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Abstract

We consider the motion of N rigid bodies – compact sets (S1
ε , · · · ,SN

ε )ε>0 – immersed
in a viscous incompressible fluid contained in a domain in the Euclidean space Rd, d = 2, 3.
We show the fluid flow is not influenced by the presence of the infinitely many bodies in the
asymptotic limit ε → 0 and N = N(ε) → ∞ as soon as

diam[Si
ε] → 0 as ε → 0, i = 1, · · · , N(ε).

The result depends solely on the geometry of the bodies and is independent of their mass
densities. Collisions are allowed and the initial data are arbitrary with finite energy.
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1 Introduction

There is a number of studies concerning the impact of a small rigid body immersed in a viscous
fluid on the fluid motion. A general approach used so far is based on the idea that if the body
is small but “heavy”, meaning its mass density ρεS is large, its velocity can be controlled and
the resulting situation is therefore close to the rigid obstacle problem. He and Iftimie [13], [14]
exploited this idea to handle the case when the body mass density satisfies ρεS → ∞, while the
rigid body diameter is proportional to a small number ε. More recently, Bravin and Nečasová [2]
showed that if the density is “very large”, the rigid object keeps moving with its initial velocity
not being influenced by the fluid. Note that these results are slightly at odds with a physically
relevant hypothesis that the body density should be at least bounded and also with a commonly
accepted scenario that a light particle should not have any major impact on the fluid motion.

To the best of our knowledge, the only available result concerning a body with a constant density
was obtained by Lacave and Takahashi [18] in the case of the planar motion. Their technique,
similarly to a more recent paper by Tucsnak et al. [5], is based on the Lp − Lq theory for the
associated solution semigroup and requires smallness of the initial fluid velocity. The authors also
note that the result can be extended to the case of several “massive” bodies up to the first contact.

Our goal is to extend the main result of [18] to the case of several bodies (S1
ε , · · · ,SN

ε )ε>0

that may collide in the evolution process. More specifically, our result holds under the following
hypotheses:

• The fluid is confined to an arbitrary domain Ω ⊂ Rd, d=2,3.

• The mass density of the bodies is irrelevant. The only restriction concerns their shape.
Specifically, we suppose

Dε ≡ max
i=1,··· ,N

{diam[Si
ε]} → 0 as ε→ 0,

0 < λDβ
ε 6 |Sε| as ε → 0, d6β <





15 if d = 3,

arbitary finite if d = 2,
(1.1)

for some λ > 0 independent of ε.

• The result is global in time and holds in the class of weak solutions and for any finite–energy
initial data.
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Very roughly indeed, we may conclude that the effect of a finite number of rigid bodies is
negligible as soon as their diameters are small whereas their mass densities are irrelevant. In
addition, hypothesis (1.1) allows different bodies to shrink to zero in different order of scaling.

Let us mention that there are some results in the context of rigid obstacles in viscous Newtonian
fluids. The flow around a small rigid obstacle was studied by Iftimie et al. [15]. Lacave [17] studies
the limit of a viscous fluid flow in the exterior of a thin obstacle shrinking to a curve.

We use the framework of weak solutions in the spirit of Judakov [16], Gunzburger, Lee and
Seregin [12] or Galdi [9]. The relevant existence theory for the fluid structure interaction problem
was developed by San Martin, Starovoitov, and Tucsnak [19] for d = 2 and in [6] for d = 3. In
both cases, the solutions are global–in–time and allow for possible collisions of the bodies and also
collisions with the domain boundary.

Similarly to the companion paper [8] concerning compressible fluids, our approach is based
on a new restriction operator that assigns a given function its “projection” on the space of rigid
motions attached to the bodies. We point out that accommodation of several bodies needs a
nontrivial modification of the construction presented in [8]. In addition, we show new “negative
norm” estimates of the restriction operator that are of independent interest and can be used in
problems involving compressible flows.

The new restriction operator improves considerably the error estimates necessary to perform
the asymptotic limit. Another new ingredient is that we use the dissipation energy rather than
the energy itself to obtain suitable bounds on the rigid body translation velocity. This is why the
result is independent of the mass densities of the bodies.

The paper is organized as follows. In Section 2, we formulate the problem and state our main
result. Next, in Section 3, we derive uniform bounds on the sequence of solutions to the fluid–
structure interaction problem independent of the scaling parameter. In Section 4, we introduce a
restriction operator suitable for modifying the test function in the weak formulation of the problem.
The convergence analysis and the proof of the main result are done in Section 5.

2 Problem formulation, main result

We consider a domain Ω ⊂ Rd, d = 2, 3, containing a viscous, incompressible Newtonian fluid.
Accordingly the fluid velocity u satisfies the Navier–Stokes system of equations

divxu = 0, (2.1)

∂tu+ divx(u⊗ u) +∇xΠ = divxS(Dxu) + g, (2.2)

S(Dxu) = µDxu, Dxu =
∇xu+∇t

xu

2
, µ > 0, (2.3)

where Π is the pressure and the function g denotes an external volume force.
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The rigid bodies are represented by compact connected sets Si ⊂ Rd, i = 1, · · · , N . We suppose
the bodies are immersed in the fluid and their position at a time t > 0 is determined by a family
of affine isometries (σi(t))t>0,

Si(t) = σi[Si], σi(t)x = Oi(t)x+ hi(t), Oi ∈ SO(d), t > 0, i = 1, · · · , N.

In addition, we introduce the associated rigid velocity fields,

uSi(t, x) = Yi +Qi(x− hi), Yi(t) =
d

dt
hi(t), Qi(t) =

d

dt
Oi(t) ◦Oi

−1(t). (2.4)

Finally, we identify the fluid region

Ωf (t) = Ω \ ∪N
i=1Si(t), Qf =

{
(t, x)

∣∣∣ t ∈ (0, T ), x ∈ Ωf (t)
}

2.1 Weak formulation

We suppose that the rigid bodies are immersed in the fluid. As the fluid is viscous, a natural
working hypothesis asserts that both the velocity and the momentum coincide on the body bound-
ary, see e.g. Galdi [9]. Accordingly, a suitable weak formulation of the fluid–structure interaction
problem (see [6]) is based on the quantities

[
ρ,u, (h1 · · ·hN ), (O1 · · · ,ON )

]
. In this context, it is

convenient to consider both the mass density ρ = ρ(t, x) and the velocity u = u(t, x) as functions
defined for all x ∈ Rd.

2.1.1 Regularity

• The mass density ρ is non–negative,

ρ ∈ L∞((0, T )× Rd) ∩ C1([0, T ];L1(Ω)). (2.5)

• The velocity u belongs to the Ladyzhenskaya class

u ∈ L∞(0, T ;L2(Rd;Rd)) ∩ L2(0, T ;W 1,2(Rd;Rd)), divxu = 0. (2.6)

• The affine isometries are Lipschitz continuous in time,

hi ∈ W 1,∞(0, T ;Rd), Oi ∈ W 1,∞(0, T ;SO(d)), i = 1, · · · , N. (2.7)
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2.1.2 Compatibility

•

ρ(t, x) = 1 for a.a. x ∈ Ωf (t),

ρ(t, x) = ρSi for a.a. x ∈ Si(t), i = 1, · · · , N (2.8)

for any t ∈ [0, T ].

•

u(t, ·) ∈ W 1,2
0 (Ω;Rd) (2.9)

(u− uSi)(t, ·) ∈ W 1,2
0 (Rd \ Si(t);Rd) (2.10)

for a.a. t ∈ (0, T ), i = 1, · · · , N. (2.11)

2.1.3 Mass conservation

The equation of continuity
ˆ T

0

ˆ

Rd

[
ρ∂tϕ + ρu · ∇xϕ

]
dt = −

ˆ

Rd

ρ0ϕ(0, ·) (2.12)

holds for any ϕ ∈ C1
c ([0, T )× Rd).

2.1.4 Momentum balance

The momentum equation
ˆ T

0

ˆ

Rd

[
ρu · ∂tϕ+ ρu⊗ u : Dxϕ

]
dt

=

ˆ T

0

ˆ

Rd

[
S(Dxu) : Dxϕ− ρg ·ϕ

]
dt−

ˆ

Rd

ρ0u0 · ϕ (2.13)

holds for any function ϕ ∈ C1
c ([0, T )× Ω;Rd), divxϕ = 0 satisfying

Dxϕ(t, ·) = 0 on an open neighbourhood of Si(t) for any t ∈ [0, T ), i = 1, · · · , N. (2.14)

2.1.5 Total energy dissipation

The energy inequality
ˆ

Rd

ρ|u|2(τ, ·) +
ˆ τ

0

ˆ

Rd

S(Dxu) : Dxu 6

ˆ

Rd

ρ0|u0|2 +
ˆ τ

0

ˆ

Rd

ρg · u dt (2.15)

holds for a.a. τ ∈ (0, T ).

5



2.2 Main result

We are ready to state our main result.

Theorem 2.1 (Asymptotic limit). Let Si
ε ⊂ Rd, i = 1, · · · ,M(ε), d = 2, 3 be a family of

compact connected sets satisfying

M(ε) ∼ −α log ε for some α ∈ (0, 5/7), (2.16)

Dε ≡ max
i=1,··· ,N

diam[Si
ε] → 0 as ε→ 0,

0 < λDβ
ε 6 |Si

ε| as ε→ 0, d6β <





15− 21α if d = 3,

arbitrary finite if d = 2,
(2.17)

for some λ > 0 independent of ε, i = 1, · · · , N. Suppose the rigid body densities ρεSi, i = 1, · · · , N
are constant,

0 < ρεSi 6 ρ uniformly for ε → 0, i = 1, · · ·N (2.18)

for some ρ > 0 independent of ε.

Let
[
ρε,uε,

(
hε
1, · · · ,hε

M(ε)

)
,
(
Oε

1, · · · ,Oε
M(ε)

)]

ε>0
be the associated sequence of weak solutions

to the fluid–structure interaction problem specified in Section 2.1, with the initial data (ρε0,u
ε
0)ε>0

satisfying

ρε0(x) =





ρεSi if x ∈ Si
ε(0), i = 1, · · · ,M(ε),

1 otherwise,
(2.19)

uε
0 ∈ L2(Rd;Rd), ρε0u

ε
0 → u0 in L2(Rd;Rd), (2.20)

where
u0 ∈ L2(Ω;Rd), divxu0 = 0. (2.21)

Finally, suppose
g = g(x), g ∈ L2 ∩ L∞(Rd;Rd). (2.22)

Then, up to a suitable subsequence,

uε → u weakly in L2(0, T ;W 1,2
0 (Ω;Rd)),

and in L2((0, T )× Ω;Rd), (2.23)

where u is a weak solution of the Navier–Stokes system (2.1)–(2.3), with the initial data u0 satis-
fying the energy inequality

ˆ

Ω

|u|2(τ, ·) dx+

ˆ τ

0

ˆ

Ω

S(Dxu) : Dxu dx 6

ˆ

Ω

|u0|2 dx+

ˆ τ

0

ˆ

Ω

g · u dx dt (2.24)

for a.a. τ ∈ (0, T ).
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Remark 2.2. We can also tackle the case of finitely many bodies with a straightforward modifi-
cation of the technique used in the previous proposition. Let Si

ε ⊂ Rd, i = 1, · · · , N , d = 2, 3 be a
family of compact connected sets satisfying

Dε ≡ max
i=1,··· ,N

diam[Si
ε] → 0 as ε → 0,

0 < λDβ
ε 6 |Si

ε| as ε → 0, d6β <






15 if d = 3,

arbitary finite if d = 2,
(2.25)

for some λ > 0 independent of ε, i = 1, · · · , N. Suppose the rigid body densities ρεSi, i = 1, · · · , N
are constant.

Let [ρε,uε, (hε
i , · · · ,hε

N), (O
ε
1, · · · ,Oε

N )]ε>0 be the associated sequence of weak solutions to the
fluid–structure interaction problem specified in Section 2.1, with the initial data (ρε0,u

ε
0)ε>0 satis-

fying (2.19)–(2.20). Then, we have the same conclusion for the limiting system as in (2.23)–(2.24).

Remark 2.3. In fact, hypothesis (2.18) requiring uniform bounds on the body density is not
restrictive. Indeed, if ρεS contains an unbounded sequence, then the relevant results have been
already obtained by He and Iftimie [13], [14]. The main novely of the present result is allowing
the body density to be asymptotically small.

Remark 2.4. Without loss of generality, we set Dε = ε. In accordance with hypothesis (2.17),
there are balls Brε[y

ε
i ] centred at yε

i ∈ Rd and of radius rε such that

Si
ε ⊂ Brε[y

ε
i ].

In addition, choosing r > 0 large enough, we may suppose

yε
i =

1

|Si
ε|

ˆ

Si
ε

x dx

coincided with the barycenter of the body Si
ε. Accordingly, we may infer

Si
ε(t) ⊂ Brε[h

ε
i (t)], t ∈ [0, T ], i = 1, · · · , N, (2.26)

where (hε
i )ε>0 are the rigid translation of the barycenters of the body. Finally, again without loss

of generality, we suppose r = 1 therefore Si
ε(t) ⊂ Bε[h

ε
i (t)], t ∈ [0, T ], i = 1, · · · , N .

It follows from (2.26) (with r = 1) and the weak formulation of the momentum equation (2.13)
that the integral identity

ˆ T

0

ˆ

Rd

[
ρεuε · ∂tϕ+ uε ⊗ uε : Dxϕ

]
dx dt
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=

ˆ T

0

ˆ

Rd

[
S(Dxu

ε) : Dxϕ− ρεg ·ϕ
]
dx dt−

ˆ

Rd

ρε0u
ε
0 · ϕ dx (2.27)

holds for any function ϕ ∈ C1
c ([0, T )× Ω;Rd), divxϕ = 0 satisfying

∇xϕ(t, ·) = 0 on Bε[h
ε
i (t)] for any t ∈ [0, T ), i = 1, · · · , N. (2.28)

Obviously, the test functions satisfying (2.28) are constant on the shifted balls containing the rigid
bodies. It is worth noting that the class of test functions (2.28) is much larger than its counterpart
for the obstacle problem, where the test functions are supposed to vanish on the obstacle.

3 Uniform bounds

In this section, we derive suitable uniform bounds necessary for passing to the limit in the weak
formulation of the momentum equation (2.13). All bounds used in the limit passage follow from
the energy inequality (2.15).

Let [ρε,uε, (hε
1, · · · ,hε

N ), (O
ε
1, · · · ,Oε

N ]ε>0 be the associated sequence of weak solutions to the
fluid–structure interaction problem satisfying (2.5)–(2.15). As g satisfies the hypothesis (2.22), we
have

ˆ

Rd

ρεg · uε dx =
N∑

i=1

ˆ

Si
ε(t)

ρεSig · uε dx+

ˆ

Rd\∪N
i=1Sε(t)

g · uε

where, in accordance with the hypothesis (2.18), (2.22):
ˆ

Si
ε(t)

ρεSig · uε dx
<∼
ˆ

Si
ε(t)

ρεS dx+

ˆ

Rd

ρε|uε|2 dx
<∼ 1 +

ˆ

Rd

ρε|uε|2 dx, i = 1, · · · , N.

Here and hereafter, the symbol a
<∼ b means a 6 cb, where c is a generic constant independent of

the scaling parameter ε. Similarly, by virtue of hypothesis (2.22) and Cauchy–Schwartz inequality,
ˆ

Rd\∪N
i=1S

i
ε(t)

g · uε
6 c(δ) + δ

ˆ

Rd

|uε|2 dx

for any δ > 0. In addition, using Korn–Poincaré inequality, we get
ˆ

Rd

|uε|2 dx
<∼
ˆ

Rd

S(Dxu
ε) : Dxu

ε dx+

ˆ

Rd

ρε|uε|2 dx. (3.1)

Finally, we apply Gronwall’s argument to the energy inequality (2.15) and deduce the following
bounds

ess sup
t∈(0,T )

ˆ

Rd

ρε|uε|2(t, ·) dx
<∼ 1,

ˆ T

0

ˆ

Rd

S(Dxu
ε) : Dxu

ε dx
<∼ 1, (3.2)
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which, together with (3.1), yields

ˆ T

0

ˆ

Rd

|uε|2 + |∇xu
ε|2 dx dt

<∼ 1. (3.3)

3.1 Bounds on the rigid velocity d = 2

In view of (2.10), uε(t, ·) = uε
Si(t, ·) a.a. on Si

ε(t) for a.a. t ∈ (0, T ), i = 1, · · · , N . As the rigid
body densities are constant, the translational and rotational velocities are orthogonal on Si

ε(t),
specifically

ˆ

Si
ε(t)

Yε
i (t) ·Qε

i (· − hε
i (t)) dx = 0.

Consequently, we have

ˆ

Si
ε(t)

|uε|2 dx =

ˆ

Si
ε(t)

|uε
Si|2 dx =

ˆ

Si
ε(t)

|Yε
i (t) +Qε

i (· − hε
i (t))|2 >

ˆ

Si
ε(t)

|Yε
i (t)|2 dx (3.4)

If d = 2, the standard Sobolev embedding relation yields

‖uε‖Lq(Si
ε(t);R

2) 6 c(q)‖uε‖W 1,2(R2;R2) for any finite 1 6 q <∞,

where the constant c(q) is independent of ε, i = 1, · · · , N .
Next, by (3.4) and interpolation,

|Si
ε|

1
2 |Yε

i | 6 ‖uε‖L2(Si
ε(t);R

2) 6 ‖uε‖Lq(Si
ε(t);R

2)|Si
ε|

1
2
− 1

q 6 c(q)‖uε‖W 1,2(R2;R2)|Si
ε|

1
2
− 1

q .

Consequently, in view of the bound (3.3), we may infer

‖Yε
i ‖L2(0,T )

<∼ |Si
ε|−

1
q for any finite 1 6 q <∞, i = 1, · · · , N, d = 2. (3.5)

3.2 Bounds on the rigid velocity d = 3

Now, we repeat the arguments of the previous section with q = 6 obtaining

‖Yε
i ‖L2(0,T )

<∼ |Si
ε|−

1
6 , i = 1, · · · , N, d = 3. (3.6)

4 Restriction operator

A suitable choice of the restriction operator is crucial in our analysis. In contrast to the over-
whelming amount of the available literature, where the test functions are modified to vanish on
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the body, we take advantage of the freedom allowed by (2.27), (2.28) and replace the function on
a ball of radius ε by its integral average over that ball. The same idea has already been exploited
in [8], where detailed proofs of the statements collected below are available.

Consider a function

H ∈ C∞(R), 0 6 H(Z) 6 1, H ′(Z) = H ′(1− Z) for all Z ∈ R,

H(Z) = 0 for −∞ < Z 6
1

4
, H(Z) = 1 for

3

4
6 Z <∞

For ϕ ∈ L1
loc(R

d) , r > 0 we define Er,

Er[ϕ](x) =
1

|Br|

ˆ

Br

ϕ dz H

(
2− |x|

r

)
+ ϕ(x)H

( |x|
r

− 1

)
. (4.1)

where Br denotes the ball centred at zero with the radius r > 0. Obviously, the operator Er maps
the space C∞

c (Rd) into itself, and, moreover

‖Er[ϕ]‖Lp(Rd)
<∼ ‖ϕ‖Lp(Rd), (4.2)

‖∇xEr[ϕ]‖Lp(Rd;Rd)
<∼ ‖∇xϕ‖Lp(Rd;Rd) for any 1 6 p 6 ∞, (4.3)

uniformly for 0 < r 6 1, see [8, Section 4.1].

4.1 Restriction operator in the class of solenoidal functions

The operator Er does not preserve solenoidality if applied componentwise to a solenoidal function.
To fix this problem, we introduce the operator

Rr[ϕ] = Er[ϕ]− B2r,r

[
divxEr[ϕ]|B2r\Br

]
, (4.4)

where B2r,r is a suitable branch of the inverse of the divergence operator defined on the annulus
B2r \Br. A possible construction of B was proposed by Bogovskii [1] and later elaborated by Galdi
[10] followed by Diening et al. [4] , Geißert [11] et al. among others. In our setting, the operator
B2r,r can be constructed by a simple scaling argument:

• We start with the annulus

O = B2 \B1 =
{
y ∈ Rd

∣∣∣ 1 < |y| < 2
}
.

Following Galdi [10, Chapter III, Section III.3], Diening et al. [4], we construct a linear
operator BO defined a priori on smooth functions g ∈ C∞

c (O),
´

O
g dy = 0, enjoying the

following properties:
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•

BO[g] ∈ C∞
c (O;Rd), divyBO[g] = g;

•

‖∇yBO[g]‖Lp(O;Rd×d) 6 cI(p, O)‖g‖Lp(O) for any 1 < p <∞. (4.5)

Thanks to this property, BO[g] can be extended as a bounded linear operator on the space

Lp
0(O) =

{
g ∈ Lp(O)

∣∣∣
ˆ

O

g dy = 0

}

ranging in W 1,p
0 (O,Rd).

• If, in addition, the function g can be written as g = divyf , where f ∈ Lq(O;Rd) satisfies

f · n|∂O = 0, (4.6)

then
‖BO[divyf ]‖Lq(O;Rd) 6 cII(q, O)‖f‖Lq(O;Rd), 1 < q <∞. (4.7)

• If g ∈ W l,p
0 , then

‖BO[g]‖W l+1,p
0 (O,Rd) 6 c(l, p, O)‖g‖W l,p

0 (O;Rd), l = 0, 1, · · · , 1 < p <∞,

see Galdi [10, Theorem III.3.3].

• An analogue of BO on the domain B2r\Br can be now defined via scaling. To a given function
g defined on B2r \Br and satisfying

´

B2r\Br
g dx = 0, we associate a function g̃ on O,

g̃(y) = g(ry), y ∈ O.

We set
B2r,r[g](x) = rBO[g̃]

(x
r

)
, x ∈ B2r \Br.

Seeing that

divxB2r,r[g](x) = divyBO[g̃]
(x
r

)
,∇xB2r,r[g](x) = ∇yBO[g̃]

(x
r

)
,

and
B2r,r[divxf ](x) = BO[divy f̃ ]

(x
r

)
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we easily observe that B2r,r shares all properties of BO on the domain B2r \Br. Moreover, the
bounds (4.5), (4.7) are satisfied with the same with the same constants cI(p, O), cII(p, O):

‖∇xB2r,r[g]‖Lp(B2r\Br ;Rd×d) 6 cI(p)‖g‖Lp(B2r\Br) whenever

ˆ

B2r\Br

g dx = 0

for any 1 < p <∞, (4.8)

and

‖B2r,r[divxf ]‖Lq(B2r\Br ;Rd) 6 cII(q)‖f‖Lq(B2r\Br ;Rd),

whenever f · n|∂(B2r\Br
= 0 for any 1 < q <∞. (4.9)

with the constants cI , cII independent of r > 0.

Recalling the definition of the operator Er as in (4.1), we have

Er[ϕ] = constant vector in B 5
4
r \Br, Er[ϕ] = ϕ in B2r \B 7

4
r. (4.10)

In particular,
ˆ

B2r\Br

divxEr[ϕ] dx = 0 whenever divxϕ = 0.

Therefore, going back to formula (4.4), Rr is well–defined for solenoidal functions. Moreover,
obviously,

divxRr[ϕ] = divxϕ.

Using the uniform bound (4.8) together with (4.3) we deduce

‖∇xRr[ϕ]‖Lp(Rd,Rd×d)

<∼ ‖∇xϕ‖Lp(Rd,Rd×d) , 1 < p <∞ (4.11)

uniformly for 0 < r 6 1.
Finally, we claim the Lq−bound

‖Rr[ϕ]‖Lq(Rd,Rd)

<∼ ‖ϕ‖Lq(Rd;Rd) , 1 < q <∞ (4.12)

uniformly for 0 < r 6 1. Note that this is not a direct consequence of the “negative” estimates
stated in (4.9) as Er[ϕ] ·n may not vanish on ∂(B2r \Br). To see (4.12), we first construct a family
of cut–off functions

ψr ∈ C∞
c (B2r \Br), 0 6 ψr 6 1, ψr(x) = 1 for all

5

4
r 6 |x| 6 7

4
r, |∇xψr| <∼ 1

r
.

In accordance with (4.10), we have

divxEr[ϕ] = ψrdivxEr[ϕ] provided divxϕ = 0.
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Accordingly,

B2r,r[divxEr[ϕ]] = B2r,r[ψrdivxEr[ϕ]] = B2r,r[divx(ψrEr[ϕ])]− B2r,r[∇xψr ·Er[ϕ]].

On the one hand, as ψr ∈ C∞
c (B2r \ Br), we are allowed to apply the negative bound (4.9) to

obtain
‖B2r,r[divx(ψrEr[ϕ])]‖Lq(Rd;Rd)

<∼ ‖ψrEr[ϕ]‖Lq(Rd;Rd)

<∼ ‖ϕ‖Lq(Rd;Rd) . (4.13)

On the other hand, the gradient bounds (4.8) yield

‖∇xB2r,r[∇xψr · Er[ϕ]]‖Lq(Rd;Rd×d)

<∼ ‖∇xψr ·Er[ϕ]]‖Lq(Rd)

<∼ 1

r
‖ϕ‖Lq(Rd;Rd) . (4.14)

Next, by virtue of Poincaré inequality,

‖B2r,r[∇xψr · Er[ϕ]]‖Lq(Rd;Rd)

<∼ r ‖∇xB2r,r[∇xψr · Eε[ϕ]]‖Lq(Rd;Rd×d) . (4.15)

Combining the estimates (4.13)–(4.15) we obtain

‖B2r,r[divxEr[ϕ]]‖Lq(Rd;Rd)

<∼ ‖ϕ‖Lq(Rd;Rd) ,

which, together with (4.2) yields the desired conclusion (4.12).

4.2 Space shift

For h ∈ Rd, we set

Rr(h)[ϕ] = S−hRr

[
Sh[ϕ]

]
, (4.16)

where Sh is the shift operator given by

Sh[f ](x) = f(h+ x).

The basic properties of the operator Rr(h) are summarized below, cf. also [8, Proposition 5.1].

Proposition 4.1. The operator Rr(h) is well defined for any function ϕ in the class

ϕ ∈ C∞
c (Rd;Rd), divxϕ = 0

and can be uniquely extended to functions

ϕ ∈ Lp
loc(R

d;Rd), divxϕ = 0 a.a.

Moreover, the following holds:

13



•

ϕ ∈ C∞(Rd;Rd) ⇒ Rr(h)[ϕ] ∈ C∞(Rd;Rd); (4.17)

•

divxRr(h)[ϕ] = divxϕ = 0; (4.18)

•

Rr(h)[ϕ] =





1
|Br(h)|

´

Br(h)
ϕ dx if |x− h| < r,

ϕ(x) if |x− h| > 2r;

(4.19)

•

Rr(h)[ϕ] = ϕ whenever ϕ is a constant vector on B2r(h); (4.20)

•

‖Rr(h)[ϕ]‖Lp(Rd;Rd)

<∼ ‖ϕ‖Lp(Rd;Rd) (4.21)

‖∇xRr(h)[ϕ]‖Lp(Rd;Rd×d)

<∼ ‖∇xϕ‖Lp(Rd;Rd×d) (4.22)

for any 1 < p <∞ independently of 0 < r 6 1;

• If ϕ is compactly supported, then so is Rr(h)[ϕ]. Specifically,

supp[Rr(h)[ϕ]] ⊂ U2r[supp[ϕ]] (4.23)

where U2r(O) denotes the 2r−neighbourhood of a set O.

Finally, we evaluate the differential of ∇hRr(h)[ϕ] for a given function ϕ. It follows from
(4.17) that Rh(h)[ϕ] is a smooth function of x as long as ϕ is smooth and the differentiation can
be performed in a direct manner. Consequently, we obtain

∇hRr(h)[ϕ] = ∇x (Rr(h)[ϕ])−Rr(h)[∇xϕ]. (4.24)

Note carefully that if ϕ is solenoidal, meaning divxϕ = 0, then so is ∇xϕ (component–wise) and
the right–hand side of (4.24) is well defined. Using the bounds (4.21), (4.22), the formula (4.24)
can be extended to solenoidal functions ϕ ∈ W 1,p

loc (R
d;Rd) by density argument.
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4.3 Composition

As we are facing the N -body problem, it is convenient to consider the composition of N restriction
operators

Rε(h1, · · ·hN)[ϕ] = Rε(h1) ◦R5ε(h2) ◦ · · · ◦R5N−1ε(hN)[ϕ] (4.25)

for arbitrary (h1, · · · ,hN). In view of the property (4.18), the operator Rε(h1, · · ·hN)[ϕ] is well
defined for any solenoidal ϕ and

divxRε(h1, · · ·hN)[ϕ] = 0.

The following result is crucial.

Lemma 4.2. Suppose h1, · · · ,hN are N points in Rd, N > 1. Let r1, · · · , rN be positive numbers,

rn+1 > 5rn, n = 1, 2, · · · , N − 1. (4.26)

Then
Rr1(h1) ◦ · · · ◦RrN (hN)[ϕ] = Λi on Br1(hi), i = 1, · · · , N, (4.27)

where Λi are constant vectors.

Proof. The proof can be done by induction with respect to N . In view of (4.19), the result
obviously holds for N = 1.

Suppose we have already shown the conclusion for N points and consider

w = Rr1(h1) ◦ · ◦RrN (hN) ◦RrN+1
(hN+1)[ϕ].

In view of the induction hypothesis, it is enough to show

w = ΛN+1 on Br1(hN+1). (4.28)

Denote
v = Rr2(h2) ◦ · · · ◦RrN (hN) ◦RrN+1

(hN+1)[ϕ]

Using again the induction hypothesis we get

v = ΛN+1 on Br2(hN+1). (4.29)

Now, consider two complementary cases

hN+1 ∈ Rd \B3r1(h1) or hN+1 ∈ B3r1(h1).

If hN+1 ∈ Rd \B3r1(h1), then it follows from (4.19)

w = Rr1(h1)[v] = v on Br1(hN+1)
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and the desired conclusion follows from (4.29) as r2 > r1.
If hN+1 ∈ B3r1(h1), then it follows from (4.29) and the hypothesis r2 > 5r1 that v equals ΛN+1

on B2r1(h1). Consequently, by virtue of (4.20),

w = Rr1(h1)[v] = v

and the desired result follows again from (4.29).

Let us summarize the properties of the operator Rε(h1, · · · ,hN) that can be easily deduced
from Proposition 4.1 and Lemma 4.2.

Proposition 4.3. The operator Rε(h1, · · · ,hN) is well defined for any function ϕ in the class

ϕ ∈ C∞
c (Rd;Rd), divxϕ = 0

and can be uniquely extended to functions

ϕ ∈ Lp
loc(R

d;Rd), divxϕ = 0 a.a.

Moreover, the following holds:

•

ϕ ∈ C∞(Rd;Rd) ⇒ Rε(h1, · · · ,hN) ∈ C∞(Rd;Rd); (4.30)

•

divxRε(h1, · · · ,hN)[ϕ] = divxϕ = 0; (4.31)

•

Rε(h1, · · · ,hN)[ϕ] = Λi − a constant vector on Bε(hi), i = 1, · · · , N ; (4.32)

•

Rε(h1, · · · ,hN)[ϕ](x) = ϕ(x) whenever x ∈ Rd \ ∪N
i=1B2·5i−1ε(hi); (4.33)

•

‖Rε(h1, · · · ,hN )[ϕ]‖Lp(Rd;Rd) 6 c(p)N‖ϕ‖Lp(Rd;Rd) (4.34)

‖∇xRε(h1, · · · ,hN )[ϕ]‖Lp(Rd;Rd×d) 6 c(p)N‖∇xϕ‖Lp(Rd;Rd×d) (4.35)

for any 1 < p <∞ uniformly for 0 < ε 6 1;

• If ϕ is compactly supported, then so is Rε(h1, · · · ,hN )[ϕ]. Specifically,

supp[Rε(h1, · · · ,hN)[ϕ]] ⊂ U2·5N ε[supp[ϕ]]. (4.36)
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Similarly to the preceding part, we may compute the gradients with respect to the parameters
hi, i = 1, · · · , N . A straightforward application of formula (4.24) yields:

∇hi
Rε(h1, · · · ,hN)[ϕ]

= Rε(h1, · · · ,hi−1)
[
∇xR5i−1ε(hi, · · · ,hN)[ϕ]−R5i−1ε(hi) [∇xR5iε(hi+1, · · · ,hN)[ϕ]]

]

= Rε(h1, · · · ,hi−1)
[
∇xR5i−1ε(hi, · · · ,hN)[ϕ]

]

−Rε(h1, · · · ,hi)
[
∇xR5iε(hi+1, · · · ,hN)[ϕ]

]
, i = 1, · · · , N, (4.37)

with the convention
Rε(h1, · · · ,h0) = R5N ε(hN+1, · · · ,hN ) = Id.

5 Convergence: Proof of Theorem 2.1

Let ϕ ∈ C∞
c ([0, T )× Ω;Rd), divxϕ = 0 be a smooth solenoidal function. Our ultimate goal is to

tackle the infinitely many bodies case. To do so, we want to plug Rε(h
ε
1, · · · ,hε

M(ε))[ϕ] as a test

function in the “relaxed” momentum balance (2.27) and perform the limit ε → 0 (in which case
we also have M(ε) → ∞). It follows from Proposition 4.3, notably (4.31), (4.32) and (4.36), that
Rε(h

ε
1, · · · ,hε

M(ε))[ϕ] belongs to the class (2.28) and therefore represent an eligible test function

for (2.27) as long as we check the regularity of its time derivative. This will be done in the next
section.

5.1 Error estimates for test functions

Given a test function ϕ ∈ C∞
c ([0, T )×Ω;Rd), divxϕ = 0, the time derivative of its approximation

Rε(h
ε
1, · · · ,hε

M(ε))[ϕ] can be computed directly from formula (4.37):

∂tRε(h
ε
1, · · · ,hε

M(ε))[ϕ] = Rε(h
ε
1, · · · ,hε

M(ε))[∂tϕ] +

M(ε)∑

i=1

∇hi
Rε(h

ε
1, · · · ,hε

M(ε))[ϕ] ·Yε
i

= Rε(h
ε
1, · · · ,hε

M(ε))[∂tϕ]

+

M(ε)∑

i=1

Rε(h
ε
1, · · · ,hε

i−1)
[
∇xR5i−1ε(h

ε
i , · · · ,hε

M(ε))[ϕ] ·Yε
i

−R5i−1ε(h
ε
i )
[
∇xR5iε(h

ε
i+1, · · · ,hε

M(ε))[ϕ] ·Yε
i

] ]
(5.1)

As a matter of fact, the functions hε are merely Lipschitz; whence the identity for time derivatives

d

dt
hε
i (t) = Yε

i holds for only for a.a. t ∈ (0, T ).
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Still formula (5.1) as well as eligibility of Rε(h
ε
1, · · · ,hε

M(ε))[ϕ] as a test function in (2.27) can be
verified by a density argument.

To derive the error estimates on the difference

ϕ−Rε(h
ε
1, · · · ,hε

M(ε))[ϕ], ϕ ∈ C∞
c ([0, T )× Ω;Rd), divxϕ = 0

we use essentially two facts:

• For any fixed t ∈ [0, T ):

ϕ(t, ·)−Rε(h
ε
1, · · · ,hε

M(ε))[ϕ](t, ·) = 0 outside the union of balls ∪M(ε)
i=1 B10M(ε)ε[h

ε
i (t)], (5.2)

which far from being optimally stated consequence of (4.33);

• ϕ is smooth, in particular Lipschitz in [0, T ]× Ω.

In view of the bounds (4.34), (4.35), we get

‖Rε(h
ε
1, · · · ,hε

M(ε))[ϕ]‖W 1,p(Rd) 6 c(p)M(ε)‖ϕ‖W 1,p(Rd). (5.3)

By virtue of (5.2), it is enough to estimate

‖(ϕ−Rε(h
ε
1, · · · ,hε

M(ε))[ϕ])(t, ·)‖W 1,p(∪
M(ε)
i=1 B

10M(ε)ε
[hε

i (t)];R
d)
.

If we take max{c(p)M(ε), 10M(ε)} ∼ ε−α, i.e, M(ε) ∼ −α log ε for some α ∈ (0, 5/7), then we can
estimate:

‖ϕ‖p
W 1,p(∪

M(ε)
i=1 B

10M(ε)ε
[hε

i (t)];R
d)
6 ‖ϕ‖pC1(Ω)M(ε)|B10M(ε)ε| 6 ‖ϕ‖pC1(Ω)M(ε)|10M(ε)ε|3 <∼ − log ε|ε1−α|3,

which tends to zero as ε → 0. Similarly we can estimate Rε(h
ε
1, · · · ,hε

M(ε))[ϕ] with the help of

(5.3) and conclude that

‖(ϕ−Rε(h
ε
1, · · · ,hε

M(ε))[ϕ])(t, ·)‖W 1,p(Rd;Rd) → 0 uniformly for t ∈ [0, T ] for any 1 6 p <∞ (5.4)

for any ϕ ∈ C1
c ([0, T )× Ω;Rd), divxϕ = 0.

As for the time derivative, we use formula (5.1) obtaining

∂tϕ− ∂tRε(h
ε
1, · · · ,hε

M(ε))[ϕ] = ∂tϕ−Rε(h
ε
1, · · · ,hε

M(ε))[∂tϕ]

+

M(ε)∑

i=1

Rε(h
ε
1, · · · ,hε

i−1)
[
∇xR5i−1ε(h

ε
i , · · · ,hε

M(ε))[ϕ] ·Yε
i

−R5i−1ε(h
ε
i )
[
∇xR5iε(h

ε
i+1, · · · ,hε

M(ε))[ϕ] ·Yε
i

] ]
,
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where, similarly to the above,

‖(∂tϕ−Rε(h
ε
1, · · · ,hε

M(ε))[∂tϕ])(t, ·)‖W 1,p(Rd;Rd) → 0 uniformly in t ∈ [0, T ] for any 1 6 p <∞.
(5.5)

Finally, the second error term can be estimated with the help of (4.33),

∣∣∣
M(ε)∑

i=1

Rε(h
ε
1, · · · ,hε

i−1)
[
∇xR5i−1ε(h

ε
i , · · · ,hε

M(ε))[ϕ] ·Yε
i

−R5i−1ε(h
ε
i )
[
∇xR5iε(h

ε
i+1, · · · ,hε

M(ε))[ϕ] ·Yε
i

] ]∣∣∣

6 1∪N
i=1B10M(ε)ε

(hε
i )

M(ε)∑

i=1

|Yε
i |
(∣∣∣Rε(h

ε
1, · · · ,hε

i−1)
[
∇xR5i−1ε(h

ε
i , · · · ,hε

M(ε))[ϕ]
]∣∣∣

+ Rε(h
ε
1, · · · ,hε

i )
[
∇xR5iε(h

ε
i+1, · · · ,hε

M(ε))[ϕ]
])

(5.6)

where, by virtue of (4.34), (4.35),

∥∥∥Rε(h
ε
1, · · · ,hε

i−1)
[
∇xR5i−1ε(h

ε
i , · · · ,hε

M(ε))[ϕ]
]∥∥∥

Lp(Rd;Rd×d)

+
∥∥∥Rε(h

ε
1, · · · ,hε

i )
[
∇xR5iε(h

ε
i+1, · · · ,hε

M(ε))[ϕ]
]∥∥∥

Lp(Rd;Rd×d)

6 c(p)M(ε)‖ϕ‖W 1,p(Rd;Rd) uniformly for t ∈ (0, T ) (5.7)

and any 1 < p <∞.

5.2 Convergence

We know from estimates (3.2)–(3.3) that

√
ρεuε is bounded in L∞(0, T ;L2(Ω;Rd)), (5.8)

uε is bounded in L2(0, T ;W 1,2
0 (Ω;Rd)).

Thus there exists u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2
0 (Ω)) such that, up to a subsequence,

√
ρεuε → u weak-∗ in L∞(0, T ;L2(Ω;Rd)), (5.9)

uε → u weakly in L2(0, T ;W 1,2
0 (Ω;Rd)). (5.10)
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5.2.1 Limit in the momentum equation

Our ultimate goal is to perform the limit in the momentum equation (2.27), with the test function
Rε(h

ε
1, · · · ,hε

M(ε))[ϕ].
Viscous term.

In view of (5.10) and the error estimate (5.4), it is easy to see

T̂

0

ˆ

Ω

S(Dxu
ε) : Dx(Rε(h

ε
1, · · · ,hε

M(ε))[ϕ]) dx dt →
ˆ T

0

ˆ

Ω

S(Dxu) : Dxϕ dx dt (5.11)

for any ϕ ∈ C1
c ([0, T )× Ω;Rd), divxϕ = 0.

Convective term.
As ρε is bounded and the uniform bounds (3.2), (3.3) hold, it is easy to check that

ρεuε ⊗ uε → u⊗ u weakly in Lp((0, T )× Ω;Rd×d)

for some p > 1. Consequently, in view of (5.4),

T̂

0

ˆ

Ω

(ρεuε ⊗ uε) : ∇x(Rε(h
ε
1, · · · ,hε

M(ε))[ϕ]) dx dt →
T̂

0

ˆ

Ω

(u⊗ u) : ∇xϕ dx dt as ε→ 0 (5.12)

for any ϕ ∈ C1
c ([0, T )× Ω;Rd), divxϕ = 0.

Time derivative. Our next goal is to establish the limit

T̂

0

ˆ

Ω

ρεuε · ∂tRε(h
ε
1, · · · ,hε

M(ε))[ϕ] dx dt →
T̂

0

ˆ

Ω

u · ∂tϕ dx dt. (5.13)

In view of the estimates (5.5), (5.6) this amounts to show

ˆ T

0

ˆ

Ω

1∪N
i=1B10M(ε)ε

(hε
i )
ρεuε ·

N∑

i=1

|Yε
i ||Gε

i | dx dt→ 0, (5.14)

where,

Gε
i = Rε(h

ε
1, · · · ,hε

i−1)
[
∇xR5i−1ε(h

ε
i , · · · ,hε

M(ε))[ϕ]
]
+Rε(h

ε
1, · · · ,hε

i )
[
∇xR5iε(h

ε
i+1, · · · ,hε

M(ε))[ϕ]
]
.

By virtue of (5.7),

‖Gε
i‖L∞(0,T ;Lp(Ω;Rd)) 6 c(p)M(ε)‖ϕ‖L∞(0,T ;W 1,p(Rd;Rd)) for any 1 6 p <∞, i = 1, · · · ,M(ε). (5.15)
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Let us start with the case d = 3. In view of (5.6) and uniform boundedness of the density, we
have

∣∣∣∣∣

ˆ

Ω

1∪N
i=1B10Nε

(hε
i )
ρεuε ·

N∑

i=1

|Yε
i |Gε

i dx

∣∣∣∣∣

<∼ c(δ)c(p)M(ε)

M(ε)∑

i=1

|Yε
i (t)|‖uε‖L6(Ω;Rd)| ∪N

j=1 B10N ε(h
ε
j)|

5
6
−δ for any δ > 0. (5.16)

Let us write

M(ε)∑

i=1

|Yε
i (t)|‖uε‖L6(Ω;Rd)c(p)

M(ε)| ∪N
j=1 B10N ε(h

ε
j)|

5
6
−δ

=

M(ε)∑

i=1

|Si
ε|

1
6 |Yε

i (t)|‖uε‖L6(Ω;Rd)

(
c(p)M(ε)| ∪N

j=1 B10N ε(h
ε
j)|

5
6
−δ|Si

ε|−
1
6

)
.

We deduce from the uniform bounds (3.3), (3.6)

|Si
ε|

1
6

∥∥|Yε
i (t)|‖uε‖L6(Ω;Rd)

∥∥
L1(0,T )

<∼ 1.

Now
c(p)M(ε)| ∪M(ε)

j=1 B10M(ε)ε(h
ε
j)|

5
6
−δ|Si

ε|−
1
6 6 c(p)M(ε)M(ε)(10M(ε)ε)

5
2
−3δε−β/6.

Let us take max{c(p)M(ε), 10M(ε)} ∼ ε−α, i.e, M(ε) ∼ −α log ε for some α ∈ (0, 5/7). Then we
have

c(p)M(ε)M(ε)(10M(ε)ε)
5
2
−3δε−β/6 <∼ −ε−α log ε(ε1−α)

5
2
−3δε−β/6 = −(log ε)(ε

5
2
− 7α

2
−β

6
−3(1−α)δ).

Hence, as a consequence of hypothesis (2.17), i.e, by taking β < 15− 21α,

(
c(p)M(ε)| ∪N

j=1 B10N ε(h
ε
j)|

5
6
−δ|Si

ε|−
1
6

)
→ 0 as long as δ > 0 is small enough.

The same result can be obtained in the case d = 2 by means of the Sobolev embedding
W 1,2 ⊂ Lp for any finite p.

5.2.2 Limit in the convective term

The only thing remaining is to establish the identity:

u⊗ u = u⊗ u. (5.17)
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We consider the quantity

ϕ = ψ(t)Rε(h
ε
1, · · · ,hε

M(ε))(t)[φ], ψ = ψ(t) ∈ C1
c [0, T ), φ ∈ C1

c (Ω;R
d), divxφ = 0,

as a test function in the momentum equation (2.27). It follows that the time distributional deriva-
tive of

t ∈ [0, T ] 7→
ˆ

Rd

ρεuε ·Rε(h
ε
1, · · · ,hε

M(ε))[φ] dx

belongs to Lq(0, T ) for any 1 6 q < 2 and Arzelà–Ascoli theorem yields

t ∈ [0, T ] 7→
ˆ

Rd

ρεuε ·Rε(h
ε
1, · · · ,hε

M(ε))[φ] dx is precompact in C[0, T ]

for any φ ∈ C1
c (Ω;R

d), divxφ = 0. (5.18)

Next, as ρεuε is bounded in L∞(0, T ;L2(Rd;Rd)), we use the error estimates for the operator
Rε(h

ε
1, · · · ,hε

M(ε)) established in (5.4) to show

ˆ

Rd

(ρεuε)(t, ·) ·
(
Rε(h

ε
1, · · · ,hε

M(ε))(t)][φ]− φ
)

dx→ 0 in L∞(0, T ),

which, combined with (5.18), implies
ˆ

Rd

(ρεuε)(t, ·) · φ dx →
ˆ

Rd

u(t, ·) · φ dx in L∞(0, T ) for any φ ∈ C1
c (Ω;R

d), divxφ = 0. (5.19)

Using a density argument, we deduce from (5.19) that
ˆ

Ω

(ρεuε)(t, ·) · φ dx→
ˆ

Ω

u(t, ·) · φ dx in L∞(0, T ), (5.20)

for any φ ∈ L2(Ω;Rd), divxφ = 0 in Ω, φ · n = 0 on ∂Ω.
For a genaral φ ∈ C1

c (Ω;R
d), consider its Helmholtz decomposition in Ω,

φ = H[φ] +∇xΨ in Ω with ∇xΨ · n = 0 on ∂Ω.

Accordingly, we get
ˆ

Ω

(ρεuε)(t, ·) · φ dx =

ˆ

Ω

(ρεuε)(t, ·) ·H[φ] dx+

ˆ

Ω

(ρεuε)(t, ·) · ∇xΨ dx,

where, in accordance with (5.19),
ˆ

Ω

(ρεuε)(t, ·) ·H[φ] dx→
ˆ

Ω

u(t, ·) ·H[φ] dx =

ˆ

Ω

u(t, ·) · φ dx in L∞(0, T ).
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Moreover, as uε is solenoidal
ˆ

Ω

(ρεuε)(t, ·)∇xΨ dx =

ˆ

Ω

(ρεuε − uε)(t, ·) · ∇xΨ dx

=

M(ε)∑

i=1

(ρεSi − 1)

ˆ

Si
ε

uε · ∇xΨ dx

for a.a. t ∈ (0, T ). Thus it follows from the uniform bounds established in (3.3) that
ˆ

Ω

(ρεuε)(t, ·) · ∇xΨ dx→ 0 in L2(0, T ).

and we may infer that
ˆ

Ω

(ρεuε)(t, ·)φ dx→
ˆ

Ω

u(t, ·)φ dx in L2(0, T ) for any φ ∈ C1
c (Ω;R

d).

By density, we extend the conclusion to square integrable function,
ˆ

Ω

(ρεuε)(t, ·) · φ dx→
ˆ

Ω

u(t, ·) · φ dx in L2(0, T ) for any φ ∈ L2(Ω;Rd). (5.21)

Equivalently, we can extend the function uε by zero in Rd \ Ω and obtain:

ρεuε → u in L2(0, T ;L2
weak(R

d;Rd)). (5.22)

Since L2
weak(K;Rd) is compactly embedded in the dual W−1,2(K;Rd) for any compact K ⊂ Rd,

the desired conclusion
ˆ T

0

ˆ

Rd

ρεuε⊗uε : ∇xϕ dx dt→
ˆ T

0

ˆ

Rd

u⊗u : ∇xϕ dx dt for any ϕ ∈ C1
c ([0, T )×Ω;Rd) (5.23)

follows.
We infer from the above discussion on the passing to the limit as ε→ 0 that the limit velocity

of uε is given by u where u is a weak solution of the Navier–Stokes system (2.1)–(2.3) satisfying
the energy inequality (2.24).
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