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THE COLORED JONES POLYNOMIAL
OF THE FIGURE-EIGHT KNOT
AND A QUANTUM MODULARITY

HITOSHI MURAKAMI

ABSTRACT. We study the asymptotic behavior of the N-dimensional colored
Jones polynomial of the figure-eight knot evaluated at exp((u +2pmy/—1) /N)7
where u is a small real number and p is a positive integer. We show that it
is asymptotically equivalent to the product of the p-dimensional colored Jones
polynomial evaluated at exp(4N72/(u + 2pmv/—1)) and a term that grows
exponentially with growth rate determined by the Chern—Simons invariant.
This indicates a quantum modularity of the colored Jones polynomial.

1. INTRODUCTION

Let K be an oriented knot in the three-sphere S3. For a positive integer N, we
denote by Jn (K; ¢) the colored Jones polynomial associated with the irreducible N-
dimensional representation of the Lie algebra s[(2; C). Here we normalize Jy (K q)
so that Jy(U;q) =1 for the unknot U.

Let us consider an evaluation Jy (K ; e2mV=1/N ) It is well known that it co-

incides with Kashaev’s invariant (K)y [12, 25]. R. Kashaev conjectured that his
invariant grows exponentially as N — oo, and that its growth rate gives the hyper-
bolic volume of the knot complement when K is a hyperbolic knot, that is, S\ K
possesses a (unique) complete hyperbolic structure with finite volume [I3]. In [25],
Kashaev’s conjecture was generalized to any knot replacing the hyperbolic volume
with simplicial volume (also known as Gromov’s norm [§]).

Conjecture 1.1 (Volume conjecture). Let K C S3 be any knot. Then we have

— Comy=I/Ny| _ L 3
Jim Nlog\JN(K,e )| = 5 Vol(S? \ K),

where Vol(S® \ K) is the simplicial volume of S3\ K.

So far, Kashaev’s conjecture is proved for the figure-eight knot by T. Ekholm,
and for knots with up to seven crossings [31] 33 32]. The volume conjecture is
proved for hyperbolic knots with up to seven crossings as above, for all the torus
knots by Kashaev and O. Tirkkonen [I4], for the Whitehead doubles of the torus
knots by H. Zheng [37], and the (2, 2k + 1)-cable of the figure-eight knot by T. Le
and A. Tran [I8].

J. Murakami, M. Okamoto, T. Takata, Y. Yokota, and the author complexified
Kashaev’s conjecture as follows [26] Conjecture 1.2]:
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Conjecture 1.2. For a hyperbolic knot K in S3, we have

N
. 2m/—=1/N ~
In(K;e )N_>OO 5 CV(K),
where CV(K) := Vol(83 \ K) + /=1 CS%9®) (83 \ K) is the complex volume with
CSS9®) the SO(3) Chern-Simons invariant [21].

For a hyperbolic knot K C S3, let p: m(S®\ K) — SL(2;C) be an irre-
ducible representation that is a small deformation of the holonomy representa-
tion corresponding to the complete hyperbolic structure. Note that p corresponds
to an incomplete hyperbolic structure [35]. Up to conjugation, we may assume
w/2

that p sends the meridian of K to (e 0

e::: /2 | and the preferred longitude to

_ev(uw)/2
0

SL(2; C) Chern-Simons invariant CS,, ,,)(p) and the cohomological adjoint Reide-
meister torsion T (u). See [29, Chapter 5] for example. Note that in [29] we define
the homological adjoint Reidemeister torsion (it is called the twisted Reidemeister
torsion there). So we need to take its inverse to define the cohomological torsion.
Note also that Vol(S53\ K)++/—1 CS5°®)($3\ K) in Conjecture 2 coincides with
vV/—1CSp0(po) for a hyperbolic knot K with holonomy representation po.

In [28], Yokota and the author proved that for the figure-eight knot E, the limit

limy 00 % log Jn (E; e(“+27”/__1)/N) exists if the complex number « is in a small
neighborhood of 0 (and not a rational multiple of my/—1). Moreover the limit
determines the holomorphic function f(u) introduced in [30, Theorem 2]. In other
words, the asymptotic behavior of Jy(E; e T27V=D/NY determines the SL(2;C)
Chern—Simons invariant associated with wu.

For a general hyperbolic knot K, the following conjecture was proposed in [24]
(see also [2,[9]).

e_j(“)/Q) (see for example [30]). Associated with u, we can define the

Conjecture 1.3. Let K C S® be a hyperbolic knot. Then there erists a neighbor-
hood U C C of 0 such that if u € U\ mv/—1Q, then we have

Jn ( K: e(u+2wﬁ)/N)

where Ty (u) is the cohomological adjoint Reidemeister torsion, and CS, ) (p) =
Sk (u) — ury/=1 — Luv(u) is the Chern-Simons invariant, both associated with u.

In [24], we proved that the conjecture is true for the figure-eight knot and a
positive real number u < arccosh(3/2).

In this paper, we study the colored Jones polynomial of the figure-eight knot eval-
uated at ¢ = exp((u+2pry/—1)/N) for a real number u with 0 < u < arccosh(3/2)
and a positive integer p. We will show

Theorem 1.4. Let E be the figure-eight knot and put & := u + 2pwv/—1. Then we
have

(1.1) Jy (E;eé/N)

_ VT / i) (VY 2su -
= Ty e (B (F) B on)
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as N — oo, where we put

Sp(u) := Liy (e*“ﬂp(“)) — Lis (67““’(“)) + u(<p(u) + 2#\/—_1),

2
Te(u) = .
=) V/(2coshu + 1)(2coshu — 3)
Here Lig(2) := — foz w dw is the dilogarithm function and we put

1 1
o(u) :=log (coshu -5 5\/(2 coshu + 1)(2coshu — 3)) .

Remark 1.5. The case where p = 1 was proved in [24].
Remark 1.6. When p = 0, the author proved that for the figure-eight knot F,
Jn (E;e¥N) converges to 1/A(E;e"), where A(K;t) is the Alexander polynomial
of a knot K normalized so that A(K;t) = A(K;t™!) and A(U;t) = 1 [23]. Soon
after, it was generalized by S. Garoufalidis and T. Le to any knot in S®. See [5] 4, [6].
As a corollary we have the following asymptotic equivalence.
Corollary 1.7. We have
- o8/N /= 1/2
(12) JN (E’e . ) ~ _ m TE(U)1/2 ﬁ e%XSE(u).
Jp (E;eN7™/€) N—oo 2sinh(u/2) I3

This indicates a quantum modularity for the colored Jones polynomial.

Conjecture (Conjecture [(3)). Let K be a hyperbolic knot. For a small complex
number u that is not a rational multiple of mv/—1, and positive integers p and N,

put & = u+ 2pry/—1 and X := % Then for any n = ((cl Z) € SL(2;Z)
with ¢ > 0, the following asymptotic equivalence holds.
. 27/ —1In(X)
Jen +dp (K,e ’ ) ~ Cgyu) v T (w) v exp Sx ()
Ty (K;e2V/=1X) Noeo U 9 sinh(u/2) \ By (X) By (X))

aX+b
cX+d

and

for Cgn(u) € C that does not depend on p, where we put n(X) =

F(X) o= 22021

Compare it with Zagier’s quantum modularity conjecture for Kashaev’s invariant
[36].
Conjecture (Conjecture [[I)). Let K, n, N, and p as above. If we put Xg := %7
the following holds.

Jentap (1 €2/ o 2r \** (VEICV(K)
~ .
Jp (K;eQvalXo) N—oo i hn(Xo) P ’

hn(XO)
where Ck 5, 15 a complex number depending only on n and K.

The paper is organized as follows.

In Section 2l we define the colored Jones polynomial and introduce a quantum
dilogarithm. We express the colored Jones polynomial as a sum of the quantum
dilogarithms assuming (p, N) = 1 in Section In Section [ we approximate it
by using the dilogarithm function by using the fact that the quantum dilogarithm
converges to the dilogarithm. We use the Poisson summation formula & la Ohtsuki
[31] to replace the sum with an integral in Section Bl In Section [6] we prove the
main theorem (Theorem [[L4). We discuss a quantum modularity of the colored
Jones polynomial in Section [7l Section B is devoted to proofs of lemmas used in
the other sections. In Appendix, we calculate the colored Jones polynomial in the
case where (p, N) # 1.
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2. PRELIMINARIES

Let Jn(K;q) be the N-dimensional colored Jones polynomial of K C S? asso-
ciated with the N-dimensional irreducible representation of the Lie algebra sl3(C),
where N is a positive integer and ¢ is a complex parameter [16] [34] [15]. It is normal-
ized so that Jy(U; q) = 1 for the unknot U. In particular, Jo(K;q) is (a version) of
the original Jones polynomial [TI1]. More precisely, J2(K;q) satisfies the following
skein relation:

qJ (V, q) —q ' (X;q) = (q1/2 - q_m) Jo (> G; q) :

K. Habiro [I0, P. 36 (1)] (see also [19, Theorem 5.1]) and T. Le [I7, 1.2.2. Exam-
ple, P. 129] gave a simple formula for the colored Jones polynomial of the figure-eight
knot E as follows:

(2.1) JIn Nz_:l ﬁ ( (N+1)/2 _ q—<N+z>/2) (q<N—l>/2 _ q—<N—z>/2)
]I\c[: =1
(2.2) - g H N+l _ qN—l) _

k=0
For a real number u with 0 < u < x := arccosh(3/2) = 0.962424 ..., and a positive
integer p, we put & := u + 2pmv/—1. Then we have
-1

2.3)  Jy (E;eﬁ/N) _ Z ke H ( S(NHD) E/N) (1 _ e(Nfl)g/N) _
k=0

We want to replace the products in ([23]) with some values of a continuous func-
tion. To do that we introduce a so-called quantum dilogarithm following [3].
Put R:= (—o00,-1]U{z € C| |z =1,Imz > 0} U [1,00) and orient it from left

to right. We consider the integral f@ #ﬁl(vw) dzx, where vy := ﬁ
Lemma 2.1. The integral [o ﬁ;ﬁiw dx converges if —p/(2N) < Rez <

1+p/(2N).
A proof is given in § [l Note that the poles of the integrand is
{reClz=knv-1 (keZ)}U{zeClz=Ilnv-1/§ (1€Z)}

and so R avoids the poles.
We define

T 1 (2z—1)x p
n(2) = 4 /@ a sinh(x) sinh(yz) -

We also consider three related integrals f 2 z(;inhl():) dx (k =0,1,2), which con-

verge if 0 < Re z < 1 by similar reasons to Lemma 2.1}

Definition 2.2. We put
r e(2z—1)z p
@)= [ Sy
—1 e(2z-1)
S
£az) 2 /@ x sinh(x) “

ﬁ\/_/ 221

dz
a2 sinh(z

for z with 0 < Rez < 1.
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Their derivatives are given as follows.

%Z(Z) = —2m/—1L4(2),
d2152) = —Eo(z).

We also have the following lemma.

Lemma 2.3. If 0 < Rez < 1, then we have

—2mv/—1
1— 67271'\/7_12’

L1(z) = log (1 - 627f\/flz) 7
L2(z) = Liy (e2w¢?1z) _

Here we use the branch of logw so that —m < Imlogw < 7 and Liz(w) has branch
cut at (1,00).

50(2) =

Proof. As |27, Lemma 2.5], we can prove the following equalities:

—2my/—1

Eo(z) = 1 _ 6727r\/jlz’
log (1 — eQWmZ) if Imz >0,
El(z) - — _ 2w/ —=1z s
m™—1(2z—-1)+1log (1 —e if Imz <0,
Lis (e%ﬁZ) if Tm 2 > 0,
Lo(z) =

7r—32(6:52 —6z+1)—Li (6_2”‘/__1Z) if Imz < 0.

So we need to prove the lemma for the case where Im z < 0.
There is nothing to prove for Lo(z).
If 0 < Rez < 1, then using the identity (see for example [20])

P . 1 2
@4 Lia(w™!) = ~Listw) = - = 5 (oa(-))".
we have
Lig (67271' 717;) — —Lig (eQﬂJ?lz) _
2
= —Li (62”‘/jz) + 27222 4 5
where we use the fact that 0 < Im(27+/—1z) < 27. Therefore we have
2
Ls(z) = —Liy (e‘QTfﬁZ) + % (62 — 62 + 1) = Li <e2’fﬁZ)

as required.
As for £1(z), since log (e“‘/jl(%*l)) = 2my/—1z — my/—1, we have

log (1 — e—2w¢?12) +7v—-1(2z—1) =log (1 - e_%ﬁz) + log (e”m(%_l))
=log (1 — eQﬂﬁz) ,
completing the proof. (I

We can prove that T (z) converges to % Liy (62”\/__12). More precisely we have
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Lemma 2.4. For any positive real number M and a sufficiently small positive real
number v, we have

Tn(z) = % Liz (e27Y71%) + 0(1/N)

as N — oo in the region

{zeC|v<Rez<1-—v,|Imz| < M}.
In particular T (2z) uniformly converges to % Lis (62”\/__1z) in the region above.

A proof is also given in § Bl
The following lemma is essential in the paper. Put Ey(z) := eT¥(*).

Lemma 2.5. If 0 < Rez < 1, then we have
En(z=9/2) _ |  _eny-1:

En(z+7/2)

Proof. Recalling that v = we have

&
2N7y/—1°

Tn(z=7/2) = Tn(z+7/2) = § da

4 Jg  xsinh(x)sinh(yz)

e(2z—1)z
_ —/ G =Li(2).

R 2z sinh(x)

1/ e(?zfvfl)x 76(2z+771)x

Taking the exponentials of both sides, the lemma follows from Lemma 2.3 O
As a corollary, we have
Corollary 2.6. Let n be an integer. If nN/p < j < (n+ 1)N/p, we have
En((G—1/2)y-n) | — 2T

En((+1/2)y—n)

and
En(n+1-(j+1/2)y)
Ex(n+1-(j—1/2)y)

Proof. Since Rey = p/N, we have 0 < Re(jy—n) < 1. Therefore putting z := jy—n
in Lemma 2.5 we have the first equality. Similarly, putting z := n + 1 — jv, we
have the second equality. (I

=1— e 2rmV-T

We prepare other two lemmas.

Lemma 2.7. For a complex number w with | Rew| < Re~y, we have

EN(’LU +'Y/2) 1— 6271'\/—_1111/’7

En(w—~/2+41) 1 —e2rV-Tw
Proof. By definition, we have
Tn(w+7v/2) —Tn(w—v/2+1)
1 e(2w+7—1)t _ e(2w—7+1)t
=1 /@ Tsmb(D)snh(yy)

1/ e?vt cosh(t) gt l/ e?vt cosh(yt)

2 Jg tsinh(¢) ~ 2z tsinh(yt)

1 e(2w+1)t 1 e(2’w—1)t
BYE-LPRYE -~
4 /g tsinh(?) 4 /g tsinh(¢)

dt
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1 e(Qwty)t 1 e(Rw—y)t
_-/ %dt——/ S
4 Jg tsinh(yt) 4 Jg tsinh(yt)
1 1 1 1
= - gLilw+1) = gLi(w) + S Li(w/y + 1) + 5 La(w/7).
Taking the exponentials, we have the lemma from Lemma O

Lemma 2.8. For a complex number z with |Re z| < Rev/2, we have

En(z) e
=14 27 z/v .

Proof. By definition, we have
TN(Z) — TN(Z + 1)

1 e(2z—1)t _ e(22+1)t
T4 /@; ¢ sinh(¢) sinh(yt)

1 €2zt
S
2 Jg tsinh(yt)

1 est/'y
L e,

2 J,g ssinh(s)
=L1(z/y+1/2).

Taking the exponentials, we get the lemma from Lemma 23] O

3. SUMMATION

In this section, we express Jy (E; eS/N ) in terms of the quantum dilogarithm
TN(Z)

We assume that p and N are coprime. See Appendix for the case with (p, N) # 1.

If £ < N/p, then from Corollary 28 with (j,n) = (N —I,p — 1) and (j,n) =
(N +1,p), we have

(1 — e(WN=DE/NY (1 — (NFDE/NY

-

N
Il
-

(1 B eQ(Nfl)'wr\/jl)(l B e2(N+l)'y7r\/771)

I
=

N
Il
-

En((N—-1-1/2)y—p+1)
( —1+1/2)y—p+1)

(N+1-1/2)y—p)

B N+l+1/2)7 p)
CEn((N—k—1/2)y—p+1) Ex((N+1/2)y—p)
- En((N—=1/2)y—p+1) Enx((N+k+1/2)y-p)

1— e NE  Eny((N-k—1/2)y—p+1)
1—et En((N+k+1/2)y—p)

where we use Lemma 27 with w = N+ — p in the last equality.
Similarly, if k satisfies mN/p < k < (m + 1)N/p, then we have

k
(3.1) H(l — e(N=DE/NY (] | ((NFDE/N
=1

I
'.:]w

~

X
::hH
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et (YRR By (N = 1= 12y —p i+ 1)
En((N=141/2)y—p+j+1)

i=0 \I=[jN/p|+1
) LG+ON/p) ((N+lfl/27 —J)
z:uzv/leE N((N+1+1/2)y—p—1j)
y ﬁ EN(( —1-1/2y—p+m+1)
I LN )41 EN((N=1+1/2y—p+m+1)
y ﬁ Ex((N+1-1/2)y—p—m)
I LN o +1 BN N((N+1+1/2)y—p—m)

" By ((N =[G+ DN/p) = 1/2)y —p+j+1)
L En((N=iN/p) —1/2)y—p+j+1)

H EN N+UN/I’J+1/2)’Y p—3J)
o + G+ DN/pl +1/2)y—p—j)

" EN((N—k—l/Q)v—p—l—m—i—l)
Ex((N = |mN/p| =1/2)y=p+m+1)

y En((N+ [mN/p] +1/2)y —p—m)
En((N+k+1/2)y—p—m)

1764PN7"2/§ m 4 . 2 . 2
- - _ HMp—y)N=/E _ A+ NT/E
S o) (s
j=1
y En((N—k—1/2)y—p+m+1)
EN((N+k+1/2)y—p—m) '
where we use Lemma[Z7lwith w = Ny —p, and Lemma [Z8 with z = (N — |IN/p| —
1/2)y—p+land 2= (N+ [IN/p] +1/2)y—p—-1(1=1,2,...,m).
Remark 3.1. Since Rey = p/N, we have Re((N — [IN/p] — 1/2)y — p +
) = f%U?NJ — g% + 1. Since IN/p is not an integer, we have IN/p —
1 < [IN/p| < IN/p (the equality [IN/p] = IN/p does not hold). So

|Re((N — [IN/p] —1/2)y = p+1)| < Rev/2 and the assumption of Lemma 28
holds.

Therefore, from (23] we have
(3.2)

k
— —kg _ o(N+DE/N _ o(N=D¢/N
SR SR | RO IO

m=0mN/p<k<(m+1)N/p

4pNrm2/¢ p=1 [ m
:# Z (H (1 _ 64(:D*j)N7r2/£) (1 _ e4<p+j)zvﬂ2/£)
1—e

m=0 \j=1

" Z ekgEN((N—k—l/Q)y—p—l—m—l—l))

mN/p<k<(m+1)N/p En ((N +k+1/2)y—p— m)



THE COLORED JONES POLYNOMIAL OF THE FIGURE-EIGHT KNOT 9

1 — g—4pNm?/¢
~ 2sinh(u/2)
p—1
2k+1  2mmy/—1
X ﬂp,m Z exp (NX fN( IN - € )> )
m=0 mN/p<k<(m+1)N/p

where we put

Bpm 1= e~ 4mPNT/¢ 11 (1 _ e4(p—j>sz2/s) (1 _ e4<p+j>Nw2/s) ,
j=1

63 e b (L) Ly (00 )

N N\ ory—1 29my/—1
dpm?
—uz + .
§

Remark 3.2. Since we have

Re (52(7:7;11)) =p(1+Rez)+ %Imz,

the function fx(z) is defined in the region
1 u 1 1
C } ——— < —1 R -4 —
{ze 2N<2p7r mz+ ez<p+2N}
from Lemma 211

4. APPROXIMATION

In the previous section, we express Jy (E; ef/N) as a sum of the function fy(2).
In this section, we approximate it by using a function that does not depend on N.

Since T (z)/N uniformly converges to Lis (GQF‘/le) /€ (Lemma 24), fn(2)
uniformly converges to

F(z):= %Lig (ef(l—z)) . %Liz (e§(1+z)) st 41?2

in the region
1
(4.1) {ZE(C‘KSRez-i-LImZS——K,
P 2pm pop

By using the identity ([Z4), if z is in the region

2 2M
Rez—ﬂlmz‘g 7r—|—1}.
U U

1
Uo:{ZG(C’0<Rez+LImz<—},
2pm

p
we have
2
Liy (esum) — L, (e,g(l,z)) _r_1 (1Og (7676(172)))2
6 2
(e T ] 2
— —Li (e ) ~ 5 3=+ (2 - eV
since Im&(1 — z) = 2pm — (uy + 2pmx). Similarly, we have
2 2
(6049 = 1, (e—c0+) T _ 1 _oE(142)
Lis (e ) Lis (e ) 5 > (log( e ))

= —Liy (675(1“)) T~ %(—E(l +2) 4+ (2p + 1w/~ 1)?
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since Im&(1 4 z) = 2pm + (uy + 2pmx). Therefore, F(z) can also be written as
1 1
F(z)= ELig (675(1+Z)) - ELig (eif(lfz)) +uz —21v-1

in UQ.
The first derivative of F(z) is
(4.2)

diZF(z) = log (1 — e_“_fz) + log (1 — e_“+5z) +u = log (e“ +e " — et — e_fz)

because —7 < arg (1 — e’“*fz)) + arg (1 — e*“Jrfz)) < 7 when u is real from the
lemma below. Here we choose the branch of arg so that —7 < arg( < 7 for any
¢ € C. Note that e¥¢* € R if and only if Im(£2) = uImz + 2pr Rez = 2k7 for
some k € Z, which implies that if z € Uy then e*¢* ¢ R.

Lemma 4.1. Let a be a positive real number, and w be a complex number with
w € R. Then we have — < arg(1 — aw) + arg(l — aw™1) < 7.

Proof. We may assume that Imw > 0 without loss of generality. Then we can
easily see that —7 < arg(l — aw) < 0 and that 0 < arg(l — aw™!) < «, which

implies the result. O
The second derivative of F(z) equals
2 —€z _ &z
& opy= o)
d 22 et 4 e~ U — g€z — g—¢2
Now, define
1 1
(4.3) o(u) :=log (coshu —5~ 5\/(2 coshu + 1)(2 coshu — 3)> ,

where we take the square root as a positive multiple of /—1, recalling that cosh u <
3/2. Note that ¢(u) satisfies the equality

e et — P _ome(u) — 1

Lemma 4.2. If 0 < u < x = arccosh(3/2), then o(u) is purely imaginary with
—7m/3 <Imp(u) < 0.
Proof. First note that e#(*) is a solution to the following quadratic equation:
2? — (2coshu — 1)z +1=0.
Therefore |e9”(“)‘ = 1 and we conclude that ¢(u) is purely imaginary. Put 6 :=
Im o(u).
Since 0 < u < K, we see that 1 < 2coshu—1 < 2. Then since e=9V=1 is the other

solution to the quadratic equation above, we have 2 cosf = 2 coshu — 1. Therefore
we see that —7/3 < 6 < 0 because the argument of log in (£3) is in the fourth

quadrant. ([
As in the proof above, we put 6 := Im ¢(u). We also put o¢ := %. Since
we have 949
Reoo+LIm00: T
2pm 2pm
and 0 > 0 > —7/3, we see that oy € Up.
We have

d
d—F(o‘O) == log (eu + e v — e‘/’(u) _ e_‘P(u)) = 0.
z

We also have P2
FF(O’Q) = ¢v/(2coshu + 1)(2coshu — 3).
z
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Therefore we conclude that F(z) is of the form
(4.4) F(z) = F(oo) + as(z — 00)* + az(z — 00)® + as(z — 00)* + - -

with ag := 2£,/(2 coshu + 1)(2 coshu — 3).
Now, the sum

(4.5) 3 exp (N X fx (Qk 1 Qm”‘/__l))

IN 5
m/p<k/N<(m+1)/p

can be approximate by the sum

> exp <qu>m (%))

m/p<k/N<(m+1)/p

where we put

Be)i= F (5 %)

Moreover, in the next section we approximate the sum (£3) by the integral
N [ N o) g
P
Note that the function ®,,(z) is defined in the region

1
Um::{zeC‘m<Rez+LImz<m+ }
P 2pm P

Put o, := 00 + % Then we see that

0+ 2 1
Reo,, + " Tmo,, = Reoy + - Tmog 1+ 7 = I H2m+
2pm 2pm P 2pm
and so we have o, € U,. From (4], we conclude that ®,,(z) is of the form

(4.6) D, (2) = F(00) + az(z — om)* +az(z — om)® + as(z — o)t + -+ .

5. THE POISSON SUMMATION FORMULA

First of all, note that the function fy (z — %) uniformly converges to
®,,(2) in the region
(5.1)

1
{rec| 2+l choss sl mmsg M2
p P 2pm

)

2 2M
Rez—ﬁlmz‘ < —W—i—l}
U U

from (@I). So we expect that the sum (@35l is approximated by the inte-
gral Nfé:?;l)p eN®m(2) dz by using the Poisson summation formula [31, Propo-

sition 4.2]. To do that we will show the following proposition, which confirms the
assumption of [31L Proposition 4.2].

Proposition 5.1. Let m be an integer with 0 < m <p—1. Putb,, :==m/p+v/p
and bt == (m+1)/p—v/p.
Define
k k
Bui=q~ €R|keZb, <+ <],
o
Co:={teR|b, <t<bt},
Dy i={2 € C|Re®,,(2) <Re Py, (0m)},
En:={zc€C|b, <Rez<b |Imz| <2Imo,}NU,

Then the following hold.
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(1). The region En, contains on and ®p(z) is a holomorphic function in E,
of the form

F(op) +as(z —om)? +az(z —om)® +as(z — o) +- -

with Reas < 0.

(2). Dy, N Ey, has two connected components.

(3). bt and b, are in different components of Dy, N E, and moreover
Re®,,(bE) < Re®,,(0m) — €m for some ., > 0.

(4). Both b}, and b, are in a connected component of

Ry={z+y/-1€C|b, <z <b,
y € [0,2Im o], Re @, (2 + yv/—1) < Re @y (0,) + 27y} N Upy.
(5). Both b}, and b, are in a connected component of
R, ={zr—y/-1€C|b, <z <b},
y € [0,2Tmo,,], Re @, (z — yv/—1) < Re @y (o) + 27y} N Uy
See Figure [ for a contour plot of Re ®,,(z) with p =3, m = 2, and u = 0.5.

FIGURE 1. A contour plot of Re ®,,,(2) in E, by Mathematica for
p =3, m =2, and u = 0.5. The region R,, (R,,, respectively)

LV
is indicated by yellow (green, respectively)._ The region D,, is

indicated by red, which overwrites a part of R, UR,,,.

Before we give a proof, let us define several lines as indicated in Figure
2
L, :Rez— ﬂImz:O,
U

1
LE:Rez—{-LImz: ﬂ,
2pm p

_2m—|—1
=

LW:Rez—{-LImz: @,
2pm D

LM:Rez—i-LImz ,
2pm

H:Imz=2Imo,,,
H

:Imz=-2Imo,,,
1
Ve :Rez = ﬁ,
p
Viw : Rez = E.
p

Note that E,, is the hexagonal region surrounded by H, Lg, Vg, H, Ly, and
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Vi Ve

Ly Ly Lg

FI1GURE 2. The region U, is between Lg and Lyy.

Py Po P

Ficure 3. The region E,,.

13

V. Strictly speaking, we need to push Lg and Ly, slightly inside. We name the
vertices of its boundary as indicated in Figure[3l Their coordinates are given as:

Poim,
p
P m + iIlrnam,
p pm
1
P m —2Imao,v—1,
p
1
P3 : m+ 5
p
1
Py : m+l_ iImam,
p pm

Py otmo,v/—1,
p

where £ is the complex conjugate of &.
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We also put Py := LyyNH, Pyy := LgNLy, Pys := LyyNH, and Psg := LyyNL,.
Their coordinates are given as follows.

2 1 €
Py m +£Imo-ma
2p pT
2(m+ 1)my/—1
Pyt ———F—,
3
2 1
Pys - m A+ filmam,
2p pT
méy/—1
P50 : 272
AT

We use the following lemmas in the proof of Proposition [B.1] below.

Lemma 5.2. We have the inequalities 0 < Re F/(0) < Re F(0y).

Lemma 5.3. We have the inequality Re @, (P12) < Re ®,,(0m,)-
Proofs of the lemmas are given in Section [

Proof of Proposition[51l In the following proof, we assume that v is sufficiently
small. We may need to modify the argument below slightly if necessary.

(1). We know that ®,,(z) is of the form (&H). Since ay =
1¢V/~1y/(2coshu +1)(3 —2coshu) and 0 < u < arccosh(3/2), we see that
Reas = —pmy/(2coshu+1)(3 —2coshu) < 0. So we conclude that ®,,(z) is
of this form.

(2). Writing z = = + yv/—1, we have

0

£ Re®,,(x + yv—1) = —arg7(z,y)
Yy

from (@2), where we put 7(z,y) := 2 cosh(u) — 2 cosh(&(z +y/—1)). Since we have

Im 7(x,y) = —2sinh(uz — 2pmy) sin(uy + 2prx),
we see that Im 7(x,y) > 0 (Im7(x,y) < 0, respectively) if and only if uz < 2pmy
and 2km < uy+ 2prwa < (2k+ 1)7 for some integer k, or ux > 2pry and (21 —1)7w <
uy + 2pra < 2w for some integer | (ux > 2pmy and 2kw < uy + 2prx < (2k + )7
for some integer k, or uz < 2pwy and (20 — 1)7 < uy + 2prx < 2lw for some integer
I, respectively). Since z € U,,, we have 2mz < uy+ 2pmz < 2(m+ 1)7. So we have

0
90 Re®,,(x +yv—1) >0 if and only if
Yy
uzx > 2pry and 2mm < uy + 2prx < (2m+ )7
or ux < 2pmy and (2m + )7 < uy + 2prx < 2(m + ),

and
0 . .
50 Re®,,(x +yv—1) <0 if and only if
Y
ux < 2pmy and 2mm < uy + 2prx < (2m+ D)7
or ux > 2pry and (2m + )7 < uy + 2prx < 2(m + 1)7.

Therefore, fixing x, Re ®,,,(z + yv/—1) is monotonically increasing (decreasing, re-
spectively) with respect to y in the red region (yellow region, respectively) in Fig-
ure 3

Next, we will show (i) the segment PsoPs4 C L, except o, (ii) the segment
P3P3y C L, and (iii) the segment PioPys C Ly are in D,,. See Figure [
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Ps Pys p,

- P34

Py P P

FIGURE 4. The red segments are in D,,.

i): Consider the segment of L, between Ly and Lp that is parametrized as
L 2 2(m+1)
go’( ) = tO’m (W StS %) Then we have

% Re ®,, (¢ (t)) = Re (o log(2 cosh(u) — 2 cosh(ton,§))

= (Reoy,) log (2 cosh(u) — 2 cos ((6 + 2(m + 1)7)t)) .

Since 2mm < (2(m + )7 + 0)¢t < 2(m + 1)m and coshu — 1/2 = coshp(u) =
cosf, we see that £ Re ®,, ({,(t)) > 0 if and only if ;2220 < ¢ < 1, and

2(m+1)w+0
that £ Re ®,,, ((,(t)) < 0 if and only if Q(mﬁ”ﬁ <t< % orl <t<
2(m+1)w
2(m+1)7+0 "

Let Py be the point L, N Ly with coordinate Qm%‘/f_l Since @, (Pw) = F(0)
and ®,,(0ym) = F(09), Lemma implies that Re ®,, ({,(t)) takes its maximum
Re ®,,(0y,) at t = 1. This shows that L, N E,, is in D,, except for op,.

(ii): Consider the segment P3Py that is parametrized as {g(t) := mTH — gt t+
tv/—1= mTH — 2}%1& (0 <t <2Imo,,). We have
4 Red,, (¢(t))
dt m \tE
=—Re <2]v% log (2 coshu — 2 cosh (§€E(t))))
1 %
:filog 2 coshu — 2 cosh (m + )u7|§| >0,
2pm P 2pm
because
(m+Du gt
p 2pm
< max (m + 1)u’ (m+Du u(f +2(m + 1))
p p pm
:max{(erl)u, (m+1)u N u_@} _ (m+1)u <u
p p pm p

Since the point P34 is in D,,, we conclude that PsPsq C D,,.
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(iii): The line Lys between H and H is parametrized as £y/(t) :=

tv/—-1=

HITOSHI MURAKAMI

2m+1 _ _u
2p 2p7rt+

27’21;1 — %%t (—2Imo,, <t <2Imo,,). Now we have

d
E Re (I)m (f]u (t))

— _Re (i log <2 cosh(u) — 2 cosh <M§ a ﬁt)))

2pm 2p 2pm

2m + 1 2
S log | 2 cosh(u) + 2 cosh Gmtu ﬁt < 0.
2pm 2p 2pm

Since lp(—2Imo,,) = Pio, from Lemma B3 we see that Re®,,(Pi2) <

Re®,, (o

m). Therefore every point z on PjoPy5 satisfies Re @,,(z) < Re @y, (o).

Now we split F,, into five pieces:

Eni1:={z€FE|b, <Rez<RePys},
Epnmg2:={z€ E|RePss <Rez <ReQ},
Ens:={z¢€ E|ReQ <Rez < RePs},
Ena:={z€ E|RePi2 <Rez<Reon},
Ens ={z€ E|Reo, <Rez < RePsy},
Eme:={2€ E|RePsyy <Rez<bl},

where () is the intersection of Lj; and L,. See Figure

En Emj
m Em,S

Em6

2

Em,Z Em,4

FIGURE 5. The red region is D,,.

Note the following:

Re P; < Re P,5: This is because Re P — Re Pys = —ﬁ + 2pi7r Im oy, which
can be proved to be negative.

Re P15 < Re Py: This is because Re Pjo — Re Py = —% + 21% Imo,, <0
as above.

Re P15 < Reo,,: This is because Re P — Reo,, = 2”21;1 + o= Imoy, —
Reo,, <O0.

Re o, can be greater than, less than, or equal to Re P;.

In the following, we will show that any point in (E,, 1 U Ep 2 U Ey 3U Ey 4) N

D,, can

be connected to a point on L, by a segment contained in D,,, and that

any point in (Ep 5 U Epe) N Dy, can also be connected to a point on L, by a
segment contained in D,,. We will also show that the vertical line through o,
does not intersect with D,,,. Then, we conclude that D,, N E,, has two connected
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components (Ey, 1 U EpoUFEy,3UEy,4)N Dy, and (B 5 U Ep6) N Dy, because
Ly \ {om} has two connected components.

e E, 1: Since Re®,,(z +yyv/—1) < Re®,,(0,,) when z + yy/—1 is on L,

and Re ®,,(x + yv/—1) decreases whether y increases or decreases fixing

x € [by,,, Re Ps5], we conclude that Re ®,,(z + y/—1) < Re ®,, (o) for any

T+ y\/j € Ep,.1. So we can connect any point in Ey, 1 to a point on L.

e E,, o Figure[Blindicates a graph of Re ®,,,(z + yy/—1) for z+yy/—1 € E,, 2

with fixed x. This figure shows that any point in E,, 2 N D,, can be

Re @, (x+y i)

A

Re @, (,)

FIGURE 6. The vertical axis is Re ®,,(z + y+/—1) and the hori-
zontal axis is y with fixed x. The red part is included in D,,,. Note
that the local maximum is less than Re ®,, (o).

connected to a point on L, by a vertical segment in D,,.
o E,3: A graph of Re®,,(x +yv/—1) for x + y/—1 € E,, 3 with fixed z
looks like Figure [0l because P2 Py5 C D,,. Therefore the argument as

Re @, (x+y i)
A

Re @,(c,,)

H Ly Ls H

FIGURE 7. The vertical axis is Re ®,,(z + y/—1) and the hori-
zontal axis is y for fixed x. The red part is included in D,,.

before shows that any point in E,, 3 N D,, can be connected to a point on
L, by a vertical segment in D,,.

e Ep, 40 Starting at a point on L,, whether y increases or decreases,
Re ®,,,(z + yy/—1) increases. Therefore any point in E,, 4 N Dy, can be
connected to a point on L, by a vertical segment in D,,.

e I, 5: This follows by the same reason as Ey, 4 N Dy,.

e E,6: By the same argument as E,, 4, we can connect any point z in
Epm.6N Dy, to a point 2’ in P3Py by a vertical segment in D,,, and then
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connect z’ to a point in L, by a segment in P;Ps4. (Precisely speaking,
we need to push these segments in E,, ¢.)

The fact that the vertical segment through o, does not intersect with D,, easily
follows because o, € D, and %Re O, (z + yv/—1) is increasing (decreasing,

respectively) if  + y/—1 is above o, (below o,,, respectively).

See Figure

(3). From the definition, we know that b, € E,, 1 and b}, € E,, 6. Therefore we
can choose &, such that Re ®,,(b5) < Re ®,,(0p) — &m-

(4). Since any point z (z # o) on the polygonal chain PyPsgPs4P3 satisfies
Re ®,,(z) < Re ®,,(0), and Im o, > 0, we conclude that this is in R,,. Therefore
we can connect b, and by, in R,,.

(5). We know that if z is on the polygonal chain PyP; Pj2, then Re ®@,,(z) <
Re @, (04, ), which shows that PyP, P2 is in R,,.

We will show that the segment PiaP; is also in R,,. From the proof of (2),
we have 0 > %Re@m(x—l—y\/—_l) > —7 if x + yv/—1 € P3P,. We know

that if z 4+ y/—1 is on the polygonal chain QPs4Ps, then Re ®,,(x +yv/—1) <
Re ®,,(0,,). Since the difference of the imaginary part of 2 — 2Imo,,+/—1 and
x 4+ y/—1 is less than 4Imo,, if z + yv/—1 is on the polygonal chain QPsyPs,
we have Re ®,,(r —2Imo,,v/—1) — Re®,,(x +yv/—1) < 4rlmoy,,. Therefore
Re®,,(z — 2Im oy /—1) — Re ®,,(0,n) < 27 x 2Imoy,, proving that z € R, if
z is on P12P2.

The segment FPP; is also in R, This is  because

%(Re@m((m—i— 1)/p+yv/—1) +2my) = %Re@m((m—i— /p+yv/—1)+27r>0
and P3 € Em'

Now, we can connect b, and b} by the polygonal chain PP, P2 Ps.

The proof is complete. O

6. PROOF OF THEOREM [I.4]

Now we can prove Theorem [[.4]

Proof of Theorem[I.} Since fn(z) uniformly converges to F'(z) in the region {IT]),
N (z - %) uniformly converges to ®,,(z) in (&1]). So we can use [31], Propo-
sition 4.2] (see also Remark 4.4 there) to conclude that

(6.1) % 3> exp <N < fn <2k2;\;1 - 2mm/_1>)

m/p+v/p<k/N<(m+1)/p—v/p £
(m+1)/p—v/p

= eNem(2) gz 4 O(e_N‘E:")
m/p+v/p

for some ¢/, > 0 from Proposition (511
Since ®@,,,(2) is of the form ([£E) in E,,, we can apply the saddle point method
(see [31l Proposition 3.2 and Remark 3.3]) to obtain

(6.2)
(m+1)/p—v/p NxF(c0)
/ NOm(2) gy — Ve (1+O(N 7)),
m/p+v/p \/—éf\/(2coshu+1)(2coshu73)\/N

where we choose the sign of the outer square root so that its real part is positive
(recall that we choose the sign the inner square root so that it is a positive multiple
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of v/—1). From (6.J)) and (6.2), we have
2k+1  2mmyv/—1
(6.3) Z exp (N X fN( +1_zomm ))

2N

m/p+v/p<k/N<(m+1)/p—v/p ¢

_ \/27reﬂr\/jl/4 N XF(o0) o ﬁ(l +O(N71)),
(14 2coshu)(3 — 2(:oshu))1/4 S

since Re F'(0g) > 0 from Lemma 52
Now, we use the following lemma, a proof of which is given in Section 8

Lemma 6.1. There exists € > 0 such that Re ®,, (mTH) < Re®,,(0m) — 2¢ for
m=20,1,2,...,p— 1. Moreover there exists bm > 0 such that if % < % < % + Om

m+1 3 k m+1
or = om < % < ==, then we have

2k +1 _ 2mmy/—1
2N 13

(6.4) Re fx (

for sufficiently large N .

) <ReF(og)—¢

If we choose v so that v/p < d,,, the sums

Z exp<N><fN <21€2;\L[12m7rg/_1)>

m/p<k/N<m/p+v/p

Z ’ exp (N X fn (22;1 - Qmﬂg/__l))

(m+1)/p—v/p<k/N<(m+1)/p
are both of order O (NeN(REF("O)*E)) from Lemma [6.]] Therefore we have

Z exp<Nfo (21;;1277”5\/—_1))

m/p<k/N<(m+1)/p

— Z exp (N X fn (2];;1 — Qmﬂg/__l))

m/p+v/p<k/N<(m+1)/p—v/p
L0 (NeN(Re F(Uo)—a))

=1/
_ \/%6 1/4 ))1/46N><F(ao) X \/§(1+O(N1))

(14 2coshu)(3 — 2coshu

and

where the second equality follows from (6.3).
It follows that

/271.671‘\/7_1/4
JN (Eyeg/N) = 9 h 2 Z ﬁp, 1/4
2sinh(u/2) ((1 + 2 coshu)(3 — 2coshu))

o [Eerno o

from (33). Using @I) with N = p and g = ¢*¥N™ /¢, we have
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Therefore we have

T/—1/4
JN (E;eg/N) = ! JIp (E;64N7T2/£) X 2me / /1
2sinh(u/2) (14 2coshu)(3 — 2coshu))
> ,%eNXF(UU)(l + O(Nil)).
Putting

Sp(u) = &(F(o0) + 2mv/—1)

= Liy (e_“_‘/’(“)) — Lis (e‘“""/’(“)) + u(p(u) + 2rv=1),
2
V/(2coshu +1)(2 coshu — 3)

Tr(u):

we finally have

JN (E; eE/N)
VvV =T 1 2 N 1/2 N _
_ T /2J E: ANT= /€ _ z XSE(u) 1 O(N 1
2sinh(u/2) () P ( € ) ¢ € ( +O( ))a
which proves Theorem [L.4] O

We can see that the cohomological adjoint Reidemeister torsion Tg(u) equals
+Tr(u) and the Chern-Simons invariant CS,, (4 (p) is given by Sg(u) —umy/—1—
suv(u) (mod 72Z). See for example [29, Chapter 5] for calculation of the adjoint
Reidemeister torsion and the Chern—Simons invariant.

7. QUANTUM MODULARITY

az+b
as
cz+d

For n := (CCL Z) € SL(2;Z) and a complex number z, define n(z) :=

2nv/—1 _ 2emy/—1
z—n~1(c0) = cz+d
In [36], D. Zagier conjectured the following.

usual. We also define h,(z) :=

Conjecture 7.1 (Quantum modularity conjecture). Let K be a hyperbolic knot

“ Z € SL(2;Z) with ¢ > 0. Putting Xo := N/p for positive

integers N and p, the following asymptotic equivalence holds.

JeN+dp (K§ e _177(X°)) o o \*/? V—-1CV(K)
~ S €
Jp (K;eQﬂ'\/—lXO) N—oo " hn(XO) *P ’

where Ck 5, 15 a complex number depending only on n and K.

in S3 and n =

(7.1)

hn(XO)

Note that Conjecture [[Ilis just a part of Zagier’s original quantum modularity
conjecture. See [36, [7, [I] for more details.

Remark 7.2. The modularity conjecture was proved by S. Garoufalidis and D. Za-
gier [7] in the case of the figure-eight knot, and by S. Bettin and S. Drappeau [1]
for hyperbolic knots with at most seven crossings except for 7s.

Bettin and Drappeau also proved that for the figure-eight knot F, Cg,, is given

as follows.
ce3™V=1/4 ¢ < c

Cen=—Z1 1_11 jwol P (Y11 |wg|2> ,
s

r=1g=1
where wy =1 —exp (21v/=1(% — 2)).



THE COLORED JONES POLYNOMIAL OF THE FIGURE-EIGHT KNOT 21

Since
S(0) = Liz (¢™V71/%) — Liz (e7V1/%) = Vol ($*\ E) V=T

(see, for example, [22) Appendix]), if K is the figure-eight knot E and n = ((1) 01) ,
(I turns out to be
. 2pw /N 3/2
(72) N (E’e i ) ~ *27T3/2TE(0>1/2 <L> exp (M) .
JIp (E; 62N”\/—_1/P) N—oo 2pmy/—1 2pmy/—1

Here we use the fact that F is amphicheiral, that is, FE is equivalent to its mirror
image, to conclude Jy(E;q) = Jy(E;q~ ). Compare ([2) with (I2), noting that
& = 2pmy/—1 when u = 0.

We can regard ([2)) as a kind of quantum modularity with n = (0 1) as

1 0
follows.
Put X := QN%‘/__I Note that Re X — oo as N — co. We have n(X) = ﬁf/?p

exp(2my/—1X) = e N™/E exp(2my/—1n(X)) = e~ ¢/N | and h,(X) = ¢/N. Since
the figure-eight knot is amphicheiral, (2] can be written as

JN (E;e%\/jln(X)) J=r T () 1/2 S (u)
J, (E;eQWJjX) ~ 2sinh(u/2) <hf(X)) <P <hf(X)) '

We would like to generalize this to other elements of SL(2;Z) and other hyper-
bolic knots in 2. Some computer experiments indicate the following conjecture
stated in Introduction.

Conjecture 7.3 (Quantum modularity conjecture for the colored Jones polyno-
mial). Let K C S3 be a hyperbolic knot, and u a small complex number that is not
a rational multiple of m\/—1. For positive integers p and N, put £ := u + 2pmy/—1

and X = QN%‘/? Then for any n = <LCL Z) € SL(2;Z) with ¢ > 0, the following
asymptotic equivalence holds.

(7.3)

JeN+dp (K;e%r\/__ln(x)) o ( ) /=T TK(u) 1/2 . SK(U)
Jp (K; e2mV=1X) NS THmY 2sinh(u/2) \ ki, (X) P ’

where Ck ,(u) € C does not depend on p.

Note that ¢N + dp comes from the denominator of n(N/p) =n (X ‘u:O).
Remark 7.4. Compare the exponent 1/2 of 1/h,(X) = % in (73)) with 3/2 in
(TI). Our modularity would have weight 1/2 rather than 3/2.

Remark 7.5. Since (—n)(X) = n(X), we may assume that ¢ > 0.
1

If ¢ = 0, then n = :|:<O If) for some integer k. Since n(X) = X +

k, we have exp(27r\/7177(X)) = exp(2mv/—1X) and so J, (E;e27r\/fln(x)) _
J, (E; ezw\/flx).

Remark 7.6. When p=1 and n= <(1) _01>, ([3) becomes

I (K; e—<“+2W—_1>/N)
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H 1/2 N 1/2 N X SK( )
~ - Sa— - RO
N—oo Cren(w) 2sinh(u/2) (Tx(w)) u+ 2my/—1 P\t 2nv1)’

which coincides with [24] Conjecture 1.6] with Cg,(u) = 1. See also [2]
9]. Strictly speaking, we need to take the mirror image K of K because

In (Ksem(2n/=DINY — gy ([ elt2ny=D/N),

8. LEMMAS

In this section we prove lemmas that we use.

Proof of Lemma[Zl Recall that £ = u + 2pmy/—1 and v = ﬁ\/_—l
Since Rey = p/N > 0, sinh(yz) ~ e; and sinh(yx) ~ %,g, So we
N—o00 N——o0
have
e(2z 1z (2Z - 2)z
x sinh(z) sinh(yx) NSoo 22°
and

el —1 etz

x sinh(z) sinh(yz) NSl 220

Therefore if — Rev/2 < Rez < 14 Re~/2, then the integral converges, completing
the lemma. O

The following proof is almost the same as [27, Proposition 2.8]. See also [31]
Proposition A.1].
Proof of Lemma[2.7) We will show that T (z) = %Eg(z) + O(1/N).

Recalling that & = 2Nny+y/—1, we have

N 1 6(2Z 1z yx
T N, _ 1 —1)|d
~(z) ¢ 2(2) 4 )= |yx2sinh(z) (sinh(vw) > ’
(2z—1)x
< N € : 1) da.
2(¢| J= |22 sinh(x) \ sinh(yx)
Since the Taylor expansion of —Sm};(y—) around y = 0 is 1+ yz +-o, we have iy =
1— % +o0(y?) as y — 0. Therefore, we have SIHKT 1}
¢ > 0 and so
N c (2w
T - —L < = ——7| 4=,
~(2) ¢ 2(2) N /ﬁ sinh(x) v
where we put ¢ := 5.
We put
%) 6(2Z 1z
dx
1 smh ’
1 22 1z
d
/OO sinh( x) v
(2z 1)Z
e
dx.
/le | Im 20 sinh(z)
We have

© 9g2zRez—x 00 2621(Rez—1) ) 00
I+§/ 7dx:/ —————dr < 2/ e~ dy
, e —e? 1 1—e 22 1—e2 )y
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6721/
T vl —e2)
where we use the assumption Rez <1 —wv.
Similarly, we have
-1 2x Rez—x -1 2z Re z -1
2e 2e 2
I,S/ ﬁdl':/ 2w d.fCS _2/ €2VIdZL'
feo €T —€ oo 1 —e 1—e oo

6—21/

- v(l —e2)’
where we use the assumption Re z > v.
Putting 2 = ¢®V=1 (0 <t < 7) and L := MAaX|y|=1,1m >0 | Sinh(z)], we have

= |
0

which is bounded from the above because both Re z and Im 2 are bounded.
Therefore, we see that I, + I + I is bounded from above, which implies that

]TN(Z) - g@(z)] — O(1/N). 0

e(2z—1)et V-1

1 (" )
- | /_1615\/—_1‘ di < _/ 6(2Rez—1)cost—21mzsmt dt,
sinh (et\/jl) ‘ - L

0

Proof of Lemmal52 Since Re F(0) coincides with Re ®(wp) in [24] (see [27, Re-
mark 1.6]), we have Re F(0) > 0 from [24] Lemma 3.5].

Next, we will show that £(F (oo) — F(0)) is purely imaginary with positive imag-
inary part. Then we conclude that Re(F (o) — F(0)) > 0, since £ is in the first
quadrant.

Since ¢(u) is purely imaginary, we have Lip (e=#~#(®) = Li, (e7“+¥(®). So
we see that £(F(og) — F(0)) = Lip (e7*~%(W) — Lip (e7"+¢™) + w( + 2m)\/—1
is purely imaginary with imaginary part 21Im Lis (e’“ﬂo(“)) + u(f + 27), which
coincides with Im(£®(wp)) + 2ur > 0 in [24] P. 214].

This proves the lemma. (I

Proof of Lemmal2.3 We have
3 (‘bm(PlQ) - (I)m(am))

((6m+5)m+26 ((6m+5)7+26)
=Ly (e ) Ly (et )

— LIQ (67u7¢(u)) + L12 <€7u+¢(u))

n (2m 4+ 1)ug N u?(2(m + )7 + 6) 3
2p pm

u(2(m+ )7+ 0)v/—1.
Its real part is
Lis (767“7'7’"(“)) — Lis (767“‘1’"(“)) + ugm (u),

where we put g, (u) := W, and its imaginary part is

—2TmLis (e_“_‘p(“)) —u(r +0).
Then we have
|€|2 Re (F(P; F
u e (F(P2) — F(om))

= Re ((F(P22) ~ Flow))) + 2% T (£(F(Pys) — Flow)))

= Li (—e_“_qm(“)) — Lis (—e‘“ﬂm(“)) + ugm (u)
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QZW (2 Im Lis ( “ja(u)) + u(r + 9)) .

By using the inequality 2ImLis (e %~%() 4+ uf > 0 in [24] § 7], this is less than
¢p,m (), where we put

¢p,m(u) 1= Liy (fe*“*qm(“)) — Liy (767““’"(“)) + U (u) — 2pr.
Now we have

d

etm(W) 4 v
d—cpm(u) = ¢, (u)log(2 coshu + 2 cosh g, (u)) + log ( ) ,
u

1+ e*“‘HIm(u)

which can be easily seen to be positive. Since u < k, it suffices to prove ¢, (k) < 0.
Since (k) = 0, we have

2
¢pm(K) = Lip ( —n<1+em+s>) CLi (76—»@(1—%)) " (6”12& o,
P
which is increasing with respect to m, fixing p. We will prove that ¢, ,—1(k) < 0.
We calculate

1
Cpp—1(k) = Lia (7€H(i_4)) — Lis <fe”(_i+2)) + <3 — Q_p) k2 — 2pm?.

The derivative of ¢, ,—1(k) with respect to p equals

1
%bg (3+2cosh (H (3— Q_p))) — 272,

which is less than —27% 4 log(6 + 2 cosh(3k) = —18.274... < 0. It follows that
cpp—1(K) < cr0(k) =—14.9942... < 0.
This shows that Re(F(Pi2) — F(o,,)) < 0, proving the lemma. O

Before proving Lemma [6.1] we prepare the following lemma.

Lemma 8.1. Put g(z) := 4sinh (%(1 + x)) sinh (%(1 - ac)) For an integer 0 <
m < p, there exists 6, > 0 such that [g(l/N)| <1 if 2 — 6y < L < 2 A om
Proof. For an integer 0 < m < p, we can easily see that

g(m/p) = 2(coshu — cosh(mu/p)).

So we conclude that g(m/p) is monotonically decreasing with respect to m. There-
fore we have 0 = g(1) < g(m/p) < g(0) = 2(cosh(u) — 1) < 2cosh(xk) —2 = 1. So
we have 0 < g(m/p) < 1.

Therefore, there exists d,, > 0 such that |g(z)| < 1 if |z —m/p| < dpn, completing
the proof. (I

Proof of Lemmal6dl. From (2)-(ii) of the proof of Proposition b1, we know that
mTH € D,,, that is, Re ®,, ( ) < Re®,,(0.,). Therefore there exists e > 0 such

that Re @, (mH) <Re®(0m) —2e form=0,1,2,...,p— 1.
Next, we show that there exists m > 0 such that if mTH —Om < % < mTH, then

(€4) holds.

We can choose 0/, > 0 so that Re ®,,, (£) < Re ®,, (’"TH) +eif (m+1)/p=4., <
k/N < (m+1)/p. So we have Re ®,,, (£) < Re ®,,(0,) — . Now recall that fn(2)
converges to F'(z) in the region (@IJ). Since we have

R 2k+1  2(m—1)my/—1 I 2k+1  2mmy/—1
e<2N G ) 2p7rm<2N G )
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_2k+1 m
T 2N p’
Re(2k+1_2mm/—_1)_2ﬂlm(2k+1_2m7r\/—_1)
2N ¢ u 2N ¢
2k+1
2N

ifv/p+m/p—1/2N)<k/N<(m+1)/p—v/p—1/(2N) and k/N < 2Mn/u+
1—1/(2N), then fn (2k+1 - 27"%‘/__1) converges to

Py ) - (5)

as N — oo. Therefore we see

2k+1  2mmy/—1
RefN< ON — 5

> <Re®,,(0m) —¢
=ReF(og)—¢

if we choose v small enough so that 67, > = + 7 (and N is large enough). Note
that so far k should satisfy the inequalities

8.1 — < =<
(8.1) )

On the other hand, putting hy (k) := Hl 19 (%), we have
(82) \hv (B)| > [l (K)]

g%—5m<%<%<%+5mfromLemmam Notethatif%§%<7+1,we
ave

(8.3) v (k) = 1 — e~ 4pN7?/¢ 2k +1 2m7ﬁ/1>)

2sinh(u/2) 2N ¢
from (32). From [§2) and B3), if mTH — b1 < £ < % < mTH, then we have

ﬂp,m exp <N x N <

2k+1 2 —1 1 2sinh(£/2)
R (Pt~ ) = o | )
1 2sinh(£/2)

P e N

2K +1 B 2mmy/—1
IN ¢ ’

=Re fn (

which means that Re fy (2—+1 2’"%‘/__1) is monotonically decreasing with re-

spect to k if mTH — 1 < £ < TH‘ Combined with (&I]), we conclude that
(64) holds if ’"TH —8, << mT choosing ¢/, less than 6,41 if necessary.
Now, we show that for m =1,2,...,p — 1, (64) holds if % < % < n + 0.

From (82) and B3), if = — 5, < & <™ < & < ™ 44, we have

2k+1  2mmy/—1Y\ 1 2sinh(£/2)
1 2sinh(&/2) ,
< N 10g 1_e —4pN=2 /¢ ﬂp m (k )
1 2sinh(£/2)
< N 108 | T mwme fpma v ()
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gy (221 2m=De7TY

which is less than Re F'(0()—¢ from the argument above. Here the second inequality
follows since

Bp,m

= 2‘cosh(4pN7r2/§) - cosh(4mN7r2/§)‘
ﬂp,mfl

1 dpum? x N
~ — X - a— .
N 2P\ T

So ([64]) holds.
Finally, we consider the case where m = 0. Since hn(0) = S0 = 1, we have
1y 1 2sinh(§/2) 1 2sinh(£/2)
RefN (ﬁ) = Nlog 1 _ 6_4pN7T2/5 S Nlog 1+ ‘674PN7T2/£‘
1 2sinh(£/2)
=5 log ‘ g -0 (N — o0).

Since Re F'(0p) > 0 from Lemma (5.2 (6.4) holds if k/N < o and N is sufficiently
large. 5
As a result, if we put d,,, := min{é,,, d,n }, [G4) holds. O

APPENDIX A. THE CASE WHERE (p, N) # 1

In this appendix, we will calculate Hle (1 — eW=DE/N) (1 — eW+DE/N) agsum-
ing (p, N)=c>1. Put N :=N/ceNandp' :=p/ceN.
Note that jN/p (1 <j < N —1, j € N) is an integer if and only j is a multiple
of p'.
If k < N’, then we can choose an integer m < p’ so that mN/p < k < (m+1)N/p
because N/p,2N/p,...,(p' —1)N/p are not integers. Therefore from [B.1), we have
k
TJ(1 - W -DE) (1 4 (N +DE/N)
=1

— 11 (1 _ e4(zofj>N7r2/£) (1 _ e4<p+j>Nw2/£)

<.
Il
—

En((N—k—1/2)y—p+m+1)
EN((N+k+1/2y—p—m)
If k = N’, we have

/ _ o(N=D¢/N _ o(N+DE/N
ll:[l(l e )(1 eVt )
N'—1
_ o(N=D¢/N _ o(N+DE/N _ o(N=N")¢/N _ o(N+N")E/N
ll:[l(l e )(1 e+ ) (1 e )(1 e+ )

- (1 _ e(cﬂ)&/e) (1 _ e(c+1)£/6)
apN=2/e [P =1

« 1_1675 11 (1 _ 64(p—j)N7r2/£) (1 _ e4<p+j>Nw2/5)
— €

j=1
y EN((N—=p +1/2)y—p+p)
Ex((N+p —1/2)y—p—p +1)’
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since (p' — 1)N/p < N' —1 < p'N/p.
If k is an integer with nN' < k < (n+1)N’, writing l (0 <l <k)asl=aN'+b
with 0 <a<mnand 0<b< N’ —1, we have

ﬁ (1 _ 6<N4>§/N) (1 _ 6<N+z>s/zv)

=1

% (1 _ e(N—nN'—b)g/N) (1 _ e(N+nN'+b)g/N)

n—1 n—1N'—1

(1 _ e(m)é/c) (1 _ e<c+a>s/c) < T TI Pus

a=1 a=0 b=1
k—nN’

_ e=mefe) (1 _ letng/e
x(le )(1e+ )b]:[lQb,

where we put
Py = (1 _ e(N—aN/—b)S/N) (1 _ e(N+aN/+b)§/N)
— (1 _ 62(N—aN/—b)W\/?1v) (1 _ 62(N+aN'+b)7r\/—71y) 7
Qp = (1 _ e(anN’fb)é/N) (1 _ e(N+nN’+b)g/N)

= (1 _ eQ(N—nN’_b)ﬂ'\/—_l’Y) (1 _ 62(N+an+b)7r\/—_1y) .

If we choose i (0 < i < p’ — 1) with iN'/p’ < b < (i + 1)N’/p’, then we have
(' —ap’ —i—1)N/p< N—aN' —b< (p) —ap’ —i)N/p and (p +ap’ +i)N/p <
N+aN' +b< (p' +ap’ +i+1)N/p. So from Corollary 2.6, we have

N’ —1 p'—1

H Pa,b = H H Pa,b
b=1

=0 \iN’/p’<b<(i+1)N'/p’

_plif 10 En((N—aN' —b—1/2)y—p+ap +i+1)
i=0 \iN'/p'<b<(i+1)N'/p' En((N—aN'—b+1/2)y—p+ap +i+1)

y H En((N+aN' +b—1/2)y—p—ap —1i)
iN'Jp! <b<(i+1)N'/p' En((N4+aN' +b+1/2)y —p—ap’ —1)
=H Ex((N = aN' = [(i + )N'/p') = 1/2)y —p+ap/ +i+1)
EN((N—aN’ — liN'/p'| =1/2)y—p+ap’ +i+ 1)

y En((N+aN'+ [iN'/p'| +1/2)y —p—ap' —1i)
Enx((N+aN'+ [(i+1)N'/p'| +1/2)y —p —ap/ — 1)
EN((N = (a+1)N"+1/2)y —p+ (a+1)p)

En((N —aN'—[(p =1)N'/p'] =1/2)y —=p+ (a +1)p')

=0
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L EN((N A aN + [ - YN/ +1/2)y—p— (a+ Dp' +1)
Ex((N+(a+1)N' —=1/2)y—p—(a+1)p/ +1) '
Note that the case where ¢ = p’ — 1 is exceptional.
Using Lemma R with z = (N—aN'—[iN'/p' | -1/2)y—p+ap’+i (i =1,...,p' —
2)and z= (N+aN' + [(i+1)N'/p'| =1/2)y—p—ap’' —i—1 (i=1,...,p —2),
this becomes

H ( 1— 64(1)—&1)’—1')1\”72/5) (1 _ 64(p+ap’+i)N7r2/€))

EN((N+aN'+ 1/2)y — p—ap)
N

EN((NfaN’71/2)'y p+ap +1)
En((N—=(a+1)N'+1/2)y—p+ (a+1)p)
En((N+(a+1)N' —=1/2)y—p—(a+1)p' +1)

Therefore we have
n—1N'—1

[T T Pes

a=0 b=1
n—1p —1

“T1 11 ( ( _ 4<p—ap/—z'>sz2/s) (1 _ e4<p+ap'+z'>Nw2/s))

a=0 i=1
1:[1 EN (N+aN'+1/2)y—p—ap')
o N —aN'—1/2)y—p+ap’ +1)

EN(<N—(a+1N'+1/2v—p+<a+1>p’)
Ex((N+(a+1)N'=1/2)y —p— (a+1)p' +1)

apNr?/e n=1p'—1
Lo - a I1 ((1 _ e4(p+ap/+z')Nw2/£) (1 _ e4(p—ap’—i)Nw2/s))
1—e

a= 1=

1 — edptrap')N?/e | _ ga(p—ap’)N7?/¢
. H 1= elerai/e  * 7 ] ele-a)/e

y EN((N—nN’ +1/2)y — p+ np')
Enx((N+nN'—1/2)y—p—np +1)

L genere T (1 _ e4(p+z)N7r2/£) (1 _ 64(pfl)N7r2/f)

Tl T (1 elerae/e) (1 el
y En((N—=nN'"41/2)y —p+np')
Ex((N+nN' —1/2)y—p—np +1)

where we use Lemma 27 for w = (N +aN" )y —p—ap’ (a =0,1,...,
w=(N—aN')y—p+ap (a=1,2,...,n— 1) at the second equality.
Similarly, letting h (0 < h < p’ — 1) be an integer with AN'/p’ < k —nN' <

(h+ 1)N'/p', from Corollary 2.6 we have

k—nN’ h—1
H Qp = H H Qp | x H Qv
b—1

i=0 \iN’/p'<b<(i+1)N’/p’ RN’ /p' <b<k—nN’

n —1) and

En((N—=nN"—b—1/2)y—p+np +i+1)
En((N—=nN"—=b+1/2)y—p+np +i+1)

‘| I

i=0 \iN'/p'<b<(i+1)N’/p’
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y 1 En((N+nN"+b—-1/2)y —p—np/ —i)
En((N+nN'"+b+1/2)y—p—np —i)

iN' [p <b<(i+1)N'/p/
H En((N—=nN"—b—-1/2

X
Ex((N—=nN"—b+1/2

y—p+np +h+1)
y—p+np +h+1)

RN’ /p' <b<k—nN' v ((
1 Enx((N+nN'+b—1/2
ExN((N+nN +b+1/2

y—p—np —h)
y—p—np —h)

X

— [ — =

AN’ /p' <b<k—-nN’
_’ﬁ (EN((NnN’ L+ )N'/p') —1/2)y —p+np' +i+1)
_120 EN((N—nN’—LiN’/p’J—1/2)7—p+np’+i+1)

y En((N+nN'+ [iN'/p'] +1/2)y —p—np’ —1) )
En((N+nN'"+ [(i+1)N'/p'] +1/2)y —p —np' — i)
En((N—=k—=1/2)y—p+np' +h+1)
En((N —nN'"— [hN'/p'] —=1/2)y —p+np’ + h+1)
EN((N+nN'+ [AN'/p' | +1/2)y —p—mnp' — h)
En((N+k+1/2)y—p—np —h)

X

Using Lemma [Z8 with z = (N — nN’ — [iN'/p'| —=1/2)y —p+np' + i and z =
(N+nN' + |iN'/p ] +1/2)y—p—np' —i (1 =1,2,...,h), we have

k—nN’ h

_ Al )N /E) (1 _ AGnp 1) N /€
ZEQZ’ 1_[1((1 ed(p—np )(1 oAlp+np’+ ))

En((N+nN'+1/2)y—p—np')
En((N —nN'=1/2)y —p+np' +1)
EN((N—k—1/2)y—p+np'+h+1)

En((N+k+1/2)y—p—np' —h)

Therefore, we finally have

ﬁ (1 _ e(N—l)f/N) (1 _ 6(zv+l>5/N)
&

l(; <cfn>§/c) (1 _ e<c+n>5/c)

apN=2/e P 1
1—e¢

x e x I1 (1 _ e4(p—l>Nw2/s) (1 _ e4(p+z)sz2/5)
=1

y En((N—=nN'"+1/2)y —p+np')
Ex((N+nN'—1/2)y—p—np' +1)

h
<1 ( (1 _ e4(p—np/—z'>sz2/s) (1 _ 64(p+np/+i)Nw2/£))
i=1

y En((N+nN'"+1/2)y —p—np')
En((N—=nN'"—=1/2)y —p+np' +1)
En((N—k—1/2)y—p+np' +h+1)

En((N+k+1/2)y—p—np —h)
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1— 4pN7r /& np’

_ 4(p—l)N=?/¢ _ LAl+)NT?/¢
——— xH( _e )(1 e )
h
% H ((1 _ A np’fi)Nﬂ'z/f) (1 _ e4(p+np'+i)N7r2/£))

=1
EN((N—k—1/2)7—p+np’+h+1)
En((N+k+1/2)y—p—np —h)
1764PN7T /€ np'+h . R )
(p—1)N==/¢ _ pdp+)N7=/¢E
e (0 ) (1 ))
EN((kafl/Q)'yprrnp’thJrl)
Ex((N+k+1/2)y—p—np —h)

where we use Lemma .7 for w = (N —nN")y—p+np’ and w = (N+nN")y—p—np’
at the second equality. Recalling that we choose n and h so that nN’ < k <
(n+ 1)N" and hN'/p’ < k —nN’' < (h+ 1)N'/p, we see that np’ + h satisfies
(np’ + h)N/p < k < (np’ + h + 1)N/p. So putting m := np’ + h we see that
it mN/p < k < (m + 1)N/p, then the formula above coincides with (B where
(p,N) =1.
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