). The region Dm is
indicated by red, which overwrites a part of Rm ∪Rm.

Before we give a proof, let us define several lines as indicated in Figure 2.

Lσ : Re z − 2pπ

u
Im z = 0,

LE : Re z +
u

2pπ
Im z =

m+ 1

p
,

LM : Re z +
u

2pπ
Im z =

2m+ 1

2p
,

LW : Re z +
u

2pπ
Im z =

m

p
,

H : Im z = 2 Imσm,

H : Im z = −2 Imσm,

VE : Re z =
m+ 1

p
,

VW : Re z =
m

p
.

Note that Em is the hexagonal region surrounded by H , LE, VE , H , LW , and
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LELW LM

Ls sm

Q

H

H

VEVW

Re

Figure 2. The region Um is between LE and LW .

P1 P2

P3

P4P5

P12

P34

P0

Ls smQ

P45

LM

P50

Figure 3. The region Em.

VW . Strictly speaking, we need to push LE and LW slightly inside. We name the
vertices of its boundary as indicated in Figure 3. Their coordinates are given as:

P0 :
m

p
,

P1 :
m

p
+

ξ

pπ
Imσm,

P2 :
m+ 1

p
− 2 Imσm

√
−1,

P3 :
m+ 1

p
,

P4 :
m+ 1

p
− ξ

pπ
Imσm,

P5 :
m

p
+ 2 Imσm

√
−1,

where ξ is the complex conjugate of ξ.
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We also put P12 := LM∩H , P34 := LE∩Lσ, P45 := LM∩H , and P50 := LW∩Lσ.
Their coordinates are given as follows.

P12 :
2m+ 1

2p
+

ξ

pπ
Imσm,

P34 :
2(m+ 1)π

√
−1

ξ
,

P45 :
2m+ 1

2p
− ξ

pπ
Imσm,

P50 :
mξ

√
−1

2p2π
.

We use the following lemmas in the proof of Proposition 5.1 below.

Lemma 5.2. We have the inequalities 0 < ReF (0) < ReF (σ0).

Lemma 5.3. We have the inequality ReΦm (P12) < ReΦm(σm).

Proofs of the lemmas are given in Section 8.

Proof of Proposition 5.1. In the following proof, we assume that ν is sufficiently
small. We may need to modify the argument below slightly if necessary.

(1). We know that Φm(z) is of the form (4.6). Since a2 =
1
2ξ
√
−1
√

(2 coshu+ 1)(3− 2 coshu) and 0 < u < arccosh(3/2), we see that

Re a2 = −pπ
√

(2 coshu+ 1)(3− 2 coshu) < 0. So we conclude that Φm(z) is
of this form.

(2). Writing z = x+ y
√
−1, we have

∂

∂ y
ReΦm(x+ y

√
−1) = − arg τ(x, y)

from (4.2), where we put τ(x, y) := 2 cosh(u)−2 cosh
(

ξ(x+y
√
−1)

)

. Since we have

Im τ(x, y) = −2 sinh(ux− 2pπy) sin(uy + 2pπx),

we see that Im τ(x, y) > 0 (Im τ(x, y) < 0, respectively) if and only if ux < 2pπy
and 2kπ < uy+2pπx < (2k+1)π for some integer k, or ux > 2pπy and (2l− 1)π <
uy + 2pπx < 2lπ for some integer l (ux > 2pπy and 2kπ < uy + 2pπx < (2k + 1)π
for some integer k, or ux < 2pπy and (2l− 1)π < uy+2pπx < 2lπ for some integer
l, respectively). Since z ∈ Um, we have 2mπ < uy+2pπx < 2(m+1)π. So we have

∂

∂ y
ReΦm(x + y

√
−1) > 0 if and only if

ux > 2pπy and 2mπ < uy + 2pπx < (2m+ 1)π

or ux < 2pπy and (2m+ 1)π < uy + 2pπx < 2(m+ 1)π,

and

∂

∂ y
ReΦm(x + y

√
−1) < 0 if and only if

ux < 2pπy and 2mπ < uy + 2pπx < (2m+ 1)π

or ux > 2pπy and (2m+ 1)π < uy + 2pπx < 2(m+ 1)π.

Therefore, fixing x, ReΦm(x+ y
√
−1) is monotonically increasing (decreasing, re-

spectively) with respect to y in the red region (yellow region, respectively) in Fig-
ure 3.

Next, we will show (i) the segment P50P34 ⊂ Lσ except σm, (ii) the segment
P3P34 ⊂ LE, and (iii) the segment P12P45 ⊂ LM are in Dm. See Figure 4
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P1 P2

P4P5

P12

P34

P0

Ls
Q

P45

LM

P50

P3

sm

Figure 4. The red segments are in Dm.

(i): Consider the segment of Lσ between LW and LE that is parametrized as

ℓσ(t) := tσm ( 2mπ
2(m+1)π+θ ≤ t ≤ 2(m+1)π

2(m+1)π+θ ). Then we have

d

d t
ReΦm (ℓσ(t)) = Re

(

σm log
(

2 cosh(u)− 2 cosh(tσmξ
))

= (Reσm) log
(

2 cosh(u)− 2 cos
((

θ + 2(m+ 1)π
)

t
))

.

Since 2mπ ≤
(

2(m + 1)π + θ
)

t ≤ 2(m + 1)π and coshu − 1/2 = coshϕ(u) =

cos θ, we see that d
d t ReΦm (ℓσ(t)) > 0 if and only if 2mπ−θ

2(m+1)π+θ < t < 1, and

that d
d t ReΦm (ℓσ(t)) < 0 if and only if 2mπ

2(m+1)π+θ < t < 2mπ−θ
2(m+1)π+θ or 1 < t <

2(m+1)π
2(m+1)π+θ .

Let PW be the point Lσ ∩LW with coordinate 2mπ
√
−1

ξ . Since Φm(PW ) = F (0)

and Φm(σm) = F (σ0), Lemma 5.2 implies that ReΦm (ℓσ(t)) takes its maximum
ReΦm(σm) at t = 1. This shows that Lσ ∩ Em is in Dm except for σm.

(ii): Consider the segment P3P4 that is parametrized as ℓE(t) :=
m+1
p − u

2pπ t+

t
√
−1 = m+1

p − ξ
2pπ t (0 ≤ t ≤ 2 Imσm). We have

d

d t
ReΦm (ℓE(t))

=− Re

(

ξ

2pπ
log (2 coshu− 2 cosh (ξℓE(t)))

)

=− u

2pπ
log

(

2 coshu− 2 cosh

(

(m+ 1)u

p
− |ξ|2t

2pπ

))

> 0,

because
∣

∣

∣

∣

(m+ 1)u

p
− |ξ|2t

2pπ

∣

∣

∣

∣

≤max

{

(m+ 1)u

p
,

∣

∣

∣

∣

∣

(m+ 1)u

p
− u

(

θ + 2(m+ 1)π
)

pπ

∣

∣

∣

∣

∣

}

=max

{

(m+ 1)u

p
,
(m+ 1)u

p
+

uθ

pπ

}

=
(m+ 1)u

p
≤ u.

Since the point P34 is in Dm, we conclude that P3P34 ⊂ Dm.
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(iii): The line LM between H and H is parametrized as ℓM (t) := 2m+1
2p − u

2pπ t+

t
√
−1 = 2m+1

2p − ξ
2pπ t (−2 Imσm ≤ t ≤ 2 Imσm). Now we have

d

d t
ReΦm (ℓM (t))

=− Re

(

ξ

2pπ
log

(

2 cosh(u)− 2 cosh

(

(2m+ 1)

2p
ξ − |ξ|2

2pπ
t

)))

=− u

2pπ
log

(

2 cosh(u) + 2 cosh

(

(2m+ 1)u

2p
− |ξ|2

2pπ
t

))

< 0.

Since ℓM (−2 Imσm) = P12, from Lemma 5.3, we see that ReΦm(P12) <
ReΦm(σm). Therefore every point z on P12P45 satisfies ReΦm(z) < ReΦm(σm).

Now we split Em into five pieces:

Em,1 := {z ∈ E | b−m ≤ Re z ≤ ReP45},
Em,2 := {z ∈ E | ReP45 ≤ Re z ≤ ReQ},
Em,3 := {z ∈ E | ReQ ≤ Re z ≤ ReP12},
Em,4 := {z ∈ E | ReP12 ≤ Re z ≤ Reσm},
Em,5 := {z ∈ E | Reσm ≤ Re z ≤ ReP34},
Em,6 := {z ∈ E | ReP34 ≤ Re z ≤ b+m},

where Q is the intersection of LM and Lσ. See Figure 5.

Em,1

Em,2

Em,3

Em,4

Em,5

Em,6

Figure 5. The red region is Dm.

Note the following:

• ReP1 < ReP45: This is because ReP1−ReP45 = − 1
2p +2 u

pπ Imσm, which

can be proved to be negative.
• ReP12 < ReP4: This is because ReP12 − ReP4 = − 1

2p + 2 u
pπ Imσm < 0

as above.
• ReP12 < Reσm: This is because ReP12 − Reσm = 2m+1

2p + u
pπ Imσm −

Reσm < 0.
• Reσm can be greater than, less than, or equal to ReP4.

In the following, we will show that any point in (Em,1 ∪ Em,2 ∪Em,3 ∪ Em,4) ∩
Dm can be connected to a point on Lσ by a segment contained in Dm, and that
any point in (Em,5 ∪ Em,6) ∩ Dm can also be connected to a point on Lσ by a
segment contained in Dm. We will also show that the vertical line through σm

does not intersect with Dm. Then, we conclude that Dm ∩ Em has two connected
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components (Em,1 ∪ Em,2 ∪ Em,3 ∪Em,4) ∩ Dm and (Em,5 ∪ Em,6) ∩ Dm because
Lσ \ {σm} has two connected components.

• Em,1: Since ReΦm(x+ y
√
−1) < ReΦm(σm) when x + y

√
−1 is on Lσ

and ReΦm(x + y
√
−1) decreases whether y increases or decreases fixing

x ∈ [b−m,ReP45], we conclude that ReΦm(x+ y
√
−1) < ReΦm(σ) for any

x+ y
√
−1 ∈ Em,1. So we can connect any point in Em,1 to a point on Lσ.

• Em,2: Figure 6 indicates a graph of ReΦm(x+ y
√
−1) for x+y

√
−1 ∈ Em,2

with fixed x. This figure shows that any point in Em,2 ∩ Dm can be

Ls LM

y
HH

Re F  (x+y i)m

Re F  (s  )m m

Figure 6. The vertical axis is ReΦm(x + y
√
−1) and the hori-

zontal axis is y with fixed x. The red part is included in Dm. Note
that the local maximum is less than ReΦm(σm).

connected to a point on Lσ by a vertical segment in Dm.
• Em,3: A graph of ReΦm(x+ y

√
−1) for x + y

√
−1 ∈ Em,3 with fixed x

looks like Figure 6 because P12P45 ⊂ Dm. Therefore the argument as

LsLM

y
HH

Re F  (x+y i)m

Re F  (s  )m m

Figure 7. The vertical axis is ReΦm(x + y
√
−1) and the hori-

zontal axis is y for fixed x. The red part is included in Dm.

before shows that any point in Em,3 ∩Dm can be connected to a point on
Lσ by a vertical segment in Dm.

• Em,4: Starting at a point on Lσ, whether y increases or decreases,
ReΦm(x + y

√
−1) increases. Therefore any point in Em,4 ∩ Dm can be

connected to a point on Lσ by a vertical segment in Dm.
• Em,5: This follows by the same reason as Em,4 ∩Dm.
• Em,6: By the same argument as Em,4, we can connect any point z in

Em,6 ∩Dm to a point z′ in P3P34 by a vertical segment in Dm, and then
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connect z′ to a point in Lσ by a segment in P3P34. (Precisely speaking,
we need to push these segments in Em,6.)

The fact that the vertical segment through σm does not intersect with Dm easily
follows because σm 6∈ Dm, and ∂

∂ y ReΦm(x+ y
√
−1) is increasing (decreasing,

respectively) if x+ y
√
−1 is above σm (below σm, respectively).

See Figure 5.
(3). From the definition, we know that b−m ∈ Em,1 and b+m ∈ Em,6. Therefore we

can choose εm such that ReΦm(b±m) < ReΦm(σm)− εm.
(4). Since any point z (z 6= σm) on the polygonal chain P0P50P34P3 satisfies

ReΦm(z) < ReΦm(σm), and Imσm > 0, we conclude that this is in Rm. Therefore
we can connect b−m and b+m in Rm.

(5). We know that if z is on the polygonal chain P0P1P12, then ReΦm(z) <
ReΦm(σm), which shows that P0P1P12 is in Rm.

We will show that the segment P12P2 is also in Rm. From the proof of (2),
we have 0 > ∂

∂ y ReΦm(x+ y
√
−1) > −π if x + y

√
−1 ∈ P12P2. We know

that if x + y
√
−1 is on the polygonal chain QP34P3, then ReΦm(x+ y

√
−1) ≤

ReΦm(σm). Since the difference of the imaginary part of x − 2 Imσm

√
−1 and

x + y
√
−1 is less than 4 Imσm if x + y

√
−1 is on the polygonal chain QP34P3,

we have ReΦm(x− 2 Imσm

√
−1) − ReΦm(x+ y

√
−1) < 4π Imσm. Therefore

ReΦm(x− 2 Imσm

√
−1) − ReΦm(σm) < 2π × 2 Imσm, proving that z ∈ Rm if

z is on P12P2.
The segment P2P3 is also in Rm. This is because

∂
∂ y

(

ReΦm

(

(m+ 1)/p+ y
√
−1
)

+ 2πy
)

= ∂
∂ y ReΦm

(

(m+ 1)/p+ y
√
−1
)

+ 2π > 0

and P3 ∈ Rm.
Now, we can connect b−m and b+m by the polygonal chain P0P1P2P3.
The proof is complete. �

6. Proof of Theorem 1.4

Now we can prove Theorem 1.4

Proof of Theorem 1.4. Since fN (z) uniformly converges to F (z) in the region (4.1),

fN

(

z − 2mπ
√
−1

ξ

)

uniformly converges to Φm(z) in (5.1). So we can use [31, Propo-

sition 4.2] (see also Remark 4.4 there) to conclude that

1

N

∑

m/p+ν/p≤k/N≤(m+1)/p−ν/p

exp

(

N × fN

(

2k + 1

2N
− 2mπ

√
−1

ξ

))

(6.1)

=

∫ (m+1)/p−ν/p

m/p+ν/p

eNΦm(z) dz +O(e−Nε′m)

for some ε′m > 0 from Proposition 5.1.
Since Φm(z) is of the form (4.6) in Em, we can apply the saddle point method

(see [31, Proposition 3.2 and Remark 3.3]) to obtain
(6.2)
∫ (m+1)/p−ν/p

m/p+ν/p

eNΦm(z) dz =

√
πeN×F (σ0)

√

− 1
2ξ
√

(2 coshu+ 1)(2 coshu− 3)
√
N

(

1+O(N−1)
)

,

where we choose the sign of the outer square root so that its real part is positive
(recall that we choose the sign the inner square root so that it is a positive multiple
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of
√
−1). From (6.1) and (6.2), we have

∑

m/p+ν/p≤k/N≤(m+1)/p−ν/p

exp

(

N × fN

(

2k + 1

2N
− 2mπ

√
−1

ξ

))

(6.3)

=

√
2πeπ

√
−1/4

(

(1 + 2 coshu)(3− 2 coshu)
)1/4

eN×F (σ0) ×
√

N

ξ

(

1 +O(N−1)
)

,

since ReF (σ0) > 0 from Lemma 5.2.
Now, we use the following lemma, a proof of which is given in Section 8.

Lemma 6.1. There exists ε > 0 such that ReΦm

(

m+1
p

)

< ReΦm(σm) − 2ε for

m = 0, 1, 2, . . . , p− 1. Moreover there exists δ̃m > 0 such that if m
p ≤ k

N < m
p + δ̃m

or m+1
p − δ̃m < k

N < m+1
p , then we have

(6.4) Re fN

(

2k + 1

2N
− 2mπ

√
−1

ξ

)

< ReF (σ0)− ε

for sufficiently large N .

If we choose ν so that ν/p ≤ δ̃m, the sums

∑

m/p≤k/N<m/p+ν/p

exp

(

N × fN

(

2k + 1

2N
− 2mπ

√
−1

ξ

))

and

∑

(m+1)/p−ν/p<k/N≤(m+1)/p

exp

(

N × fN

(

2k + 1

2N
− 2mπ

√
−1

ξ

))

are both of order O
(

NeN(ReF (σ0)−ε)
)

from Lemma 6.1. Therefore we have

∑

m/p≤k/N≤(m+1)/p

exp

(

N × fN

(

2k + 1

2N
− 2mπ

√
−1

ξ

))

=
∑

m/p+ν/p≤k/N≤(m+1)/p−ν/p

exp

(

N × fN

(

2k + 1

2N
− 2mπ

√
−1

ξ

))

+O
(

NeN(ReF (σ0)−ε)
)

=

√
2πeπ

√
−1/4

(

(1 + 2 coshu)(3− 2 coshu)
)1/4

eN×F (σ0) ×
√

N

ξ

(

1 +O(N−1)
)

where the second equality follows from (6.3).
It follows that

JN

(

E; eξ/N
)

=
1

2 sinh(u/2)

(

p−1
∑

m=0

βp,m

)

×
√
2πeπ

√
−1/4

(

(1 + 2 coshu)(3− 2 coshu)
)1/4

×
√

N

ξ
eN×F (σ0)

(

1 +O(N−1)
)

from (3.2). Using (2.1) with N = p and q = e4Nπ2/ξ, we have

p−1
∑

m=0

βm,p = Jp

(

E; e4Nπ2/ξ
)

.
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Therefore we have

JN

(

E; eξ/N
)

=
1

2 sinh(u/2)
Jp

(

E; e4Nπ2/ξ
)

×
√
2πeπ

√
−1/4

(

(1 + 2 coshu)(3− 2 coshu)
)1/4

×
√

N

ξ
eN×F (σ0)

(

1 +O(N−1)
)

.

Putting

SE(u) := ξ
(

F (σ0) + 2π
√
−1
)

= Li2

(

e−u−ϕ(u)
)

− Li2

(

e−u+ϕ(u)
)

+ u
(

ϕ(u) + 2π
√
−1
)

,

TE(u) :=
2

√

(2 coshu+ 1)(2 coshu− 3)
,

we finally have

JN

(

E; eξ/N
)

=

√
−π

2 sinh(u/2)
TE(u)

1/2Jp

(

E; e4Nπ2/ξ
)

(

N

ξ

)1/2

e
N
ξ
×SE(u)

(

1 +O(N−1)
)

,

which proves Theorem 1.4. �

We can see that the cohomological adjoint Reidemeister torsion TE(u) equals
±TE(u) and the Chern–Simons invariant CSu,v(u)(ρ) is given by SE(u)−uπ

√
−1−

1
4uv(u) (mod π2Z). See for example [29, Chapter 5] for calculation of the adjoint
Reidemeister torsion and the Chern–Simons invariant.

7. Quantum modularity

For η :=

(

a b
c d

)

∈ SL(2;Z) and a complex number z, define η(z) :=
az + b

cz + d
as

usual. We also define ~η(z) :=
2π

√
−1

z−η−1(∞) =
2cπ

√
−1

cz+d .

In [36], D. Zagier conjectured the following.

Conjecture 7.1 (Quantum modularity conjecture). Let K be a hyperbolic knot

in S3 and η :=

(

a b
c d

)

∈ SL(2;Z) with c > 0. Putting X0 := N/p for positive

integers N and p, the following asymptotic equivalence holds.

(7.1)
JcN+dp

(

K; e2π
√
−1η(X0)

)

Jp
(

K; e2π
√
−1X0

) ∼
N→∞

CK,η

(

2π

~η(X0)

)3/2

exp

(
√
−1CV(K)

~η(X0)

)

,

where CK,η is a complex number depending only on η and K.

Note that Conjecture 7.1 is just a part of Zagier’s original quantum modularity
conjecture. See [36, 7, 1] for more details.

Remark 7.2. The modularity conjecture was proved by S. Garoufalidis and D. Za-
gier [7] in the case of the figure-eight knot, and by S. Bettin and S. Drappeau [1]
for hyperbolic knots with at most seven crossings except for 72.

Bettin and Drappeau also proved that for the figure-eight knot E, CE,η is given
as follows.

CE,η =
ce3π

√
−1/4

31/4

c
∏

g=1

|ωg|2g/c
(

c
∑

r=1

r
∏

g=1

|ωg|2
)

,

where ωg := 1− exp
(

2π
√
−1(agc − 5

6c )
)

.
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Since

SE(0) = Li2

(

eπ
√
−1/3

)

− Li2

(

e−π
√
−1/3

)

= Vol
(

S3 \ E
)√

−1

(see, for example, [22, Appendix]), ifK is the figure-eight knotE and η =

(

0 −1
1 0

)

,

(7.1) turns out to be

(7.2)
JN
(

E; e2pπ/N
)

Jp
(

E; e2Nπ
√
−1/p

) ∼
N→∞

−2π3/2TE(0)
1/2

(

N

2pπ
√
−1

)3/2

exp

(

NSE(0)

2pπ
√
−1

)

.

Here we use the fact that E is amphicheiral, that is, E is equivalent to its mirror
image, to conclude JN (E; q) = JN (E; q−1). Compare (7.2) with (1.2), noting that
ξ = 2pπ

√
−1 when u = 0.

We can regard (1.2) as a kind of quantum modularity with η =

(

0 −1
1 0

)

as

follows.
Put X := 2Nπ

√
−1

ξ . Note that ReX → ∞ as N → ∞. We have η(X) = −ξ
2Nπ

√
−1

,

exp(2π
√
−1X) = e−4Nπ2/ξ, exp

(

2π
√
−1η(X)

)

= e−ξ/N , and ~η(X) = ξ/N . Since
the figure-eight knot is amphicheiral, (1.2) can be written as

JN

(

E; e2π
√
−1η(X)

)

Jp
(

E; e2π
√
−1X

) ∼
√
−π

2 sinh(u/2)

(

TE(u)

~η(X)

)1/2

exp

(

SE(u)

~η(X)

)

.

We would like to generalize this to other elements of SL(2;Z) and other hyper-
bolic knots in S3. Some computer experiments indicate the following conjecture
stated in Introduction.

Conjecture 7.3 (Quantum modularity conjecture for the colored Jones polyno-
mial). Let K ⊂ S3 be a hyperbolic knot, and u a small complex number that is not

a rational multiple of π
√
−1. For positive integers p and N , put ξ := u+ 2pπ

√
−1

and X := 2Nπ
√
−1

ξ . Then for any η =

(

a b
c d

)

∈ SL(2;Z) with c > 0, the following

asymptotic equivalence holds.

(7.3)

JcN+dp

(

K; e2π
√
−1η(X)

)

Jp
(

K; e2π
√
−1X

) ∼
N→∞

CK,η(u)

√
−π

2 sinh(u/2)

(

TK(u)

~η(X)

)1/2

exp

(

SK(u)

~η(X)

)

,

where CK,η(u) ∈ C does not depend on p.

Note that cN + dp comes from the denominator of η(N/p) = η
(

X
∣

∣

u=0

)

.

Remark 7.4. Compare the exponent 1/2 of 1/~η(X) = cX+d
2cπ

√
−1

in (7.3) with 3/2 in

(7.1). Our modularity would have weight 1/2 rather than 3/2.

Remark 7.5. Since (−η)(X) = η(X), we may assume that c ≥ 0.

If c = 0, then η = ±
(

1 k
0 1

)

for some integer k. Since η(X) = X +

k, we have exp
(

2π
√
−1η(X)

)

= exp(2π
√
−1X) and so Jp

(

E; e2π
√
−1η(X)

)

=

Jp

(

E; e2π
√
−1X

)

.

Remark 7.6. When p = 1 and η =

(

0 −1
1 0

)

, (7.3) becomes

JN

(

K; e−(u+2π
√
−1)/N

)
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∼
N→∞

CK,η(u)

√
−π

2 sinh(u/2)
(TK(u))

1/2

(

N

u+ 2π
√
−1

)1/2

exp

(

N × SK(u)

u+ 2π
√
−1

)

,

which coincides with [24, Conjecture 1.6] with CK,η(u) = 1. See also [2,

9]. Strictly speaking, we need to take the mirror image K of K because

JN

(

K; e−(u+2π
√
−1)/N

)

= JN

(

K; e(u+2π
√
−1)/N

)

.

8. Lemmas

In this section we prove lemmas that we use.

Proof of Lemma 2.1. Recall that ξ = u+ 2pπ
√
−1 and γ = ξ

2Nπ
√
−1

.

Since Re γ = p/N > 0, sinh(γx) ∼
N→∞

eξx

2 and sinh(γx) ∼
N→−∞

−e−ξx

2 . So we

have

e(2z−1)x

x sinh(x) sinh(γx)
∼

N→∞

1

2x
e(2z−γ−2)x,

and

e(2z−1)x

x sinh(x) sinh(γx)
∼

N→−∞

−1

2x
e(2z+γ)x.

Therefore if −Re γ/2 < Re z < 1+Re γ/2, then the integral converges, completing
the lemma. �

The following proof is almost the same as [27, Proposition 2.8]. See also [31,
Proposition A.1].

Proof of Lemma 2.4. We will show that TN (z) = N
ξ L2(z) +O(1/N).

Recalling that ξ = 2Nπγ
√
−1, we have

∣

∣

∣

∣

TN(z)− N

ξ
L2(z)

∣

∣

∣

∣

=
1

4

∫

⌢
R

∣

∣

∣

∣

e(2z−1)x

γx2 sinh(x)

(

γx

sinh(γx)
− 1

)∣

∣

∣

∣

dx

≤ Nπ

2|ξ|

∫

⌢
R

∣

∣

∣

∣

e(2z−1)x

x2 sinh(x)

(

γx

sinh(γx)
− 1

)∣

∣

∣

∣

dx.

Since the Taylor expansion of sinh(y)
y around y = 0 is 1+ y2

6 + · · · , we have y
sinh(y) =

1− y2

6 + o(y2) as y → 0. Therefore, we have
∣

∣

∣

γx
sinh(γx) − 1

∣

∣

∣ ≤ c|x|2
N2 for some constant

c > 0 and so
∣

∣

∣

∣

TN (z)− N

ξ
L2(z)

∣

∣

∣

∣

<
c′

N

∫

⌢
R

∣

∣

∣

∣

e(2z−1)x

sinh(x)

∣

∣

∣

∣

dx,

where we put c′ := cπ
2|ξ| .

We put

I+ :=

∫ ∞

1

∣

∣

∣

∣

e(2z−1)x

sinh(x)

∣

∣

∣

∣

dx,

I− :=

∫ −1

−∞

∣

∣

∣

∣

e(2z−1)x

sinh(x)

∣

∣

∣

∣

dx,

I0 :=

∫

|x|=1,Imx≥0

∣

∣

∣

∣

e(2z−1)x

sinh(x)

∣

∣

∣

∣

dx.

We have

I+ ≤
∫ ∞

1

2e2xRe z−x

ex − e−x
dx =

∫ ∞

1

2e2x(Re z−1)

1− e−2x
dx ≤ 2

1− e−2

∫ ∞

1

e−2νx dx
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=
e−2ν

ν(1− e−2)
,

where we use the assumption Re z ≤ 1− ν.
Similarly, we have

I− ≤
∫ −1

−∞

2e2xRe z−x

e−x − ex
dx =

∫ −1

−∞

2e2xRe z

1− e2x
dx ≤ 2

1− e−2

∫ −1

−∞
e2νx dx

=
e−2ν

ν(1− e−2)
,

where we use the assumption Re z ≥ ν.

Putting x = et
√
−1 (0 ≤ t ≤ π) and L := max|x|=1,Imx≥0 | sinh(x)|, we have

I0 =

∫ π

0

∣

∣

∣

∣

∣

e(2z−1)et
√

−1

sinh
(

et
√
−1
)

∣

∣

∣

∣

∣

×
∣

∣

∣

√
−1et

√
−1
∣

∣

∣ dt ≤ 1

L

∫ π

0

e(2Re z−1) cos t−2 Im z sin t dt,

which is bounded from the above because both Re z and Im z are bounded.
Therefore, we see that I+ + I− + I0 is bounded from above, which implies that

∣

∣

∣
TN(z)− N

ξ L2(z)
∣

∣

∣
= O(1/N). �

Proof of Lemma 5.2. Since ReF (0) coincides with ReΦ(w0) in [24] (see [27, Re-
mark 1.6]), we have ReF (0) > 0 from [24, Lemma 3.5].

Next, we will show that ξ
(

F (σ0)−F (0)
)

is purely imaginary with positive imag-

inary part. Then we conclude that Re
(

F (σ0) − F (0)
)

> 0, since ξ is in the first
quadrant.

Since ϕ(u) is purely imaginary, we have Li2
(

e−u−ϕ(u)
)

= Li2
(

e−u+ϕ(u)
)

. So

we see that ξ
(

F (σ0) − F (0)
)

= Li2
(

e−u−ϕ(u)
)

− Li2
(

e−u+ϕ(u)
)

+ u(θ + 2π)
√
−1

is purely imaginary with imaginary part 2 ImLi2
(

e−u−ϕ(u)
)

+ u(θ + 2π), which

coincides with Im
(

ξΦ(w0)
)

+ 2uπ > 0 in [24, P. 214].
This proves the lemma. �

Proof of Lemma 5.3. We have

ξ (Φm(P12)− Φm(σm))

=Li2

(

−e−u−u((6m+5)π+2θ)
2pπ

)

− Li2

(

−e−u+
u((6m+5)π+2θ)

2pπ

)

− Li2

(

e−u−ϕ(u)
)

+ Li2

(

e−u+ϕ(u)
)

+
(2m+ 1)uξ

2p
+

u2(2(m+ 1)π + θ)

pπ
− u
(

2(m+ 1)π + θ
)√

−1.

Its real part is

Li2

(

−e−u−qm(u)
)

− Li2

(

−e−u+qm(u)
)

+ uqm(u),

where we put qm(u) := u((6m+5)π+2θ)
2pπ , and its imaginary part is

−2 ImLi2

(

e−u−ϕ(u)
)

− u(π + θ).

Then we have

|ξ|2
u

Re (F (P12)− F (σm))

=Re
(

ξ
(

F (P12)− F (σm)
))

+
2pπ

u
Im
(

ξ
(

F (P12)− F (σm)
))

=Li2

(

−e−u−qm(u)
)

− Li2

(

−e−u+qm(u)
)

+ uqm(u)
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− 2pπ

u

(

2 ImLi2

(

e−u−ϕ(u)
)

+ u(π + θ)
)

.

By using the inequality 2 ImLi2
(

e−u−ϕ(u)
)

+ uθ > 0 in [24, § 7], this is less than
cp,m(u), where we put

cp,m(u) := Li2

(

−e−u−qm(u)
)

− Li2

(

−e−u+qm(u)
)

+ uqm(u)− 2pπ2.

Now we have

d

d u
cp,m(u) = q′m(u) log

(

2 coshu+ 2 cosh qm(u)
)

+ log

(

eqm(u) + e−u

1 + e−u+qm(u)

)

,

which can be easily seen to be positive. Since u < κ, it suffices to prove cp,m(κ) < 0.
Since ϕ(κ) = 0, we have

cp,m(κ) = Li2

(

−e−κ(1+ 6m+5
2p )

)

− Li2

(

−e−κ(1− 6m+5
2p )

)

+
(6m+ 5)κ2

2p
− 2pπ2,

which is increasing with respect to m, fixing p. We will prove that cp,p−1(κ) < 0.
We calculate

cp,p−1(κ) = Li2

(

−eκ(
1
2p−4)

)

− Li2

(

−eκ(−
1
2p+2)

)

+

(

3− 1

2p

)

κ2 − 2pπ2.

The derivative of cp,p−1(κ) with respect to p equals

κ

2p2
log

(

3 + 2 cosh

(

κ

(

3− 1

2p

)))

− 2π2,

which is less than −2π2 + log(6 + 2 cosh(3κ) = −18.274 . . . < 0. It follows that
cp,p−1(κ) < c1,0(κ) = −14.9942 . . . < 0.

This shows that Re
(

F (P12)− F (σm)
)

< 0, proving the lemma. �

Before proving Lemma 6.1, we prepare the following lemma.

Lemma 8.1. Put g(x) := 4 sinh
(

ξ
2 (1 + x)

)

sinh
(

ξ
2 (1 − x)

)

. For an integer 0 ≤
m ≤ p, there exists δm > 0 such that |g(l/N)| < 1 if m

p − δm < l
N < m

p + δm.

Proof. For an integer 0 ≤ m ≤ p, we can easily see that

g(m/p) = 2
(

coshu− cosh(mu/p)
)

.

So we conclude that g(m/p) is monotonically decreasing with respect to m. There-
fore we have 0 = g(1) ≤ g(m/p) ≤ g(0) = 2

(

cosh(u) − 1
)

< 2 cosh(κ) − 2 = 1. So
we have 0 ≤ g(m/p) < 1.

Therefore, there exists δm > 0 such that |g(x)| < 1 if |x−m/p| < δm, completing
the proof. �

Proof of Lemma 6.1. From (2)-(ii) of the proof of Proposition 5.1, we know that
m+1
p ∈ Dm, that is, ReΦm

(

m+1
p

)

< ReΦm(σm). Therefore there exists ε > 0 such

that ReΦm

(

m+1
p

)

< ReΦm(σm)− 2ε for m = 0, 1, 2, . . . , p− 1.

Next, we show that there exists δ̃m > 0 such that if m+1
p − δ̃m < k

N < m+1
p , then

(6.4) holds.

We can choose δ′m > 0 so that ReΦm

(

k
N

)

< ReΦm

(

m+1
p

)

+ε if (m+1)/p−δ′m <

k/N < (m+1)/p. So we have ReΦm

(

k
N

)

< ReΦm(σm)−ε. Now recall that fN (z)
converges to F (z) in the region (4.1). Since we have

Re

(

2k + 1

2N
− 2(m− 1)π

√
−1

ξ

)

+
u

2pπ
Im

(

2k + 1

2N
− 2mπ

√
−1

ξ

)
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=
2k + 1

2N
− m

p
,

Re

(

2k + 1

2N
− 2mπ

√
−1

ξ

)

− 2pπ

u
Im

(

2k + 1

2N
− 2mπ

√
−1

ξ

)

=
2k + 1

2N
,

if ν/p+m/p− 1/(2N) ≤ k/N ≤ (m+ 1)/p− ν/p− 1/(2N) and k/N ≤ 2Mπ/u+

1− 1/(2N), then fN

(

2k+1
2N − 2mπ

√
−1

ξ

)

converges to

F

(

k

N
− 2mπ

√
−1

ξ

)

= Φm

(

k

N

)

as N → ∞. Therefore we see

Re fN

(

2k + 1

2N
− 2mπ

√
−1

ξ

)

< ReΦm(σm)− ε

= ReF (σ0)− ε

if we choose ν small enough so that δ′m > ν
p + 1

2N (and N is large enough). Note

that so far k should satisfy the inequalities

(8.1)
m+ 1

p
− δ′m <

k

N
≤ m+ 1

p
− ν

p
− 1

2N
.

On the other hand, putting hN (k) :=
∏k

l=1 g
(

l
N

)

, we have

(8.2) |hN (k)| > |hN (k′)|
if m

p − δm < k
N < k′

N < m
p + δm from Lemma 8.1. Note that if m

p ≤ k
N < m+1

p , we

have

(8.3) hN (k) =
1− e−4pNπ2/ξ

2 sinh(u/2)
βp,m exp

(

N × fN

(

2k + 1

2N
− 2mπ

√
−1

ξ

))

from (3.2). From (8.2) and (8.3), if m+1
p − δm+1 < k

N < k′

N < m+1
p , then we have

Re fN

(

2k + 1

2N
− 2mπ

√
−1

ξ

)

=
1

N
log

∣

∣

∣

∣

2 sinh(ξ/2)

1− e−4pNπ2/ξ
β−1
p,mhN (k)

∣

∣

∣

∣

>
1

N
log

∣

∣

∣

∣

2 sinh(ξ/2)

1− e−4pNπ2/ξ
β−1
p,mhN (k′)

∣

∣

∣

∣

= Re fN

(

2k′ + 1

2N
− 2mπ

√
−1

ξ

)

,

which means that Re fN

(

2k+1
2N − 2mπ

√
−1

ξ

)

is monotonically decreasing with re-

spect to k if m+1
p − δm+1 < k

N < m+1
p . Combined with (8.1), we conclude that

(6.4) holds if m+1
p − δ′m < k

N < m+1
p , choosing δ′m less than δm+1 if necessary.

Now, we show that for m = 1, 2, . . . , p− 1, (6.4) holds if m
p ≤ k

N < m
p + δm.

From (8.2) and (8.3), if m
p − δ′m < k′

N < m
p ≤ k

N < m
p + δm, we have

Re fN

(

2k + 1

2N
− 2mπ

√
−1

ξ

)

=
1

N
log

∣

∣

∣

∣

2 sinh(ξ/2)

1− e−4pNπ2/ξ
β−1
p,mhN (k)

∣

∣

∣

∣

<
1

N
log

∣

∣

∣

∣

2 sinh(ξ/2)

1− e−4pNπ2/ξ
β−1
p,mhN (k′)

∣

∣

∣

∣

<
1

N
log

∣

∣

∣

∣

2 sinh(ξ/2)

1− e−4pNπ2/ξ
β−1
p,m−1hN (k′)

∣

∣

∣

∣
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= Re fN

(

2k′ + 1

2N
− 2(m− 1)π

√
−1

ξ

)

,

which is less than ReF (σ0)−ε from the argument above. Here the second inequality
follows since

∣

∣

∣

∣

βp,m

βp,m−1

∣

∣

∣

∣

= 2
∣

∣

∣cosh(4pNπ2/ξ)− cosh(4mNπ2/ξ)
∣

∣

∼
N→∞

1

2
exp

(

4puπ2 ×N

|ξ|2
)

.

So (6.4) holds.
Finally, we consider the case where m = 0. Since hN(0) = βp,0 = 1, we have

Re fN

(

1

2N

)

=
1

N
log

∣

∣

∣

∣

2 sinh(ξ/2)

1− e−4pNπ2/ξ

∣

∣

∣

∣

≤ 1

N
log

∣

∣

∣

∣

∣

2 sinh(ξ/2)

1 +
∣

∣e−4pNπ2/ξ
∣

∣

∣

∣

∣

∣

∣

=
1

N
log

∣

∣

∣

∣

2 sinh(ξ/2)

1 + e−4puNπ2/|ξ|2

∣

∣

∣

∣

→ 0 (N → ∞).

Since ReF (σ0) > 0 from Lemma 5.2, (6.4) holds if k/N < δ0 and N is sufficiently
large.

As a result, if we put δ̃m := min{δ′m, δm}, (6.4) holds. �

Appendix A. The case where (p,N) 6= 1

In this appendix, we will calculate
∏k

l=1

(

1− e(N−l)ξ/N
) (

1− e(N+l)ξ/N
)

assum-
ing (p,N) = c > 1. Put N ′ := N/c ∈ N and p′ := p/c ∈ N.

Note that jN/p (1 ≤ j ≤ N − 1, j ∈ N) is an integer if and only j is a multiple
of p′.

If k < N ′, then we can choose an integerm < p′ so that mN/p < k < (m+1)N/p
because N/p, 2N/p, . . . , (p′−1)N/p are not integers. Therefore from (3.1), we have

k
∏

l=1

(1− e(N−l)ξ/N )(1 + e(N+l)ξ/N )

=
1− e4pNπ2/ξ

1− eξ





m
∏

j=1

(

1− e4(p−j)Nπ2/ξ
)(

1− e4(p+j)Nπ2/ξ
)





× EN

(

(N − k − 1/2)γ − p+m+ 1
)

EN

(

(N + k + 1/2)γ − p−m
) .

If k = N ′, we have

N ′
∏

l=1

(

1− e(N−l)ξ/N
)(

1− e(N+l)ξ/N
)

=





N ′−1
∏

l=1

(

1− e(N−l)ξ/N
)(

1− e(N+l)ξ/N
)





(

1− e(N−N ′)ξ/N
)(

1− e(N+N ′)ξ/N
)

=
(

1− e(c−1)ξ/c
)(

1− e(c+1)ξ/c
)

× 1− e4pNπ2/ξ

1− eξ





p′−1
∏

j=1

(

1− e4(p−j)Nπ2/ξ
)(

1− e4(p+j)Nπ2/ξ
)





× EN

(

(N − p′ + 1/2)γ − p+ p′
)

EN

(

(N + p′ − 1/2)γ − p− p′ + 1
) ,
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since (p′ − 1)N/p < N ′ − 1 < p′N/p.
If k is an integer with nN ′ ≤ k < (n+1)N ′, writing l (0 ≤ l ≤ k) as l = aN ′ + b

with 0 ≤ a ≤ n and 0 ≤ b ≤ N ′ − 1, we have

k
∏

l=1

(

1− e(N−l)ξ/N
)(

1− e(N+l)ξ/N
)

=

N ′−1
∏

b=1

(

1− e(N−b)ξ/N
)(

1− e(N+b)ξ/N
)

×
n−1
∏

a=1

N ′−1
∏

b=0

(

1− e(N−aN ′−b)ξ/N
)(

1− e(N+aN ′+b)ξ/N
)

×
k−nN ′
∏

b=0

(

1− e(N−nN ′−b)ξ/N
)(

1− e(N+nN ′+b)ξ/N
)

=

n−1
∏

a=1

(

1− e(c−a)ξ/c
)(

1− e(c+a)ξ/c
)

×
n−1
∏

a=0

N ′−1
∏

b=1

Pa,b

×
(

1− e(c−n)ξ/c
)(

1− e(c+n)ξ/c
)

k−nN ′
∏

b=1

Qb,

where we put

Pa,b :=
(

1− e(N−aN ′−b)ξ/N
)(

1− e(N+aN ′+b)ξ/N
)

=
(

1− e2(N−aN ′−b)π
√
−1γ
)(

1− e2(N+aN ′+b)π
√
−1γ
)

,

Qb :=
(

1− e(N−nN ′−b)ξ/N
)(

1− e(N+nN ′+b)ξ/N
)

=
(

1− e2(N−nN ′−b)π
√
−1γ
)(

1− e2(N+nN ′+b)π
√
−1γ
)

.

If we choose i (0 ≤ i ≤ p′ − 1) with iN ′/p′ < b < (i + 1)N ′/p′, then we have
(p′ − ap′ − i − 1)N/p < N − aN ′ − b < (p′ − ap′ − i)N/p and (p′ + ap′ + i)N/p <
N + aN ′ + b < (p′ + ap′ + i+ 1)N/p. So from Corollary 2.6, we have

N ′−1
∏

b=1

Pa,b =

p′−1
∏

i=0





∏

iN ′/p′<b<(i+1)N ′/p′

Pa,b





=

p′−1
∏

i=0





∏

iN ′/p′<b<(i+1)N ′/p′

EN

(

(N − aN ′ − b− 1/2)γ − p+ ap′ + i+ 1
)

EN

(

(N − aN ′ − b+ 1/2)γ − p+ ap′ + i+ 1
)

×
∏

iN ′/p′<b<(i+1)N ′/p′

EN

(

(N + aN ′ + b− 1/2)γ − p− ap′ − i
)

EN

(

(N + aN ′ + b+ 1/2)γ − p− ap′ − i
)





=

p′−2
∏

i=0

(

EN

(

(N − aN ′ − ⌊(i+ 1)N ′/p′⌋ − 1/2)γ − p+ ap′ + i + 1
)

EN

(

(N − aN ′ − ⌊iN ′/p′⌋ − 1/2)γ − p+ ap′ + i+ 1
)

× EN

(

(N + aN ′ + ⌊iN ′/p′⌋+ 1/2)γ − p− ap′ − i
)

EN

(

(N + aN ′ + ⌊(i+ 1)N ′/p′⌋+ 1/2)γ − p− ap′ − i
)

)

× EN

(

(N − (a+ 1)N ′ + 1/2)γ − p+ (a+ 1)p′
)

EN

(

(N − aN ′ − ⌊(p′ − 1)N ′/p′⌋ − 1/2)γ − p+ (a+ 1)p′
)
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× EN

(

(N + aN ′ + ⌊(p′ − 1)N ′/p′⌋+ 1/2)γ − p− (a+ 1)p′ + 1
)

EN

(

(N + (a+ 1)N ′ − 1/2)γ − p− (a+ 1)p′ + 1
) .

Note that the case where i = p′ − 1 is exceptional.
Using Lemma 2.8 with z = (N−aN ′−⌊iN ′/p′⌋−1/2)γ−p+ap′+i (i = 1, . . . , p′−

2) and z = (N + aN ′ + ⌊(i+ 1)N ′/p′⌋ − 1/2)γ − p− ap′ − i− 1 (i = 1, . . . , p′ − 2),
this becomes

p′−1
∏

i=1

((

1− e4(p−ap′−i)Nπ2/ξ
)(

1− e4(p+ap′+i)Nπ2/ξ
))

× EN

(

(N + aN ′ + 1/2)γ − p− ap′
)

EN

(

(N − aN ′ − 1/2)γ − p+ ap′ + 1
)

× EN

(

(N − (a+ 1)N ′ + 1/2)γ − p+ (a+ 1)p′
)

EN

(

(N + (a+ 1)N ′ − 1/2)γ − p− (a+ 1)p′ + 1
) .

Therefore we have
n−1
∏

a=0

N ′−1
∏

b=1

Pa,b

=

n−1
∏

a=0

p′−1
∏

i=1

((

1− e4(p−ap′−i)Nπ2/ξ
)(

1− e4(p+ap′+i)Nπ2/ξ
))

×
n−1
∏

a=0

(

EN

(

(N + aN ′ + 1/2)γ − p− ap′
)

EN

(

(N − aN ′ − 1/2)γ − p+ ap′ + 1
)

× EN

(

(N − (a+ 1)N ′ + 1/2)γ − p+ (a+ 1)p′
)

EN

(

(N + (a+ 1)N ′ − 1/2)γ − p− (a+ 1)p′ + 1
)

)

=
1− e4pNπ2/ξ

1− eξ

n−1
∏

a=0

p′−1
∏

i=1

((

1− e4(p+ap′+i)Nπ2/ξ
)(

1− e4(p−ap′−i)Nπ2/ξ
))

×
n−1
∏

a=1

(

1− e4(p+ap′)Nπ2/ξ

1− e(c+a)ξ/c
× 1− e4(p−ap′)Nπ2/ξ

1− e(c−a)ξ/c

)

× EN

(

(N − nN ′ + 1/2)γ − p+ np′
)

EN

(

(N + nN ′ − 1/2)γ − p− np′ + 1
)

=
1− e4pNπ2/ξ

1− eξ
×
∏np′−1

l=1

(

1− e4(p+l)Nπ2/ξ
)(

1− e4(p−l)Nπ2/ξ
)

∏n−1
a=1

(

1− e(c+a)ξ/c
) (

1− e(c−a)ξ/c
)

× EN

(

(N − nN ′ + 1/2)γ − p+ np′
)

EN

(

(N + nN ′ − 1/2)γ − p− np′ + 1
) ,

where we use Lemma 2.7 for w = (N + aN ′)γ − p − ap′ (a = 0, 1, . . . , n − 1) and
w = (N − aN ′)γ − p+ ap′ (a = 1, 2, . . . , n− 1) at the second equality.

Similarly, letting h (0 ≤ h ≤ p′ − 1) be an integer with hN ′/p′ < k − nN ′ <
(h+ 1)N ′/p′, from Corollary 2.6 we have

k−nN ′
∏

b=1

Qb =

h−1
∏

i=0





∏

iN ′/p′<b<(i+1)N ′/p′

Qb



×
∏

hN ′/p′<b≤k−nN ′

Qb

=

h−1
∏

i=0





∏

iN ′/p′<b<(i+1)N ′/p′

EN

(

(N − nN ′ − b− 1/2)γ − p+ np′ + i+ 1
)

EN

(

(N − nN ′ − b+ 1/2)γ − p+ np′ + i+ 1
)
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×
∏

iN ′/p′<b<(i+1)N ′/p′

EN

(

(N + nN ′ + b− 1/2)γ − p− np′ − i
)

EN

(

(N + nN ′ + b+ 1/2)γ − p− np′ − i
)





×
∏

hN ′/p′<b≤k−nN ′

EN

(

(N − nN ′ − b− 1/2)γ − p+ np′ + h+ 1
)

EN

(

(N − nN ′ − b+ 1/2)γ − p+ np′ + h+ 1
)

×
∏

hN ′/p′<b≤k−nN ′

EN

(

(N + nN ′ + b− 1/2)γ − p− np′ − h
)

EN

(

(N + nN ′ + b+ 1/2)γ − p− np′ − h
)

=
h−1
∏

i=0

(

EN

(

(N − nN ′ − ⌊(i+ 1)N ′/p′⌋ − 1/2)γ − p+ np′ + i+ 1
)

EN

(

(N − nN ′ − ⌊iN ′/p′⌋ − 1/2)γ − p+ np′ + i+ 1
)

× EN

(

(N + nN ′ + ⌊iN ′/p′⌋+ 1/2)γ − p− np′ − i
)

EN

(

(N + nN ′ + ⌊(i+ 1)N ′/p′⌋+ 1/2)γ − p− np′ − i
)

)

× EN

(

(N − k − 1/2)γ − p+ np′ + h+ 1
)

EN

(

(N − nN ′ − ⌊hN ′/p′⌋ − 1/2)γ − p+ np′ + h+ 1
)

× EN

(

(N + nN ′ + ⌊hN ′/p′⌋+ 1/2)γ − p− np′ − h
)

EN

(

(N + k + 1/2)γ − p− np′ − h
) .

Using Lemma 2.8 with z = (N − nN ′ − ⌊iN ′/p′⌋ − 1/2)γ − p + np′ + i and z =
(N + nN ′ + ⌊iN ′/p′⌋+ 1/2)γ − p− np′ − i (i = 1, 2, . . . , h), we have

k−nN ′
∏

b=1

Qb =

h
∏

i=1

((

1− e4(p−np′−i)Nπ2/ξ
)(

1− e4(p+np′+i)Nπ2/ξ
))

× EN

(

(N + nN ′ + 1/2)γ − p− np′
)

EN

(

(N − nN ′ − 1/2)γ − p+ np′ + 1
)

× EN

(

(N − k − 1/2)γ − p+ np′ + h+ 1
)

EN

(

(N + k + 1/2)γ − p− np′ − h
) .

Therefore, we finally have

k
∏

l=1

(

1− e(N−l)ξ/N
)(

1− e(N+l)ξ/N
)

=
(

1− e(c−n)ξ/c
)(

1− e(c+n)ξ/c
)

× 1− e4pNπ2/ξ

1− eξ
×

np′−1
∏

l=1

(

1− e4(p−l)Nπ2/ξ
)(

1− e4(p+l)Nπ2/ξ
)

× EN

(

(N − nN ′ + 1/2)γ − p+ np′
)

EN

(

(N + nN ′ − 1/2)γ − p− np′ + 1
)

×
h
∏

i=1

((

1− e4(p−np′−i)Nπ2/ξ
)(

1− e4(p+np′+i)Nπ2/ξ
))

× EN

(

(N + nN ′ + 1/2)γ − p− np′
)

EN

(

(N − nN ′ − 1/2)γ − p+ np′ + 1
)

× EN

(

(N − k − 1/2)γ − p+ np′ + h+ 1
)

EN

(

(N + k + 1/2)γ − p− np′ − h
)
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=
1− e4pNπ2/ξ

1− eξ
×

np′
∏

l=1

(

1− e4(p−l)Nπ2/ξ
)(

1− e4(p+l)Nπ2/ξ
)

×
h
∏

i=1

((

1− e4(p−np′−i)Nπ2/ξ
)(

1− e4(p+np′+i)Nπ2/ξ
))

× EN

(

(N − k − 1/2)γ − p+ np′ + h+ 1
)

EN

(

(N + k + 1/2)γ − p− np′ − h
)

=
1− e4pNπ2/ξ

1− eξ
×

np′+h
∏

l=1

((

1− e4(p−l)Nπ2/ξ
)(

1− e4(p+l)Nπ2/ξ
))

× EN

(

(N − k − 1/2)γ − p+ np′ + h+ 1
)

EN

(

(N + k + 1/2)γ − p− np′ − h
)

where we use Lemma 2.7 for w = (N−nN ′)γ−p+np′ and w = (N+nN ′)γ−p−np′

at the second equality. Recalling that we choose n and h so that nN ′ ≤ k <
(n + 1)N ′ and hN ′/p′ < k − nN ′ < (h + 1)N ′/p′, we see that np′ + h satisfies
(np′ + h)N/p < k < (np′ + h + 1)N/p. So putting m := np′ + h we see that
if mN/p < k < (m + 1)N/p, then the formula above coincides with (3.1) where
(p,N) = 1.
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