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AUTOMORPHISMS OF DEL PEZZO SURFACES IN CHARACTERISTIC 2

IGOR DOLGACHEV AND GEBHARD MARTIN

ABSTRACT. We classify the automorphism groups of del Pezzo surfaces of degrees one and two
over an algebraically closed field of characteristic two. This finishes the classification of automor-
phism groups of del Pezzo surfaces in all characteristics.
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INTRODUCTION

This is a continuation of our paper [12], where we finished the classification of the automor-
phism groups of del Pezzo surfaces over an algebraically closed field of positive characteristic
p 6= 2. In this paper we treat the remaining case when the characteristic is equal to 2.

As we explained in the introduction to [12], the remaining part of the classification concerns
del Pezzo surfaces of degree one and two. The cases of odd and even positive characteristic are
drastically different since in the latter case the anti-canonical map (resp. the anti-bicanonical map)
is a separable Artin-Schreier cover of degree two but not a Kummer cover as in the cases of odd
characteristic. So, no plane quartic curves (and no canonical genus 4 curves with vanishing theta
characteristic) appear as branch curves.

Instead, in characteristic 2, the branch curve B of the anti-canonical (resp. anti-bicanonical)
map is a not necessarily smooth plane conic (resp. a cubic in P3). The ramification curve R is
a purely inseparable cover of B. In Theorems 3.4 and 5.6, we give normal forms for del Pezzo
surfaces of degree 2 and 1 depending on the singularities of R and B.

Although plane quartics and canonical curves of genus four disappear in characteristic 2, their
familiar attributes like 28 bitangent lines or 120 tritangent planes persist. We call them fake bita-

gents and fake tritangent planes. They are defined to be lines in the plane (resp. planes in the
three-dimensional space) which split under the anti-canonical (resp. anti-bicanonical) map.

It is well-known that the blow-up of the anti-canonical base point on a del Pezzo surface of de-
gree 1 yields a rational elliptic surface with only irreducible fibers and, conversely, the contraction
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2 IGOR DOLGACHEV AND GEBHARD MARTIN

of a section of a rational elliptic surface with only irreducible fibers yields a del Pezzo surface of
degree 1. Thus, the normal forms of Theorem 5.6 also give normal forms for all rational elliptic
surfaces with only irreducible fibers.

Quite surprisingly, in characteristic 2, also every del Pezzo surface of degree 2 has a canonically
associated rational elliptic surface. This surface is obtained by blowing up the base points of the
preimage of the pencil of lines through the strange point of the branch locus B. We study the
properties of this strange fibration in Section 5.4.

Using these geometric observations, we classify the automorphism groups of all del Pezzo
surfaces of degree 2 and 1 in characteristic 2. The following result is proved in Theorems 4.3 and
6.8.

Theorem. A finite group G is realized as the automorphism group Aut(X) of a del Pezzo surface

X of degree 2 (resp. 1) over an algebraically closed field k of characteristic char(k) = 2 if and

only if G is listed in Table 3 (resp. Table 4) in the Appendix.

Table 3 (resp. Table 4) also gives the conjugacy classes in W (E7) (resp. W (E8)) of all elements
of Aut(X) for all del Pezzo surfaces X of degree 2 (resp. degree 1). We refer to [12] for a general
discussion of the history of the problem and its relationship to the classification of conjugacy
classes of finite subgroups of the planar Cremona group. Also the reader finds there some general
facts about del Pezzo surfaces, e.g. the relationship with the Weyl groups of roots systems and
some classification results from the group theory.
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1. NOTATION

For the convenience of the reader, we recall the notations for some finite groups which we will
encounter in this article. Throughout this article, p is a prime and q is a power of p. Unless stated
otherwise, k denotes an algebraically closed field of characteristic 2.

• Cn is the cyclic group of order n.
• Sn and An are the symmetric and alternating groups on n letters.
• Q8 is the quaternion group of order 8.
• D2n is the dihedral group of order 2n.
• nk = (Z/nZ)k. In particular, n = n1 = Z/nZ.
• p1+2n

± , the extra special group. For odd p the sign + (−) defines a group of exponent p
(p2). For p = 2, the sign distinguishes the type of the quadratic forms on 22n = F2n

2

defined by the extension.
• GLn(q) = GL(n,Fq).

• PGLn(q) = GLn(q)/F
∗
q . Its order is N = q

1

2
n(n−1)(qn − 1) · · · (q2 − 1).

• SLn(q) = {g ∈ GLn(q) : det(g) = 1}. This is a subgroup of GLn(q) of index (q − 1).
• Ln(q) = PSLn(q) is the image of SLn(q) in PGLn(q). Its order is N/(q − 1, n).
• For odd n, On(q) is the subgroup of GLn(q) that preserves a non-degenerate quadratic

form F .
• For even n, O+

n (q) (resp. O−
n (q)) is the subgroup of GLn(q) that preserves a non-degenerate

quadratic form F of Witt defect 0 (resp. 1).
• SO±

n (q) is the subgroup of O±
n (q) of elements with determinant 1.

• PSO±
n (q) is the quotient of SO±

n (q) by its center.
• Sp2n(q) is the subgroup of SLq(2n) preserving the standard symplectic form on F2n

q . Its

order is qn
2

(q2n−1 − 1) · · · (q2 − 1).
• Sp2n(q) = Sp2n(q)/(±1).
• SUn(q

2) is the subgroup of SLn(q
2) of matrices preserving the hermitian form

∑n
i=1 x

q+1
i .

Its order is q
1

2
n(n−1)(qn − (−1)n)(qn−1 − (−1)n−1) · · · (q3 + 1)(q2 − 1). We have

SU2(q
2) = SL2(q).

• PSUn(q
2) = SUn(q

2)/C, where C is a cyclic group of order (q + 1, n) of diagonal
Hermitian matrices. The simple group PSUn(q

2) is denoted by Un(q) in [2].
• H3(3) is the Heisenberg group of 3× 3 upper triangular matrices with entries in F3.
• A.B is a group that contains a normal subgroup A with quotient group B.
• A : B is the semi-direct product A⋊B.
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2. DEL PEZZO SURFACES OF DEGREE ≥ 3

For the convenience of the reader, we first recall the classification of automorphism groups of
del Pezzo surfaces of degree at least 3.

2.1. Degree ≥ 5. For del Pezzo surfaces of degree at least 5, the description of Aut(X) is
characteristic-free. We refer the reader to [12, Section 3] or [9] for details.

2.2. Quartic del Pezzo surfaces. Starting from degree 4, the classification of automorphism
groups depends on the characteristic. As in the other characteristics, a quartic del Pezzo surface
X is a blow-up of 5 points in P2 no 3 of which are collinear. Moreover, the anti-canonical linear
system |−KX | = |OP2(3)−p1−p2−p3−p4−p5| embeds X into P4 as a complete intersection
of two quadrics.

Since p = 2, these quadrics cannot be diagonalized. Instead, as shown in [11], one can choose
the normal forms

(ab+ b+ 1)t22 + at23 + t2t3 + t3t4 = bt21 + (ab+ a+ 1)t22 + t1t3 + t2t4 = 0, (1)

where a, b are parameters such that the binary form ∆ = uv(u + v)(u + av)(bu + v) has five
distinct roots.

As in the case p 6= 2, the automorphism group Aut(X) contains a normal subgroup H isomor-
phic to 24, and the quotient G = Aut(X)/H is isomorphic to a subgroup of S5. The classification
is summarized in Table 1 in the Appendix. There, the first column refers to the values of the pa-
rameters a and b in Equation (1) above. The conjugacy classes of elements of Aut(X) can be
obtained by combining [11, Table 2] and [6, Table 5].

2.3. Cubic surfaces. The classification of automorphism groups of cubic surfaces in characteris-
tic 2 was achieved in [11, Table 7]. For the convenience of the reader, we recall the classification
in Table 2 in the Appendix.

3. DEL PEZZO SURFACES OF DEGREE 2

3.1. The anti-canonical map. We start by describing the geometry of del Pezzo surfaces of de-
gree d = 2 over an algebraically closed field k of characteristic p = 2. We refer to [7] for the basic
facts from the theory of del Pezzo surfaces over fields of any characteristic. It is known that the
anti-canonical linear system |−KX | has no base points and defines a finite morphism f : X → P2

of degree 2.
If p 6= 2, the map f is automatically separable and its branch curve is a smooth plane quar-

tic. So any automorphism of X induces an automorphism of the quartic, and, conversely, any
automorphism of the quartic can be lifted to two automorphisms of X that differ by the deck
transformation, classically called the Geiser involution.

If p = 2, the structure of f , being a morphism of degree 2, is more complicated. Nevertheless,
as a first step, we observe that f is still always separable.

Proposition 3.1. The anti-canonical linear system | − KX | defines a finite separable morphism

f : X → P2 of degree 2.

Proof. Assume that f is not separable. Then, since deg(f) = 2, f is purely inseparable. Hence, f
is a homeomorphism in the étale topology, which is absurd since H2

ét(X,Zℓ) has rank 8 (because
X is the blow-up of 7 points in the plane), while H2

ét(P
2,Zℓ) has rank 1. �
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Let

R(X,−KX) =
∞⊕

n=0

H0(X,OX (−nKX))

be the graded anti-canonical ring of X. By the Riemann-Roch Theorem, dimkR(X,−KX)1 = 3
and dimkR(X,−KX)2 = 7. One can show that R(X,−KX) is generated by R(X,−KX )1 and
one element from R(X,−KX)2 that does not belong to the symmetric square of R(X,−KX)1.
Let x, y, z be elements of R(X,−KX)1 and w ∈ R(X,−KX)2 which together generate R(X,−KX).
Then, the relation between the generators is of the form

w2 +A(x, y, z)w +B(x, y, z) = 0, (2)

where A and B are homogeneous forms of degree 2 and 4, respectively. In particular, via equation
(7), we can view X as a surface of degree 4 in the weighted projective space P(1, 1, 1, 2), and the
anti-canonical map is the projection of this surface onto the x, y, z-coordinates.

If p 6= 2, we can complete the square, get rid of A, and obtain the standard equation of a del
Pezzo surface of degree 2. The curve V (B(x, y, z)) is the smooth plane quartic we mentioned in
the introduction. The Geiser involution just negates w.

In our case, when p = 2, we cannot get rid of A, for otherwise the map would become insepa-
rable. Also, the coefficient B is not uniquely determined, since replacing w with w + Q for any
quadratic form Q changes B to B + AQ + Q2, without changing the isomorphism class of the
surface. Taking Q = A, we obtain the analog of the Geiser involution, so we keep the name for
this involution.

The non-uniqueness of B becomes more natural if we take the following different point of view:
By [13, Proposition 1.11], the double cover f is a torsor under a group scheme αL,s of order 2
over P2, defined by the exact sequence of fppf-sheaves

0 → αL,s → L φ→ L⊗2 → 0

for some line bundle L and a global section s. The homomorphism of sheaves φ is locally given
by a 7→ a2U + aUsU , so s cuts out the branch locus of f . By [13, Proposition 1.7], we have
ωX

∼= f∗(OP2(−3)⊗L−1), hence L ∼= OP2(2) and s = A. The αL,s-torsor corresponding to f is
defined by a cohomology class in H1

fppf(P
2, αL,s). Since H1

fppf(P
2,L) = H1(P2,L) = 0, we have

H1
fppf(P

2, αL,s) ∼= H0(P2,L⊗2)/℘(H0(P2,L)),

where ℘ = H0(φ). The ternary form B is a representative of this space, and hence it is defined
only up to a transformation of the form B 7→ B + Q2 + AQ, where Q is a quadratic form in
x, y, z.

By writing the equation of X locally as w2
U + aUwU + bU , and taking partial derivatives, we

see that the differentials wUdaU + dbU restricted to V (A) glue together to define a global section
α of Ω1

P2 ⊗L⊗2⊗OV (A). This section vanishes if and only if X is singular. So, in our case, when
X is assumed to be smooth, we obtain the following.

Proposition 3.2. In (7), the equations

A = 0, wAx +Bx = 0, wAy +By = 0, wAz +Bz = 0

have no common solutions.
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3.2. Normal forms. Recall that X is given by an equation of the form

w2 +Aw +B = 0,

where A is a quadratic ternary form and B is quartic ternary form. We say that V (A) is the branch
curve of the cover, and its preimage R = f−1(V (A)) under the anti-canonical map f : X → P2

will be called the ramification curve.

Remark 3.3. We use the notation A2n for singularities of curves whose formal completion is
isomorphic to the unibranched singularity y2 + x2n+1 = 0. If n = 1, this is an ordinary cusp
singularity. These are exactly the curve singularities that can occur on reduced purely inseparable
double covers of smooth curves in characteristic 2. Indeed, complete locally, such a double cover
is given by an equation of the form y2 + uxm, where u ∈ k[[x]] is a unit. Now, we can apply a
substitution of the form y 7→ y + f for a suitable power series f to assume that m is odd and then
replace x by λx, where λ is an m-th root of u−1, which exists by Hensel’s lemma. In other words,
the singularity defined by y2 + uxm is of type A2n, where 2n + 1 is the smallest odd power of x
that occurs in uxm.

The following theorem gives normal forms for the cover f : X → P2. In total, we obtain six
normal forms, corresponding to the six possible combinations of singularities of V (A) and R.

Theorem 3.4. Every del Pezzo surface of degree 2 in characteristic 2 is a quartic surface in

P(1, 1, 1, 2) given by an equation of the form

w2 +A(x, y, z)w +B(x, y, z),

where (A,B) is one of the following:

Name A B B1 B0 #Parameters

(1)(a) x2 + yz xB1 +B0 λyz(y + z) ay4 + by3z + cy2z2 + dyz3 + ez4 6

(1)(b) x2 + yz xB1 +B0 y2z ay4 + by3z + cy2z2 + dyz3 + ez4 5

(1)(c) x2 + yz xB1 +B0 y3 by3z + cy2z2 + dyz3 + ez4 4

(2)(a) xy B1 +B2
0 xz3 + yz3 ax2 + by2 + cz2 + dxz + eyz 5

(2)(b) xy B1 +B2
0 xz3 + y3z ax2 + cz2 + dxz + eyz 4

(3) x2 xB1 +B0 z3 + ayz2 y3z + by2z2 + cz4 3

The parameters satisfy the following conditions:

(1) (a) λ 6= 0, λ2 + a+ b+ c+ d+ e 6= 0, b2 + a 6= 0, d2 + e 6= 0.

(1) (b) b2 + a 6= 0, d2 + e 6= 0.

(1) (c) d2 + e 6= 0.

(2) (a) a 6= 0, b 6= 0.

(2) (b) a 6= 0.

(3) None.

In terms of these normal forms, the singularities of the irreducible components of Rred are as

follows:

(1) (a) Three A2-singularities, over [0 : 1 : 0], [0 : 0 : 1] and [1 : 1 : 1].
(1) (b) An A4-singularity over [0 : 0 : 1] and an A2-singularity over [0 : 1 : 0].
(1) (c) An A6-singularity over [0 : 0 : 1].
(2) (a) Two A2-singularities, over [1 : 0 : 0] and [0 : 1 : 0].
(2) (b) Two A2-singularities, over [1 : 0 : 0] and [0 : 0 : 1].
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(3) An A2-singularity over [0 : 0 : 1].

Proof. Since f : X → P2 is separable, A is non-zero. Hence, up to projective equivalence,
there are three possibilities for A, corresponding to (1), (2), and (3). Now, we study those cases
separately. The conditions on the parameters will follow from Proposition 3.2 by computing partial
derivatives, a task which we will leave to the reader.

(1) A = x2 + yz

Applying a substitution of the form w 7→ w + Q for a suitable quadratic form Q allows us to
assume that B = xB1 +B0 for homogeneous forms B0 and B1 in y and z.

Let x = uv, y = u2, z = v2 define the Veronese isomorphism between V (A) and P1. Substi-
tuting in B, we get that R is isomorphic to the double cover of P1 given by the equation

w2 + uvB1(u
2, v2) +B0(u

2, v2) = 0.

By taking the partials, we find that R is singular exactly over the roots of B1.
After applying a suitable substitution that preserves A, we can move these roots to special

positions. Note that the substitution w 7→ w + Q of the first paragraph does not change the
position of these singularities, so we can still assume that B = xB1 +B0.

If the roots are distinct, we get Case (a), if there are two distinct roots, we get Case (b), and
if there is only a single root, we get Case (c). Note that in Cases (b) and (c), the substitution
y 7→ λy, z 7→ λ−1z preserves the location of the roots and scales B1, which is why we can
assume that xB1 occurs with coefficient 1. Finally, in Case (c), we can apply a substitution of the
form z 7→ z + λ2y, x 7→ x+ λy for a suitable λ to assume that B0(1, 0) = 0.

(2) A = xy

After applying a substitution of the form w 7→ w +Q for a suitable quadratic form Q, we may
assume that B does not contain monomials divisible by xy. This allows us to write

B = (a1x
3 + a2y

3)z + (a3x+ a4y)z
3 +B0(x, y, z)

2.

Note that the preimages R1 and R2 of V (x) and V (y) on X are members of | −KX |, hence they
must be reduced.

Restricted to V (x), the equation becomes

w2 + a2y
3z + a4yz

3,

so R1 is singular over [0 :
√
a4 :

√
a2]. Similarly, R2 is singular over [

√
a3 : 0 :

√
a1]. Note that

these points must be distinct, for otherwise X is singular over [0 : 0 : 1] by Proposition 3.2.
If these two points are distinct and different from [0 : 0 : 1], we can apply a suitable substitution

that preserves A to move them to [0 : 1 : 0] and [1 : 0 : 0]. Then, we can repeat the substitution of
the first paragraph and, after rescaling, arrive at Case (a).

If the two points are distinct and one of them is [0 : 0 : 1], we can assume without loss of
generality that the other one lies on V (y) and move it to [1 : 0 : 0]. After repeating the substitution
of the first paragraph and rescaling, we can assume that B1 is as in Case (b). Finally, after applying
a substitution of the form z 7→ z + λy,w 7→ w + λz2 + λ2yz + λ3y2 for a suitable λ, we may
assume that B0(0, 1, 0) = 0.

(3) A = x2

Applying a substitution of the form w 7→ w + Q for a suitable quadratic form Q allows us to
assume that B = xB1 +B0 for homogeneous forms B0 and B1 in y and z.
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Let R′ be the preimage of V (x). As in Case (2), since R′ ∈ | − KX |, R′ must be reduced.
Restricted to V (x), the double cover becomes

w2 +B0(y, z) = 0,

hence R′ is singular over the common zero of B0,y and B0,z. We can assume that this zero lies at
[0 : 0 : 1], that is, that yz3 does not occur in B0 and y3z occurs with non-zero coefficient. After
rescaling, we may assume that y3z occurs with coefficient 1.

Applying a substitution of the form z 7→ z + λ1x + λ2y, y 7→ y + λ3x for suitable λi and
repeating the substitution of the first paragraph, we can eliminate the monomials y3 and y2z in
B1 and the monomial y4 in B0. Computing partials, we see that X is singular if and only if
B1(0, 1) = 0. Hence, after rescaling, we may assume that B is as claimed. �

3.3. Fake bitangents and odd theta characteristics. It is known that a del Pezzo surface X of
degree 2 contains 56 (−1)-curves (see [9, 8.7], where the proof is characteristic free). They come
in pairs Ei + E′

i ∈ | −KX | with Ei · E′
i = 2. The Geiser involution γ switches the two curves in

a pair. The image of each pair under any birational morphism π : X → P2 is either the union of
a line through two points pi, pj and the conic through the remaining 5 points, or a cubic passing
through p1, . . . , p7 with a double point at some pi (and one curve of the pair is contracted by π).
The image of Ei + E′

i under the anti-canonical map f is a line ℓ.
If p 6= 2, each of the resulting 28 lines is a bitangent line to the branch quartic curve and,

conversely, every bitangent to the branch quartic gives rise to a pair of (−1)-curves. A bitangent
line intersects the branch curve at two points, not necessarily distinct, whose sum is an odd theta
characteristic of the curve. It is known that the number of odd theta characteristics on a smooth
curve of genus 3 is equal to 28.

For arbitrary p, we still have the following.

Lemma 3.5. The preimage f−1(ℓ) of a line ℓ is a sum of two (−1)-curves if and only if f−1(ℓ) is

reducible.

Proof. Since f has degree 2 and ℓ is integral, the curve f−1(ℓ) is reducible if and only if it has two
irreducible components L1 and L2. These components satisfy L1 + L2 ∈ | −KX |, L1 · L2 = 2,
and L2

1 = L2
2. Via adjunction, this easily implies that L1 and L2 are (−1)-curves. The converse is

clear. �

So, even if p = 2, we have 28 splitting lines, which we call fake bitangent lines in analogy with
the situation in the other characteristics. For the rest of this section, we assume p = 2. Since the
anti-canonical map is étale outside the branch curve V (A), the intersection Ei ∩ E′

i lies on the
ramification curve R. Let L = OR(Ei) ∼= OR(E

′
i). It is an invertible sheaf on R of degree 2. We

have
L⊗2 ∼= OR(Ei + E′

i)
∼= OR(−KX).

Since B ∈ |OP2(2)|, we have R ∈ | − 2KX |. By the adjunction formula

ωR
∼= OR(−2KX +KX) ∼= L⊗2.

Invertible sheaves L on R that satisfy this property are called invertible theta characteristics. They
are called even, odd, or vanishing according to whether their space of global sections is even-
dimensional, odd-dimensional, or at least two-dimensional, respectively. We note that, on singular
curves, there can be theta characteristics which are not invertible, see [3], [4]. In the following, we
will only discuss invertible theta characteristics, so we drop the “invertible” from the notation.
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Let Θ(R) be the set of isomorphism classes of theta characteristics on R and let J(R) be the
identity component of the Picard scheme of R, also called the generalized Jacobian of R.

Lemma 3.6. The generalized Jacobian J(R) of R is isomorphic to G3
a.

Proof. Since R is of arithmetic genus 3, J(R) is a commutative group scheme of dimension 3.
As Rred has only unibranched singularities, [5, Proposition 5, Proposition 9] shows that J(R) is
unipotent. Finally, we have a factorization of the absolute Frobenius F : R → V (A) → R. Note
that J(V (A)) is trivial, even if V (A) is non-reduced, since H1(V (A),OV (A)) = 0. Since F ∗ is
multiplication by p on J(R), we obtain that J(R) is p-torsion, hence isomorphic to G3

a. �

In particular, J(R)(k) is an infinite 2-torsion group and it acts on Θ(R) via tensor products. It
is easy to check that Θ(R) is a torsor under J(R)(k) via this action. This already shows that the
problem of finding (fake) bitangents using theta characteristics on R in characteristic 2 is much
more subtle than it is in the other characteristics. Let us give an example that further illustrates
this point.

Example 3.7. Assume that V (A) is a smooth conic.
Consider π : R → V (A)

∼→ P1. We have π∗OP1(2) = (f |R)∗OV (A)(1) = (ωX)|R, so
L := π∗OP1(1) is a theta characteristic on R. Moreover, we have h0(R,π∗OP1(1)) = 2, so L
is a vanishing theta characteristic. In fact, this is the unique vanishing theta characteristic on R:
Indeed, let L′ be another vanishing theta characteristic. Then, the Riemann–Roch formula yields

h0(R,L ⊗ L′)− h0(R,ωR ⊗ L−1 ⊗L′−1) = 2.

Since h0(R,L) ≥ 2 and h0(R,L′) ≥ 2, we have h0(R,L⊗L′) ≥ 3, so h0(R,ωR⊗L−1⊗L′−1) 6=
0. Since R is integral and ωR ⊗ L−1 ⊗ L′−1 has degree 0, this implies that L ∼= L′.

Next, let ℓ be any line in P2 such that f−1(ℓ) meets R in two distinct smooth points. Then,
f−1(ℓ ∩ V (A))red defines an effective theta characteristic L on R. By the previous paragraph, we
have h0(R,L) = 1, hence all the infinitely many theta characteristics arising in this way are odd.
It would be interesting to find an abstract characterization of the fake bitangent lines among the
odd theta characteristics of R.

Nevertheless, we can find explicit equations of fake bitangent lines using the following result.

Lemma 3.8. Let C → P1 be an Artin–Schreier double cover given by an equation of the form

w2 + f(u, v)w + g(u, v) = 0,

where f and g are homogeneous polynomials of degree n and 2n, respectively, and f 6= 0. Then,

C is reducible if and only if there exists a homogeneous polynomial h of degree n with g(u, v) =
f(u, v)h(u, v) + h(u, v)2.

Proof. If there exists an h as in the assertion, then w2 + fw + g = (w + f + h)(w + h), so C is
obviously reducible.

Conversely, assume that C is reducible. Then, C has exactly two irreducible components and
these components are interchanged by the substitution w 7→ w + f . In other words, we can write
w2 + fw+ g = h′(h′ + f), where h′ is a weighted homogeneous polynomial of degree n. This is
only possible if h′ is of the form h′ = w+h for some h homogeneous of degree n in the variables
u and v. Then, w2 + fw+ g = (w+ h)(w+ h+ f) = w2 + fw+ h2 + fh, hence g = fh+ h2,
as claimed. �
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Finally, for later use, we record some simple restrictions on the possible positions of fake bitan-
gent lines with respect to the singularities of R.

Proposition 3.9. Let ℓ be a fake bitangent line that passes through the image P of a singular point

of an irreducible component of Rred. Then, V (A) is smooth and ℓ is tangent to V (A) at P .

Proof. Write f−1(ℓ) = L1 + L2. Since Rred is singular at f−1(P ), Li and R have intersection
multiplicity at least 2 in f−1(P ). Since R ∈ | − 2KX | and L1 + L2 ∈ | − KX |, we have
(L1 + L2).R = 2K2

X = 4, hence L1 + L2 and R meet only in f−1(P ). Therefore, their images
in P2 meet only in P . If V (A) is smooth, this implies that ℓ is tangent to V (A) in P . If V (A) is
the union of two lines, this implies that ℓ passes through their intersection. However, in this case,
Li and R have intersection multiplicity at least 3 in f−1(P ), which is absurd. Finally, if V (A) is
a double line, then Rred ∈ | −KX | and 2 = K2

X = (L1 + L2).Rred ≥ 4, a contradiction. �

Remark 3.10. We note that there are del Pezzo surfaces for which fake bitangents satisfying the
properties of Proposition 3.9 exist. See Proposition 5.10 for a classification in terms of the normal
forms of Theorem 3.4.

3.4. Strange elliptic fibrations. To each del Pezzo surface X of degree 2 in characteristic 2 with
branch locus V (A) of the anti-canonical map f : X → P2, there is a naturally associated point
PX in P2: If V (A) is smooth, we let PX be the strange point of V (A), if V (A) is the union of
two lines, we let PX be their intersection, and if V (A) is a double line, we let PX be the image of
the singular point of f−1(V (A))red. We call PX the strange point of X and note that the action
of Aut(X) fixes PX .

The pencil P of lines through PX is Aut(X)-invariant as well. Its preimage C in X is an
Aut(X)-invariant pencil of curves of arithmetic genus 1 with two base points if V (A) is smooth
and with one base point of multiplicity 2 if V (A) is singular. We let π : Y → X be the blow-up of
the base points of C. Then, C defines a relatively minimal genus one fibration φ : Y → P1. Since
the map X → P2 is separable and a general line in the pencil is not contained in V (A), its pre-
image on Y is a smooth elliptic curve (see the details in the proof of the next Proposition). Thus,
the genus on fibration is an elliptic fibration. We call it the strange elliptic fibration associated to
X.

By construction, the group Aut(X) lifts to a subgroup Aut(Y ) and we will use this in Propo-
sition 4.2 to find restrictions on the possible structure of Aut(X). To make the most of this
connection, we will now describe the singular fibers of the elliptic fibration φ : Y → P1. We
employ Kodaira’s notation: we say that a fiber isomorphic to an irreducible cuspidal cubic curve
is of type II, a fiber that consists of two smooth rational curves intersecting non-transversally at
one point is of type III, and a fiber that consists of three smooth rational curves intersecting at one
point is of type IV.

We use the normal forms of Theorem 3.4, so that A = x2 + yz, xy, or x2 and PX = [1 : 0 : 0]
in the first case and PX = [0 : 0 : 1] in the other two cases. In the first case, we let ℓ[t0:t1] be the
line V (t0y + t1z) and in the other two cases, we let ℓ[t0:t1] be the line V (t0x+ t1y). The fiber of
φ corresponding to ℓ[t0:t1] is denoted by F[t0:t1].

Proposition 3.11. The generic fiber of the strange elliptic fibration associated to X is a super-

singular elliptic curve. Its singular fibers are of type II, III, or IV and its Mordell-Weil group is

torsion-free. More precisely:

(1) If A = x2 + yz, then the following hold:

• The fiber F[t0:t1] is smooth if and only if t0y + t1z ∤ B1.
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• The fiber F[t0:t1] is of type III if ℓ[t0:t1] is a fake bitangent and of type II otherwise.

• The line ℓ[1:0] is a fake bitangent if and only if e = 0.

• The line ℓ[0:1] is a fake bitangent if and only if a = 0.

• The line ℓ[1:1] is a fake bitangent if and only if a+ b+ c+ d+ e = 0.

(2) (a) If A = xy and B1 = xz3 + yz3, then the following hold:

• The fiber F[t0:t1] is smooth if and only if [t0 : t1] 6= [1 : 0], [0 : 1], [1 : 1].
• F[1:0] and F[0:1] are of type II.
• F[1:1] is of type IV if ℓ[1:1] is a fake bitangent and of type III otherwise.

• The curve ℓ[1:1] is a fake bitangent if and only if c = d2 + e2.

(2) (b) If A = xy and B1 = xz3 + y3z, then the following hold:

• The fiber F[t0:t1] is smooth if and only if [t0 : t1] 6= [1 : 0], [0 : 1].
• The curve F[0:1] is of type II.
• The curve F[1:0] is of type III.

(3) If A = x2, then the following hold:

• The fiber F[t0:t1] is smooth if and only if [t0 : t1] 6= [1 : 0].
• The curve F[1:0] is of type III.

Proof. We study each case separately. The Mordell-Weil group is torsion free by [16, Main Theo-
rem], since the lattice spanned by fiber components is of rank at most 4 in each case.
(1) In this case A = x2 + yz.

First, consider ℓ[1:t] = V (y + tz). Plugging y = tz into the equation of X, we obtain

w2 + (x2 + tz2)w + xB1(tz, z) + (at4 + bt3 + ct2 + dt+ e)z4

with B1(tz, z) ∈ {λt(t+ 1)z3, t2z3, t3z3}. If y + tz ∤ B1, then B1(tz, z) 6= 0, so taking
partials with respect to x and w shows that a singular point must satisfy x = z = 0, which
is absurd. If y+ tz | B1, then B1(tz, z) = 0 and F[1:t] is singular over [t : t : 1]. Similarly,
one checks that F[0:1] is singular.

The equation

w2 + (x2 + tz2)w + xB1(tz, z) + (at4 + bt3 + ct2 + d+ e)z4

shows that F[1:t] is a double cover of P1 branched over a single point. Hence, if F[1:t] is
smooth, then it is supersingular, and if it is singular and irreducible, it is a cuspidal cubic.

Finally, consider the curve F1:0 given by

w2 + x2w + ez4.

By Lemma 3.8, it is clear that F[1:0] is reducible if and only if e = 0. The calculation for
F[1:1] and F[0:1] is similar.

(2) (a) In this case A = xy and B1 = xz3 + yz3.
First, consider ℓ[1:t] = V (x + ty) with t 6= 0, 1. Plugging x = ty into the equation of

X, we obtain
w2 + ty2w + (t+ 1)yz3 +B0(ty, y, z)

2.

Then, taking partials shows that F[1:t] is smooth. Since it is a double cover of P1 branched
over a single point, it is supersingular.

Next, consider F[1:1], whose image in X is given by

w2 + y2w + ((a+ b)y2 + (d+ e)yz + cz2)2.
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This curve is singular over [0 : 0 : 1], so F[1:1] has one irreducible component contracted
by Y → X. By Lemma 3.8, the image of F[1:1] in X is reducible if and only if c = d2+e2.

Finally, the curves F[1:0] and F[0:1] are isomorphic to their images in X and these images
are irreducible and cuspidal by Theorem 3.4.

(2) (b) In this case A = xy and B1 = xz3 + y3z.
First, consider ℓ[1:t] = V (x+ ty) with t 6= 0. Plugging x = ty into the equation of X,

we obtain
w2 + ty2w + tyz3 + y3z +B0(ty, y, z)

2.

As in the previous cases, taking partials shows that F[1:t] is smooth and supersingular.
The curve F[0:1] is isomorphic to its image in X, since f−1(ℓ[0:1]) is smooth over the

point [0 : 0 : 1]. Hence, F[0:1] is of type II. On the other hand, the curve F[1:0] is of type
III, since its image in X has multiplicity 2 over [0 : 0 : 1].

(3) In this case A = x2.
First, consider ℓ[t:1] = V (tx+ y). Plugging y = tx into the equation of X, we obtain

w2 + x2w + xz3 + (bt2 + at)x2z2 + cz4.

Then, taking partials shows that F[t:1] is smooth. Since it is a double cover of P1 branched
over a single point, it is supersingular.

The curve F[1:0] is of type III, by the same argument as in the previous case.
�

Remark 3.12. The classification of singular fibers of rational elliptic surfaces with a section in
characteristic 2 can be found in [14]. Lang shows that in the cases where the general fiber is a
supersingular elliptic curve, the number of singular fibers is at most 3, which agrees with what we
observed in the case of strange elliptic fibrations. Proposition 3.11 shows that the singular fibers
that occur on strange genus one fibrations are of type 9A, 9B, 10A, 10B, 10C or 11 in Lang’s
terminology.

4. AUTOMORPHISM GROUPS OF DEL PEZZO SURFACES OF DEGREE 2

4.1. Preliminaries. Recall once more from Section 3.1 that a del Pezzo surface X of degree 2 is
a surface of degree 4 in P(1, 1, 1, 2) given by an equation of the form

w2 +A(x, y, z)w +B(x, y, z) = 0.

Since this is the anti-canonical model of X and ω−n
X admits a natural Aut(X)-linearization for all

n, we obtain that Aut(X) is isomorphic to the subgroup of Aut(P(1, 1, 1, 2)) of automorphisms
that preserve X.

The structure of the group Aut(P(1, 1, 1, 2)) is well-known. The vector space k[x, y, z]2 of
quadratic forms is a normal subgroup of Aut(P(1, 1, 1, 2)) that acts via (x, y, z, w) 7→ (x, y, z, w+
Q). The quotient by this subgroup is the group of transformations that change (x, y, z) linearly and
multiply w by a scalar. Since the transformation (x, y, z, w) 7→ (λx, λy, λz, λ2w) is the identity,
this quotient is isomorphic to GL3(k)/µ2(k). Since we are in characteristic 2, the subgroup µ2(k)
is trivial. This gives an isomorphism

Aut(P(1, 1, 1, 2)) ∼= k[x, y, z]2 : GL3(k).

We denote elements of this group by (Q, g) ∈ k[x, y, z]2 ×GL3(k) where the semi-direct product
structure is

(Q, g) ◦ (Q′, g′) = (g∗(Q′) +Q, gg′).
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Using this description of Aut(P(1, 1, 1, 2)), it is straightforward to calculate the subgroup of
automorphisms preserving X. We obtain

Aut(X) ∼= {(Q, g) : g∗(A) = A, g∗(B) = B +AQ+Q2}.

The kernel of the homomorphism

Aut(X) → GL3(k), (Q, g) 7→ g

is generated by the Geiser involution γ. We let G(X) be the image of Aut(X) in GL3(k).

Lemma 4.1. The homomorphism G(X) → GL3(k) → PGL3(k) is injective.

Proof. Let g ∈ G(X) be in the kernel of this homomorphism. Then, g = λI3 for some λ ∈ k×.
On the other hand, by definition of G(X), we have g∗(A) = A. Since A has degree 2, this implies
λ2 = 1. Hence, λ = 1. �

We recall from [12, §1] that a choice of a geometric basis of a blow-up X → P2 of seven points
defines an injective homomorphism

ρ : Aut(X) → W (E7). (3)

The image of the Geiser involution is equal to −idE7
. It is known that W (E7) = 〈−idE7

〉 ×
W (E7)

+, where W (E7)
+ ⊆ W (E7) is the kernel of the determinant map.

In particular, to determine Aut(X), it suffices to determine G(X) and both groups are isomor-
phic to subgroups of W (E7) via ρ. This puts severe restrictions on the possible structure of G(X).
Finally, we can use the strange genus one fibrations of the previous section to get information on
G(X).

Proposition 4.2. Let φ : Y → P1 be the strange elliptic fibration associated to X. Choose an

exceptional curve E of Y → X as the zero section of φ and let C be the second exceptional curve.

Then, there is a homomorphism ϕ : Aut(X) → Aut(Y ) that satisfies the following properties:

(1) ϕ is injective.

(2) ϕ(γ) preserves every fiber of φ.

(3) If V (A) is smooth, then C is a section of φ. We have ϕ(γ) = tC ◦ι, where ι is the negation

automorphism and tC is translation by C .

(4) If V (A) is singular, then C is a component of a reducible fiber of φ. We have ϕ(γ) = ι
and ϕ factors through the stabilizer of the pair (E,C).

Proof. The surface Y is obtained by blowing up X in two points that are uniquely determined
by V (A), hence stable under the action of Aut(X). This shows existence and injectivity of the
homomorphism ϕ. The fibration φ is induced by the pencil of lines in P2 through the strange point
of X. Since γ preserves these lines, it preserves the fibers of φ.

If V (A) is smooth, then E and C are interchanged by ϕ(γ). The automorphism t−C ◦ ϕ(γ) ◦ ι
maps E to E and −C to −C . It is well-known that every fixed point of a non-trivial automorphism
of an elliptic curve is a torsion point. On the other hand, by Proposition 3.11, φ has no torsion
sections, so t−C ◦ ϕ(γ) ◦ ι = id, which yields Claim (3).

If V (A) is singular, then C is a (−2)-curve which meets E, hence it is the identity component
of a reducible fiber of φ. Since ϕ(γ) is an involution that preserves E, we have ϕ(γ) = ι and we
obtain Claim (4). �
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4.2. Classification.

Theorem 4.3. Every del Pezzo surface of degree 2 in characteristic 2 such that in the decomposi-

tion Aut(X) ∼= 2 × G(X) the group G(X) is non-trivial is a surface of degree 4 in P(1, 1, 1, 2)
given by an equation of the form

w2 +Aw +B,

where (A,B,G(X)) is one of the following:

Name A B B1 B0 G(X) #Parameters

(1)(a)(i) x2 + yz xB1 +B0 λyz(y + z) ay4 + by3z + cy2z2 + byz3 + az4 2 4

(1)(a)(ii) x2 + yz xB1 +B0 λyz(y + z) ay4 + λy3z + ay2z2 + λyz3 + az4 S3 2

(1)(c)(i) x2 + yz xB1 +B0 y3 by3z + cy2z2 + ez4 23 3

(2)(a)(i) xy B1 +B2
0 xz3 + yz3 ax2 + ay2 + cz2 + dxz + dyz 2 3

(2)(a)(ii) xy B1 +B2
0 xz3 + yz3 ax2 + by2 3 2

(2)(a)(iii) xy B1 +B2
0 xz3 + yz3 ax2 + ay2 6 1

(3)(i) x2 xB1 +B0 z3 y3z + cz4 3 1

(3)(ii) x2 xB1 +B0 z3 y3z 9 0

The parameters satisfy the following conditions:

(1) (a) (i) λ 6= 0, λ2 + c 6= 0, b2 + a 6= 0, (b, c) 6= (λ, a).
(1) (a) (ii) λ 6= 0, λ2 + a 6= 0.
(1) (c) (i) e 6= 0.

(2) (a) (i) a 6= 0, (c, d) 6= (0, 0).
(2) (a) (ii) a 6= 0, b 6= 0, a 6= b.
(2) (a) (iii) a 6= 0.

(3) (i) c 6= 0.

(3) (ii) None.

Proof. We use the normal forms of Theorem 3.4 and the description of Aut(X) and G(X) given
in the beginning of the current section. We go through the cases of Theorem 4.3.
(1) (a) Here, X is given by an equation of the form

w2 + (x2 + yz)w + λxyz(y + z) +B0

with
B0 = ay4 + by3z + cy2z2 + dyz3 + ez4

and the cusps lie over [0 : 1 : 0], [0 : 0 : 1], and [1 : 1 : 1]. Let (Q, g) ∈ Aut(X) be an
automorphism of X. Then, g preserves the three points lying under the cusps. Moreover,
if g fixes the three cusps, then it fixes V (A) pointwise, hence g is trivial in PGL3(k), so,
by Lemma 4.1, g is the identity and (Q, g) coincides with the Geiser involution. Hence,
G(X) acts faithfully on {[0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 1]}.

Note that G(X) contains an involution if and only if X admits an equation where this
involution is given by y ↔ z. This involution is in G(X) if and only if there exists a
quadratic form Q such that

Q2 + (x2 + yz)Q = g∗B0 +B0. (4)

Since Q2+(x2+ yz)Q contains a non-zero monomial divisible by x2 as soon as it is non-
zero and g∗B0 + B0 does not contain such a monomial, we must have Q ∈ {0, x2 + yz}
and Equation (4) holds if and only if a = e and b = d, as claimed.
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Next, note that G(X) contains an automorphism g of order 3 if and only if g is given
by x 7→ x+ z, y 7→ z, z 7→ y + z and there exists a quadratic form Q such that

Q2 + (x2 + yz)Q = λyz2(y + z) + g∗B0 +B0. (5)

By the same argument as in the previous paragraph, we have Q ∈ {0, x2 + yz} and
Equation (5) holds if and only if a = c = e and b = d = λ. In particular, note that these
conditions imply the conditions of the previous paragraph in this case, hence G(X) = S3.

(1) (b) In this case, V (A) is smooth and R has two non-isomorphic singularities. Then, g ∈ G(X)
must fix the images of them on V (A). Since an automorphism of order 2 of P1 has only
one fixed point, we may assume that the order of g is odd. By Proposition 3.9, the line ℓ
through the images of the singularities is not a fake bitangent. Its preimage E in X is an
integral curve of arithmetic genus one and the Geiser involution has two fixed points on
E. Hence, either E is smooth and ordinary, or nodal. In both cases, there is no non-trivial
automorphism of odd order that commutes with the involution, hence g fixes ℓ pointwise.
Since g also fixes the strange point P on V (A) and the projection from P is inseparable,
g fixes V (A) pointwise, hence g is the identity.

(1) (c) Here, X is given by an equation of the form

w2 + (x2 + yz)w + xy3 +B0

with
B0 = by3z + cy2z2 + dyz3 + ez4.

The singularity of R lies over [0 : 0 : 1]. An element g ∈ G(X) of odd order has at least
two fixed points on V (A) and then the same argument as in the previous case shows that
g is the identity. Therefore, G(X) is a 2-group that acts on V (A) ∼= P1 with a fixed point.
In particular, G(X) is isomorphic to a subgroup of Ga(k), hence isomorphic to 2n for
some n ≥ 0.

We may assume that g acts as x 7→ x + αy, y 7→ y, z 7→ z + α2y. Then g lifts to
Aut(X) if and only if there exists a quadratic form Q such that

(x2 + yz)Q+Q2 = αy4 + g∗(B0) +B0.

Since the right-hand side does not contain a monomial divisible by x2, we get, as in the
previous cases, Q = x2 + yz or Q = 0. Comparing coefficients yields the system of
equations

dα2 = 0

dα4 = 0

eα8 + dα6 + cα4 + bα2 + α = 0

So, if d 6= 0, then α = 0 and G(X) is trivial. If d = 0, there are 8 possibilities for α, one
for each root of ex8 + cx4 + bx2 + x. All the roots are distinct since the derivative of this
polynomial is 1. Here, we also use that e 6= 0 by Theorem 3.4. Thus G(X) ∼= 23.

(2) (a) Here, X is given by an equation of the form

w2 + xyw + xz3 + yz3 +B2
0

with
B0 = ax2 + by2 + cz2 + dxz + eyz.
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The singularities of the irreducible components of R lie over [1 : 0 : 0] and [0 : 1 : 0]. Let
(Q, g) ∈ Aut(X). Then, g preserves these two points and the intersection of V (x) and
V (y). Moreover, by Proposition 4.2 and Proposition 3.11, g preserves the line V (x+ y).

Assume that g has odd order. Then, g preserves the three lines V (x), V (y), and V (x+
y), hence it is of the form (x, y, z) 7→ (x, y, αz). The quadratic form Q satisfies

Q2 + xyQ = g∗(B1 +B2
0) +B1 +B2

0 .

The right-hand side does not contain monomials divisible by xy, hence Q ∈ {0, xy}. Now,
g∗B1 +B1 = 0 implies that α3 = 1, and if α 6= 1, then g∗B2

0 +B2
0 = 0 holds if and only

if c = d = e = 0.
Assume that g has order a power of 2. If g does not swap the points [1 : 0 : 0] and

[0 : 1 : 0], then it acts diagonally, hence it is the identity. Therefore, we may assume that
g swaps these two points and g2 = id. Hence, g acts as x ↔ y. The quadratic form Q
satisfies

Q2 + xyQ = g∗(B1 +B2
0) +B1 +B2

0 ,

hence a = b and d = e.
(2) (b) Here, X is given by an equation of the form

w2 + xyw + xz3 + y3z +B2
0

with
B0 = ax2 + cz2 + dxz + eyz

and the singularities of the irreducible components of R map to [1 : 0 : 0] and [0 : 0 : 1].
Let (Q, g) ∈ Aut(X).

If g has odd order, then there is a g-invariant line ℓ through [1 : 0 : 0] and we may
assume that ℓ 6⊆ V (A). By the same argument as in Case (1) (b), ℓ is fixed pointwise.
Then, every line through [0 : 0 : 1] is g-invariant. Since g∗A = A, this means that g acts
as (x, y, z) 7→ (x, y, αz). An automorphism of this form satisfies g∗B1 = B1 if and only
if α = 1, so g is trivial.

If g has order a power of 2, then by Proposition 3.11, ϕ((Q, g)) ∈ Aut(Y ) preserves
the two singular fibers of φ : Y → P1, hence ϕ((Q, g)) acts trivially on the base of φ. The
2-Sylow subgroup of automorphisms of the geometric generic fiber of φ is the quaternion
group Q8 and ϕ((Q, g)) commutes with the unique involution ϕ(γ) in Q8. This implies
that (Q, g) ∈ 〈γ〉, so g is trivial.

(3) If V (A) is a double line, then X is given by an equation of the form

w2 + x2w + xB1 +B0

with B1 = z3 + ayz2 and B0 = y3z + by2z2 + cz4. The singularity of Rred lies over
[0 : 0 : 1]. Let (Q, g) ∈ Aut(X). Then, g is of the form

(x, y, z) 7→ (x, αx + βy, γx+ δy + ǫz)

with β, ǫ 6= 0 and Q satisfies the equation

Q2 + x2Q = x(g∗B1 +B1) + g∗B0 +B0. (6)

The monomials y3z, xz3, xyz2, xy2z and xy3 do not appear on the left-hand side, hence
their coefficients on the right-hand side must be zero. This yields the following conditions:

ǫ = β−3
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β9 = 1

δ = a(β + β6)

α = a2(1 + β)

γ = a3(1 + β2)

So, the order of g is equal to the order of β in k×, hence it is equal to 1, 3 or 9. Now, we
calculate that if β3 = 1, then g3 acts as

(x, y, z) 7→ (x, y, a3(β + β2)x+ z).

Hence, if a 6= 0, then g is the identity.
So, assume that a = 0, so that, in particular, α = δ = γ = 0. Equation (6) becomes

Q2 + x2Q = (ǫ3 + 1)xz3 + (β3ǫ+ 1)y3z + b(β2ǫ2 + 1)y2z2 + c(ǫ4 + 1)z4.

On the left-hand side, the coefficients of z4 and y2z2 are the squares of the coefficients of
x2z2 and x2yz, respectively. Since the latter monomials do not appear on the right-hand
side, the coefficients of the former monomials must vanish. Therefore, we get the four
conditions:

ǫ3 + 1 = 0

β3ǫ+ 1 = 0

b(β2ǫ2 + 1) = 0

c(ǫ4 + 1) = 0

Hence, if b 6= 0, then β = ǫ = 1, so G(X) is trivial. If b = 0 and c 6= 0, then ǫ = 1 and
β3 = 1, and so G(X) ∼= C3. If b = c = 0, then ǫ = β−3 and β9 = 1, hence G(X) ∼= C9.

�

Remark 4.4. With our choice of normal form in Theorem 4.3, the map g 7→ (0, g) defines an
explicit section of the surjection Aut(X) → G(X) in every case.

Remark 4.5. The group 24 that appears in Theorem 4.3 occurs as a group of automorphisms of
a del Pezzo surface of degree 4 in all characteristics [11]. In characteristic 0, there is a unique
conjugacy class of subgroups isomorphic to 24 in the Cremona group. One can prove, using the
theory of birational links, that in characteristic 2, the two subgroups of Crk(2) are not conjugate.

Remark 4.6. The fact that 2 and 3 are the only primes that divide the order of Aut(X) can be
proven without the classification. It is known that 2, 3, 5, and 7 are the only primes that divide the
order of W (E7). To exclude the primes 5 and 7, one can use the Lefschetz fixed-point formula
and the known traces of elements of W (E7) acting on the the root lattice of type E7 to get a
contradiction with the possible structure of the set of fixed points of an element of the group
G(X).
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4.3. Conjugacy classes and comparison with the classification in characteristic 0. In this sec-
tion, we determine the conjugacy classes in W (E7) of the elements of the groups that occur in
Theorem 4.3 and, whenever possible, compare the surfaces in Theorem 4.3 with their counterparts
in characteristic 0 (see [9, Table 8.9]).

First, we note that, as H0(X,TX ) = 0 for all del Pezzo surfaces of degree 2, the automorphism
group of any lift of a del Pezzo surface X in Theorem 4.3 to characteristic 0 is a subgroup of
Aut(X). By Theorem 4.3, |Aut(X)| ≤ 18, so Types I,. . .,V and of [9, Table 8.9] do not have
a reduction modulo 2 which is a del Pezzo surface. Similarly, Type VII of [9, Table 8.9] has no
analogue in characteristic 2.

The surface of Type (3)(ii) of Theorem 4.3 is a reduction modulo 2 of the surface of Type VI
in [9, Table 8.9]. Hence, we call this surface Type VI. Since the conjugacy classes of elements of
Aut(X) are the same as the ones of the lift, the entry for Type VI in Table 3 is the same as the on
in [12, Table 7].

The equations of the surfaces of Type (2)(a)(iii) of Theorem 4.3 define smooth surfaces in
characteristic 0 and the automorphisms x ↔ y and z 7→ ζ3z make sense in characteristic 0.
Hence, these surfaces lift to characteristic 0 as del Pezzo surfaces with an action of 2 × 6. As
explained above, del Pezzo surfaces of degree 2 with an automorphism group of order bigger than
18 do not have a smooth reduction modulo 2, hence these lifts are of Type VIII [9, Table 8.9], so
we also call the surfaces of Type (2)(a)(iii) Type VIII. As in the previous case, the conjugacy
classes are the same as in [12, Table 7].

As for the surfaces of Type (1)(a)(ii), we rewrite their equations using the substitution x 7→
x+ y + z as

w2 + (x2 + y2 + z2 − yz)w + λxyz(z − y) + a(y2 + z2 − yz)2.

This equation defines a lift of X to characteristic 0 and the Aut(X)-action lifts as well, since it is
generated by the Geiser involution γ : w 7→ −w, the involution y ↔ z and the automorphism g of
order 3 given by

x 7→ −x

y 7→ z

z 7→ z − y.

Hence, all surfaces of Type (1)(a)(ii) are reductions modulo 2 of surfaces of Type IX in [9, Table
8.9]. In particular, we can read off the conjugacy classes of elements of Aut(X) from [12, Table
7].

The surfaces of Type (1)(c)(i) are the characteristic 2 analogues of Type X from [9, Table 8.9].
We claim that every involution on a surface X of type (1)(c)(i) which is different from the Geiser
involution is of conjugacy class 3A1/4A1. It suffices to check this for the surface given by

w2 + (x2 + yz)w + xy3 + z4,

where G(X) acts as gα : x 7→ x + αy, z 7→ α2x + z with α8 = α. After using the substitution
z 7→ αx+ y + z, y 7→ α6x+ α6y, the equation of X becomes

w2+(x2+xy+ y2+α6(y+x)z+α4(x2 + y2))w+α4(x3y+x2y2+xy3)+α3(x4+ y4+ z4)

and the involution gα acts as x ↔ y. Then, the above equation makes sense in characteristic 0 and
defines a lift of X together with the involution gα. In particular, by [12, Table 7], the conjugacy
class of gα is 3A1 or 4A1.
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The equations of Types (2)(a)(ii) and (3)(i) make sense in characteristic 0, where they define
a lift of the surface together with the C3-action. These lifts must be of Type XI from [9, Table
8.9].

Similarly, the equations of Types (1)(a)(i) and (2)(a)(i) define lifts to characteristic 0 together
with the C2-action. Hence, these lifts are of Type XII from [9, Table 8.9].

We summarize the classification of automorphism groups of del Pezzo surfaces of degree 2 in
Table 3 in the Appendix. There, in the first column, we give the name of the corresponding family,
both in the notation of Theorem 4.3 and in the notation of [9, Table 8.9]. The second and third
columns give the group Aut(X) and its size. In the remaining columns, we list the number of
elements of a given Carter conjugacy class in Aut(X).

5. DEL PEZZO SURFACES OF DEGREE 1

5.1. The anti-bicanonical map. As in the case of degree 2, we start by describing the geometry
of del Pezzo surfaces of degree d = 1 and we refer to [7] for characteristic-free facts on del Pezzo
surfaces. Recall that the anti-bicanonical system | − 2KX | defines a finite morphism f : X → Q
onto a quadratic cone Q ⊆ P3. As in degree 2, it turns out that this map is always separable, even
in characteristic 2.

Proposition 5.1. The anti-bicanonical linear system |−2KX | defines a finite separable morphism

f : X → Q of degree 2.

Proof. If f is not separable, then p = 2 and f is purely inseparable. But then f is a homeomor-
phism in the étale topology. This is impossible, since H2

ét(X,Zℓ) has rank 9 (because X is the
blow-up of 8 points in the plane), while H2

ét(Q,Zℓ) has rank 1. �

Let

R(X,−KX) =

∞⊕

n=0

H0(X,OX (−nKX))

be the graded anti-canonical ring of X. By the Riemann–Roch-Theorem, we have

dimk R(X,−KX)1 = 2

dimk R(X,−KX)2 = 4

dimk R(X,−KX)3 = 7.

Thus, we can choose u, v from R(X,−KX)1, x ∈ R(X,−KX)2 \ S2(R(X,−KX )1), and y ∈
R(X,−KX)3 \ S3(R(X,−KX )1) + R(X,−KX)1 ⊗ R(X,−KX)2 and obtain the following
relation between the generators

y2 + y(a1x+ a3) + x3 + a2x
2 + a4x+ a6 = 0, (7)

where ak denotes a binary form of degree k in u and v. In particular, via Equation (7), we can
view X as a surface of degree 6 in the weighted projective space P(1, 1, 2, 3), the anti-canonical
map is the projection of this surface onto the u, v-coordinates, and the anti-bicanonical map is the
projection onto the u, v, x-coordinates.

If p 6= 2, we can replace y with y+ 1
2(a1x+a3) to assume that a1 = a3 = 0. The surface X is a

double cover of a quadratic cone Q ∼= P(1, 1, 2). The branch curve B = V (x3+a2x
2+a4x+a6)

is a curve of degree 6 not passing through the vertex of Q. It is a smooth curve of genus 4 with
a vanishing theta characteristic g13 defined by the ruling of Q. If we blow up the vertex of Q, we
obtain a surface isomorphic to the rational minimal ruled surface F2. The preimage of the curve



20 IGOR DOLGACHEV AND GEBHARD MARTIN

B is a curve in the linear system |6f + 3e|, where f and e are the standard generators of Pic(F2)
with f2 = 0 and e2 = −2. The curve B is its canonical model in P3.

In our case, when the characteristic p = 2, the analog of B is the curve V (a1x + a3) in Q. In
particular, Proposition 5.1 tells us that a1x+ a3 6= 0 and there is no way of removing these terms.
Moreover, the curve B always passes through the vertex of Q and its strict transform on F2 is in
|3f| if a1 = 0 and in |3f+ e| if a1 6= 0. The analogue of the involution y 7→ −y, classically called
the Bertini involution, is the involution β defined by replacing y with y + a1x + a3. As in the
classical case, we call this β Bertini involution.

By calculating the partial derivatives in Equation (7), the smoothness of X yields the following
restrictions on the ai:

Proposition 5.2. In (7), the smoothness of X is equivalent to the condition that the equations

a1x+ a3 = 0

x2 + a1y + a4 = 0

a1,uxy + a3,uy + a2,ux
2 + a4,ux+ a6,u = 0

a1,vxy + a3,vy + a2,vx
2 + a4,vx+ a6,v = 0

with ai,u := ∂ai
∂u

and ai,v :=
∂ai
∂v

have no common solutions on X.

5.2. Normal forms. In this section, we find normal forms for del Pezzo surfaces of degree 1
in characteristic 2. In total, we will have 14 different normal forms, corresponding to the 14
possible combinations of singularities of the ramification curve R and the branch curve B. First,
we simplify the equations of the branch curve.

Lemma 5.3. Let X be a del Pezzo surface of degree 1 given by Equation (7). Then, after a suitable

change of coordinates, we may assume that the equation a1x+ a3 of B is one of the following:

(1) ux+ v3

(2) ux
(3) uv(u+ v)
(4) u2v
(5) u3

Proof. If a1 6= 0, we may assume that a1 = u after applying a linear substitution in u and v. Then,
a substitution of the form x 7→ x+ b2 for a suitable binary form b2 of degree 2 in u and v allows
us to set a3 = λv3. Then, rescaling v, we can assume λ ∈ {0, 1}.

If a1 = 0, we get three cases according to the number of distinct roots of a3. The equation can
be normalized by applying a linear substitution in u and v to get Cases (3), (4), and (5). �

If we consider P(1, 1, 2) as a quadratic cone Q in P3, these 5 normal forms for a1x + a3
correspond to the cases where B is a twisted cubic, a union of a line and a conic, a union of three
lines, a union of a double line and a simple line, or a triple line, respectively. Later, we will use
automorphisms of P(1, 1, 2) that preserve the equation of B and the form of Equation (7) in order
to move the images of the singular points of R to special positions. In the following lemma, we
describe this group of automorphisms.

Lemma 5.4. Let H ⊆ Aut(k[u, v, x]) ⊆ Aut(k[u, v, x, y]) be the subgroup of automorphisms

that preserve a1x + a3, act on x as x 7→ x + b2 for some binary quadratic form b2 in u and v,
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and that map Equation (7) to one of the same form, with possibly different a2, a4, and a6. Then,

H consists of substitutions of the form

u 7→ αu+ βv

v 7→ γu+ δv

x 7→ x+ b2

where α, β, γ, δ ∈ k such that αδ + βγ 6= 0, and

(1) if a1x+ a3 = ux+ v3, then α = 1, β = 0, δ3 = 1, b2 = γ3u2 + γ2δuv + γδ2v2.

In particular, H ∼= k+ : 3.

(2) if a1x+ a3 = ux, then α = 1, β = b2 = 0.

In particular, H ∼= k+ : k×.

(3) if a1x+a3 = uv(u+v), then αγ(α+γ) = βδ(β+δ) = 0, α2δ+βγ2 = αδ2+β2γ = 1.

In particular, H ∼= k[u, v]2 : (3×S3)
(4) if a1x+ a3 = u2v, then β = γ = 0, δ = α−2.

In particular, H ∼= k[u, v]2 : k×.

(5) if a1x+ a3 = u3, then β = 0, α3 = 1.

In particular, H ∼= k[u, v]2 : (k : k× × 3).

For the convenience of the reader, we record the effect of a general substitution on the remaining
ai in Equation (7). The proof is a straightforward calculation.

Lemma 5.5. A substitution of the form

u 7→ αu+ βv

v 7→ γu+ δv

x 7→ x+ b2

y 7→ y + b1x+ b3

where α, β, γ, δ ∈ k and bi ∈ k[u, v]i such that αδ+ βγ 6= 0, changes the coefficients (a2, a4, a6)
in Equation (7) as follows

a2 7→ σ∗a2 + σ∗a1b1 + b21 + b2

a4 7→ σ∗a4 + σ∗a3b1 + σ∗a1b1b2 + σ∗a1b3 + b22

a6 7→ σ∗a6 + σ∗a4b2 + σ∗a3b3 + σ∗a2b
2
2 + σ∗a1b2b3 + b23 + b32,

where σ∗ai := ai(αu+ βv, γu+ δv).

Now, we are ready to describe the normal forms for del Pezzo surfaces of degree 1.

Theorem 5.6. Every del Pezzo surface of degree 1 in characteristic 2 is a surface of degree 6 in

P(1, 1, 2, 3) given by an equation of the form

y2 + y(a1(u, v)x+ a3(u, v)) + x3 + a2(u, v)x
2 + a4(u, v)x + a6(u, v) = 0, (8)

where (a1, a2, a3, a4, a6) is one of the following:
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Name a1x+ a3 a2 a4 a6 #Parameters

(1)(a) ux+ v3 av2 bu4 + cu2v2 + dv4 eu6 + fu4v2 + gu2v4 + hv6 8

(1)(b) ux+ v3 av2 cu2v2 + dv4 eu6 + fu4v2 + gu2v4 + hv6 7

(1)(c) ux+ v3 av2 dv4 eu6 + fu4v2 + gu2v4 + hv6 6

(1)(d) ux+ v3 av2 cu2v2 eu6 + fu4v2 + gu2v4 + hv6 6

(1)(e) ux+ v3 av2 0 eu6 + fu4v2 + gu2v4 + hv6 5

(2)(a) ux av2 v4 bu6 + du4v2 + eu3v3 + fu2v4 + guv5 + hv6 7

(2)(b) ux av2 v4 bu6 + du4v2 + fu2v4 + guv5 + hv6 6

(2)(c) ux av2 v4 bu6 + du4v2 + eu3v3 + fu2v4 + hv6 6

(2)(d) ux av2 v4 cu5v + du4v2 + fu2v4 + hv6 5

(2)(e) ux av2 0 bu6 + du4v2 + eu3v3 + fu2v4 + euv5 + hv6 6

(2)(f) ux av2 0 bu6 + du4v2 + fu2v4 + uv5 + hv6 5

(3) uv(u+ v) auv bu3v + (b+ c)u2v2 + cuv3 du5v + eu3v3 + fuv5 6

(4) u2v 0 au3v + bu2v2 + cuv3 du5v + eu3v3 + uv5 5

(5) u3 0 au3v + bu2v2 + cuv3 uv5 + dv6 4

Moreover, the parameters satisfy the conditions summarized in the following table, where

∆ := a43 + a31a
3
3 + a41(a

2
4 + a1a3a4 + a2a

2
3 + a21a6).

In this table, we also describe the singularities of the irreducible components of the reduction Rred

of the ramification curve R.

Name Conditions on the parameters Singularities of the irreducible components of Rred

(1)(a)
∆ has only simple roots

A2 over [1 : v : v3] with v8 + dv6 + cv4 + bv2 = 0
v8 + dv6 + cv4 + bv2 has four distinct roots

(1)(b) ∆ has only simple roots, c, d 6= 0
A4 over [1 : 0 : 0]

2A2 over [1 : v : v3] with v4 + dv2 + c = 0

(1)(c) ∆ has only simple roots, d 6= 0
A6 over [1 : 0 : 0]

A2 over [1 : d
1

2 : d
3

2 ]

(1)(d) ∆ has only simple roots, c 6= 0 2A4 over [1 : 0 : 0] and [1 : c
1

4 : c
3

4 ]

(1)(e) e 6= 0 A8 over [1 : 0 : 0]

(2)(a) u−4∆ has only simple roots, e, g, (g2 + a+ h) 6= 0 3A2 over [0 : 1 : 1], [1 : 0 : 0] and [g
1

2 : e
1

2 : 0]

(2)(b) b, g, (g2 + a+ h) 6= 0
A4 over [1 : 0 : 0]

A2 over [0 : 1 : 1]

(2)(c) b, e, (a + h) 6= 0 3A2 over [0 : 1 : 1], [1 : 0 : 0] and [0 : 1 : 0]

(2)(d) c, (a + h) 6= 0
A4 over [0 : 1 : 0]

A2 over [0 : 1 : 1]

(2)(e) u−6∆ has only simple roots, e 6= 0 3A2 over [0 : 1 : 0], [1 : 0 : 0] and [1 : 1 : 0]

(2)(f) u−6∆ has only simple roots
A4 over [1 : 0 : 0]

A2 over [0 : 1 : 0]

(3) d, f 6= 0, (d + e+ f) 6∈ {0, 1} 3A2 over [1 : 0 : 0], [0 : 1 : 0] and [1 : 1 : 0]

(4) d 6= 0 2A2 over [1.0 : 0] and [0 : 1 : 0]

(5) − A2 over [0 : 1 : 0]

Remark 5.7. The conditions on the parameters that guarantee the smoothness of X are equivalent
to the conditions that Equation (8) is the Weierstrass equation of an elliptic fibration with only
irreducible fibers. We will study this fibration later in Section 5.4. There, the reader can also find
an explicit formula for the homogeneous polynomial ∆, which is the discriminant of this fibration.
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Proof of Theorem 5.6. By Lemma 5.3, there are, up to choice of coordinates, 5 possible equations
for B. We will now give normal forms in each case.

(1) a1x+ a3 = ux+ v3

Here, the ramification curve R is given by the two equations

ux+ v3 = 0

y2 + x3 + a2x
2 + a4x+ a6 = 0.

One checks that the curve R is smooth at the points with u = 0. On the affine chart u = 1, it is
given in A2 by the single equation

y2 + v9 + a2(1, v)v
6 + a4(1, v)v

3 + a6(1, v),

so it has singularities over the roots of the derivative F ′ of F := v9 + a2(1, v)v
6 + a4(1, v)v

3 +
a6(1, v). After applying an element of H in Lemma 5.4, we may assume that 0 is the root of
highest multiplicity of F ′.

Now, substitutions as in Lemma 5.5 that fix u, v, and x do not change the location of the
points that lie under singularities of R and thus, by Lemma 5.5, we can assume that a2 = av2,
a4 = bu4+cu2v2+dv4, a6 = eu6+fu4v2+gu2v4+hv6. With this notation, the polynomial F ′

becomes v8+dv6+cv4+bv2 and the conditions of Proposition 5.2 boil down to v8+dv6+cv4+bv2

and ∆(1, v) = v12 + v9 + (d2 + a)v8 + dv7 + hv6 + cv5 + (c2 + g)v4 + bv3 + fv2 + b2 + e not
having a common solution. The former is the derivative of the latter, hence we want that the latter
has only simple zeroes.

Now, if F ′ has four distinct roots, we are in Case (a). If F ′ has less than four distinct roots, we
may assume b = 0. If F ′ has exactly three roots, then we are in Case (b). If b = 0, the polynomial
F ′ has exactly two roots if and only if either c = 0 and d 6= 0, which is Case (c), or d = 0 and
c 6= 0, which is Case (d). Finally, F ′ has a single root if and only if b = c = d = 0, which is Case
(e).

(2) a1x+ a3 = ux

Here, the ramification curve has two components R1 and R2. The curve R1 is given by

u = 0

y2 + x3 + a2x
2 + a4x+ a6 = 0.

This curve has a unique singularity, which is of type A2 and located over [0 : 1 : a4(0, 1)
1

2 ].
Rescaling v, we may assume that a4(0, 1) ∈ {0, 1}.

The curve R2 is given by

x = 0

y2 + a6 = 0.

This curve has singularities over the points [u : v : 0] where the derivatives of a6 by u and v both
vanish.

First, assume that a4(0, 1) = 1 and one of the singularities of R2 does not lie over [0 : 1 :
0]. Then, using a substitution in v as in Lemma 5.4, we can assume that one of them lies over
[1 : 0 : 0]. Substitutions as in Lemma 5.5 which fix u, v, and x do not change the location
of these points and, after applying one of them, we may assume that a2 = av2, a4 = v4, and
a6 = bu6 + du4v2 + eu3v3 + fu2v4 + guv5 + hv6. If e, g 6= 0, this is Case (a), if e = 0 and
g 6= 0, this is Case (b), and if e 6= 0 and g = 0, this is Case (c). The conditions of Proposition
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5.2 boil down to ∆(1, v) = v8 + hv6 + gv5 + fv4 + ev3 + dv2 + b having only simple roots and
g2 6= a+ h. In particular, (e, g) 6= (0, 0).

If a4(0, 1) = 1, R2 has a unique singularity, and this singularity lies over [0 : 1 : 0], then the
only odd monomial in a6 is u5v. A substitution of the form v 7→ v + µu and substitutions as in
the previous paragraph allow us to assume that a2 = av2, a4 = v4, and a6 = cu5v + du4v2 +
fu2v4 + hv6. The conditions of Proposition 5.2 become a+ h 6= 0 and c 6= 0. This is Case (d).

If a4(0, 1) = 0, then Proposition 5.2 implies that R2 is smooth over [0 : 1 : 0]. Hence,
we can assume that one of the singularities of R2 lies over [1 : 0 : 0]. Using a substitution
as in Lemma 5.5 which fixes u, v and x, we may assume that a2 = av2, a4 = 0, and a6 =
bu6 + du4v2 + eu3v3 + fu2v4 + guv5 + hv6. Since R2 is smooth over [0 : 1 : 0], we have g 6= 0.
If e 6= 0, we can scale v so that g = e. This is Case (e). If e = 0, we scale v so that g = 1. This is
Case (f).

(3) a1x+ a3 = uv(u+ v)

The curve B has the three irreducible components B1, B2, and B3, given by V (u), V (v), and
V (u+ v), respectively. The corresponding components R1, R2, and R3 of R are given by

y2 + x3 + a2(0, v)x
2 + a4(0, v)x + a6(0, v),

y2 + x3 + a2(u, 0)x
2 + a4(u, 0)x + a6(u, 0), and

y2 + x3 + a2(u, u)x
2 + a4(u, u)x + a6(u, u),

respectively. The singular points of R1, R2, and R3 lie over [0 : 1 : a4(0, 1)
1

2 ], [1 : 0 : a4(1, 0)
1

2 ],

and [1 : 1 : a4(1, 1)
1

2 ], respectively.
A substitution as in Lemma 5.4 which fixes u and v allows us to set a4(0, 1) = a4(1, 0) =

a4(1, 1) = 0, that is, that a4 = bu3v+ (b+ c)u2v2 + cuv3 for some b, c ∈ k. Then, a substitution
as in Lemma 5.5 which fixes u, v, and x allows us to set a2 = auv and a6 = du5v+eu3v3+fuv5.
The conditions of Proposition 5.2 become d 6= 0, f 6= 0 and d+ e+ f 6∈ {0, 1}.

(4) a1x+ a3 = u2v

The curve B has two irreducible components B1 and B2, given by V (u) and V (v), respectively.
The corresponding components R1 and R2 of R are given by

y2 + x3 + a2(0, v)x
2 + a4(0, v)x + a6(0, v), and

y2 + x3 + a2(u, 0)x
2 + a4(u, 0)x+ a6(u, 0),

respectively. The singular points of R1 and R2 lie over [0 : 1 : a4(0, 1)
1

2 ] and [1 : 0 : a4(1, 0)
1

2 ],
respectively.

A substitution as in Lemma 5.5 which fixes u and v allows us to set a4(0, 1) = a4(1, 0) and
that a2 is a square. Then, a substitution with b2 = b3 = 0 allows us to eliminate a2. Finally,
a substitution with b1 = b2 = 0 allows us to assume that a6 contains no squares. If we write
a6 = du5v + eu3v3 + fuv5, then the conditions of Proposition 5.2 becomes d 6= 0 and f 6= 0,
and we can rescale f to 1.

(5) a1x+ a3 = u3

The curve R is given by

y2 + x3 + a2(0, v)x
2 + a4(0, v)x + a6(0, v)

and it is singular over [0 : 1 : a4(0, 1)
1

2 ].
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We apply the same substitutions as in the previous case to remove a2. Then, we apply a substi-
tution as in Lemma 5.5 with b2 = b21 to remove the v4-term in a4. Next, using a substitution that
fixes u, v, and x with b1 = 0, we eliminate the squares in a6, write a6 = du5v + eu3v3 + fuv5,
and rescale f to 1. After that, a substitution of the form v 7→ v + λu, and eliminating the square
again, allows us to set d = 0. Next, a substitution as in Lemma 5.5 which fixes u and v, with
b1 = λu, b2 = λ2u2, and b3 = µu3 for suitable λ and µ allows us to eliminate the u4-term in a4
without changing a6. Finally, we apply a substitution with b3 = ev3 and rename the parameters to
assume that a6 = uv5 + dv6. The conditions of Proposition 5.2 are fulfilled for every choice of
parameters. �

5.3. Fake tritangent planes and odd theta characteristics. It is known that a del Pezzo surface
X of degree 1 contains 240 (−1)-curves (see [9, 8.7], where the proof is characteristic free). They
come in pairs Ei + E′

i ∈ | − 2KX | with Ei · E′
i = 3. The Bertini involution β swaps the two

curves in a pair. The image of Ei + E′
i under the anti-bicanonical map f is a plane section of Q

not passing through the vertex.
If p 6= 2, each of the resulting 120 planes is a tritangent plane to the branch sextic curve and,

conversely, every tritangent plane to the branch sextic gives rise to a pair of (−1)-curves Ei + E′
i

with Ei+E′
i ∈ |−2KX |. A tritangent plane intersects the branch curve in twice a positive divisor

of degree 3. This divisor is an odd theta characteristic of the curve. It is known that the number of
odd theta characteristics on a smooth curve of genus 4 is equal to 120.

For arbitrary p, we still have the following.

Lemma 5.8. The preimage f−1(C) of an integral conic C = V (x + b2) is a sum of two (−1)-
curves if and only if it is reducible.

Proof. Since f has degree 2 and C is integral, the curve f−1(C) is reducible if and only if it
has two irreducible components L1 and L2. These components satisfy L1 + L2 ∈ | − 2KX |,
L1 · L2 = 3, and L2

1 = L2
2. Via adjunction, this easily implies that L1 and L2 are (−1)-curves.

The converse is clear. �

So, even if p = 2, we have 120 splitting conics and we call the corresponding planes in P3

fake tritangent planes in analogy with the situation in the other characteristics. For the rest of this
section, we assume p = 2.

Since the anti-bicanonical map is étale outside the branch curve V (A), the intersection Ei ∩E′
i

lies on the ramification curve R. Let L = OR(Ei) ∼= OR(E
′
i). It is an invertible sheaf on C of

degree 2. We have
L⊗2 ∼= OR(Ei + E′

i)
∼= OR(−2KX).

Since B ∈ |OP(1,1,2)(3)|, we have R ∈ | − 3KX |. By the adjunction formula, we have

ωR
∼= OR(−3KX +KX) ∼= L⊗2.

As in the case of degree 2, invertible sheaves on R that satisfy this property are called invertible
theta characteristics. Let Θ(R) be the set of isomorphism classes of such invertible theta charac-
teristics on R and let J(R) be the generalized Jacobian of R. As in Lemma 3.6, one can prove
that J(R) is a product of additive groups.

Lemma 5.9. The generalized Jacobian J(R) of R is isomorphic to G4
a.

Thus, as in degree 2, finding fake tritangent planes using theta characteristics on R is subtle in
characteristic 2. We refer to Example 3.7 for an example in degree 2 that further illustrates this
point and leave it to the reader to find a similar example in degree 1.
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5.4. Rational elliptic surfaces. Equation (7) can also serve as the Weierstrass equation of the
rational elliptic surface φ : Y → P1 obtained by blowing up the base point p0 of | −KX |. Since
X is a del Pezzo surface, all members of | −KX | are irreducible, hence so are all fibers of φ. The
discriminant of φ is

∆ = a43 + a31a
3
3 + a41(a

2
4 + a1a3a4 + a2a

2
3 + a21a6).

The singular fibers of φ lie over the zeroes of ∆. Moreover, the Bertini involution, which is given
by β : y 7→ y+(a1x+a3), induces the inversion on the group structure of each fiber. In particular,
for [u0 : v0] ∈ P1, if a1(u0, v0)x+ a3(u0, v0) = 0, the corresponding fiber F of φ is cuspidal, if
a1(u0, v0) = 0 and a3(u0, v0) 6= 0, then F is smooth and supersingular, and in the other cases, F
is either nodal, or smooth and ordinary, according to whether ∆(u0, v0) is zero or not. Applying
these observations to the normal forms of Theorem 5.6, we obtain the following information on φ.

Proposition 5.10. Let X be a del Pezzo surface of degree 1 given by one of the normal forms in

Theorem 5.6. Then, the associated elliptic fibration φ is elliptic and all its fibers are irreducible.

The discriminant ∆ and the singular fibers of φ are given in the following table.

Name ∆ Nodal fibers over the Cuspidal fibers over

(1)(a)
v12 + u3v9 + (d2 + a)u4v8 + du5v7 + hu6v6 + cu7v5

12 roots of ∆ –
+(c2 + g)u8v4 + bu9v3 + fu10v2 + (b2 + e)u12

(1)(b)
v12 + u3v9 + (d2 + a)u4v8 + du5v7 + hu6v6 + cu7v5

12 roots of ∆ –
+(c2 + g)u8v4 + fu10v2 + eu12

(1)(c)
v12 + u3v9 + (d2 + a)u4v8 + du5v7 + hu6v6

12 roots of ∆ –
+gu8v4 + fu10v2 + eu12

(1)(d)
v12 + u3v9 + au4v8 + hu6v6 + cu7v5

12 roots of ∆ –
+(c2 + g)u8v4 + fu10v2 + eu12

(1)(e)
v12 + u3v9 + au4v8 + hu6v6

12 roots of ∆ –
+gu8v4 + fu10v2 + eu12

(2)(a) u4(v8 + u2(bu6 + du4v2 + eu3v3 + fu2v4 + gsv5 + hv6)) 8 roots of u−4∆ [0 : 1]

(2)(b) u4(v8 + u2(bu6 + du4v2 + fu2v4 + gsv5 + hv6)) 8 roots of u−4∆ [0 : 1]

(2)(c) u4(v8 + u2(bu6 + du4v2 + eu3v3 + fu2v4 + hv6)) 8 roots of u−4∆ [0 : 1]

(2)(d) u4(v8 + u2(cu5v + du4v2 + fu2v4 + hv6)) 8 roots of u−4∆ [0 : 1]

(2)(e) u6(bu6 + du4v2 + eu3v3 + fu2v4 + euv5 + hv6)
If h 6= 0 : 6 roots of u−6∆

[0 : 1]
If h = 0 : 5 roots of u−7∆

(2)(f) u6(bu6 + du4v2 + fu2v4 + uv5 + hv6)
If h 6= 0 : 6 roots of u−6∆

[0 : 1]
If h = 0 : 5 roots of u−7∆

(3) u4v4(u+ v)4 – [1 : 0], [0 : 1], [1 : 1]

(4) u8v4 – [1 : 0], [0 : 1]

(5) u12 – [0 : 1]

Remark 5.11. The classification of singular fibers of rational elliptic surfaces with a section in
characteristic 2 can be found in [14]. Lang shows that in the cases where the general fiber is
a supersingular elliptic curve, the number of singular fibers is at most 3, which agrees with our
computations. In fact, our normal forms also yield normal forms for all rational elliptic surfaces
with a section in characteristic 2 whose singular fibers are irreducible.
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6. AUTOMORPHISM GROUPS OF DEL PEZZO SURFACES OF DEGREE 1

This section consists of three parts. In the first part, we collect various restrictions on the group
G(X) = Aut(X)/〈β〉 arising from the geometry of X. In the second part, we give an explicit
description of Aut(X) in terms of Equation (7) and use it to classify all surfaces where G(X) is
non-trivial and to determine the group Aut(X) in every case. In the third part, we compare our
classifiction with the classification in characteristic 0 from [9, Table 8.14] and use this to determine
the conjugacy classes of all elements in Aut(X) (see Table 4 in the Appendix). Throughout, we
assume p = 2.

6.1. Restrictions on G(X). Since the elliptic fibration φ : Y → P1 associated to X is obtained
by blowing up the base point of | −KX |, we can identify Aut(X) with the subgroup of Aut(Y )
preserving a chosen section. Let r : Aut(X) → Aut(P1) be the natural homomorphism defined
by the action of Aut(X) on the coordinates [u : v] of the base of φ. Since φ is the unique relatively
minimal smooth proper model of its generic fiber Fη, the kernel K = Ker(r) is isomorphic to the
group of automorphisms of the elliptic curve Fη. In particular, K contains the Bertini involution
β and it can contain more automorphisms only if the j-invariant of Fη is equal to 0 = 1728, in
which case K is a subgroup of Q8 : 3 ∼= SL2(F3).

Let P be the image of r. Evidently, P is a finite subgroup of Aut(P1) that leaves invariant the
set S1 of points p = [ui : vi] corresponding to the singular fibers. It also leaves invariant the set
S2 of the projections of singular points of the irreducible components of the ramification curve R.

The following proposition shows what kind of groups can be expected to occur for P . We use
the known classification of finite subgroups of Aut(P1) ∼= PGL2(k) ∼= SL2(k) [12, Theorem
2.5].

Proposition 6.1. The group P is isomorphic to Gξ,A or D2n.

Proof. Since SL2(2) ∼= S3
∼= D6, it suffices to show that SL2(Fq) 6⊆ P for q = 2m and m ≥ 2.

Since the set S2 has cardinality at most 4 and P preserves S2, every homogeneous polynomial F
with simple roots along S2 is P -semi-invariant of degree at most 4. On the other hand, by [15,
Theorem 6.1.8], the ring k[u, v]SL2(Fq) is generated over Fq by the Dickson polynomials L and
d2,1 of degrees q + 1 and q2 − q, respectively. If SL2(q) ⊆ P , then F is also a semi-invariant
polynomial for SL2(q) and if q 6= 2, then SL2(Fq) is simple, so F ∈ k[u, v]SL2(q) = k[L,d2,1].
Hence, q = 2, as claimed. �

We recall from [12, §1.3] that the image of the Bertini involution β under the injective homo-
morphism ρ : Aut(X) → W (E8) is equal to −idE8

. However, in contrast to the situation in
degree 2, the extension W (E8) → W (E8)/(−idE8

) ∼= O+
8 (2) does not split. The semi-direct

product W (E8) = 2.GO+
8 (2) corresponds to a non-trivial homomorphism O+

8 (2) → C2, whose
kernel is a simple group O8(2), where we use the ATLAS notation.

Therefore, in order to determine Aut(X), it is not enough to determine the image G(X) of the
homomorphism Aut(X) → Aut(X)/〈β〉, and thus the calculation of Aut(X) is more compli-
cated than in the case of del Pezzo surfaces of degree 2.

Let us summarize the restrictions on Aut(X) and G(X) that we have collected by now.

Theorem 6.2. Let X be a del Pezzo surface of degree 1 in characteristic 2. Let G(X) be the image

of the homomorphism Aut(X) → Aut(P(1, 1, 2)), let K be the kernel of the homomorphism

r : Aut(X) → Aut(P1), let P be the image of r, and let φ : Y → P1 be the elliptic fibration

associated to X. Then, the following hold:
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(i) Aut(X) is a central extension of G(X) by 〈β〉 ∼= C2.

(ii) Aut(X) is an extension of P by K .

(iii) Aut(X) is a subgroup of W (E8).
(iv) G(X) is a subgroup of O+

8 (2).
(v) K is the automorphism group of the generic fiber of φ.

(vi) P is isomorphic to Gξ,A or D2n.

(vii) P preserves the set S1 of points lying under singular fibers of φ. Moreover, it preserves

the decomposition of S1 into subsets corresponding to isomorphic fibers.

(viii) P preserves the set S2 of points lying under the singularities of R. Moreover, it preserves

the decomposition of S2 into subsets of isomorphic singularities.

(ix) The j-function of φ is P -invariant.

This yields the following preliminary restrictions on Aut(X) and G(X).

Corollary 6.3. Let X be a del Pezzo surface of degree 1 in characteristic 2 given by one of the

normal forms in Theorem 5.6.

(i) In Case (1), G(X) is a subgroup of A4.

(ii) In Cases (2) (a), (2) (b), (2) (c), and (2) (d), G(X) is a subgroup of 23.

(iii) In Cases (2) (e) and (2) (f), G(X) is a subgroup of C5 or C2.

(iv) In Case (3), K is a subgroup of SL2(3) and P is a subgroup of S3.

(v) In Case (4), K is a subgroup of SL2(3) and P is cyclic of order 1, 3, 5, 7, 9, or 15.

(vi) In Case (5) K is a subgroup of SL2(3) and P ∼= Gξ,A, where ξ is a primitive n-th root of

unity with n ∈ {1, 3, 5, 7, 9, 15}.

Proof. In Case (1), the generic fiber of φ is ordinary, hence K = 〈β〉 and G(X) ∼= P . The fibra-
tion φ has 12 nodal fibers, hence the j-function has 12 poles, so |P | | 12. Since P is isomorphic
to Gξ,A or D2n with n odd, this implies that P is isomorphic to a subgroup of A4.

In Cases (2), we also have K = 〈β〉 and G(X) ∼= P . In Cases (2) (a), (2) (b), (2) (c), and (2)
(d), the fibration φ has 8 nodal fibers, hence |P | | 8. This implies that P is elementary abelian of
order 1, 2, 4 or 8. In Cases (2) (e) and (2) (f), the fibration φ has 5 or 6 nodal fibers. If it has 5
nodal fibers, then |P | | 5, hence P is a subgroup of C5. If it has 6 nodal fibers, then P is either
a subgroup of C2 or isomorphic to the dihedral group D6. In the latter case, P acts without fixed
point on P1, which is impossible, since φ admits a unique cuspidal fiber.

In Case (3), we have K ⊆ SL2(3), since the generic fiber of φ is supersingular. Since φ has
three singular fibers, P is isomorphic to a subgroup of S3.

In Case (4) we also have K ⊆ SL2(3). Since one of the components of R is reduced and the
other is not, P acts trivially on S2, hence with two fixed points on P1. So, P is cyclic of odd
order. Moreover, P is a subgroup of O+

8 (2). In particular, P admits a faithful representation of
dimension at most 8. Hence, if we denote Euler’s totient function by ϕ, then ϕ(|P |) ≤ 8. Thus, P
is of order 1, 3, 5, 7, 9 or 15.

In Case (5) we have K ⊆ SL2(3) and the action of P on P1 fixes the point lying under the
unique singular fiber of φ, hence P ∼= Gξ,A. The order of ξ can be bounded by the same argument
as in the previous paragraph. �

In particular, we get upper bounds on the size of Aut(X) in every case. Further information on
the 2-groups that can occur in Case (5) can be obtained using the following remark.

Remark 6.4. Since the maximal powers of 2 that divide |W (E8)| and |W (D8)| are both 214, and
since W (D8) is a subgroup of W (E8), the 2-Sylow subgroups P in W (E8) are isomorphic to
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the 2-Sylow subgroups in W (D8) = 27 : S8. Hence, P is isomorphic to 27 : (S8)2, where 27

acts on Z8 by an even number of sign changes and (S8)2 is a 2-Sylow subgroup of S8 acting
as permutations on Z8. The group (S8)2 is isomorphic to the symmetry group of a binary tree
of depth 3, considered as a subgroup of S8 via the permutation it induces on the leaves of the
tree. An equivalent description is as the wreath product D8 ≀ C2, where D8 × D8 is a subgroup
of S4 ×S4 ⊂ S8. The Bertini involution β corresponds to the element (−1, id) that changes all
signs. The 2-groups that can occur in Corollary 6.3 are isomorphic to subgroups of P .

In the following example, we apply this remark to give an explicit description of the group 21+6
+ ,

which will occur in our classification.

Example 6.5. With notation as in the previous remark, let G ⊆ P be a subgroup containing β
such that G/〈β〉 is an elementary abelian 2-group and such that β ∈ Q8 ⊆ G. Then, each element
of G is of the form (σ, τ), where ord(τ) ≤ 2 and either τ preserves the set of coordinates whose
sign is changed by σ and then (σ, τ) has order 1 or 2, or τ swaps this set with the set of coordinates
whose sign is not changed and then (σ, τ) has order 4. In particular, in the latter case, τ has cycle
type (2, 2, 2, 2). Since Q8 ⊆ G, the image of G → (S8)2 contains a subgroup H of order 4
generated by involutions of cycle type (2, 2, 2, 2). The centralizer C of H is of order 8 and its
non-trivial elements are involutions of cycle type (2, 2, 2, 2). The kernel of G → (S8)2 consists
of sign changes σ that are compatible with all τ ∈ H in the sense that (σ, τ)2 ∈ 〈β〉. One checks
that the group N of all such compatible sign changes has order 16 and that all elements of N are
also compatible with C . Then, G is a subgroup of the resulting extension M of C by N .

We have M/〈β〉 = 26. This is a quadratic space over F2 with the quadratic form q : M/〈β〉 →
〈β〉 defined as q(x) = x̃2, where x̃ is a lift of x to M . The subspace N/〈β〉 is totally isotropic of
dimension 3 and the description of M in the previous paragraph shows that q is non-degenerate.
Hence, by [1, (23.10)], M is isomorphic to the extra-special 2-group of 21+6

+ .

6.2. Classification. Recall that X is a hypersurface of degree 6 in P(1, 1, 2, 3) given by Equation
(7). An automorphism of P(1, 1, 2, 3) is induced by a substitution of the form

u 7→ αu+ βv

v 7→ γu+ δv

x 7→ εx+ b2

y 7→ ζy + b1x+ b3

where α, β, γ, δ, ε, ζ ∈ k, bi ∈ k[u, v]i, and αδ + βγ, ε, ζ 6= 0. The substitutions that induce the
identity on P(1, 1, 2, 3) are the ones with β, γ, b1, b2, b3 = 0 and γ = α, ε = α2, ζ = α3.

Since X is anti-canonically embedded into P(1, 1, 2, 3), all automorphisms of X are induced by
the substitutions as above that map Equation (7) to a multiple of itself. Clearly, we can represent
every such automorphism by a substitution with ζ = 1. Then, the substitution does not change
the coefficient of y2 in Equation (7), hence ε3 = 1. Therefore, we may assume ε = 1 as well. In
particular, using Lemma 5.5, we obtain the following description of Aut(X), where we write σ
for the substitution

u 7→ αu+ βv

v 7→ γu+ δv

and σ∗ai := ai(αu+ βv, γu+ δv).
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Lemma 6.6. Let X be a del Pezzo surface of degree 1 given by Equation (7). Then, Aut(X) can

be identified with the group of 4-tuples (b1, b2, b3, σ), where bi ∈ k[u, v]i and σ ∈ GL2(k) such

that

σ∗a1 + a1 = 0,

σ∗a2 + a2 = a1b1 + b21 + b2,

σ∗a3 + a3 = a1b2,

σ∗a4 + a4 = a3b1 + a1b3 + b22,

σ∗a6 + a6 = a4b2 ++a3(b3 + b1b2) + a2b
2
2 + a1(b2b3 + b1b

2
2) + b23 + b32 + b21b

2
2

and where the composition is given by

(b1, b2, b3, σ) ◦ (b′1, b′2, b′3, σ′) = (σ′∗b1 + b′1, σ
′∗b2 + b′2, σ

′∗b3 + b′3 + σ′∗b1b
′
2, σ ◦ σ′)

In particular, there is a homomorphism Aut(X) → H ⊆ Aut(P(1, 1, 2)), where H is the group
from Lemma 5.4.

Lemma 6.7. The kernel of the homomorphism Aut(X) → H is generated by the Bertini involu-

tion.

Proof. Let (b1, b2, b3, σ) be in the kernel. Then, σ = id and b2 = 0. The conditions σ∗a2 =
a2 + a1b1 + b21, σ∗a4 = a4 + a3b1 + a1b3, and σ∗a6 = a6 + a3b3 + b23 show that (b1, b3) ∈
{(0, 0), (a1, a3)}, so we recover our explicit description of the Bertini involution. �

Now, we use the normal forms of Theorem 5.6 to classify all del Pezzo surfaces X of degree 1
with non-trivial G(X).
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Theorem 6.8. Every del Pezzo surface of degree 1 in characteristic 2 such that G(X) is non-trivial is a surface of degree 6 in P(1, 1, 2, 3) given

by an equation of the form y2 + (a1x+ a3)y + x3 + a2x
2 + a4x+ a6 where (a1, a2, a3, a4, a6, G(X),Aut(X)) is one of the following:

Name a1x+ a3 a2 a4 a6 G(X) Aut(X) #Parameters

(1)(a)(i) ux+ v3 av2 bu4 + (b+ 1)u2v2 eu6 + fu4v2 + (a+ b+ b2 + f)u2v4 + bv6 2 4 4

(1)(a)(ii) ux+ v3 0 bu4 eu6 + hv6 3 6 3

(1)(a)(iii) ux+ v3 av2 u4 eu6 + au4v2 + v6 22 Q8 2

(1)(a)(iv) ux+ v3 0 u4 eu6 + v6 A4 SL2(3) 1

(1)(d)(i) ux+ v3 av2 u2v2 eu6 + fu4v2 + (a+ f)u2v4 2 4 3

(1)(e)(i) ux+ v3 0 0 eu6 + hv6 3 6 2

(2)(a)(i) ux av2 v4 bu6 + (efg−1 + e
3

2 g−
1

2 + e3g−3)u4v2 + eu3v3 + fu2v4 + guv5 + e−
1

2 g
3

2 v6 2 22 5

(2)(d)(i) ux av2 v4 cu5v + du4v2 + fu2v4 23 24 4

(2)(e)(i) ux av2 0 bu6 + (e+ f)u4v2 + eu3v3 + fu2v4 + euv5 + ev6 2 22 4

(2)(f)(i) ux 0 0 bu6 + uv5 5 10 1

(3)(i) uv(u+ v) auv bu3v + buv3 du5v + eu3v3 + duv5 2 22 4

(3)(ii) uv(u+ v) auv a
1

2u3v + a
1

2uv3 (e+ e
1

2 )u5v + eu3v3 + (e+ e
1

2 )uv5 S3 2×S3 2

(3)(iii) uv(u+ v) 0 0 du5v + eu3v3 + duv5 6 2× 6 2

(3)(iv) uv(u+ v) 0 bu3v + ζ3bu
2v2 + ζ23buv

3 (e+ e
1

2 )u5v + eu3v3 + (e+ e
1

2 )uv5 3 6 2

(3)(v) uv(u+ v) 0 0 (e+ e
1

2 )u5v + eu3v3 + (e+ e
1

2 )uv5 3×S3 6×S3 1

(4)(i) u2v 0 0 du5v + eu3v3 + uv5 3 6 2

(5)(i) u3 0 au3v + bu2v2 uv5 + dv6 26 21+6
+ 3

(5)(ii) u3 0 0 uv5 + dv6 26 : 3 21+6
+ : 3 1

(5)(iii) u3 0 0 uv5 26 : 15 21+6
+ : 15 0

Here, S3, D8, Q8, and 21+6
+ , denote the symmetric group on 3 letters, the dihedral group of order 8, the quaternion group, and the even

extra-special group of order 128, respectively. In each case, the parameters have to satisfy the conditions of Theorem 5.6 and the obvious

genericity conditions that keep them from specializing to other subcases.
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Proof. We use the normal forms of Theorem 5.6 and let H be the group of Lemma 5.4. By Lemma
6.6, we have G(X) ⊆ H . We apply Lemma 6.6 to calculate Aut(X).

Case (1) (a)

Let (b2, σ) ∈ H . If (b2, σ) ∈ G(X), then σ permutes the roots of the polynomial F ′ := v8 +
dv6 + cv4 + bv2, since these are determined by the singularities of R. We have

σ∗F ′ = δ2v8 + dv6 + δ(γ2d+ c)v4 + δ2(γ4d+ b)v2 + γ8 + γ6d+ γ4c+ γ2b.

If d 6= 0, this is a multiple of F ′ if and only if δ = 1 and γ = 0, hence σ is the identity and G(X)
is trivial. If d = 0, it is a multiple of F ′ if and only if

γ8 + γ4c+ γ2b = 0 (9)

and δ = 1 or c = 0.
So, assume first that c 6= 0 and δ = 1. If (b2, σ) ∈ G(X), then there exist polynomials b1 and

b3 such that σ∗a2 = a2 + a1b1 + b21 + b2 and σ∗a4 = a4 + a3b1 + a1b3 + b22. In our case, this
means

0 = γ2au2 + ub1 + b21 + γ3u2 + γ2uv + γv2

0 = γ2cu4 + v3b1 + ub3 + γ6u4 + γ4u2v2 + γ2v4,

hence b1 = λu+ γ2t with λ2 + λ = γ2a+ γ3 and γ4 = γ, and b3 = (γ2c+ γ3)u3 + γuv2 + λv3.
If γ 6= 0, then γ4 = γ implies γ3 = 1. Modifying the equation of X by an element of H , we may
assume that γ = 1. Plugging this into Equation (9), we obtain c = b+1. Hence, b1 = λu+v with
λ2 + λ = a and b3 = bu3 + uv2 + v3. Plugging this into the equation for σ∗a6 and comparing
coefficients in Lemma 6.6, we obtain the conditions h = b and g = a + b + b2 + f . Since γ is
uniquely determined by Equation (9), we have G(X) ∼= C2. The square of any lift of a non-trivial
element of G(X) to Aut(X) is the Bertini involution, hence Aut(X) ∼= C4.

Next, assume that c = 0. If (b2, σ) ∈ G(X), then there exist polynomials b1 and b3 such that
σ∗a2 = a2 + a1b1 + b21 + b2 and σ∗a4 = a4 + a3b1 + a1b3 + b22. In our case, this means

0 = γ2au2 + (1 + δ2)av2 + ub1 + b21 + γ3u2 + γ2δuv + γδ2v2

0 = v3b1 + ub3 + γ6u4 + γ4δ2u2v2 + γ2δ4v4,

hence b1 = λu + γ2δv with λ2 + λ = γ2a + γ3 and γ4 + γ = (1 + δ)a, as well as b3 =
γ6u3 + γ4δ2uv2 + λv3.

First, assume that δ 6= 1. Then, σ has order 3, hence if (b2, σ) ∈ G(X), then it fixes one of the
four roots of F ′. After conjugating by a suitable element of H and repeating the substitutions we
used in Theorem 5.6, we may assume that (b2, σ) fixes [1 : 0 : 0]. This implies that γ = 0, hence
(1 + δ)a = 0 implies a = 0. Now, we plug everything into the equation for σ∗a6 and compare
coefficients to obtain the conditions f = g = 0.

If δ = 1, then γ4+ γ = 0. Hence, if (b2, σ) is non-trivial, then γ3 = 1. Modifying the equation
of X by an element of H , we may assume γ = 1, that is, that (b2, σ) maps [1 : 0 : 0] to [1 : 1 : 1].
Then, Equation (9) implies b = 1. Plugging into the equation for σ∗a6 and comparing coefficients
yields g = f +a and h = 1. The square of both lifts of (b2, σ) to Aut(X) is the Bertini involution,
hence the subgroup generated by these lifts is isomorphic to C4.

Suppose next that G(X) contains two distinct non-trivial automorphisms with δ = 1. Then,
we can assume that one of them acts as in the previous paragraph, so b = h = 1 and g = f + a.
The other one satisfies γ 6= 1. Plugging this into the equation for σ∗a6 and comparing coefficents
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yields f = a. As in the previous paragraph, the square of all lifts of these automorphisms is the
Bertini involution, hence they generate a subgroup isomorphic to the quaternion group Q8.

Finally, Corollary 6.3 shows that G(X) acts on the four singular points of R through A4, so
if G(X) contains a non-trivial automorphism with δ = 1 and a non-trivial automorphism with
δ 6= 1, then G(X) ∼= A4. In particular, the previous two paragraphs show that b = h = 1 and
g = 0 and f = a, while the above paragraph for δ 6= 1 shows a = f = g = 0. In this case,
Aut(X) ∼= SL2(3).

Cases (1) (b) and (1) (c)

In these cases, the singularity of R over [1 : 0 : 0] is not isomorphic to the other singularities of
R, hence G(X) is a subgroup of C3 acting through the subgroup of H with γ = 0. In particular,
G(X) fixes the points [1 : 0 : 0] and [0 : 1 : 0]. Since the number of singular points of R that lie
over points different from [1 : 0 : 0] and [0 : 1 : 0] is not divisible by 3, G(X) fixes all of them,
hence G(X) is trivial.

Case (1) (d)

In this case, R has singularities over [1 : 0 : 0] and [1 : c
1

4 : c
3

4 ]. An element of H that fixes both
of these points is trivial, and the unique one that swaps the two points is of the form (b2, σ) where

σ acts as v 7→ v+ c
1

4u and b2 = c
3

4u2+ c
1

2uv+ c
1

4 v2. If such an element lies in G(X), then there
exist polynomials b1 and b3 such that

0 = (ac
1

2 + c
3

4 )u2 + ub1 + b21 + c
1

2uv + c
1

4 v2

0 = v3b1 + ub3 + cu2v2 + c
1

2 v4,

hence b1 = λu+ c
1

2 v with λ2 + λ = ac
1

2 + c
3

4 and c4 = c, and b3 = λv3 + cuv2. By Theorem
5.6 we have c 6= 0, hence we can apply an element of H to assume that c = 1. Plugging this into
the equation for σ∗a6 and comparing coefficients in Lemma 6.6, we obtain the conditions h = 0
and g = a+ f . The square of this (b1, b2, b3, σ) is the Bertini involution, hence Aut(X) ∼= C4 in
this case.

Case (1) (e)

In this case, we have G(X) ⊆ C3, since G(X) fixes [1 : 0 : 0]. Non-trivial elements of H that
fix [1 : 0 : 0] are of the form (0, σ), where σ acts as v 7→ δv with δ3 = 1 and δ 6= 1. Such an
automorphism lifts to X if and only if there exist polynomials b1 and b3 such that

(1 + δ2)av2 = ub1 + b21

0 = v3b1 + ub3

(1 + δ2)fu4v2 + (1 + δ)gu2v4 = v3b3 + b23.

The first equation implies a = 0 and b1 = λu with λ2 + λ = 0 and then the second equation
implies that also b3 = λv3. Finally, the third equation shows f = g = 0.

Case (2) (a)

Here, G(X) ⊆ H fixes the point [0 : 1 : 1]. Moreover, if G(X) fixes the images of the other two
singularities, then, by our description of H , G(X) is trivial. Hence, G(X) ⊆ C2 with equality if

and only if G(X) contains the involution (0, σ), where σ acts as v 7→ v + e
1

2 g−
1

2u.
If this involution is in G(X), then there exist polynomials b1 and b3 such that

aeg−1u2 = ub1 + b21
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e2g−2u4 = ub3,

hence b1 = λu with λ2+λ = aeg−1, and b3 = e2g−2u3. Plugging this into the equation for σ∗a6
and comparing coefficients in Lemma 6.6, we obtain the conditions

0 = e4 + he3g + fe2g2 + deg3

0 = e
1

2 (g
3

2 + he
1

2 ).

Since e 6= 0 by Theorem 5.6, we have h = e−
1

2 g
3

2 and d = efg−1 + e
3

2 g−
1

2 + e3g−3. Note that
both lifts of (0, σ) have order 2, hence Aut(X) ∼= 22.

Case (2) (b) and (2) (c)

Here, G(X) ⊆ H fixes [0 : 1 : 1] and [1 : 0 : 0], since these are the points that lie under
the singularities of the irreducible components of R, but not under the intersection of the two
components R1 and R2. By our description of H in Lemma 5.4, this implies that G(X) is trivial.

Case (2) (d)

In this case, G(X) fixes [0 : 1 : 1], but we get no other restrictions from the position of the
singularities of R. Therefore, an element of G(X) ⊆ H is of the form (0, σ) where σ acts as
v 7→ v + γu for some γ ∈ k. Such an element is in G(X), if and only if there exist polynomials
b1 and b3 such that

aγ2u2 = ub1 + b21

γ4u4 = ub3

(cγ + dγ2 + fγ4 + hγ6)u6 + hγ4u4v2 + hγ2u2v4 = b23.

Such b1 and b3 exist if and only if h = 0 and γ8 + hγ6 + fγ4 + dγ2 + cγ = 0, and then b1 = λu
with λ2 + λ = aγ2, and b3 = γ4u3. By Theorem 5.6, we have c 6= 0, hence, as soon as h = 0,
there are exactly 8 choices for γ. This shows G(X) ∼= 23. Every lift of every non-trivial element
in G(X) has order 2, hence Aut(X) ∼= 24.

Case (2) (e)

Here, the elements of G(X) ⊆ H fix [0 : 1 : 0] and preserve the pair {[1 : 0 : 0], [1 : 1 : 0]}.
Using our description of γ, it is clear that an element of H that fixes all of these three points is the
identity. An element that swaps [1 : 0 : 0] and [1 : 1 : 0] is of the form (0, σ), where σ acts as
v 7→ v+ u. Such an element is in G(X), if and only if there exist polynomials b1 and b3 such that

au2 = ub1 + b21
0 = ub3

(d+ f + h)u6 + (e+ h)u4v2 + (e+ h)u2v4 = b23,

hence if and only if h = e and d = e + f , and then b1 = λu with λ2 + λ = a and b3 = 0. The
square of the lift of this automorphism to Aut(X) is the identity, hence Aut(X) ∼= 22.

Case (2) (f)

In this case, G(X) ⊆ H fixes [1 : 0 : 0] and [0 : 1 : 0]. Hence, by our description of H in Lemma
5.4, every element in G(X) is of the form (0, σ), where σ acts as v 7→ δv for some δ ∈ k×. A
non-trivial element of this form is in G(X) if and only if there exist b1 and b3 such that

a(1 + δ2)v2 = ub1 + b21
0 = ub3
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d(1 + δ2)u4v2 + f(1 + δ4)u2v4 + (1 + δ5)uv5 + h(1 + δ6) = b23.

Hence, we always have b1 = b3 = 0 and δ5 = 1. Since δ 6= 1 by assumption, we deduce that
(0, σ) lifts if and only if a = d = f = h = 0.

Case (3)

Here, the group G(X) ⊆ H fixes [1 : 0 : 0], [0 : 1 : 0], and [1 : 1 : 0]. Hence, every element of
G(X) is of the form (0, σ) and σ satisfies the conditions of Lemma 5.4 (3).

First, assume that σ has even order and interchanges two components of B. Without loss of
generality, we may assume that σ swaps u and v. Then, (0, σ) lifts to X if and only if there exist
b1, and b3 such that

0 = b21

(b+ c)(u3v + uv3) = uv(u+ v)b1

(d+ f)(u5v + uv5) = uv(u+ v)b3 + b23.

This holds if and only if b = c, and then b1 = 0 as well as b3 = λuv(u+ v) with λ2 + λ = 0 and
d = f . The square of both lifts of (0, σ) is the identity, hence they generate a group isomorphic to
22.

Next, assume that σ is non-trivial and preserves the three components of B. Then, it acts as
u 7→ αu, v 7→ αv, where α3 = 1, α 6= 1. This automorphism lifts to X if and only if there exist
polynomials b1 and b3 such that

a(1 + α−1)uv = b21

(1 + α)(bu3v + (b+ c)u2v2 + cuv3) = uv(u+ v)b1

0 = uv(u+ v)b3 + b23,

hence if and only if a = b = c = 0.
Finally, assume that σ has odd order and interchanges components of B. Without loss of

generality, we may assume that σ acts as u 7→ βv, v 7→ β(u + v) with β3 = 1. This lifts to X if
and only if there exist b1 and b3 such that

a(1 + β2)uv + aβ2v2 = b21

(b+ βc)u3v + (b+ c+ βb)u2v2 + (c+ β(b+ c))uv3 = uv(u+ v)b1

(d+ f)u5v + fu4v2 + eu2v4 + (d+ e)uv5 + (d+ e+ f)v6 = uv(u+ v)b3 + b23.

The third equation implies f = d and d = e + e
1

2 and then b3 = λu2v + λuv2 + e
1

2 v3, where
λ2 + λ = e + e

1

2 . If β = 1, the first equation implies b1 = a
1

2 v and the second equation implies
b = c = a

1

2 . If β 6= 1, the first equation implies b1 = a = 0 and the second equation implies
b = βc.

Case (4)

In this case, the group G(X) ⊆ H fixes [1 : 0 : 0] and [0 : 1 : 0], hence every element of G(X) is
of the form (b2, σ) with b2 = λuv for some λ ∈ k and where σ acts as u 7→ αu, v 7→ α−2v with
α ∈ k×.

If such an automorphism lifts to X, then the condition σ∗a2 = a2 + b21 + b2 forces b2 = b21,
hence b1 = b2 = 0. The other conditions of Lemma 6.6 become

a(1 + α)u3v + b(1 + α−2)u2v2 + c(1 + α−5)uv3 = 0

d(1 + α3)u5v + e(1 + α−3)u3v3 + f(1 + α−9)uv5 = u2vb3 + b23.
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Since d 6= 0, the second equation implies α3 = 1. Hence, if σ is non-trivial, then (0, σ) lifts to X
if and only if a = b = c = 0.

Case (5)

Here, G(X) ⊆ H fixes [0 : 1 : 0], hence every element of G(X) is of the form (b2, σ) with
b2 = λu2 + µuv for some λ, µ ∈ k and where σ acts as u 7→ αu, v 7→ γu+ δv with α3 = 1, γ ∈
k, δ ∈ k×.

If such an automorphism lifts to X, then there exists b1 with b21 + b2 = 0, hence µ = 0 and

b1 = λ
1

2u. Comparing coefficients in the equation for σ∗a4, we obtain

λ2 + λ
1

2 + aγ + bα2γ2 + cαγ3 = 0 (10)

a+ aδ + cαδγ2 = 0 (11)

b+ bα2δ2 + cαδ2γ = 0 (12)

c+ cαδ3 = 0 (13)

The automorphism lifts to X if and only if, additionally, there exists a b3 = λ0u
3 + λ1u

2v +
λ2uv

2 + λ3v
3 satisfying the following conditions:

λ2
0 + λ0 = λ3 + (aγ + bα2γ2 + cαγ3)λ+ αγ5 + dγ6

λ1 = (aδ + cαδγ2)λ+ αδγ4

λ2
1 + λ2 = (bα2δ2 + cαδ2γ)λ+ dδ2γ4

λ3 = cαδ3λ (14)

λ2
2 = αδ4γ + dδ4γ2

0 = 1 + αδ5 (15)

λ2
3 = d+ dδ6 (16)

Equation (15) shows that α = δ−5. In particular, as α3 = 1, we have δ15 = 1.
First, assume that δ = 1, hence α = 1. Then, Equation (16) shows that λ3 = 0. Equation (14)

shows cλ = 0 and Equation (11) shows cγ = 0. Hence, if c 6= 0, then (b2, σ) is the identity, so we
assume c = 0 in the following. Let Ga,b,d be the group of lifts of such automorphisms to X. By
the description above, these Ga,b,d form a family Ga,b,d of finite group schemes over Spec k[a, b, d]
cut out in Spec k[a, b, d, λ, λ0, γ] by the equations

F1 := λ4 + λ+ a2γ2 + b2γ4 = 0 (17)

F2 := a4λ4 + b2λ2 + γ + dγ2 + d2γ8 + γ16 = 0 (18)

F3 := λ2
0 + λ0 + λ3 + (aγ + bγ2)λ+ γ5 + dγ6 = 0.

In the following, we show that all geometric fibers of Ga,b,d → Spec k[a, b, d] are reduced of
length 128. In particular, Ga,b,d is étale over Spec k[a, b, d], hence all the Ga,b,d are isomorphic
and we will show afterwards that Ga,b,d

∼= 21+6
+ .

• If a 6= 0 and b 6= a2, we argue as follows: The condition a8F 2
1 + F 2

2 + b4

a4
F2 = 0 yields

the following expression for λ:

(a12 + b6)λ2 = b4γ + (a4 + b4d)γ2 + (a4d2 + b4d2 + a16)γ4

+(a12b4 + b4d2)γ8 + (a4d4 + b4)γ16 + a4γ32

By our assumptions, we can divide by (a12 + b6) and we obtain an expression of λ2 in
terms of γ. Plugging this back into Equation (18), we obtain a polynomial F in γ of the
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form F =
∑5

i=0 ciγ
2i of degree 64 with

c0 = 0

c1 =
a12

a12 + b6

c5 =
a8

(a12 + b6)2
.

Since a 6= 0, both c1 and c5 are non-zero, so ∂γF = 1 and F has only simple roots. Hence,
there are exactly 64 choices for γ such that (b2, σ) lifts and λ is uniquely determined by γ.
In particular, Ga,b,d has order 128 and it acts on the base of the associated elliptic fibration
through 26.

• If a 6= 0 and b = a2, we argue as follows: The condition a8F 2
1 +F 2

2 +a4F2 = 0 becomes

0 = a8γ + (a4 + a8d)γ2 + (a4d2 + a8d2 + a16)γ4

+(a20 + a8d2)γ8 + (a4d4 + a8)γ16 + a4γ32 =: F.

Note that, since a 6= 0, F1 = F2 = 0 holds if and only if F2 = F = 0. There are 32
choices for γ with F (γ) = 0 and for each choice of γ, there are exactly 2 choices for λ
such that F2(γ, λ) = 0. As in the previous case, Ga,b,d has order 128, but in this case, it
acts on the base of the associated elliptic fibration through 25.

• Next, assume that a = 0 and b 6= 0. We can immediately solve Equation (18) for λ and
obtain

b2λ2 = γ + dγ2 + d2γ8 + γ16.

Plugging this into the square of Equation (17), we obtain a polynomial F in γ of the form
F =

∑5
i=0 ciγ

2i of degree 64 with

c0 = 0

c1 = b−2

c5 = b−8.

Hence, there are 64 choices for γ such that (b2, σ) lifts and λ is uniquely determined by
γ. Therefore, Ga,b,d has order 128 and acts on the base of the associated elliptic fibration
through 26.

• Now, assume that a = b = 0. The equations simplify to

λ4 + λ = 0

λ2
0 + λ0 = λ3 + γ5 + dγ6

λ1 = γ4

λ2 = dγ4 + γ8

λ3 = 0

γ + dγ2 + d2γ8 + γ16 = 0.

Hence, there are 16 choices for γ and 4 choices for λ. Hence, Ga,b,d has order 128 and it
acts on the base of the associated elliptic fibration through 24.

It remains to determine the group Ga,b,d. By the last bullet point, the subgroup of G0,0,0 of
automorphisms that act trivially on the base of the associated elliptic fibration has order 8. Thus,
by Corollary 6.3, it is isomorphic to Q8. Hence, every Ga,b,d contains a quaternion group Q8 with
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β ∈ Q8. On the other hand, in the cases where a 6= 0, b 6= a2, we have seen that Ga,b,d/〈β〉 ∼= 26.
Hence, by Example 6.5, we have Ga,b,d

∼= 21+6
+ .

Next, assume that δ 6= 1, δ3 = 1. Then, Equations (11), (12), and (13) show that a = b = c = 0.
The remaining equations become

λ4 + λ = 0

λ2
0 + λ0 = λ3 + δγ5 + dγ6

λ1 = δ2γ4

λ2 = dδ2γ4 + δγ8

λ3 = 0

δ2γ16 + d2δγ8 + dδγ2 + δ2γ = 0.

We see that if γ = λ = 0, then (b2, σ) admits a lift to X as an automorphism g of order 3. For a
fixed γ, there are at most 128 possible choices of (γ, λ). All of them are obtained by composing g
with an element of G0,0,d, hence all choices are realized.

Finally, assume that δ 6= 1, δ5 = α = 1. As in the previous paragraph, we have a = b = c = 0.
But in this case, Equation (16) yields the condition d = 0.

So, in summary, if c 6= 0, then G(X) is trivial and if c = 0, then Aut(X) admits a unique
2-Sylow subgroup isomorphic to 21+6

+ . If a, b, or c is non-zero, this is the full automorphism
group. If a = b = c = 0 and d 6= 0, then Aut(X)/21+6

+
∼= C3 and if a = b = c = d = 0, then

Aut(X)/21+6
+

∼= C15. �

Remark 6.9. The largest order of an automorphism group of a del Pezzo surface of degree 1
over the complex numbers is equal to 144 and the surface with such a group of automorphisms is
unique [9]. In our case, the maximal order is equal to 1920 = 27 · 15 and the surface with such an
automorphism group is also unique. We also see the occurrence of the group G = 24 in Case (5).
It is obtained as the pre-image in 21+6

+ of a maximal isotropic subspace of F6
2. Since del Pezzo

surfaces of degree 1 are superrigid and the corresponding G-surface is minimal, this group is not
conjugate in the Cremona group of P2 to the isomorphic subgroup of the group of automorphisms
of del Pezzo surfaces of degree 4 or 2 that appeared in [11] and [12].

6.3. Conjugacy classes and comparison with the classification in characteristic 0. In this sec-
tion, we determine the conjugacy classes in W (E8) of the elements of the groups that occur in
Theorem 6.8 and, whenever possible, compare the surfaces in Theorem 6.8 with their counterparts
in characteristic 0 (see [9, Table 8.14]).

For a del Pezzo surface X of degree 1, we denoted by KX and PX the kernel and image of the
morphism Aut(X) → Aut(P1) induced by the action of Aut(X) on the base of the associated
elliptic pencil. First, we note the following:

Lemma 6.10. Let g be a non-trivial element of KX . Then, the conjugacy class of g is either

8A1, 4A2, 2D4(a1), or E8(a8).

Proof. Since g acts trivially on the base of the pencil, it cannot preserve any (−1)-curve on X.
Then, the lemma follows from the classification of conjugacy classes in W (E8) (see e.g. [12,
Table 3]), by checking which of them fix no (−1)-class in E8. �

Corollary 6.11. Let X be a del Pezzo surface of degree 1 in characteristic 2. Let X ′ be a geo-

metric generic fiber of a lift of X to characteristic 0 and let sp : Aut(X ′) → Aut(X) be the

specialization map. Then, the following hold:
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(1) sp is injective.

(2) sp induces morphisms KX′ → KX and PX′ → PX .

(3) The kernel H of PX′ → PX is an elementary 2-group and if g is an element of Aut(X ′)
that maps to a non-trivial element of H , then the conjugacy class of g is 2D4(a1).

Proof. Claim (1) follows from H0(X,TX) = 0. The existence of the morphisms in Claim (2) is
clear.

For Claim (3), recall that sp preserves conjugacy classes, so, by Lemma 6.10, all non-trivial
elements of H are represented by elements g of Aut(X ′) of conjugacy class 8A1, 4A2, 2D4(a1),
or E8(a8). If g is of class 8A1, then it is the Bertini involution, hence g ∈ KX′ . If g is of class
4A2, then it has negative trace on E8, so, by the Lefschetz fixed point formula, it must act trivially
on the base of the elliptic pencil. Hence, g ∈ KX′ . If g is of class E8(a8), then, by what we just
proved, g2 and g3 are in KX′ , hence g ∈ KX′ . Thus, g must be of conjugacy class 2D4(a1). Then,
g2 is the Bertini involution, so H is 2-elementary. �

By Theorem 6.8, |Aut(X)| ≤ 36 or |Aut(X)| ∈ {128, 384, 1920}, so Types I and II [9, Table
8.14] do not have a reduction modulo 2 which is a del Pezzo surface.

The surfaces of Type VI, VII, IX, XII, and XV from [9, Table 8.14] admit an automorphism
of order 2n with n > 1 acting faithfully on P1, which is impossible in characteristic 2, so by
Corollary 6.11 they do not have good reduction mod 2.

The equation of the surfaces of Type (3) (v) in Theorem 6.8 can be rewritten as

y2 + uv(u− v)y + x3 + a(u2 − uv + v2)3 + bu2v2(u− v)2

for certain a, b ∈ k. This equation makes sense in characteristic 0, and it is stable under S3-
action generated by (u, v, x, y) 7→ (v, u, x,−y) and (u, v, x, y) 7→ (u − v,−u, x,−y) as well as
the C3-action (u, v, x, y) 7→ (u, v, ζ3x, y), where ζ3 is a primitive 3-rd root of unity. Hence, the
automorphism group of has order at least 36, hence it is isomorphic to 6 ×S3. Thus, surfaces of
Type (3) (v) are reductions mod 2 of the surfaces of Type III from [9, Table 8.14]. In particular,
we can read off the conjugacy classes from [12, Table 8].

The equation of Type (5) (iii) makes sense in characteristic 0, where it is isomorphic to

y2 + x3 + u(u5 + v5),

which is the equation of Type IV in [9, Table 8.14].
The equation of the surfaces of Type (3) (ii) in Theorem 6.8 can be rewritten as

y2 + uv(u− v)y + x3 + c(u2 − uv + v2)x2 + a(u2 − uv + v2)3 + bu2v2(u− v)2

for certain a, b, c ∈ k. Similar to the case of Type (3) (v) above, these equations are stable under a
S3-action, both in characteristic 0 and in characteristic 2. In characteristic 0, these equations can
be simplified to the normal forms of Type X from [9, Table 8.14].

The equation of the surfaces of Type (3) (iii) makes sense in characteristic 0, where it defines a
lift of X together with the action of Aut(X). Both X and the lift admit an automorphism of order
6 that acts trivially on the base of the elliptic pencil. Hence, these surfaces are reductions mod 2
of the surfaces of Type XI from [9, Table 8.14].

The equations of the surfaces of Type (2) (f) (i) in Theorem 6.8 define a 1-dimensional family
of surfaces in characteristic 0 with an action of C10. These lifts must be of Type XIII [9, Table
8.14].
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The equations of the surfaces of Type (4) (i) in Theorem 6.8 define a 2-dimensional family of
surfaces in characteristic 0 with an action of C6 that is trivial on the base of the elliptic pencil.
Hence, these lifts are of Type XVII [9, Table 8.14].

Next, consider the equations

y2 + (aux+ bu3 + cv3)y + x3 + (du4 + euv3)x+ fu6 + gu3v3 + hv6,

where a, b, c, d, e, f, g, h are parameters. In characteristic 0, we can simplify this equation to the
normal form of Type XVIII from [9, Table 8.14]. In characteristic 2, these equations cover three
of the families of Theorem 6.8: If a, c 6= 0, we can simplify the equation to the normal form for
Type (1) (a) (ii) which, in turn, specializes to Type (1) (e) (i) for special values of the parameters.
If a = 0 but b, c 6= 0, we can simplify the equation to

y2 + (u3 + v3)y + x3 + euv3x+ fu6.

This is an alternative normal form for our surfaces of Type (3) (iv).
Finally, consider the equations

y2 + (a(u+ v)x+ b(u+ v)3 + cuv(u+ v))y + x3 + (d(u+ v)4 + euv(u+ v)2 + fu2v2)x

+ (g(u + v)6 + huv(u+ v)4 + iu2v2(u+ v)2 + ju3v3).

In characteristic 0, we can simplify this equation to the normal form of Type XX from [9, Table
8.14]. In characteristic 2, these equations cover four of the families of Theorem 6.8:

If a 6= 0, we can simplify the equation to

y2 + (u+ v)xy + x3 + cuvx2 + du2v2x+ g(u + v)6 + huv(u+ v)4 + iu2v2(u+ v)2 + ju3v3.

If d, j 6= 0, we can rescale one of them to 1 and obtain an alternative normal form for Type (2) (a)
(i). If d 6= 0 and j = 0, we obtain a normal form for Type (2) (e) (i). If j 6= 0 and d = 0, we obtain
an alternative normal form for Type (2) (d) (i). Note that d = j = 0 would lead to a singular
surface. Since the family of Type (2) (d) (i) occurs as a reduction mod 2 of certain surfaces of
Type XX from [9, Table 8.14], we call them Type XX’.

If a = 0 and c 6= 0, we can simplify the equation to

y2 + (b(u+ v)3 + uv(u+ v))y + x3 + (euv(u + v)2 + fu2v2)x+ (g(u + v)6 + ju3v3).

This defines a 4-dimensional family of surfaces with 22-action (one parameter is redundant). By
Theorem 6.8, the corresponding surfaces must be of Type (3) (i).

The surfaces in the families (1)(a)(i), (1)(a)(iii), (1)(a)(iv), (1)(d)(i), (5)(i), (5)(ii), and (5)(iii)
admit an automorphism of order 4 and it turns out that writing down integral equations for such
automorphisms similar to the ones above is hard. So, instead, to determine the conjugacy classes
of the automorphisms of this family and to compare with the classification in characteristic 0, we
will use the following observation.

Lemma 6.12. Let g be an automorphism of a del Pezzo surface of degree 1. Let m := ord(g) and

let n be the order of the induced automorphism of P1. Assume that m is even. Then, the conjugacy

class Γ of g in W (E8) is one of the following:

(1) If (m,n) = (2, 1), then Γ = 8A1.

(2) If (m,n) = (2, 2), then Γ = 4A1.

(3) If m = 4, then Γ = 2D4(a1).
(4) If (m,n) = (6, 1), then Γ = E8(a8).
(5) If (m,n) = (6, 2), then Γ = E6(a2) +A2.

(6) If (m,n) = (6, 3) and g2 is of class 3A2, then Γ = E7(a4) +A1.
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(7) If (m,n) = (6, 3) and g2 is of class 2A2, then Γ = 2D4.

(8) If m = 10, then Γ = E8(a6).
(9) If m = 12, then Γ = E8(a3).

(10) If m = 20, then Γ = E8(a2).
(11) If m = 30, then Γ = E8.

Proof. By Theorem 6.8, we know that the only possible values for m and n are the ones in the
statement.

In Case (1), g is the Bertini involution, hence Γ = 8A1. In Case (2), we may assume that g
acts as u ↔ v. Then, we proved in this section that g lifts to characteristic 0, so by [12, Table 8],
Γ = 4A1. In Case (3), g2 is the Bertini involution, because PGL2(k) does not contain elements
of order 4, and it is known (see [12, Table 3]) that the only conjugacy class of automorphisms of
order 4 whose square is the Bertini involution is 2D4(a1). In Cases (8) and (11), g

m
2 is the Bertini

involution and g2 lifts to characteristic 0, hence g lifts to characteristic 0 and we can read off the
conjugacy class Γ from [12, Table 8]. Then, we deduce Case (10) from Case (8). In Case (9), g2

must be of type E8(a8), since PGL2(k) does not contain any elements of order 4 or 6. Then, from
[12, Table 3], we see that Γ = E8(a3). Finally, Cases (4), (5), (6), and (7) follow from [12, Table
3] by comparing the conjugacy classes of g2 and g3. �

Now, we can complete Table 4 by using the description of Aut(X) in Theorem 6.8. We observe
that the conjugacy classes for Types (1)(a)(i) and (1)(d)(i) are the same as for Type XIX from
[9, Table 8.14], the conjugacy classes for Type (1)(a)(iii) are the same as for Type XIV from [9,
Table 8.14], and the conjugacy classes for Type (1)(a)(iv) are the same as for Type V from [9,
Table 8.14]. The only groups in Theorem 6.8 that contain D8 are 21+6

+ , 21+6
+ : 3, and 21+6

+ : 15,
and the only group that contains an automorphism of order 20 is 21+6

+ : 15. Hence, if the Types
XVI, M, and VIII from [9, Table 8.14] and [12, Table 8] have good reduction modulo 2, then they
must reduce to our Types (5)(i) and (5)(ii), respectively. In each of these cases, we determine the
conjugacy classes using Lemma 6.12.

We summarize the classification of automorphism groups of del Pezzo surfaces of degree 1 in
Table 3 in the Appendix. There, in the first column, we give the name of the corresponding family,
both in the notation of Theorem 4.3 and in the notation of [9, Table 8.14]. The second and third
columns give the group Aut(X) and its size. In the remaining columns, we list the number of
elements of a given Carter conjugacy class in Aut(X).
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Name Aut(X) Order id 2A1 4A1 A2 A2 + 2A1 A3 A3 +A1 A4 D4 D4(a1) D5

(φ, φ) 24 : A5 960 1 70 5 80 80 120 384 160 60

(ζ3, ζ3) (same as (φ, φ))

(i, i) (does not exist)

(a, a) 24 : 22 64 1 22 5 24 12

general 24 16 1 10 5

TABLE 1. Automorphism groups of quartic del Pezzo surfaces

Name Aut(X) Order id 2A1 4A1 A2 A2 + 2A1 2A2 3A2 A3 +A1 A4 A5 +A1 D4 D4(a1) D5 E6 E6(a1) E6(a2)

I / 3C PSU4(2) 25920 1 270 45 240 2160 480 80 3240 5184 1440 1440 540 4320 5760 720

II / 5A (same as V)

III / 12A (same as I)

IV / 3A H3(3) : 2 54 1 9 24 2 18

V / 4B 23 : S4 192 1 30 13 32 72 32 12

VI / 6E (same as V)

VII / 8A (does not exist)

VIII / 3D S3 6 1 3 2

IX / 4A (same as V)

X / 2B 24 16 1 10 5

XI / 2A 2 2 1 1

XII / 1A 1 1 1

TABLE 2. Automorphism groups of cubic del Pezzo surfaces
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Name Aut(X) Order id 3A1 4A1 7A1 2A2 3A2 2A3 2A3 +A1 A5 +A2 A6 D4(a1) D4(a1) +A1 D5 D5 +A1 D6(a2) +A1 E6 E6(a1) E6(a2) E7 E7(a1) E7(a2) E7(a4)

I - V (do not exist)

VI / (3)(ii) 18 18 1 1 2 6 6 2

VII (does not exist)

VIII / (2)(a)(iii) 2× 6 12 1 1 1 1 2 2 2 2

IX / (1)(a)(ii) 2×S3 12 1 3 3 1 2 2

X / (1)(c)(i) 24 16 1 7 7 1

XI / (2)(a)(ii), (3)(i) 6 6 1 1 2 2

XII / (1)(a)(i), (2)(a)(i) 22 4 1 1 1 1

XIII 2 2 1 1

TABLE 3. Automorphism groups of del Pezzo surfaces of degree 2

Name Aut(X) Order id 4A1 8A1 2A2 3A2 4A2 2A3 +A1 2A4 A5 +A2 +A1 D4 +A2 2D4 D4(a1) +A1 2D4(a1) D8(a3) E6 +A1 E6(a2) E6(a2) +A2 E7(a2) E7(a4) +A1 E8 E8(a1) E8(a2) E8(a3) E8(a5) E8(a6) E8(a8)

I - II (do not exist)

III / (3)(v) 6×D6 36 1 6 1 2 4 2 2 12 4 2

IV / (5)(iii) 21+6
+ : 15 1920 1 70 1 8 64 56 80 512 384 160 512 64 8

M / (5)(ii) 21+6
+ : 3 384 1 70 1 8 56 80 160 8

V / (1)(a)(iv) SL2(3) 24 1 1 8 6 8

VI - VII (do not exist)

VIII (same as IV)

IX (does not exist)

X / (3)(ii) D12 12 1 6 1 2 2

XI / (3)(iii) 2× 6 12 1 2 1 2 4 2

XII (does not exist)

XIII / (2)(f)(i) 10 10 1 1 4 4

XIV / (1)(a)(iii) Q8 8 1 1 6

XV (does not exist)

XVI / (5)(i) 21+6
+ 128 1 70 1 56

XVII / (4)(i) 6 6 1 1 2 2

XVIII / (1)(a)(ii), (1)(e)(i), (3)(iv) 6 6 1 1 2 2

XIX / (1)(a)(i), (1)(d)(i) 4 4 1 1 2

XX / (2)(a)(i), (2)(e)(i), (3)(i) 22 4 1 2 1

XX’ / (2)(d)(i) 24 16 1 14 1

XXI 2 2 1 1

TABLE 4. Automorphism groups of del Pezzo surfaces of degree 1
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