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UNIFORM QUASI-MULTIPLICATIVITY OF LOCALLY CONSTANT

COCYCLES AND APPLICATIONS

REZA MOHAMMADPOUR ID , KIHO PARK

Abstract. In this paper, we show that a locally constant cocycle A is k-quasi multi-
plicative under the irreducibility assumption. More precisely, we show that if At and
A∧m are irreducible for every t | d and 1 ≤ m ≤ d− 1, then A is k-uniformly spannable
for some k ∈ N, which implies that A is k-quasi multiplicative. We apply our results to
show that the unique subadditive equilibrium Gibbs state is ψ-mixing and calculate the
Hausdorff dimension of cylindrical shrinking target and recurrence sets.

1. Introduction and statement of the results

A matrix cocycle A on a compact metric space X is a continuous map A : X → GLd(R)
over a topological dynamical system (X,T ). For n ∈ N and x ∈ X, we define the product
of A along the length n orbit of X as

An(x) := A(T n−1(x)) . . .A(x).

The submultiplicativity of the norm ‖ · ‖ implies that ‖A‖ is submultiplicative in the
sense that for any m,n ∈ N,

0 ≤ ‖An+m(x)‖ ≤ ‖Am(T n(x))‖‖An(x)‖.

Such submultiplicative sequence gives rise to a norm potential ΦA := {log ‖An‖}n∈N.

Let ℓ ∈ N be given. The one-sided shift Σℓ of ℓ symbols is a space {1, 2, . . . , ℓ}N. Let
σ : Σℓ → Σℓ be the left shift map defined by σi = i1i2 · · · for all i = i0i1 · · · ∈ Σℓ and for
simplicity, we denote it by (Σℓ, σ). We will focus on locally constant cocycles A, which are
matrix cocycles A : Σℓ → GLd(R) over a one-sided shift (Σℓ, σ) that depends only on the
zero-th symbol x0 of x = (xi)i∈N. Assume that (A1, . . . , Aℓ) ∈ GLd(R)

ℓ generated a locally
constant cocycle A : Σℓ → GLd(R). We say that A : Σℓ → GLd(R) is irreducible if there
does not exist a proper subspace V ⊂ R

d preserved such that AiV ⊂ V for i = 1, . . . , ℓ.
We also say that A : Σℓ → GLd(R) is strongly irreducible if there does not exist a finite

collection V1, . . . , Vm of non-zero proper subspaces Vj such that Ai

(

⋃m
j=1 Vj

)

=
⋃m
j=1 Vj

for every i = 1, . . . , ℓ.
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For any length n word I = i0 . . . in−1 (see Section 2 for the definition), we denote

AI := Ain−1
. . . Ai0 .

Denoting by L the set of all finite words, we say a locally constant cocycle A : Σℓ →
GLd(R) generated by (A1, . . . , Aℓ) is quasi-multiplicative if there exist k ∈ N and c > 0
such that for any I, J ∈ L, there exists K = K(I, J) ∈ L with |K| ≤ k such that

‖AIKJ‖ ≥ c‖AI‖‖AJ‖.

Notice that quasi-multiplicativity of A resembles Bowen’s specification property [6] in
some respects. Feng [11] showed that the quasi-multiplicativity property implies the unique-
ness of the Gibbs equilibrium measure for the norm of the cocycle A. Feng [12] also proved
that if A is a locally constant GLd(R)-cocycle over a full shift generated by an irreducible set
of matrices, then A is quasi-multiplicative. Recently, there has been further study in quasi-
multiplicativity (see [19, 27, 3, 26] for instance). Unfortunately, the lack of control on the
length of the connecting word K from quasi-multiplicativity is a limitation in studying im-
portant applications such as Bernoulli property on a class of subadditive equilibrium states
and shrinking target and recurrence sets; see Section 4. When the connecting word K in the
quasi-multiplicativity property has a fixed length k ∈ N, we say A is k-quasi-multiplicative;
see Definition 2.2.

There are a few results along this line in the literature. In the same setting of locally
constant cocycles, Bárány and Troscheit [3, Proposition 2.5] and Morris [26, Theorem 7]
proved that A is k-quasi-multiplicative when A is (strongly) irreducible and proximal.
Note that if A is strongly irreducible, then At is irreducible for every 1 ≤ t ≤ d. In this
paper, we generalize their results. A distinction in our result from similar results is that we
only require versions of irreducibility as our assumptions, while many recent similar results
additionally need some form of proximality to obtain k-quasi-multiplicativity property. In
fact, our result is inspired by a recent result of Bochi and Garibaldi [4, Proposition 3.9] in
a more general setting; see Remark 2.6 for further comments on their work.

We say that a locally constant cocycle A : Σℓ → GLd(R) is k-uniformly spannable (See
Subsection 2.2 for more information) if there exists k ∈ N such that for any nonzero vector
u ∈ R

d,

Vu,k = R
d,

where Vu,k := Span{AIu : I ∈ L with |I| = k} ⊆ R
d.

We will also make use of the exterior product cocycle A∧m for 1 ≤ m ≤ d − 1 where
A∧m(x) is considered as a linear transformation on (Rd)∧m. Our main result is as follows:

Theorem 1.1. Let A : Σℓ → GLd(R) be a locally constant cocycle. Suppose At and A∧m

are irreducible for every t | d and 1 ≤ m ≤ d − 1. Then A is k-uniformly spannable for

some k ∈ N.

As spannable cocycles are quasi-multiplicative, the following corollary is immediate of
the above theorem.
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Corollary 1.2. Let A : Σℓ → GLd(R) be a locally constant cocycle. Suppose At and A∧m

are irreducible for every t | d and 1 ≤ m ≤ d−1. Then A is k-quasi-multiplicative for some

k ∈ N.

Corollary 1.2 has nice applications in subadditive thermodynamic formalism and number
theory, which we discuss in more detail in Section 4.

The paper is organized as follows. In Section 2, we introduce relevant notations and
prove Corollary 1.2. In Section 3, we prove Theorem 1.1, and in Section 4, we show some
applications of Corollary 1.2.

1.1. Acknowledgements. The authors would like to express their gratitude to the anony-
mous referee for their valuable corrections and suggestions, which greatly contributed to
the improvement of the paper. R. Mohammadpour was supported by the Knut and Alice
Wallenberg Foundation.

2. Preliminary

2.1. Set up. For each n ∈ N, we define L(n) to be the set of all length n words of Σℓ, and
we define L :=

⋃

n∈N

L(n) to be the set of all words. If i = i0i1 · · · ∈ L, then we define i|n =

i0 · · · in−1 for all n ∈ N. The empty word i|0 is denoted by ∅. The length of i ∈ L is denoted
by |i|. The longest common prefix of i, j ∈ L∪Σℓ is denoted by i∧ j. The concatenation of
two words i ∈ L ∪ Σℓ and j ∈ L is denoted by ji. If i ∈ L(n) for some n, then we set [i] =
{j ∈ Σℓ : j|n = i}. The set [i] is called a cylinder set. A cylinder containing x = (xi)i∈Z ∈ Σℓ
of length n ∈ N is defined by [x]n :=

{

(yi)i∈N ∈ Σℓ : xi = yi for all 0 ≤ i ≤ n− 1
}

. The
shift space Σℓ is compact in the topology generated by the cylinder sets. Moreover, the
cylinder sets are open and closed in this topology and they generate the Borel σ-algebra.
We denote by M(Σℓ, σ) the space of all σ-invariant Borel probability measures on Σℓ.

2.2. Quasi-multiplicativity and Spannability.

Definition 2.1. We say a locally constant cocycle A : Σℓ → GLd(R) is quasi-multiplicative

if there exist k ∈ N and c > 0 such that for any I, J ∈ L, there exists K = K(I, J) ∈ L
with |K| ≤ k such that

(2.1) ‖AIKJ‖ ≥ c‖AI‖‖AJ‖.

Definition 2.2. We say a locally constant cocycle A : Σℓ → GLd(R) is k-quasi-multiplicative

for some k ∈ N if there exists c > 0 such that for any I, J ∈ L, there exists K = K(I, J) ∈
L(k) such that (2.1) holds.

We will elaborate more on the applications of k-quasi-multiplicativity in Section 4. In the
remaining part of this subsection, we describe a notion of spannability, that is closely related
to quasi-multiplicativity. In what follows, we will repeatedly make use of the following
notation: given a locally constant cocycle A, a vector u ∈ R

d and an integer k ∈ N, we
define

(2.2) Vu,k := Span{AIu : I ∈ L(k)} ⊆ R
d.
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Definition 2.3. We say a locally constant cocycle A : Σℓ → GLd(R) is spannable if for any
nonzero vector u ∈ R

d, there exists k = k(u) ∈ N such that Vu,k = R
d. If k = k(u) can be

chosen uniformly in u, then we say A is k-uniformly spannable.

Remark 2.4. We note that if Vu,k is equal to the entire subspace R
d for some u ∈ R

d and

k ∈ N, from continuity so does Vv,k for all v ∈ R
d in a small neighborhood of u. Moreover,

if Vu,k is equal to R
d, then so does Vu,k+1. In particular, if A is k-uniformly spannable for

some k, then it is k′-uniformly spannable for any k′ ≥ k.

Throughout the paper, when we measure the angle between nonzero vectors, we mean
the angle between the lines spanned by the vectors. Similarly, when we measure an angle
between a nonzero vector v and a hyperplane W, we mean the minimum angle ∡(v,w) over
all w ∈ W\{0}. The following statement can be found in [8, Proposition 8] which states
that spannability implies quasi-multiplicativity.

Proposition 2.5. Suppose a locally constant cocycle A : Σℓ → GLd(R) is k-uniformly

spannable, then A is k-quasi-multiplicativite.

Proof. The proof is similar to [8, Proposition 8] for fiber-bunched cocycles. We give a sketch
of the proof here for the convenience of the readers.

For any A ∈ GLd(R), let vA,1 ∈ R
d be a unit vector such that ‖AvA,1‖ = ‖A‖, and let

vA,2 be the unit vector in the direction of AvA,1.
From k-uniform spannability, we begin by finding ε > 0 such that for given arbitrary

I, J ∈ L, we can find K ∈ L(k) such that ∡(AKvAI ,2, (vAJ ,1)
⊥) ≥ ε. By [27, Lemma 4.5],

that translates to the existence of c > 0 satisfying the k-quasi-multiplicativity (2.1). �

Proof of Corollary 1.2. It follows from the combination of Theorem 1.1 and Proposition
2.5. �

We end this subsection by commenting on a class of cocycles that generalize the class of
locally constant cocycles and by comparing how the notions defined above relates to such
cocycles.

Remark 2.6. Beyond locally constant cocycles, there exists a subset of Hölder continuous
cocycles that are nearly conformal. We call them fiber-bunched cocycles. The most useful
property of fiber-bunched cocycles is the existence of holonomies and often we tend to think
them as generalizations of locally constant cocycles; see [5, 27, 22].

The properties introduced above, such as quasi-multiplicativity and spannability, can be
successfully extended, and sufficient conditions have been found which imply such proper-
ties. For instance, above mentioned result of Feng [11] on the uniqueness of the equilibrium
state using quasi-multiplicativity remains to hold for fiber-bunched cocycles. Moreover,
Park [27] showed that typicality, an assumption introduced by Bonatti and Viana [5] to
replicate the effect of strong irreducibility and non-compactness from the classical work
of Furstenberg [14] implies quasi-multiplicativity. The k-uniform spannability introduced
above was motivated by the work of Bochi and Garibaldi [4] who showed that irreducibility,
along with an extra assumption on how close the cocycle is from being conformal, implies
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uniform spannability. They use the term uniform spannability, when translated to our set-

ting of locally constant cocycles, to roughly mean
n
⋃

k=1

Vu,k = R
d for some n ∈ N. In order to

distinguish from their version of uniform spannability, we have decided to use k-spannability

to denote the stronger statement that Vu,k = R
d.

3. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1. Whenever we write V = W for two m-
dimensional subspaces of Rd, we mean they are equal considered as elements of the Grass-
mannian Gr(m,Rd). Moreover, for I ∈ L we define

AIV := Span{AIv : v ∈ V }.

Proof of Theorem 1.1. Suppose on the contrary that there does not exist k ∈ N such that
A is k-uniformly spannable, meaning that for every k ∈ N there exists u = uk ∈ R

d such
that Vu,k is a proper subspace of Rd. Defining an open set

Sk := {u ∈ R
d : Vu,k = R

d},

this means that its complement Tk := R
d \ Sk is a closed non-empty set for every k ∈ N.

Moreover, it is clear from the definition that Sk ⊆ Sk+1, meaning that Tk satisfies the

reverse inclusion Tk+1 ⊆ Tk. Therefore, the nested intersection
⋂

k∈N

PTk is necessarily non-

empty. In particular, we can choose a vector u ∈ R
d which belongs to Tk, meaning that

Vk := Vu,k is a proper subspace of Rd, for every k ∈ N.
As n 7→ dim(Vn) is a bounded non-decreasing function, the dimension of Vk has to

stabilize to some m ∈ N strictly smaller than d. By dropping the first few subspaces from
the sequence {Vk}k∈N we may assume that the dimension of Vk is equal to γ for all k ∈ N.
Moreover, from the definition (2.2) of Vk, we have

(3.1) Vk+n = AIVk = AJVk

for every k, n ∈ N and I, J ∈ L(n). This is the defining characteristic of the sequence
{Vk}k∈N. Now, by choosing a possibly different sequence of subspaces we may assume that
the common dimension γ of {Vk}k∈N is the smallest such number; that is, if {Wk}k∈N is
another sequence of subspaces of common dimension satisfying (3.1), then its dimension is
at least γ.

Lemma 3.1. For any i 6= j, the subspaces Vi and Vj either coincide or intersect trivially.

Proof. Suppose there exists i 6= j such that W := Vi ∩ Vj is a non-trivial proper subspace
of both Vi and Vj. Then for any n ∈ N and I ∈ L(n) we have

AIW = AI(Vi ∩ Vj) = Vi+n ∩ Vj+n,

where the resulting subspace Vi+n ∩ Vj+n does not depend on I. In particular, this allows
us to define a sequence of subspace {Wk}k∈N satisfying (3.1) where Wk := AIW for any
I ∈ L(k), but this is a contradiction to the choice of {Vk}k∈N being the sequence of subspaces
of the smallest dimension satisfying (3.1). �
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Following the lemma, we will now consider two separate cases, and conclude that both
cases will lead to a contradiction, and hence deduce that A must be k-uniformly spannable
for some k ∈ N.

Case 1: The first case is when Vi = Vj for some distinct i, j ∈ N. Since every Vk has
the same dimension, the sequence {Vk}k∈N must be periodic with some period t ∈ N; that
is, t ∈ N is a smallest integer such that V1 = Vt+1. Moreover, Vi and Vj have a trivial
intersection for distinct 1 ≤ i, j ≤ t. Recalling that each Vk has dimension γ, the subspace
W := Span{v ∈ Vi : i = 1, 2, . . . , t} is a γt-dimensional subspace of Rd preserved under A.
Since A is irreducible from the assumption, this implies that W must be the entire sub-
space R

d, and that t divides d. However, this implies that At, which preserves a nontrivial
subspace V1 (or any one of Vk), is reducible; a contradiction.

Case 2: The second case is any two subspaces from {Vk}k∈N have a trivial intersection for
any distinct i, j ∈ N, which is the choice m = γ. We will show that we also arrive at a
contradiction in this case.

We begin by choosing a decomposable vector wk = v1,k ∧ . . . ∧ vm,k ∈ (Rd)∧m where
Span{v1,k, . . . , vm,k} coincides with Vk. Since AiVk = AjVk = Vk+1 from (3.1) for any
Ai, Aj in the image of A, decomposable vectors A∧m

i wk and wk+1 differ by a multiplicative
constant. Moreover, each wk is an eigenvector of Bi,j := (A∧m

i )−1A∧m
j . We now fix any

i 6= j such that B := Bi,j is not a scalar multiple of the identity transformation. Such
choice of i, j is possible because otherwise every A∧m

i would be a scalar multiple of one
another, which contradicts the assumption that A∧m is irreducible for all 1 ≤ m ≤ d − 1.
Now let λk be the corresponding eigenvalue of wk.

Considered as a subspace of (Rd)∧m, let Wk := Span{w1, . . . , wk} for each k ∈ N. We

claim that the subspaceWN whereN :=
( d
m

)

is equal to the entire (Rd)∧m because otherwise
there would exist some k < N such that Wk = Wk+1, meaning that wk+1 belongs to Wk.
However, this would imply that A∧m preserves a proper subspace Wk of (Rd)∧m because
we can inductively show that wl (which is a scalar multiple of A∧m

i wl−1 for any Ai) belongs
to Wk for every l > k, and this contradicts the assumption that A∧m is irreducible for all
1 ≤ m ≤ d− 1.

Therefore, WN coincides with (Rd)∧m, and {w1, . . . , wN} forms a basis of (Rd)∧m. Now
choose for any l > N , so that wl can be written as

wl = c1w1 + . . .+ cNwN .

Applying B on both sides and using the fact that each wk is an eigenvector of B with

eigenvalue λk, we get λlwl =
N
∑

i=1
ciλiwi. Substituting the above equation for wl into λlwl

and equating coefficients gives λl = λ1 = . . . = λN , and this means that B must be a scalar
multiple of the identity transformation. However, it is a contradiction to the choice of B.

Since both cases lead to a contradiction, this completes the proof. �
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4. Applications

This section is devoted to showing some applications of our main theorems.

4.1. Gibbs matrix equilibrium states have the Bernoulli property. For any ma-
trix cocycle A : X → GLd(R) over a topological dynamical system (X,T ), and s ≥ 0,
the potential ΦsA := {s log ‖An‖}n∈N is subadditive. Therefore, the theory of subadditive
thermodynamic formalism applies. For instance, the subadditive variational principle (see
[9]) states that

P (ΦsA) = sup
µ∈M(X,T )

{

hµ(T ) + s lim
n→∞

1

n

∫

log ‖An(x)‖dµ

}

.

Any invariant measures achieving the supremum are called the equilibrium states of ΦsA.
If the entropy map is upper semi-continuous, the supremum is always attained. The ther-
modynamic interpretation of the parameter s is as an inverse temperature of a system (see
[30]), while the equilibrium measure µs of ΦsA describes the equilibrium of the system at
temperature 1/s. The s→ ∞ limit is therefore a zero temperature limit, and an accumula-
tion point of the µs can be interpreted as a ground state (see, e.g., [10, 17, 18, 7, 23, 21]).

Feng and Käenmäki [13] showed that if A is a locally constant GLd(R)-cocycle over a full
shift generated by an irreducible set of matrices, then ΦsA has a unique equilibrium state
µs for all s ≥ 0. Moreover, µs has the subadditive Gibbs property : there exists C0 > 1 such
that for any x ∈ Σℓ and n ∈ N, we have

C−1
0 ≤

µs([x]n)

e−nP (Φs

A
)‖An(x)‖s

≤ C.

Note that if µ satisfies a Gibbs inequality with respect to ΦsA, then µ is fully supported on
Σℓ.

Let σ : Σℓ → Σℓ be a left shift map. We say that an invariant measure µ ∈ M(Σℓ, σ)
is totally ergodic if for every n ∈ N, µ is ergodic with respect to σn. We also define
Σ̂ℓ := {1, 2, . . . , ℓ}Z equipped with a norm d, σ̂

(

(xk)k∈Z
)

:= (xk+1)Z and M(Σ̂ℓ, σ̂) the

space of all σ̂-invariant Borel probability measures on Σ̂ℓ.
We define the natural projection π : Σ̂ℓ → Σℓ by π

(

(xk)k∈Z
)

:= (xk)
∞
k=0 that is continu-

ous and surjective. Clearly µ̂ 7→ π∗µ̂ defines a continuous function M(Σ̂ℓ, σ̂) → M(Σℓ, σ)

and since shift-invariant measures on Σℓ and on Σ̂ℓ are both characterized by their values
on cylinder sets this map is bijective. Let µ ∈ M(Σℓ, σ), we will write µ̂ for the unique

element of M(Σ̂ℓ, σ̂) such that µ = π∗µ̂, and we call µ̂ the natural extension of the measure
µ. Since properties such as mixing, ergodicity and total ergodicity can be characterized
in terms of correlations between cylinder sets it is not difficult to see that each of those
properties holds for an invariant measure µ ∈ M(Σℓ, σ) if and only if the corresponding

property holds for µ̂ ∈ M(Σ̂ℓ, σ̂). We say that a measure µ̂ on Σ̂ℓ is a Bernoulli measure

if it has the form µ̂ =
(

∑ℓ
i=1 piδi

)Z

for some probability vector (p1, . . . , pℓ) and that µ̂

has the Bernoulli property if there exist a Bernoulli measure v̂ on Σ̂ℓ and a measure-space
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isomorphism φ : Σ̂ℓ → Σ̂ℓ such that φ ◦ σ̂ = σ̂ ◦ φ and φ∗µ̂ = v̂ (See [26, Section 7] for more
details). It is clear that every Bernoulli measure has the Bernoulli property, but the reverse
is in general false.

Morris [24, 25] showed that total ergodicity of equilibrium states implies mixing and that
the failure of mixing can be characterized by certain structures of the cocycle. Recently, he
[26] improved his own result by showing that total ergodicity implies the Bernoulli property.
Piraino [29, Theorem 3.3] showed that for any s ≥ 0, a unique Gibbs state for A, µs, has
the Bernoulli property when A is proximal and strongly irreducible. By using Corollary
1.2, we generalize their results.

Theorem 4.1. Let A : Σℓ → GLd(R) be a locally constant cocycle. Suppose that At and

A∧m are irreducible for every t | d and 1 ≤ m ≤ d − 1. Then for any s > 0, the unique

Gibbs state µs for the norm potential ΦsA is ψ-mixing:

lim
n→∞

sup
I,J∈L

∣

∣

∣

∣

∣

µs
(

[I] ∩ σ−n−|I|[J ]
)

µs([I])µs([J ])
− 1

∣

∣

∣

∣

∣

= 0,

and its natural extension µ̂ has the Bernoulli property.

Proof. Denote µ := µs. Since µ is the unique Gibbs equilibrium state for ΦsA, there exists
C0 > 0 such that

(4.1) C−1
0 ‖AI‖

s ≤ e|I|P(Φ
s

A)µ([I]) ≤ C0‖AI‖
s

for every I ∈ L. By Corollary 1.2, there exist an integer m ∈ N and constant C1 > 0 such
that for all I, J ∈ L there exists K ∈ L(m) such that

(4.2) ‖AIKJ‖ ≥ C1‖AI‖‖AJ‖.

Therefore, by (4.1) and (4.2), for every I, J ∈ L we have

C1µ([I])µ([J ]) ≤ C2
0C1e

−(|I|+|J |)P(Φs

A)‖AI‖
s‖AJ‖

s

≤ C2
0e

−(|I|+|J |)P(Φs

A)‖AIKJ‖
s

≤ C3
0e

|K|P(Φs

A)µ([IKJ ])

≤ C3
0e
mP(Φs

A)
∑

|K|=m

µ([IKJ ])

= C3
0e
mP(Φs

A)µ
(

[I] ∩ σ−m−|I|[J ]
)

so that

(4.3) µ
(

[I] ∩ σ−m−|I|[J ]
)

≥ κµ([I])µ([J ])

where κ := C−3
0 C1e

−mP(Φs

A).
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By (4.3), for any n ≥ m we have that

µ
(

[I] ∩ σ−n−|I|[J ]
)

=
∑

|K ′|=n−m

µ
(

[IK ′] ∩ σ−m−|K ′|−|I|[J ]
)

≥ κ
∑

|K ′|=n−m

µ([IK ′])µ([J ])

= κµ([J ])
∑

|K ′|=n−m

µ([IK ′])

= κµ([I])µ([J ]).

Thus we have by an approximation argument that

lim inf
n→∞

µ
(

X ∩ σ−nY
)

≥ κµ(X)µ(Y )

for all X,Y Borel measurable. The above inequality implies that µ is totally ergodic. Then,
the proof follows from [26, Theorem 1]. �

4.2. Shrinking target and recurrence sets. Let T : X → X be a topological dynamical
system on a compact metric space (X, d). Assume that µ is an T -invariant ergodic measure.
By Birkhoff ergodic theorem, for any ball B in X of positive µ-measure, the set

S := {x ∈ X : T nx ∈ B, for infinitely many n ∈ N}

has full µ-measure.
Now consider from the above definition of the set S that both the center and the radius

of the ball B are allowed to vary in n; given a function h : N → R+ tending to 0 as n→ ∞
and a sequence of points {zn}n≥1 in X, the set S can be generalized to

S(h) = {x ∈ X : T nx ∈ B (zn, h(n)) , for infinitely many n ∈ N} .

This set S(h) is called the shrinking target. Then one can ask how large the size of S(h) is
in the sense of measure and in the sense of dimension. This is called the shrinking target

problem by Hill and Velani [15] which concerns what happens if the target B shrinks with
time and more generally if the target also moves around with time. The points in S(h) can
be thought of as trajectories which hit a shrinking, moving target infinitely often.

The shrinking target problem has intricate links to number theory when using naturally
arising sets in Diophantine approximation as the shrinking targets; e.g. see [1, 2, 28].

The above works mostly concern conformal dynamics or dynamical systems in R
1 and

transitioning to higher dimensional non-conformal dynamics presents severe challenges. To
overcome the extreme challenges that affinities pose, a common approach is to “randomise”
the affine maps by considering typical translation parameter. Koivusalo and Ramirez [20]
gave an expression for the Hausdorff dimension of a self-affine shrinking target problem.
They show that for a fixed symbolic target with exponentially shrinking diameter and
well-behaved affine maps, the Hausdorff dimension is typically given by the zero of an
appropriate pressure function. Strong assumptions are made on the affine system, as well
as the fixed target.
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Let A = (A1, A2, · · · , Aℓ) be a collection of non-singular 2× 2 contracting matrices. Let

t = {t1, t2, · · · , tℓ} be a collection of k vectors in R
2. Let Dt = {fi(x) = Aix+ ti}

ℓ
i=1 be an

iterated function system formed by affine maps on R
2.

For a finite word i ∈ L, fi = fi1 ◦ · · · ◦ fin . There exists a unique non-empty compact set
Λ ⊂ R

2 such that

Λ =

ℓ
⋃

i=1

fi(Λ);

See [16]. Suppose that ℓ ≥ 2. Let us denote by πt the natural projection from Σℓ to the
attractor of Λ, that is,

πt(i) = lim
n→∞

fi1 ◦ · · · ◦ fin(0) =

∞
∑

k=1

Ai1 · · ·Aik−1
tik

Clearly, πt(i) = fi1 (πt(σ(i))).
We define the singular value function as follows

ϕs(A) =











‖A‖s, if 0 ≤ s < 1

‖A‖‖A−1‖−(s−1), if 1 ≤ s < 2

|det(A)|s/2, if 2 ≤ s <∞.

The pressure of the self-affine system is defined as

P (logϕs(A)) = lim
n→∞

1

n
log

∑

I∈L(n)

ϕs (AI) ,

whose existence of the limit is guaranteed from the submultiplicativity of ϕs(A). For
simplicity, we denote P (s) := P (logϕs(A)).

Let (Jk)k∈N ∈ (L)N be a sequence of target cylinders. We are interested in the shrinking
target set

St
(

(Jk)k∈N
)

= πt

{

i ∈ Σℓ : σ
ki ∈ [Jk] for infinitely many k ∈ N

}

.

For our sequence of target cylinders, we define the following inverse lower pressure:

α(s) := lim inf
k→∞

−1

|Jk|
logϕs (AJk)

Let

s0 := inf{s > 0 : P (s) ≤ α(s)}.

Unfortunately, the uncertainty of the length of the connecting word K in the quasi-
multiplicativity property does not let us to study shrinking target and recurrence sets
effectively. In order to study shrinking target and recurrence sets, Bárány and Troscheit
[3] prove that A∧s is uniform k-quasi-multiplicativity for every s ∈ (0, d) when A is fully
strongly irreducible and fully proximal. In the two dimensional case, we can improve their
results [3, Corollaries 2.7 and 2.8] by using Corollary 1.2.
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Lemma 4.2. Assume that A = (A1, . . . , Aℓ) is a collection of non-singular 2× 2 matrices.

Suppose that A is k-quasi multiplicative. Then, for every s ∈ [0, 2], there exist k ∈ N and

C > 0 such that for any I, J ∈ L, there exists K = K(I, J) ∈ L(k) such that

ϕs(AIKJ) ≥ Cϕs(AI)ϕ
s(AJ).

Proof. Since A is is k-quasi multiplicative, there exist k ∈ N and c > 0 such that for any
I, J ∈ L, there exists K ∈ L(k) such that

‖AIKJ‖ ≥ c‖AI‖‖AJ‖.

When s ∈ [0, 1], the proof follows by raising from k-quasi multiplicativity of A by power s.

Now, we are going to prove it when 1 < s ≤ 2. Notice that ‖A‖‖A−1‖−(s−1) =
|det(A)|s−1‖A‖2−s for any A ∈ GL2(R). Then, the proof follows by multiplying, rais-
ing from k-quasi multiplicativity of A by power 2− s, and raising from the determinant by
power s− 1. �

Corollary 4.3. Assume that A = (A1, . . . , Aℓ) is a collection of 2× 2 contracting matrices

and (Jk)k∈N is a sequence of target cylinders. Suppose that A and A2 are irreducible and

‖Ai‖ < 1/2 for all i ∈ {1, . . . , ℓ}. Then

dimH St ((Jk)k) = min {2, s0} for Lebesgue-almost every t.

Moreover, L2 (St ((Jk)k)) > 0 for Lebesgue-almost every t if s0 > 2.

Proof. By Corollary 1.2, A is k-quasi multiplicative. Then, the statement follows from the
combination of [3, Theorem 2.2] and Lemma 4.2. �

Suppose that ψ : N 7→ N, and β := lim infn→∞
ψ(n)
n . We consider the recurrent set

Rt(ψ) := πt

{

i ∈ Σℓ : σ
ki ∈

[

i|ψ(k)

]

for infinitely many k ∈ N

}

.

We define the square-pressure function

P2(s) := lim
n→∞

−1

n
log

∑

i∈L(n)

(ϕs (Ai))
2 ,

where the limit exists because of the subadditivity of ϕs(A). Moreover, the pressure is
continuous in s, strictly increasing, and satisfies P2(0) = − logN and P2(s) → ∞ as
s→ ∞.

Corollary 4.4. Assume that A = (A1, . . . , Aℓ) is a collection of 2×2 contracting matrices.

Suppose that A and A2 are irreducible and ‖Ai‖ < 1/2 for all i ∈ {1, . . . , ℓ}. Let ψ : N → N

with β = lim infn→∞
ψ(n)
n < 1, then

dimH Rt (ψ) = min {2, r0} for Lebesgue-almost every t,

where r0 is the unique solution of the equation

(1− β)P (r0) = βP2 (r0) .

Moreover, L2 (Rt ((ψ)k)) > 0 for Lebesgue-almost every t if r0 > 2.
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Proof. By Corollary 1.2, A is k-quasi multiplicative. Thus, the proof follows from the
combination of [3, Theorem 2.4] and Lemma 4.2. �

References

[1] Allen, D., and Bárány, B. Hausdorff measures of shrinking target sets on self-conformal sets.
Mathematika 67, 4 (2021), 807–839.

[2] Bárány, B., and Rams, M. Shrinking targets on Bedford-McMullen sets. Proceedings of the London
Mathematical Society 117, 5 (2018), 951–995.

[3] Bárány, B., and Troscheit, S. Dynamically defined subsets of generic self-affine sets. Nonlinearity
35, 10 (2022), 4986–5013.

[4] Bochi, J., and Garibaldi, E. Extremal norms for fiber-bunched cocycles. Journal de l’École poly-
technique—Mathématiques 6 (2019), 947–1004.

[5] Bonatti, C., and Viana, M. Lyapunov exponents with multiplicity 1 for deterministic products of
matrices. Ergodic Theory and Dynamical Systems 24, 5 (2004), 1295–1330.

[6] Bowen, R. Some systems with unique equilibrium states. Mathematical systems theory 8, 3 (1974),
193–202.

[7] Brémont, J. Gibbs measures at temperature zero. Nonlinearity 16, 2 (2003), 419–426.
[8] Butler, C., and Park, K. Thermodynamic formalism of GL2(R)-cocycles with canonical holonomies.

Discrete and Continuous Dynamical Systems 41, 5 (2021), 2141–2166.
[9] Cao, Y., Feng, D., and Haung, W. The thermodynamic formalism for sub-additive potentials.

Discrete and Continuous Dynamical Systems 20, 3 (2008), 639–657.
[10] Contreras, G. Ground states are generically a periodic orbit. Inventiones Mathematicae 205, 2

(2016), 383–412.
[11] Feng, D. Lyapunov exponents for products of matrices and multifractal analysis. Part i: Positive

matrices. Israel Journal of Mathematics 138, 1 (2003), 353–376.
[12] Feng, D. Lyapunov exponents for products of matrices and multifractal analysis. Part ii: General

matrices. Israel Journal of Mathematics 170 (2009), 355–394.
[13] Feng, D., and Käenmäki, A. Equilibrium states of the pressure function for products of matrices.

Discrete and Continuous Dynamical Systems 30, 3 (2011), 699–708.
[14] Furstenberg, H. Noncommuting random products. Transactions of the American Mathematical So-

ciety 108, 3 (1963), 377–428.
[15] Hill, R., and Velani, S. L. The ergodic theory of shrinking targets. Inventiones Mathematicae 119,

1 (1995), 175––198.
[16] Hutchinson, J. Fractals and self similarity. Indiana University Mathematics Journal 30, 5 (1981),

713–747.
[17] Jenkinson, O. Ergodic optimization in dynamical systems. Ergodic Theory and Dynamical Systems

39, 10 (2019), 2593–2618.
[18] Jenkinson, O., Mauldin, R., and Urbański, M. Zero temperature limits of Gibbs-equilibrium

states for countable alphabet subshifts of finite type. Nonlinearity 119, 2 (2005), 765–776.
[19] Käenmäki, A., and Morris, I. Structure of equilibrium states on self-affine sets and strict mono-

tonicity of affinity dimension. Proceedings of the London Mathematical Society 116, 3 (2018), 929–956.
[20] Koivusalo, H., and Ramirez, F. Recurrence to shrinking targets on typical self-affine fractals.

Proceedings of the Edinburgh Mathematical Society 61 (2018), 387–400.
[21] Mohammadpour, R. Zero temperature limits of equilibrium states for subadditive potentials and

approximation of the maximal Lyapunov exponent. Topological Methods in Nonlinear Analysis 55, 2
(2020), 697–710.

[22] Mohammadpour, R. Lyapunov spectrum properties and continuity of the lower joint spectral radius.
Journal of Statistical Physics 189, 3 (2022), 23.



UNIFORM QUASI-MULTIPLICATIVITY OF LOCALLY CONSTANT COCYCLES 13

[23] Morris, I. Entropy for zero-temperature limits of Gibbs-equilibrium states for countable-alphabet
subshifts of finite type. Journal of Statistical Physics 126, 2 (2007), 315–324.

[24] Morris, I. Ergodic properties of matrix equilibrium states. Ergodic Theory and Dynamical Systems
38, 6 (2018), 2295–2320.

[25] Morris, I. A necessary and sufficient condition for a matrix equilibrium state to be mixing. Ergodic
Theory and Dynamical Systems 39, 8 (2019), 2223–2234.

[26] Morris, I. Totally ergodic generalised matrix equilibrium states have the Bernoulli property. Com-
munications in Mathematical Physics 387, 2 (2021), 995–1050.

[27] Park, K. Quasi-multiplicativity of typical cocycles. Communications in Mathematical Physics 376, 3
(2020), 1957–2004.

[28] Persson, T., and Rams, M. On shrinking targets for piecewise expanding interval maps. Ergodic
Theory and Dynamical Systems 37, 2 (2017), 646–663.

[29] Piraino, M. The weak Bernoulli property for matrix Gibbs states. Ergodic Theory and Dynamical
Systems 40, 8 (2020), 2219––2238.

[30] Ruelle, D. Thermodynamic Formalism: The Mathematical Structure of Equilibrium Statistical Me-
chanics. Cambridge University Press (2004).

Department of Mathematics, Uppsala University, Box 480, SE-75106, Uppsala, Sweden

Email address: reza.mohammadpour@math.uu.se

School of Mathematics, KIAS, 85 Hoegiro, Dongdaemun-gu, Seoul, 02455, Republic of

Korea.

Email address: kiho.park12@gmail.com


	1. Introduction and statement of the results
	1.1. Acknowledgements.

	2. Preliminary
	2.1. Set up
	2.2. Quasi-multiplicativity and Spannability

	3. Proof of Theorem 1.1
	4. Applications
	4.1. Gibbs matrix equilibrium states have the Bernoulli property
	4.2. Shrinking target and recurrence sets

	References

