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Abstract

Consider the approximation of stochastic Allen-Cahn-type equations (i.e. 1+
1-dimensional space-time white noise-driven stochastic PDEs with polynomial
nonlinearities F such that F(+o00) = Foo) by a fully discrete space-time explicit fi-
nite difference scheme. The consensus in literature, supported by rigorous lower
bounds, is that strong convergence rate 1/2 with respect to the parabolic grid
meshsize is expected to be optimal. We show that one can reach almost sure con-
vergence rate 1 (and no better) when measuring the error in appropriate negative
Besov norms, by temporarily ‘pretending’ that the SPDE is singular.
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1 Introduction

Consider the 1 + 1-dimensional stochastic Allen-Cahn equation
diu=Au+u—ud+¢ (1.1)

on [0,00) x T, driven by a 1+ 1-dimensional space-time white noise ¢, with some initial
condition . The well-posedness of is classically well-understood (see e.g.[FJL82]).
In this paper we are interested in the discretisation of and SPDEs of the more gen-
eral form

0;u=Au+F(u)+¢. 1.2)

When the nonlinearity F is globally Lipschitz continuous, then it is well-known [Gy699]
that with grid of parabolic meshsize of order n~! (for precise details see below) the er-
ror of a space-time explicit finite difference scheme is of order n~Y2 in L,(Q). The
results of [Gy699| have seen far-reaching extensions both in terms of the regularity
and the growth conditions imposed on F. As for regularity, [BDG21] proved rate 1/2
in the case of merely bounded measurable F, without assuming any continuity. As for
growth, [BGJK22] showed rate 1/2 (for a different, Galerkin-type fully discrete scheme)
for a class of F-s that are only locally Lipschitz, in particular covering the example
(L.I). Further recent results on full discretisations on and can be found in
[LQ19,Wan20]. Let us also mention that for Burgers-type equations, where F depends
also on the gradient of the solution, the rate of convergence 1/2 has been proven for
spatial semidiscretisations [AG06, HM15]. The appearance of the exponent 1/2 ev-
erywhere above is not a coincidence, [DGO01] shows that this is sharp in the following
sense: even in the simplest linear case F = 0 the conditional variance of u; (0) given the
discrete observations of ¢ is bounded from below by a positive constant times n~/2. A
similar lower bound is derived in [BGJK22] for the Galerkin-type approximations con-
sidered therein.

With matching lower and upper bounds, there appears to be not much room for
improvement. The present paper aims to show otherwise. As already observed by
Davie and Gaines [DGOI] in the simplest case F = 0, although the pointwise error is
of order n~'/2, this does not rule out superior convergence rates when measured in
a distributional norm. First we make this observation quantitative: measuring in the
Besov space ngyoo, a < 1/2, the error in the linear case F = 0 is shown to be of order
pC12+a+evi=1) for any € > 0, see Lemma below. Pursuing this idea further for a
nonlinear equation like and considering u and its approximation u" as elements
of BS, , comes across an obvious obstacle: as soon as « < 0, the mapping u — ud is
simply not defined. This is reminiscent to the difficulty that one has to overcome when
solving higher dimensional ®% equations.

In this way, the SPDE looks singular in the sense of [Hail4], albeit in an artificial
way, and one does not actually expect any renormalisation to appear. In fact, we will
only need the simplest tool for singular SPDE-s, the Da Prato-Debussche trick [DDO03].
It turns out that for any polynomial F of odd degree with negative leading order co-
efficient this is sufficient to implement the above strategy and we obtain rate 1 — ¢ of



strong convergence, when measuring the error in the appropriate Besov norm. This
is the content of our main result, Theorem below, which we state after the precise
formulation of our setup.

Remark 1.1. The rate 1 can not be improved even in a distributional sense, see Propo-
sition

Remark 1.2. In the proof one surprisingly encounters seemingly unrelated regularisa-
tion by noise tools. The precise occurence of this term is &’! in in the proof
of the main result, here we just outline the heuristics of such a term. One term that
one expects to see when comparing the true equation with its approximation is
F(u) — F(r,u), where 7, is the projection on the space-time grid. Since the parabolic
regularity of the solution u is known to be 1/2, it may look like such a term can also
not be bounded by anything better than n~'/2. One way of improving the rate for such
terms is to notice that since in the mild formulation they appear under a space-time
integral, one can exploit averaging effects. Using estimates obtained through regular-
isation by noise, one can get a bound of order n~! [BDG21].

Remark 1.3. There is no clear finite dimensional analogy to our result. Again staying
on the heuristic level: suppose that one wishes to improve on the well-known rate 1/2
for a finite dimensional SDE

dX;=o(t,X;)dWy, (1.3)

where W is a standard Brownian motion, by measuring the error in some negative
Besov (in time) norm. Under mild assumptions on o it is known [MGO04] that any ap-
proximation method X" based on n evaluations of W makes an error of order n~1/2
at time 1. Then one expects that any approximation on the time interval [1,2], mea-
sured in any norm, would make a larger strong error than the exact solution Y of
starting at time 1 from Y; = XI” But choosing o (¢, x) = 1 for ¢ € [1,2], the difference
between the true solution X and Y is constant in time and equals X; — Y1 = X; - X{,
and therefore cannot be made of higher order in any reasonable norm. See also Figure
[4.3below.

1.1 The setup

Fix a complete probability space (Q2,.#,P) carrying a 1 + 1-dimensional space-time
white noise ¢. That is, ¢ is a mapping from 98, ([0,00) x T), the bounded Borel sets of
[0,00) x T, to Lp(€2) such that for any collection Aj,..., A of elements of %8, ([0,00) x T),
the vector (£(A1),...,¢(Ay)) is Gaussian with mean 0 and covariance E(¢(A4;)¢(4;)) =
|A; N Aj|. We denote by (&) >0 the complete filtration generated by ¢.

We take the nonlinearity F in to be a polynomial of odd degree with negative
leading order coefficient. That is,

v .
Fw)=) cjv/,
Jj=0

with some odd integer v = 3, cy,...,cy—1 € R, and ¢, < 0. The prototypical example to
have in mind is the stochastic Allen-Cahn equation (1.1I), where F(v) = — 3+ .



As in [Gy699, BDG21], we consider a finite difference, forward Euler approximation
of (I.2). Introduce the space and time grids

M,={0,2n)7,...,2n-1)2n) 1T, A,={0,h2h,.. }cR, (1.4)

for n € N and where h satisfies the relation i = ¢(2n) 2 for some c € (0,1/4). OnTl,,, just
like on T, addition (as well as negation and subtraction) is understood in a periodic
way, e.g. 2n-1)2n)" '+ @2n)"1 =0.

The approximation scheme is defined by setting 1 (x) = y(x) for x € I1,, and then
inductively

uy, (%) = ui (x) + hAui (x) + hF (ug (X)) + hny(t, x) (1.5)
for t € A, and x € I1,;, where the discrete Laplacian is defined as

fx+eCn™H-2fx)+flx-2n)™1)

A = 1.6
nf(X) 212 (1.6)

the discrete noise term is given by
Nn(t, ) = 2nh‘15([t, £+ h x [x,x + (2n)‘1]) : (1.7)

1.2 Function spaces

The function spaces C*(T) for a € (0,1), L?(Q), LP(T) for p € [1,00] are defined in the
usual way. By C(T) we denote the the space of continuous functions on T equipped
with the supremum norm. For k € N, C"(T) (C" (R), resp.) denote the r times continu-
ously differentiable functions equipped with the usual norm. If the target space differs
from R (for example, C) it is indicated in the notation (for example, as L?(T;C)). By (-, -)
we denote the complex inner product on L?(T;C).

For functions on I1,, we define analogous norms

xX) -y
I fllca,) = sup | £(O1+ [flceqn,) = sup | f(x)| + sup M
xell, xell, x£y€ell, |x — J/|
1
I, =— Y 1f(x)IP,

for a € (0,1) and p € [1,00). As usual, the norm |- Il 21,0 induces a complex inner
product that we denote by (:,-),. By C(I1,) we denote the space of all functions on I,
and by || fllze,) the maximum norm on C(I1,). Convolution of elements of C(I1}) is
denoted by *, thatis, (f*,8)(x) = (f(x—-),g(-))». The norms ||-||zr 7, satisfy Holder’s
inequalities. In addition, one has the n-dependent inequality || fl 2o 1,) < 27l fll 11 ,,)-
More generally, for any 1 < g < p < oo one has

I fllzrar,) < @Y VPN Fll L), (1.8)

see Lemma|[2.9 below for a slightly stronger version and a short proof.



Any continuous function on T can be restricted to I1,,. We denote this operation
by
6:C(T) — C(I1y), G = f(x), xeIly.

The functions e;(x) = e’?™I* for j € Z are eigenfunctions of A with eigenvalues
Aj= —47? jz. It is also well-known that (e;) jez forms an orthonormal basis of L2(T;0).
From now on, the conjugate of a complex number z € C is denoted by z.
Recall from [BDG21, Prop. 2.1.1] that §ej, j € Z are eigenfunctions of A,, with
eigenvalues
7T
A" = —16n%sin® (]—)
I 2n
Moreover, the set (6€;) j=—n,—n+1,--,n—1 forms an orthonormal basis of L2(IT,;C). For j €

Al S 20
{=n,...,n—1}, the ratios of the eigenvalues y/} = Z= SIN"U7I21) - \vith the convention
]

(jmi2n)?
Yq = 1, satisfy the bounds

an~? <yl <1, (1.9)
1 jm\2
— n — —
I lesg(n), (1.10)

see [BDG21].

Remark 1.4. The lack of symmetry in the range of j stems from the fact that we have an
even number of grid points. But note thatde_, = §e, and thus e, = 6((1 12)(e_,+ en)).

Next, we define Besov spaces. Our setup will be a bit more convoluted than usual,
in order to be able to handle their discrete counterparts conveniently. Fix some &j €
(0,1/10) and take a smooth even bump function ¢° : R — [0, 1], such that ¢°|, , =1
and suppc/)0 C By, where B, = {x e R: |x| = r}. Set pg = % For p € [1,2] define
¢ (x) = $°((po/ p)x). Further, set for positive integers j

ol = b 0 =

Note that the definitions are set up such that ¢>}, =1 on (p/po, (p/po)(2(1 — €p))); the

midpoint of this interval is exactly p. Similarly, (pf;ﬂ is constant 1 in a neighborhood
of 2/ p, this fact is used in Remark below.
For any distribution f € .%'(T) define the Littlewood-Paley blocks

I =Y @lk)(f, evex.

kez

We then define the (inhomogeneous) Besov spaces via the norms
1 lse 0 = 7= 270 v | o

So far the choice of p did not play a role and in fact it replacing c/){ with cp{; would result
in an equivalent norm for any p € [1,2].



For the discrete analogues of Besov norms, for any integer n = 2 define J,, = log, n|
and p, = n2~’/n € [1,2]. For f € C(I1,) define the discrete Littlewood-Paley blocks

. n-1 .
fUMR =% @l (k)(f,Sex)nbex
k=—n

and the discrete Besov norms

IFse, @ = 17 =220 e | ga-

Just like (1.8) allows one to trade powers of n for integrability, one can also trade for
regularity: for any a < f one has

p-a a
”f”ng(Hn) <(2n) ||f||Bp,q(nn). (1.11)

Remark 1.5. With the above setup, we have that for j € {0,... J,}, ([)Z;n is supported on
By p,1pe = Bnipy, therefore one has

U =% ¢l (K)(f,8ex)nder,
kez
now importantly having the summation over k € Z. For the (J,, + 1)-th block we can
use the fact that e, = ej_»;, to rewrite it as

fUR = 5 BTt (k) (f, Sex nber,
kez

where cﬁé“ = (,bf;rl Lo2ip)+ (/)/{;H (-— 2j+1p)1[2jpyoo) is the rescaling of a smooth (!) func-

tion ¢1. In particular, ¢/ (x) = g1 (n"'x).
While the restriction operator ¢ is rather canonical, for extending functions from
[T, to T there are many choices. One that plays an important role for us is given by

n—1
:CLy) = CM),  1f = Y (f.0ejne;.

j=-n
One has 61 =idc¢,) but 16 # id¢(T) in general.
Remark 1.6. One observes that even when f € C(I1,) is real valued, in general (f is

complex valued. Another natural extension map (cf. Remark[1.4), which preserves
being real valued would be given by

(en +e_p).

n—1
Y <f,5ej>nej+—<f’6§‘”>”

j=—(n-1)

if:=

While the maps ¢ and 7 share all relevant properties, the former has a more compact
explicit formula and thus we work with it.

Finally, a notational convention: in proofs of statements we use the shorthand f <
g to mean that there exists a constant N such that f < Ng, and that N does not depend
on any other parameters than the ones specified in the statement. Any additional
dependence is denoted in subscript.



1.3 Main result
We are now in a position to state the main result of the article.

Theorem 1.7. Let0 € (—1/2,0] ande € (0,1/2+6). Assume thaty € C'=¢(T). Then there
exists an almost surely finite random variablen such that for alln e N

sup [l0ur—uillge qp )= nn~V2H0+e, (1.12)
teA,N[0,1] ’

One can rewrite the left-hand side of in terms of the error tested against
test functions. For a function ¢ : R — R, x € T, and A € (0,1] define the rescaled
and recentered function ¢’ (y) = A7 1p(A71(y - x)). Note that if ¢ is smooth on R and
supp ¢ c By 3, then all functions ¢? are smooth on T. We define a set of appropriately
normalised test functions

®={peC'(R): suppyp < Buss, @l < 1)-

The following is then an immediate consequence of Theorem|1.7|above and Lemma
2.11below.

Corollary 1.8. In the setting of Theorem|1.7, there exists a random variable ) such that
forallneN

sup supsup sup A0 Y (w(3) - ul) @) ‘ <qn V2H0+e,
teA,N[0,1] pe®@ xelly Ae(n=1,1] yell,

Remark 1.9. In comparison to [LQ19, Wan20, BGJK22] we do not obtain L” (2) bounds,
on the other hand we require neither an implicit nor a truncated (or “tamed”) scheme.
This is somewhat reminiscent in spirit of [BG19], where for the stochastic Allen-Cahn
equation an explicit time-splitting scheme without taming is studied, and rate of
convergence in probability is obtained. Let us mention however that the key interme-
diate step of a priori bounds of the approximation can be turned into an L (Q2) bound
on a truncated scheme, see Remark[3.5]

Remark 1.10. Considering the solutions as elements of distributional spaces is nec-
essary in higher dimensional versions of the stochastic Allen-Cahn equations, also
known as the dynamical CD‘; models, which for this reason have to be renormalised.
The dependence of the rate of convergence of approximations on the choice of the
Besov exponent is observed in [MZ20], where the authors consider the spatial semidis-
cretisation of @, and bound the Bgfoo norm of the error by n=9*¢ for any & > 0, under
the constraint 6 € (0,2/9). In [HM18,ZZ18] the convergence of spatial semidiscretisa-

tions of @3 is shown, without rate.

One might wonder if one could even further improve the rate by looking at even
weaker norms. The following proposition rules this out, at least for this scheme: even
testing the error with a single test function the rate does not exceed 1.

Proposition 1.11. Lety =0 and F =0. Then for any € >0 and t > 0 one has

n'* e[ Gu, — ul,5er) | —2 00 inprobability.



2 Various tools

2.1 Kernels and convolutions

The continuous and discrete heat kernels are defined as follows. For (¢, x, y) € (0,00) x
T2, define the kernel

pelx,y) =Y elitej(x-y),
JjezZ

and for ¢ > 0 the corresponding operators

=2, %f(x)=f1rpt(x,y)f(y)dy,x€1T,

which are known to satisfy the semigroup property 22;(%; f) = %, f. By convention,
we understand py(x, y) to be the Dirac-4 distribution, and correspondingly &2, to be
the identity operator.

Similarly, for (¢,x, y) € A, x (I )2, define the discrete kernel

n—1
prcy)= 3 1+ hA Mej(x—y),

j=—n

and for ¢ € A,, the corresponding operators

1
f=2'f, Plfx)==— > pla,nNfy), xell,,
2ny€Hn

which also satisfy the semigroup property 22;'(22] ) = 22/, . f, see [BDG21, Prop. 2.1.6].
Note that the argument of the operator 2?/' can either be an element of C(T) or C(I1,),
we do not distinguish these cases in the notation. One furthermore has that the ac-
tion of 22/ on the Fourier modes is similarly exponential as that of 2%;: more precisely,

there exists a x = x(c¢) > 0 such that for all £ € A,, one has
|1+h/1;f‘|”hse"“jz, 2.1

see [BDG21, Eq. (2.9)]. We rephrase equations and in mild formulations.
Indeed, for we define a mild solution of it as a function u : Q x [0,00) x T that
is almost surely continuous in ¢, x, is measurable with respect to the product of the
predictable and Borel o-algebras, and satisfies for (¢, x) € [0,00) x T almost surely

t t
ut(x):@ﬂ//(foo e@t—sF(us)(x)dHfO fTPt—s(x—y)rf(dy,dS). (2.2)

As for the approximation u”, it is already uniquely defined by (1.5), but one can derive
a similar mild form of it: by [BDG21, Eq. (2.14)] one has for (#,x) € A, x I1,, almost
surely

t t
u?(x):97’1511//(36)+f0 Qzﬁn(t_s)F(u,’fn(s))(x)dHfo fTp,’fn(t_s)(x,pn(y))é(dy,dS), (2.3)

8



where x,(£) := [th™ | hand p,(x) = |x2n](2n) L.
Important reference objects are the solutions of the linear equation with 0 initial
data, they are denoted by

t
0,(x) = fo fw Pros(x— NEdy,ds)

for (z,x) € (0,00) x T, and by

t
O?(x):fo ﬁpﬁn(t_s)(x,pn(y))€(dy,ds)

for (¢, x) € A, x I, respectively. Unraveling the definitions, one finds

t
<Ot’ e[> = <f f Z e—47'[2k2([—5) ek()ék(J/)f(dy, dS),e[>
0 JT kez

t 2 p2
= fo fT e 6, (9)E(dy, ds) (2.4)

forany ¢ € Z and
t n-1
(107, ep) = <O?,5ez>n:(f0 fv Y W+ hADE TIN5 (Ver(pa(y)E(dy, ds), Ser),,
k=—n

t
= f f (L+hAD I, (0, (1)E(dy, ds) (2.5)
0 JT

forany ¢ € {-n,...,n— 1}. For any other ¢, clearly (tO},e;) = 0.

2.2 Properties of discrete and continuous function spaces

In this section we establish properties of the discrete Besov spaces analogous to the
continuous ones. We start with two lemmata which substantiates the definition of
discrete Besov spaces, their proof can be found in the Appendix.

Lemma 2.1. For any a < 0 there exists a constant N = N (a,qbo) such that with r =
min{keN : k> —a} the bound

[<f, 890 n
sup sup ————

T < Nlolcrmlflise, . i
xell, Ae(n=1,1)

holds uniformly over ¢ € C°(T) such thatsuppg < By/3, n€N, and f € C(I1,).

Lemma 2.2. For any a € (0,1) there exists a constant N = N(a,$®) such that for all
neN, f € C(I1,) one has the bounds.

I fllBg a1 = NI fllceqr,), Iflcear,y = NI flle, a1, - (2.6)

Next, recall the following classical Theorem [ZF03, Thm. I1.7.10].



Theorem 2.3. Denote by 6, the Dirac measure at x € R and let w,, = % Z;.”:_Ol 0 j . There
exists a constant N such that for any complex polynomial P(z) = ¥} _, cxz® and all

p € [l,o00]
1 . 1 1 . 1
(f |P(e2””)|'”dwn+1(t))”sN(f P@hPar)”.
0 0

Similarly, for each p € (1,00), there exists a constant N = N(p) such that

< =

1 _ 1 1 _
( f P@ihPar)” < N f PP dwyr (1)
0 0

uniformly over polynomials of the form P(z) = ¥.}_, crzk .

A simple consequence of Theorem is a kind the equivalence of discrete and
continuous LP norms (which can be used to deduce equivalence of Besov norms, but
we do not need this).

Proposition 2.4. Foranyp € (1,00) the mapst: LP(I1,)) — LP(T) are bounded uniformly
in n € N. Furthermore, the maps 6 : 1LP(T) — LP(I1,) are bounded uniformly in n e N
and p € [1,00].

Proof. It suffices to apply Theorem to the polynomial P(z) = Ziﬁgl( f,bej_ n)nzk
since one has

n—1
LGEIDY <f,6ek>n6ek(x)(
k=-n
2n—1

=| Y < 8ex-mnder-n()
k=0

2n-1

= Z <f’5ek—n>n(5el)k’ = |P(62”ix)|
k=0

for x € I1,, and similarly |t f (x)| = |P(e®™i %) forxe T . O

Remark 2.5. Note that in the case p = 2, the above proposition follows immediately
from the fact that {0ex}x=—n, ,n-1 ({€x}kez, resp.) is orthonormal basis of L%(I1,,;C)
(L*(T;C), resp.).

Proposition 2.6. There exists an constant N (depending only on the choice of ¢°) such
that forall p € [1,00], n€N, f € C(I1,,) one has the bound

”f”Bg,oo(Hn) = N”f”LP(H,,), ”f”LP(Hn) = ”f“BgJ(H")' (2-7)

Further, for any € > 0 there exists N = N(¢) such that foralla € R, p € [1,00], and f €
C(I1,,) one has

||f||Bg’1(nn) < N||f||Bg;g(nn). (2.8)

10



Before proceeding to the proof, we make the following useful observation, used
several times in the sequel.

Remark 2.7. Denote the usual Fourier transform by
F(f)(2) = f f(x)e? %% dx.
R

Then (as one can see from e.g. the Poisson summation formula) if f € L'(R) is a
smooth function on R and g is a smooth function on T, such that & f (k) = (g, ex)
forall k € Z, then one has g(x) =) ,cz f(x+n) on T. In particular for any a = 0,

18O ey < M1 O 2 gy
and
198 Ol iy = 11 FO N @mizy »

where here, and in the sequel, for y > 0 the space yZ is understood to be equipped
with the measure % Y xeyz Ox.

Proof of Proposition[2.4. First we write

Fin =Y @b, 00 f e nder = X bh, (Kder) n f, 29)

kez kez

where gﬁ{)n = (p{;n for j # J,+1and ¢ = g, see Remark Thus the first in-
equality of follows by Young’s convolution inequality and the fact that by Propo-
sition and Remarkwe have the following uniform (in 7 and j) L! bound:

> bp, o] i, < | )3 &b, Ber] p < 177 @) Inw =17 @Dl @
eZ eZ

(2.10)
The second inequality in follows simply from the triangle inequality, since f =
YienS ln - The inequality follows by observing that for any sequence {a;} jen

one has
Y 2%aj| <, supz(“”)flajl )
jeN JjeN

O

Lemma 2.8. Lletl1 < py < p2 <00, 1=<q; < g» <00, and a € R. Then there exists a
constant N = N(py, p2) such that for all f € C(I1,,) one has the bound

— _ <
”f”BZz:(‘IIZ/pl P ) = Nilfliga . -
Proof. Using the discrete Berstein inequality, Lemma 2.9/ below, we find that
U110 v elil, o
20 =PRI FUMM Ly ) S 2N FIM .

Observing that || - g2 < || - [ly#r concludes the proof. O

11



Lemma 2.9 (Discrete Bernstein Inequality). Foranyl < p < q < oo, and any function
f e C1,) of the form f = ZZ‘:__lm arxdey , where m < n, the following inequality holds

1.1
I fllLaq,y < @Cm)? 4|l fllrrr,,) -

Proof. The case p = g is obvious. The case g = oo, p = 1 follows from

m-—1
Iflzomy = Y. KFr8exdnl <2mll fllp,)-

k=—m
The general case follows by interpolation. O

Lemma 2.10. Leta, € R such that a + 5 > 0. Then there exists a constant N = N(a, 3)
such that for any functions f, g € C(I1,,) one has the following estimate

1£8 1 gang 1y < NS U 18l g -

Proof. The proofis essentially the same as in the continuous case, for the convenience
of the reader we sketch it. We introduce the quantities f1=/"" = ¥, _; f/" and simi-
larly g'=/1" =¥, _; gl’h", as well as the Coifmann-Meyer operators

M (f, g) = Z f[k],ng[Sk—Z],n, T_ (f’ g) = Z f[k],l’lg[[],n’ s (f) g) =TT (g’ f) .

keN k,feN
|k—¢]1<1

Trivially, one has
fg=n(f, @) +n=(f, 8 +7n-(f, 8,

and we shall bound each of these terms separately. Without loss of generality, assume
1£15g o1,y = Igllgp ) =1and note that then

||f[5k_2]’n||L00(nn) < ) ||f[]]’n||L°°(nn) < ) 279 < 27k y 1,
JeN JjeN
j<k-2 k-2
and similarly | g=¥=21" | 11, ) < 27PFV1. Note further that since the product f*7 gl=k=2ln
only consists of frequencies whose order of magnitude is of bounded distance from k
(with our setup of Littlewood-Paley blocks, with distance up to 2), the contribution to

frequencies of order 2/ to . (f, g) comes only from terms with |k — j| < 2.Therefore,

[jl,n kl, <k-2],
1< (f,8) " oy S 2 I o 185572 N rooqr,
keN
lk—jl=2
S Z z—ak(z—ﬁk Vv 1) /i 2—j(a+ﬂA0).

keN
lk—jl<2
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Exactly the same way ||(7>(f, g))[j]’n”Loo(nn) < 271@N+P) 1 astly, for m(f, g), with a

similar reasoning as above, one sees that the contribution to frequencies of order 2]
comes from the terms k = j — 2. Therefore

([ R PP S e VAT P Pt

k,/eN
k,l=j-2
|k—¢|<1

< Z g—al=Pk < 9=jla+p)
k,¢eN
k,0=j-2
|[k—£¢]<1
using the condition a+ > 0 in the very last step. Since the minimum of the exponents
a N0+ B and a+ B A0issimply a A B, we get the claim. O

2.3 Heat kernel bounds

Since one can view p,(x, y) the transition probability from x to y of a random walk on
IT,, (see [BDG21I, Rem. 2.1.7]), one has || p} (x, ) 11 (11,) = 1, and therefore |22 f | r1,) <
Il fllru,) for any p € [1,00].

Lemma2.11. Leta € R, p,q € [1,00], and b > 0. Then there exists a constant N = N (9, c)
such that forall t € A,,n[0,1] and f € C(I1,) one has the bound

n —-6/2
”@t f”Bg,;(S(Hn) =Nt ”f”Bg‘q(Hn)'

Proof. As in the proof of Proposition[2.6} we want to appeal to arguments on continu-
ous Fourier transforms. To this end, first we extend some of our functions: define, for
zeR, neN, re A,

- o (2T _ = Ih
A”(z):—lansmz(E), firn(2) = (1+hA"2)"".

In particular, we have 1" (j) = JL’]? for j € Z. Tedious but elementary calculations show

B (2) = 8mtnsin () -
zHt,n\2) = 1+ hin(z) Ui n(2),
(£2 - ho)(8nmsin () 8n*tcos ()
0 2~ — _ n ~ _ _~n’t(y )
(02)"fir,n(2) (1+ hin(2))?2 fit,n(2) 1+ hi'(2) (,ut,n(z))

Recalling that by our choice of ¢ we have 1+ hA"(z) = 1/2, we get the bounds
020D S tzlfn(@), 101D S (P12l + D n(2). (2.11)
Let n% :R — [0, 1] be a smooth compactly supported function such that n% lsupp gl =
1,0¢ supp n}, and supp n{ c B(1+£O)pal. Then set n{;(x) :=n(27/p~'x) and observe that
forj=1

; ) n-1 . .
@ )" =2 =( Y, O ®der) £ (FI,
k=—n

13



so that it suffices to show

n—1 . .
| Y 0l R fentoder] gy, < (£17229)7° (2.12)
o I1,)
k=—n

uniformly over n €N, € A, and j < J, + 1. First consider the 1 < j < J, case. Thanks
to our choice of 17%, the support of ni,n is contained in B,,, so the summation in k can

freely be changed to run over k € Z. Therefore, first using the argument as in (2.10) we
get

[ Ignén(k)ﬂt,n(k)é‘ek”Ll(nn) = ”97_1(77}3,,('):‘71‘,11(2].')) ||L1(R)‘

By Holders inequality, we get

|77 (5, ORen@ ) gy SN+ F 7 (1, O, @79)) | oo ey
SlEHa+8 ), Oan@ )| o (213)
<la+8m}, Vi@ D] -
Using the bounds we have

|+ M@, Ohen@ )] g

< 02 2)| + 2710110 (27 2)| + 22 1(0,)% [, (27 2) | d 2
suppp,,

< (1+2% t|z1+ 2% 21212 + 25 1) iy, n (27 2) | d 2
suppp, (2.14)

:(t1/22j)_6f (220 (14 22T tl2] + 24 2127 + 22T 1) iy 0 (27 2) A2
suppmnp,

< (t”22j)_6 sup ((r5(1 + 2zl + itz + rz))e_Kr2|Z|2)
zesuppn})n
r=0

using (2.1) in the last step. Since the support of Tl,lo,, is separated from 0 uniformly in
n, the supremum is bounded uniformly in 7, finishing the proof of (2.12) in the case
J#0,Jn+1.

For j = J, + 1, we use the 2n-periodicity in k of fi; , and de. to rewrite the sum on
the right-hand side of (2.12) as

n—1
Y i R fntder =Y it (k)i (k)dex,
k=—n keZ

where 17{,“ = 1){,“ 10,21 p) +1]{)+1 (-—2/%1p)1 (21 p,00) 1 the rescaling of the smooth (!) func-

tion 17{. In particular, 1”7']0';“()6) = ﬁ{(n_lx). From there the bound follows as
before.

Finally, for j = 1 we can simply use that the L!(I1,,) norm of the lowest order mul-
tiplier is uniformly bounded in 7 and so the analogue of follows from the trivial
inequality 1 < t~%/2 for ¢t € (0,1]. O

14



Lemma 2.12. Leta € R, p,q € [1,00], and 6 € [0,2]. Then there exists a constant N =
N6, c) such that forall t € A,,n[0,1] and f € C(I1,,) one has the bound

n 612
122, f—f”B;iq(nn) < Nt ”f||B,’ﬁ,25(Hn)'

Proof. Defining nf) exactly as in the proof of Lemma|2.11|we write for j = 1

. n-1 . .
@ f =" = (T b, R @n k) = Dber) 5 (FI1.

k=-n

Therefore this time we aim for the bound

n—1 . .
| 3 1, G en )~ Ve 1, S (£7227)°. (2.15)

k=—n

Starting with 1 < j < J,,, we can again replace the summation in k over all of Z, and
following the argument in (2.13)-(2.14) we find

| 3 0l () (e, (K) = D eic| 1y
kezZ

< f fig,n(272) = 1]+ 2710 fir (27 2)| + 22 1(0,) iy, (27 2) | d 2z
suppp,,

~Y

) ) S22
<f (22712121 + 2% 12|22 + 22 ) ¥ 1214
suppp,,

o - 21,2
<(£%27)°  sup ((r 0(r?1z12 + rt|z|? + 1H))e "4 )
zesuppny,,
r=0

using |fi; ,(w)—1] < ¢ wlze"“'“’|2 in the second inequality. Since § < 2 and the support
of n}on is separated from 0 uniformly in n, the supremum is bounded uniformly in #,
finishing the proof of inthe case j #0, J, + 1.

For j = J, + 1 we only have to take slight care when replacing the summation in £,
but this is done precisely as in the proof of Lemma|2.11

Finally, for j = 0, we simply have for any smooth function 7 that is constant 1 on
the support of gb?,n and is supported on, say, Bs, that

2
@ f-f)o" = ( > k) ([, (k) - 1)5ek) i (FI001)

k=—2

and )
| Y ) @nn) - Doex]| gy
k=-2

follows from |fi;,(w) — 1| < ¢ w2extw? <192 forany ke {-2,...,2}and 5 €[0,2] O
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Lemma 2.13. Let f,g: A, xI1,, — R satisfy for all (t,x) € A, xI1,

fi(0) = f .y (1—s5) 8xcn(s) (X) .

Let further a € R, p,q € [1,00], and 6 > 0. Then there exists a constant N = N(c) such
that for all t € A, N[0, 1] one has the bound

”ff”Bf,‘,Tf(Hn) = sup ”gs”Bg,q(l'[n)- (2.16)

seA,NI[0,1)

Proof. The case t =0 is trivial. For t = kh, k = 1, we follow the classical argument, see
e.g. [GIP15, Lem. A.9], and split the integral at an intermediate time ¢h, ¢ < k. One
writes

U] n n [jln
f ‘@K (t— s)gK (s) ds
ljln
=h Z Ple-1-mn&mh

[jl,n [jl,n
—hZc@(k 1-myh8&mh +h292’(k 1-mh8mh 7

and estimates the two terms as follows.
For the first, fix any € > 0. Using (2.12) from the proof of Lemma withd =1+¢
one finds

1, 1,
”h Z ‘@(k 1- m)hgr:lhn”Lp(l'[n) <h Z ”‘@(k 1- m)hgn{Lhn”Lp(l'[n)

<h Z (k—1- m)h)—(1+£)2—2j(1+£)”g[]] n”Lp(Hn)

<2~ 2](1+£)h Z (k 1— m) (1+£)”g[]]y ”Lp(l'[n)

m=0
k-1
-2j(1 - [jl,n
<22j(+e) ¢ Z — I (i—l—m)h”LP(H")'
m=k—¢ M

For the second term one simply writes

[jl,n
Ik Z 7 m),,gmh "lra,) < h Z g " lrau,-

Therefore, for any function j — ¢(j) the two bounds above give

2 [jln
1227 1,0 ||Lp(nn)||m
2 k=1 il . k-1
<2 ey 2 gy k2 Y 20T gl "I,

é(]) m=£(j)
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) k-1
cJezene
m=k—¢(j)

inolihn
218Gl lles

1+¢

k-l o
+ || 2% 1 IIZ“]IIg[]]'nllLP(H,,)”M
Y/ mh
m=£(j)
2—2€j
S (o e
~ U2 (e e(in)?

2 (1 p( i .
gt 2] ) suptglag,my-
Making the choice ¢(j) = (k- [h~1272/7) v 0, the quantity in the big parentheses
is of order 1. Indeed, if (j) = 0 the first term in the parenthesis does not contribute

and in this case k < [h~!1272/7 which implies that the second term is bounded, and if
¢(j) = (k—[h~1272/7) both terms are clearly bounded as well. O

2.4 Heat kernel error bounds

We recall 3 error bounds for heat kernels from [BDG21]. The following is [BDG21,
Lem. 2.2.9].

Lemma 2.14. For any a € (0,1) there exists a constant N = N(a, c) such that for all
weC¥T),tel0,1],and y € T, we have

12w (y) = 2wV < Nn™ |yl ce). (2.17)
The following is [BDG21), Lem. 2.2.7] (see also|Gy099), Lemma 3.3]).

Lemma 2.15. Let § € [0,2]. Then there exists a constant N(f,c) such that for all t €
(h,1], x € T one has the bound

|peCe) = 8 o) 2y < NP D72, 2.18)

The following is a crucial tool from [BDG21, Lem. 3.3.1] that we alluded to in Re-
mark[1.2] Note that pulling the norm inside the integral in gives only a rate 1/2,
therefore using the regularisation of the noise is essential (and is done by stochastic
sewing [Lé20] in [BDG21]). We remark that technically [BDG21, Lem. 3.3.1] is stated
with w below defined by 22" and O" in place of 22 and O; the choice we make here
would only make the proof easier. Set

wi(x) = Py (x) + O(x). (2.19)

Lemma 2.16. Let p =2 and € € (0,1/4), and suppose that for some constant K one has
Iyl cuzery < K. Then there exists a constant N = N(p, €, ¢, K) such that for all bounded
measurable function g :R — R and all n € N, one has the bound

t
sup sup ”f() Lpt—r(x;Y)(g(wr(y))_g(wKn(r)(pn(y)))dydr

te[0,1] xeT LP(Q)

< Nlgllomn ¥ (2.20)
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3 Main proofs

3.1 Bounds on the linear solutions in Besov norms

We start with a very specific case of Kolmogorov’s theorem that is sufficient for our
setting.

Proposition 3.1. Let {Xy}rez be a family of C-valued Gaussian random variables that
are mutually complex orthogonal (i.e. EX; X, = 0 for k # £). Denote a = \/E|Xy|2.
Then the series

F:= Z Xiep
kez

defines a random distribution, which for any @ € R and q € [1,00) satisfies the bounds

. . qa\1/q
EllFll g, 1) < EIFlpe, (1) < N( > 2/( Y eVl han?) ) : 3.1)
jeN kez

where N = N(q).
Similarly, the random function

n-1
F= §:<Xk56k
k=—n
satisfies for any a € R and q € [1,00) the bounds
. on-l ai 4
EIFllgg, 1,0 <ENFlsg, @, < N| Y2 (kZ e gh,0ap?)?) ", 62
j€E =—n

where N = N(q).

Proof. The proof of the two parts are identical, so we only give the first. The first in-
equality in (3.1) is trivial. For any j € N, FU! is a smooth function, and one can write

E|IFY 2 (x) < Z (p{(k)(p{(k,)([EXkX_]C')ek(x)ék’(x) = kZ: |‘P{ (k) axl”.
kk'ez €z

By the equivalence of moments of Gaussian random variables we then have

. . ; q i a
By, = [ P axs [ @FI0E) ax=( X @lwan?). ©3)
T T kez
Therefore by Bernstein’s inequality
BIFlge g =E 2 @YIFI=m)? SEY 2/ @YIF I Lam)?,
JeN JeN
and by (3.3) we get the second inequality in (3.1). O
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Remark 3.2. The proof only uses the equivalence of moments property of Gaussians,
and so the statement immediately extends to any other family of probability distribu-
tions with the same property (e.g. random variables from a fixed Wiener chaos).

We first show the bounds of desired order for the linear solutions. Similar in spirit
bounds can be found in [MZ20, Lem. 3.4.], with a number of differences: therein the
2-dimensional case is considered, without discretisation in time, and with Galerkin
approximation in space (and of course due to the difference in dimension the regular-
ities are shifted by 1/2 compared to the ones below).

Lemma 3.3. ForanyneN, t€[0,1], and g € [1,00) one has the bounds

nud Np~qU/zze=llDifg e (-1/2,1/2),
ElO; =10} 1T 7 < . (3.4)
o1 ™ | N4 ifa<-1/2,
Nn~dQi2-a-laq)  fge (-1/2,1/2),
EN60, - 07, . < Jacl ) (3.5
B ™ | Nppd ifa<-1/2,

where N = N(a, q).

Proof. By Jensen’s inequality, it clearly suffices to bound for large enough gq. We start
with the bound (3.4). We wish to apply Proposition with F = O—-10". To verify
the complex orthogonality of the coordinates, take k # ¢ and first note that from
(2.5), resp.), Ito’s isometry, and the orthogonality of the er-s (§ex-s, resp.) it is clear
that for ¢ # k we have E(Oy, e/)(Oy, er) = 0, EQO7F, er) (1O}, er) = 0, resp. Furthermore,
elementary calculation shows

t
[E<LO",64><Ot,ek>=f0 Ys,tﬁrek(J/)Eé(Pn(J/))dde

t 2ni L 2n-1
e“'an ik _oniil
:f ’)/S,t - E 627'”]2"6 27”]211 dS:()

with some bounded function y ;.
To apply Proposition[3.1} we need to bound a,. For ¢ € {—n,...,n— 1} we have

EKO; — 10", e)|? :fotf1T | U5, () — (1 4+ A ®n =W ()| dy ds
Sfoth|e—4n2£2(t—s)él(y)_e—4n242(r—s)m|2dyds
_l_foth|e—4ﬂzlz(t—s)m_(1+h/lg)(Kn(t—s)/h)mdeds
Sfote—snzfz(t—s) dsfHéé(J’)—mde

t [
* fo (709 — (14 A *n 92 g fv e} (on (M) dy.
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b a2 = 2o (v |2
5] BT s)dsf lec(y) - e pa(y)|” dy
0 T
t 2,2 n
+[ (e77¢ (t—s)_e—%(t‘”)zds

0
t

0

+ft (e_A?Kn(t—s) -1+ h/'lZ)(Kn(l‘—S)/h))z ds
0
=I'+P+P+1%
We claim that each I/ satisfies .
I<n? (3.6)
First one has trivially
fT |2e(y) — el (pn)|° < €212,

and thus by the elementary inequality fot e %ds < 1/a, we get (3.6) for I 1 Next, we
have

t t
I Sf 6—3242(t—s)€4(yg —1)2(t—s)? dSSf e—32[2(f—5)g8n—4(t_ $)2ds
0 0

where we used 1, < AZ < —16¢2 in the first inequality (see (1.9)) and (1.10) in the sec-
ond. Now by the inequality fot e *s?ds < 2/a® we conclude I? < ¢?n~2, and since
|¢] < n, this yields (3.6) for I? as claimed. Next, we have

t
I < f (lt—s—xp(t— s)lxl’,?e_)lf’("(t_s))z ds < f npte 160°(=9) g <*n™,
0
as desired. Finally, arguing as in [BDG21], we find

t
2
I4§f e e, (1 - R P IhA ds
0

~

t
<f e 169 (1 _ 248 g5 < 2n74,
0 ~Y

yielding again (3.6) as desired. Therefore the proof of (3.6) is complete.
Movingonto ¢ € Z\ {—n,...,n— 1}, it is easy to see that
t
EO, — 107, e0)? = Oy, e0)|? = f e 819 gg < 02,
0
Altogether we get
lagl* =EKO, —10},e))* Sn2 A 072,

By Proposition 3.1 we therefore have

[SIE

EIO - 10} 1% 1S Y 21'( Y @4l A k‘l))z) .
’ JeN kez
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Summing first over j such that 2/ < n, we get a bound of order

n—q Z 2j(1+q/2+aq)

2i<n

If @ > —1/2, then this is of order n!~9(/2=% while for & < —1/2, for large enough g, it
is of order n~9. Both of these bounds are of the required order. On the complement
regime 2/ > n, we get a bound of order

Z 2j(1—q/2+0cq)
2i>n

For any a < 1/2, for large enough g, this is of order n!~9(/2-®

required order.

The proof of is very similar. The orthogonality of the coordinates follows the
same way. To estimate E|[(60O; — O?,ée;)nlz, note that forall £ € {—n,...,n—1} and all
jE€Zonehasdey, j2, = bey, and thus

(601,6e0)n =) (Ot ersjon) =(Opep)+ Y (Opepsjon) .
jez j#0

. This is again of the

Therefore (60, — OF,0ep), = (O; — 10}, ep) + Y j#0{O¢, €¢y j2r), which implies
lal* =EEO; — OF,8er)nl* SEKO, =10}, e0)* +EI Y (Oy, eqs jandl
Jj#0
1 1
< — + _
~ n? ];) (€ + j2n)?
<1
This is precisely the same bound as before, so by applying the second part of Proposi-
tion[3.1]we get (3.5) as before. O

Complementing the upper bounds in Lemma3.3]is the lower bound in Proposi-
tion that we prove below.

Proof of Proposition|1.11l Note that in the setting of the statement, we have u = O,
u" = O". As seen in the last proof, (60, — O},6e1), = (O, — 107, e1) + Y200, €1+ j2n),
and since the terms are Gaussian and independent, it suffices to bound the variance
of (O; — 10}, e;) from below by a positive constant times n~2. Recall that

t -
EN(O, — 1O, ep)? = fo fT |47 =98, () — (L + RA) S =W N2 ay dis

Recall that for any two unit vectors z;, z; € C and any two constants cj, ¢, > 0, one has
|c121 — c222] = (€1 A €2)| 21 — 22]. Therefore

[E|<ot—LO?,e1>|2>f|e1(y) TP dy = n?,
as claimed. ]
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3.2 Apriori bounds on the approximations

The purpose of this section is to derive an a priori bound on the approximation u”.
Let v™ = u" — O", which solves the recursion

vl () = vl (x) + hA, v} (%) + hF(OF (x) + v} (%)), (3.7)
(t,x) € Ay x I, with initial data vg (x) = ¢" (x), x € I1,,. Alternatively, in mild form we

have ‘
vf(x):@[lt//(x)+f() Pl 9 F(OF o+ (o)X ds. (3.8)

Kn(s Kn(S)
Throughout the section we fix an even integer u > v, and aim to bound the L*(I1,)-
norm of v". Introduce the quantities

R"=1+ max [0}reoq,, A= max vl
teApnio) ¢ ET IR L seapnio,y S A

Theorem 3.4. Fix a K such that |0yll1x,) < K for all n € N. Then there exists a con-
stant N = N(c, co, ..., Cy,V, i, K) such that on the event

Qn — {(Rn)v(v+u) < nl—(V—l)//J}

one has the bound
Al < N(R™MWHH-DIk, (3.9)

Remark 3.5. To get a more direct analogy to the a priori bound of [BGJK22| Wan20],
note that Theorem[3.4|can easily be turned into an L (Q2) bound on a truncated scheme.
Take N from Theorem[3.4land define

Ty:=inf{te Ay luf e, = (N+1)n}

and let the truncated scheme be @}’ = uy,, . Then, on Q, the bound (3.9) implies
that A < Nn, and therefore 7, = 1. Notice furthermore that as a consequence of
Gaussianity, P(Q¢) decays faster than any power of n. Therefore

|| te/{%tf((),l] 22 1l £y ”LP(Q)

=1, max il e+ [to;, max 1aF 1w | )

SIRHVHDHE gy + nPQE) S 1.

Before the proof of Theorem [3.4) we start by outlining the argument, to motivate
the intermediate Lemma3.6|below. Let ¢t € A, N[0, 1] and write k = ¢/ h. Then one has

k-1
nH _ u n u n M
” v[ ”Lp(nn) - ”(SwllL”(Hn) + ZO ” U(j+1)h||Lp(nn) - ” Ujh”Lp(nn)-
]:

One can then rewrite the summands by the binomial theorem

k-1
nyH _ u n _qn n yu-1
||vt||Lu(Hn)—||6w||Lu(Hn)+Z()u<v(j+l)h Vi Wi ),
]:
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—

k-1 p
Yy (Z)«v{;mh— v WIRO), B10)
j=0¢=2

In the first sum we will leverage the monotonicity of the nonlinearity. In the second
sum we use the fact that the time increments appear with power at least 2, therefore a
bound on this increment with a power of & larger than 1/2 makes the total sum ‘small’.
This is the content of Lemma 3.6, which does use the sign of the nonlinearity.

Lemma 3.6. For any € > 0 there exists a constant N = N(g, ¢, ¢y, ..., Cy,V, 4, K) such that
forall t e A,,n1[0,1] the following bound holds:

I U;l+h _ U;’t ”L”(l‘[,,) < Nhl—(v—l)/(Zu)—E((Rn)v + (A?)v) 3.11)

Proof. Recall that v} , — vy =2/ vi'+ hF(u}) - v}, and applying we immediately
get

RIF@) s,y S hn™ P HIEO] + v v,
< hnYVR(R™Y +(ADY). (3.12)
It remains to bound &;' v’ — vi’. By Lemma and Proposition 2.6|we have
lvellgz, @S sup IFOL+vdlge

seA,N[0,1)

seA;N[0,1)

SRMY+(ADY.
Therefore by Lemma2.8/we have
I UtllB}zl;gv—n/umn) S vt”Bﬁ/V,oo(“n) SR+ (ADY.
Finally, using Proposition[2.6/and Lemma2.12} we have

n..n n n.n n
”'@h Vy — Uy ”L“(Hn) S ”'@h Vy — Uy ”Bfwo(l_[n)

< pl-v-Diep-ezy 0w
N | f”Bﬁ_oﬁf DIk )

5 hl—(V—l)/(ZN)_E/Z((Rn)V + (A?)V) (313)

The bounds (3.12) and (3.13) yield (3.11) with £/2 in place of €. O

Proof of Theorem[3.4 We start from the decomposition (3.10) and bound the terms
one by one. Recall that v(”jﬂ)h - vfh =A, v;?h + hF(O;?h + v;?h). At this point the sign
of the nonlinearity comes into play: fixing an arbitrary parameter a € R, the leading
order term in the polynomial y — F(a+ y)y*~1is ¢, y”*#~1. It follows that there exists

a constant Ny < 1 such that F(a+ y) y“_1 is negative for | y| = Ny|al. On the other hand,
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if |y| < Np|al, then we can bound F(a+ y) y*~! trivially by a constant times 1 +|a|"*#~ 1.
Therefore we get

(O, + v, i), STHIORIED (< RV (3.14)

As for the contribution of the term with the Laplacian, we can argue similarly to [GG14)}
Lem. 3.1]: first notice that with 6% : C(I1,,) — C(I1,,) defined by 6% f (x) = +(2n) ™ (f (x)-
f(xx@2m™)), we have A, = 6}.6;,. Further, &}, is the adjoint of —§;, with respect to the
inner product (-, -),. Finally, for any f € C(I1,,), and any p = 2 one has

1
5 (1P 2P x) :5;f(x)fo (p-D|A-0)f(x0)+0fx—2m) "> do
:36;f(x)Fp,nf(x);

with the mapping Fp, ,, : C(I1;) — C(I1,) defined by the above equality clearly satisfying
Fpnf =z 0for any f. Putting these observations together,

(Bnvly, WEFT) = =8, 07, 8, (WFY), = ~(8, 0T, (Funv})8,v5,), <0,
(3.15)
Moving on to the terms of the last type in (3.10), by Holder’s inequality and Lemma
(with € > 0 to be chosen momentarily) we can write for any j = 0,...,k—1 and
(=2,...u—1,

¢ =4
(AR A R L W Y T h”Lu(n yI1vj h”Lﬂ(n )
Shé(l—(v—l)/(Zp) 8)((Rn) +(A7h) ) (A;.lh)“_é
< h2(1—(v—1)/(2u)—€)((R")VIJ_|_ (A;lh)vﬂ)_ (3.16)

Substituting (3.14)-(3.15)-(3.16) into (3.10), summing up, recalling the assumption on
6w Il L#(r1,), and keeping in mind that k < h™!, we get

I Ut ”LH(H VS (R )v+u 1 hl—(v—l)/y—ZE((Rn)vu + (A:z_h)vy).

Denote xk =1—(v—1)/u >0 and fix € = x/2. Note that the definition of 2, ensures that
h¥'2(R™VH < 1, so on the event Q,, the above bound further simplifies to

1 /2
07 1,y S RV A2 (AT YA (3.17)

We now claim that this implies the claimed bound if we choose N large enough.
Clearly it suffices to prove for n large enough. We proceed by induction on k = t/h.
For k = 0 we simply need to choose N = K. In the inductive step, if A} = A’; W then we
are clearly done, otherwise A} = |v}|1x(m1,). Denoting the implicit constant in

by Nj, we then have
(A?)IJ < Nl (Rn)v+/,t—1 +N1NhK(Rn)V(V+IJ_1).

To handle the first term, we simply choose N = 2N,. For the second, note that on Q,
we have h¥ (R")VV*#~D — 0 as n — 0. As a consequence, for large enough 7 the second
term can be bounded by N/2. This finishes the proof. O
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3.3 Proof of Theorem[1L.7|

In addition to our usual notation <, in this proof we use the notation a < b to denote
the existence of an almost surely finite random variable n depending only on the pa-
rameters of the problem (that is, v, 0, €, and F) such that a < nb (either on the whole
Q or on a specified subset of it).

We write v" = u"*— 0" as before, aswell as v = u—0. By Lemma and Proposition
2.6lit is sufficient to show

—-1/2+60+
sup  6vx, 0 — vy i,y <1 .

teA,N[0,1]

For (¢, x) € A,, x I1,, we can write

Kn(t=S)

t
5vr(x)—v;’(x)Z%W(x)—wa(x)+fo Pr-sFus)(x) -2 ,_gFug 5)(x)ds
=2y (x) - P/ y(x)

t

+ﬁ fTPt—s(x,J’)(F(us(J/))—F(uKn(S)(pn(y))))dyds
t

+f0 fv(p’*(x’y)_pgn(t—s)(x’Pn(y)))F(uKn(s)(Pn(y)))dyds
t

+f0 ‘@gn(t—s)(F(uKn(S))_F(ugn(s)))(x) ds

=& () + 8" () + & (x) + &7 (x). (3.18)

We can first write
160 (x)| < 1 (3.19)

using Lemma|2.14| (with @ = 1 - ¢) and w € C'~¢(T).
Next, we have

t
|€:l'2(x)| = ‘/(; ”pt—s(x) ) - P,?n(t_s) (x)pn('))”Ll('l]') ||F(u1<n(s)) ||L°°(l_[n) ds
t
S (1 + ” u”{oo([(),l]ﬂ]'))‘[0 ”Pt—s(X, ) - P,’:n(t_s) (xy,on()) ”Ll(-u—) dS

t
S (]. + ||MI|ZOO([0,1]X-|]—))(‘[ (t— S)_3/4n_1 d8+f
0 t—h
1

=n -, (3.20)

o lds)

using Lemma2.18|(with § = 2) to get the third line, along with the fact that | p;—s(x, )l 11 () =
1P, r—s @ POy = 1Py (g6 I,y = 1.

To estimate &™!, introduce a parameter L € N and the notations 7; = inf{t = 0 :
Nl = LA L, 87 = ugnr,, Qp =11 = 1} < {llull oo,y < L}, FL(r) = F(= LV (r A
L)). Finally, let us introduce, forany z: Q x [0,1] x T — R,

_ t
é”["L[z](x):fO Apt—s(ny)(FL(zs(Y))_FL(ZKn(s)(pn(J/))))dde-
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Then by definition, on Q;, one has &™! = £»L[i1'l)]. Moreover, the union of Q; -s over
all L e N, is of full probability. Therefore, in order to show

&M ()] < n 12 (3.21)
it suffices to show for any Le N
|EP 1a'P) (x| < n71 2 (3.22)

By Lemma|2.16} we have that

”étn’L[w] (x) ”LP(Q) SpiL n~'*e,

where w is defined in (2.19). Therefore,

_ &sn,L — &N, L
Esupn'~2 sup |éz’;’ [w](x)|pS[EZ pP1-2¢) Y |é°tn [w](x)|p
neN (t,X)e(A,N[0,1]) I, neN (t,x)€(A,N[0,1]) xI1,,
SpL Yy nPend. (3.23)
neN

Choosing p large enough, the last sum converges, and we get with w in place
of u'P. Since the laws of w and Y are equivalent by Girsanov’s theorem, (3.22), and
consequently (3.21), follows.

Turning to &3, define the polynomial F in two variables a, b by

F(a,b) = Z Cj+1 Z al~*pk,
j=0
which satisfies F(a) — F(b) = (a— b)F(a, b). We then write
8" = o ‘@gn(t—s)((okn(s) - Ogn(s))ﬁ(uKn(s)’ ugn(s))) ds

n 5 n
[) ‘@K (t— s)((UKn(S) - UKn(s))F(uKn(S)’uK,,(s))) ds

It's well-known that sup g 1) | 4sll c1/2-¢ ) =< 1. Therefore by Lemma2.2]

sup ||5us||B1/2 (11, ) S sup 10uslicrrz—eqr,y < sup llusllgrz-eqry < 1.
s€[0,1] s€[0,1] s€(0,1]

Similarly, one gets supc (o 1; 16 Ol B2z, = - By Lemmaand an analogous argu-
ment to (3.23) we have

< n—1/2+é+€ (3.24)

sup |60k, 5= 0% |l BY oo (M) =

s€[0,1]
for any 6 € (~1/2,1/2). Choosing 0 > 0 we get

supR"<1+sup max O]l o =<1
e wehy teAn0,1] ¢ Bl
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For any p as in Section[3.2} on Q,, Theorem 3.4]yields a bound of order 1 in the sense
of < for v" in L¥(I1,) c Bg,oo (IT,;). Substituting this back in the equation, by Lemma

2.13|one also gets a bound of order 1 in Bi/v oIn) < Béé?ogf(ﬂn). We conclude that on
Q,, we have

sup sup || F(@ux, s, ty, ) | grzeq,y < 1- (3.25)
neN s€[0,1] ’

Now we use (3.24) with 6 = 0. Since 1/2+6 — e > 0, Lemma can be used to bound
the integrand in &™%1, which combined with Lemma/2.13|yields that on Q,,

3,1 -1/2+6
sup 16" Nl gaso oy y =TT (3.26)
teA,NI0,1] oo

Finally, we can use (3.25) in a trivial way to get for any 7 € A, on Q,,

T
3,2
sup &/ ||L°°(nn),§f ||5V1<n(s)—V,?n(s)HLOO(nn)dS- (3.27)
teA,NI0,T] 0

Putting together (3.18)-(3.19)-(3.20)-(3.21)-(3.26)-(3.27) we get for any T € A,, on Q,

T
n —-1/24+60+¢ n
sup 6v:—v;llrem,) = n +f sup 6v:—v;llzeo,) ds.
teA,N[0,T] 0 teA,NI0,s]

By Gronwall’s lemma we get on Q,,

—-1/2+60+
sup N6v;— v,y =n £

teA,NI[0,1]

and since the sum of the probabilities of the complements of Q,, is finite, this yields
the claim. O
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4 Implementation

The implementation of the finite difference scheme is simple. The results are illus-
trated below.

—e— L" emmor
5 L1 emor
—o— tested error

logz(error)

—-14 4

T T T T T T T T T
2.5 3.0 35 4.0 4.5 5.0 5.5 6.0 6.5
x=loga(k)

Figure 4.1: A log-log plot of the error (compared to the highest resolution approxima-
tion) for a single realisation of the approximations, measured in L, L;, and tested
against a single test function, showing superior rate for the latter.

Experiment for n=192, k1=96.0, k2=12.0

Precise solution uj(-) Simulations er(-) Errors uj(-) - ,_,fz(_)

— = — =
-1.04 -1.0 \ i=2

V ‘Ax JW :.?
: 1R - ety

Figure 4.2: A fine grid approximation at time 1 (left), two coarser grid approxima-
tions (middle) and their differences (right). The error plots show oscillatory behaviour

around 0, which suggests smaller error in negative regularity spaces, agreeing with
Theorem [L.71
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Experiment for n=1000 k=50

Precise solution X"(-) Simulation X¥(-) Error X"(-) — Xk(-)
0.25
10 10 0.20
015
8 8
0.10
6 6
0.05
4 4
0.00 4
2 2
—0.05 +
| ! ! ! , ! ! ! ! ! ! ! ! ! !
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

Figure 4.3: A fine grid approximation (left), a coarse grid approximation (middle)
and their difference (right) for the Euler scheme applied to the SDE dX; = 2X;dt +
(arctan(X -7/ 2) dW;. Here the error is one-sided and thus not expected to be smaller
in distributional norm, as discussed in Remark[1.3]

AppendixA Some technical proofs

This appendix contains some proofs postponed from Section[2.2]

Proof of Lemmal2.1] Set Jj €10, ..., J, + 1} such that A € (27/471,27/4], we find

Jnt+1
[, 62y | < kz [(FE7, 8020 4
=0

oS (k1,n MLl
<2 > KL Een Ty
j=0 k=jl=1
Jnt1 ,
<> X ”f[k]’n”Loo(nn)||(5‘P§)U]'n”L1(nn)
j=0 lk—jl=1
Jntl . .
Sflse cann D 27| w‘/’i)m'n”Ll(nn)
=0

]/1 . . ]n+1 . .
< ||f||Bgo,oo(nn)( Y 27 ”(5(!’%)[]]’””Ll(nn) + 274 ||(6(P§cl)[]]yn”L1(Hn)) .
=],

j=0 =/x+1
For the first sum, using (2.9) and (2.10), we find
Ja . INT, 1 Ja ,
Y 2D S Z 279 < NollpmAY,

j=0 j=0

where we used that [[@|| 1) = |l (p§ 11 ®)- For the second sum, we claim that for 27l <)
and any /e N . .
16D iy Sal@lenm @AY, (A1)
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from which it follows that since r > —a,
Jn+1 . IRT Jnt+l i 1 .
Y 279G ) Sellellera Y, @7IATH 27% lglleramA®.
j=Ia+1 j=N+l1

We show (A.1) for j < J,, + 1, for the case j = J,, + 1 one adapts the argument as usual.
Since both sides of (A.1) are translation invariant, we can without loss of generality
assume that x = 0 and drop x from the notation. We find

|G 1,y = | X 0™ e p, Kdeel i,
kez
<| Y ot edh, Wexl iy
kez

= ”‘p;L *g(¢£n)||L1(R) .

Recall that & ((p{;n) annihilates polynomials (which is easy to see on the Fourier side,

using that </),’3n is supported away from 0). Therefore, denoting by P,[¢"] the Taylor
polynomial of ¢’ of degree r — 1 at z, we find

|« F @), 2| = IfR<pA(y)9(¢i;n)(z—y))dy|
=| fR (™) - PLIo NN F @), (2~ y)) dy|

- z=y|" j
SA 1||<P||Cf([Re)fR’Ty |F (@, (2~ ) dy|
<A Nelerm@ 27,

Thus,
f =« F (@) )2 dz S A2
{z:|z|<2A}

Next, note that for any m one has |F (¢, ) (V)| S |1]™. Choosing m = r +1, this im-
plies that

‘[ N ; p _ N 1 2_] r+ld
0 * F (@) )@ dz < 1o f L )
{z:|z|>2A} ¢ (tbpn v llm z:lz>n 27| z
. 1 r+1
gl g2 f 1 4z
{z:]z|>A} | 2

Slelpg2 ™A™

=gl @27,
completing the proof of (A.T). O

Proof of Lemmal|2.2. By Young's inequality
ol, 0
1P oo,y < N905, a1 o,y S 1 fllceqn,) -
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Forjef{l,.,Jp+1}set®" =Y, ([){;n(k)(Sek. Then it follows as in that

, . 1 i
f[]]rn :q)]vn *I’lf(x) = % Z (I)]'n(y)(f(x_y)_f(x))

yell,
and thus ) .
1P ooy < 114197 O 1 gy 1 ey -

to bound the last term we use Remark[2.7]
114197 O gy < 1-1°F Y @Ol w129

and find that

AT 1 1 A y
ag—1,4] _ a__ - g-1.421
I-129 (¢pgoﬂhugqu,—2nngﬂlzbd R (¢pg(2_u+n)

1
_2j+1n Z ‘2j+1

wei+2p)-1z

_ 2_a(j+l) || | . Iag_l((ﬁfl)n)() ||L1((2j+ln)—1Z) ’

CF Pl Hw)

which completes the first inequality in (2.6). To obtain the second inequality, given f €
C(I1,), we write f,(x) = f(x+ z) for z€ II,,. Let j, € N be such that |z| € 2~ Uz+D) 2-Jz]
then

Jz . Jnt+l .
If = fellzoquy < ) |l — z[]]'n”LOO(nn) + ) (llf[]]'nHLOO(nn) + ||fz[]]'n||L°°(nn))

j=0 J=Jz
Jz . . Jntl .

<Y | frr— z[]]'n”LOO(Hn) +21 fllpg 11, Y 27
j=0 J=Jz
Jz ) .

SN~ I ooy + 1L f e, 121

j=0

_ -1
To bound the first sum, note that using the discrete derivative D, f (x) := %

one finds

il [jl,n i1, i(— 1
1P = £ ooy S 12D fUY oo,y S 12127 VN Dy fll gac 1,

i(—a+l
< |z|2/ et )IIfIIBgO,OO(n,,) ,

where we used Lemma [A.1|from below in the last inequality. Thus one completes the
proof by observing that since a € (0, 1), one has

Jz . Jz

i1, jl,n j(—a+1
S = £ e,y Sl flle o 2 277 S Fllse o 121
j=0 j=0

31



Lemma A.1. For any a € R there exists a constant N = N(¢°) such that for all n € N,
f € C(I1,) one has the bounds

“an”BZ;,l(Hn) = N”f”Bg‘q(Hn) ’

_ f-fx+2m™hH
where Dy, f (x) := T

Proof. We prove that | (an)[j]'"lle(nn) < 2j||f[j]'"||Lp(nn) for j € {1,..., ]}, the claim
for j = J, +1 follows by the usual adaptation of the same argument, while the case
j =0is trivial. Let n{ :R — [0,1] be a smooth compactly supported function such that
nilsupp(pi =1,0¢ suppn%, and suppni c B(1+80)p61. Then set nl]o(x) =12 p~'x) and
observe that for j = 1

n—-1

(Du )" = Dy(( X, (000e) #a f1") = Du( 3 ), (005ex) w1
k=—n k=—n
and thus
. n-1 . .
10N rm, = [Dal X 1, (00|, 1/ N,

k=—n

which completes the proof, since

= | Pl X mh, (03]
kezZ

1 1 i 1 i _
S F ) 0= @F g )= g

n-1 .
”Dn( Z ni)n (k)aek) LI(H ) Ll(n )
k=-n " "

Ly (@ o
:EM O0F 'n), )¢+ ndy|
<102 np, I ey
=2/107 "0, In@
<207 't ).

L'(®)
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