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ABSTRACT

The central limit theorem is one of the most fundamental results in probability and has been

successfully extended to locally dependent data and strongly mixing random fields. In this

paper, we establish the rate of convergence in the central limit theorem in terms of transport

distances. In specific, for arbitrary p ≥ 1 we obtain an upper bound on the Wasserstein-p

distance between the law of the scaled sum and the limiting normal distribution for (i) locally

dependent random variables and (ii) strongly mixing stationary random fields. Our proofs ex-

tend the Stein’s dependency neighborhood method for the Wasserstein distance of a general

order p ≥ 1 and provide new tools to study the deviation behaviors for dependent random vari-

ables. Moreover, as an application we demonstrate how our results can be used to obtain tail

bounds that are asymptotically tight and decrease polynomially fast for the empirical average

under weak dependence.

Keywords: Normal approximation, Wasserstein distance, Stein’s method, dependency graph,

strong mixing coefficients.

1 Introduction

The central limit theorem is one of the most fundamental theorems in probability theory. Initially

formulated for independent and identically distributed random variables, it has since then been gen-

eralized to triangular arrays [Feller 1945], martingales [Lévy 1935], U-statistics [Hoeffding 1948],

locally dependent random variables [Hoeffding & Robbins 1948; Heinrich 1982; Petrovskaya &

Leontovich 1983], and mixing random fields [Rosenblatt 1956; Bolthausen 1982]. It states as fol-

lows: Let (In) be an increasing sequence of subsets I1 ⊆ I2 ⊆ · · · ⊆ I , whose sizes increase to

infinity |In| → ∞. If (X i)i∈I are (dependent) centered random variables, then under certain con-

ditions on the moments of (X i) and on its dependence structure the scaled sum is asymptotically

normal, i.e.,

Wn := σ−1
n

∑

i∈In

X i

d−→N (0, 1),

where we write σ2
n
= Var
�∑

i∈In
X i

�
. While the central limit theorem is an asymptotic result, there

is a long history of quantifying how far Wn is from being normally distributed. One of the most

important metrics to do so is the Wasserstein-p distance, which originated in optimal transport
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1 INTRODUCTION

theory [Villani 2009]. For two probability measures ν and µ over the real line R, we denote by

Γ (ν,µ) the set of all couplings of ν and µ, and the Wasserstein-p distance between ν and µ is

defined as

Wp(ν,µ) := inf
γ∈Γ (ν,µ)

�
E(X ,Y )∼γ[|X − Y |p]

�1/p
.

In the case of independent observations, the first rates for p ≥ 1 were obtained by Bártfai [1970].

They are, however, sub-optimal in terms of the sample size |In|, decreasing at a slower rate of

O
�
|In|−

1
2+

1
p

�
. Under some additional necessary moment conditions, Rio [2009] obtained that,

for 1 ≤ p ≤ 2, the Wasserstein distance converges at the optimal rate of O
�
1/
p
|In|
�
. They

conjectured that such a rate would be extendable to arbitrary p ≥ 1, which was recently proven

to be true by Bobkov [2018]; Bonis [2020] using a series of methods including the Edgeworth

expansion and the exchangeable pair method. They showed that if maxi ‖X i‖p+2 < ∞ and if

Var(X1) = Var(X i) = 1, then there is a constant Kp <∞ such that

Wp

�
L(Wn),N (0, 1)
�
≤

Kp‖X1‖1+2/p

p+2p
|In|

,

where L( · ) designates the distribution of the given random variable.

While the central limit theorem is known to hold both for locally dependent and for mixing random

fields, no analogous bound is known for general Wasserstein-p distances (p ≥ 1) for dependent

data. This is the gap that we fill in this paper. We do so in two different settings (i) for the locally

dependent random variables (including m-dependent random fields and U-statistics), and (ii) for

strongly mixing stationary random fields. We obtain that for a d-dimensional stationary random

fields, if the mixing coefficients decrease as αℓ = O(ℓ−β) with β > d(p+ 1) then we have

Wp

�
L(Wn),N (0, 1)
�
=O

�
1p
|In|

�
(Corollary 5.4),

where In is the index set of the random field. The constants here depend on p, the dependence

structure, and the moments of the random variables (X i). If the mixing coefficients decrease as

αℓ = ℓ
−β with β ∈
�

d(p+1)

2
, d(p+ 1)
�

then we have

Wp

�
L(Wn),N (0, 1)
�
= O

�
1

|In|−γ
�

(Corollary 5.7),

where γ < 1/2 is an explicit constant that depends on β . For locally dependent random variables,

if the sizes of dependency neighborhoods are bounded and certain moment conditions are satisfied,

then we obtain a similar rate of O
�
1/
p
|In|
�

(see Theorem 3.3). Note that for m-dependent random

fields we do not make any assumption of stationarity for the distribution of (X i), but only impose

non-degeneracy conditions on the variances (σn) and moment conditions on the random variables.

Further remark that we generalize our results to triangular arrays where the random variables
�
X
(n)

i

�

are allowed to change with n.

Another contribution of our paper is that we propose a new way to adapt the Stein’s method to

obtain general Wasserstein-p bounds. This is the first technique that successfully handles a large
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1.1 Application to tail bounds 1 INTRODUCTION

class of dependent random variables. Indeed, the results in Bobkov [2018] were obtained by ex-

ploiting Edgeworth expansions. This is sadly not amenable to handling dependence as in this case

the characteristic function of Wn does not decompose into a product of characteristic functions.

Ledoux et al. [2015], on the other hand, showed that the Stein kernel can also be used to obtain

Wasserstein-p bounds. However, the Stein kernel is not always guaranteed to exist, and further-

more, even when it does there is no known way to obtain a Stein kernel for Wn if the random

variables are dependent. Fang [2019] proposed a different variant of the Stein’s method to obtain

a Wasserstein-2 bound for locally dependent random variables by relating to Zolotarev’s metrics.

Contrary to Fang [2019] we obtain bounds that are valid for any real value p ≥ 1 and generalize

to mixing random fields. Another approach proposed by Bonis [2020] successfully adapted the

Stein exchangeable pair idea to obtain Wasserstein-p bounds, and was later used by Fang & Koike

[2022] to deal with local dependence. However, Fang & Koike [2022] only obtained sub-optimal

rates of convergence, and this type of argument is once again not amenable to handling mixing

random fields. In this paper, we not only obtain optimal rate for local dependence, but also show

how it can be used to handle the strong mixing case.

1.1 Application to tail bounds

In this subsection, we show a specific application of our results to elaborate the importance of con-

sidering Wasserstein distance of order p > 1. To be specific, we explain how Wp(L(Wn),N (0, 1))

(p > 1) can be used to obtain tail bounds for Wn. Indeed, letting t ≥ 0, an important goal for

statistical inference is to obtain tight upper bounds for P(Wn ≥ t). Notably, among many other

applications, such inequalities lie at the heart of decision making in reinforcement learning [Mnih

et al. 2008; Audibert et al. 2009] and generalization guarantees for high dimensional statistics

[Wainwright 2019; Bartlett & Mendelson 2002]. When the observations (X i) are i.i.d and bounded,

general well-known concentration inequalities such as Azuma’s or Bernstein’s inequalities allow

one to upper-bound P(Wn ≥ t) with a sub-Gaussian decay in t . Notably if ‖X1‖∞ ≤ R and

Var(X1) = 1, then Azuma’s inequality states that P(Wn ≥ t) ≤ e−
nt2

2R2 . However, no such con-

centration inequality is known to hold for strongly mixing sequences. Moreover, even when sub-

Gaussian bounds hold, those are known to be significantly looser than the asymptotically valid tail

bound Φc(t) [Austern & Mackey 2022], where Φc( · ) = 1−Φ( · ) and Φ( · ) denotes the cumulative

distribution function (CDF) of the standard normal. In this subsection we see that our results can

be used to obtain a tail bound that is asymptotically tight, decreases polynomially fast in t , and is

valid for mixing sequences.

To this goal, choose p ≥ 1 and ρ ∈ (0, 1). Then remark that for all ε > 0 there is G ∼ N (0, 1)

such that ‖G −Wn‖p ≤Wp(L(Wn),N (0, 1)) + ε. Therefore, by the union bound we have

P
�
Wn ≥ t
�
= P
�
Wn − G + G ≥ t

�

≤ P
�
Wn − G ≥ (1−ρ)t

�
+ P
�
G ≥ ρ t
�

(a)

≤ Φc(ρ t) +
‖Wn − G‖p

p

(ρ t)p
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≤ Φc(ρ t) +

�
Wp(L(Wn),N (0, 1)) + ε

�p

(ρ t)p

where to obtain (a) we have used Markov’s inequality. Now as this holds for any arbitrary choice

of ε > 0 we conclude that

P
�
Wn ≥ t
�
≤ Φc(ρ t) +

Wp(L(Wn),N (0, 1))p

(ρ t)p
.

Now imagine that there is a constant Kp such that Wp(L(Wn),N (0, 1))≤ Kpp
|In|

, then we obtain that

P
�
Wn ≥ t
�
≤ inf

ρ

¨
Φ

c(ρ t) +
K p

p�
ρ t
p
|In|
�p

«
. (1.1)

Note that this upper bound is asymptotically tight. Indeed as n grows to infinity, the upper bound

given by (1.1) converges to P
�
Wn ≥ t
� n→∞−−−→ Φc(t). Moreover, the remainder term

K
p
p

(ρ t
p
|In|)p

de-

creases polynomially fast in t and
p
|In|. This leads to interesting new concentration inequalities

since there has not been any such non-uniform Berry-Esseen bounds for mixing fields in the liter-

ature (see Nagaev [1965]; Bikelis [1966] for examples in the i.i.d setting and Chen & Shao [2004]

for weaker results in the local dependence setting).

1.2 Related literature

Agnew [1957]; Esseen [1958] established that the convergence rate in the central limit theorem is

O
�
1/
p
|In|
�

in terms of the Wasserstein-1 distance. Since then many papers have tightened this

result and generalized it to dependent observations. Notably, the Stein’s method offers a series

of powerful techniques for obtaining Wasserstein-1 bounds in the dependence setting. See Ross

[2011] for a survey of those methods. Baldi & Rinott [1989]; Barbour et al. [1989] obtained

Wasserstein-1 bounds under local dependence conditions and Sunklodas [2007] showed a similar

bound for strongly mixing sequences, which is O
�
1/
p
|In|
�

when the mixing coefficients decay

fast enough.

For p ≥ 1, the first paper to propose a rate for the central limit theorem was Bártfai [1970]. Under

the hypothesis that the random variables have finite exponential moments, they obtained a rate of

O
�
|In|−

1
2+

1
p

�
for the Wasserstein-p distance. Sakhanenko [1985] obtained a similar rate but only

required the existence of p-th moments. Rio [1998, 2009] showed that in order to obtain a con-

vergence rate of O
�
1/
p
|In|
�
, it is necessary to require finite (p+2)-th moments of the random

variables. They also obtained the expected rate for p ≤ 2 and conjectured that a similar rate should

be valid for any arbitrary p > 2. This conjecture was demonstrated to be true by Bobkov [2018];

Bonis [2020]. Those two papers took different approaches. Bobkov [2018] used an Edgeworth

expansion argument. Bonis [2020], on the other hand, used the Ornstein-Uhlenbeck interpolation

combined with a Stein exchangeable pair argument. Previous to that, Ledoux et al. [2015] had al-

ready obtained the optimal rate for the Wasserstein-p distance using the Ornstein-Uhlenbeck inter-

polation but required significantly stronger assumptions on the distribution of the random variables

4



1.3 Paper outline 1 INTRODUCTION

by requiring the existence of a Stein kernel. Moreover, for the special case p = 2, the celebrated

HWI inequality [Otto & Villani 2000] and Talagrand quadratic transport inequality [Talagrand

1996] can help obtain Wasserstein-2 bounds by relating it to the Kullback-Leibler divergence.

Contrary to the independent case, much less is known for the general Wasserstein-p distance for de-

pendent data. Barbour et al. [1989]; Fang [2019] adapted the Stein’s method to obtain Wasserstein-

2 bounds with the optimal rate for locally dependent variables. Fang & Koike [2022] modified the

approach of Bonis [2020] and obtained a rate O
�
log|In|/
p
|In|
�

for the Wasserstein-p distance un-

der local dependence. Our results propose significant extensions to both of those results by gener-

alizing them to arbitrary p ≥ 1 and mixing random fields. When the mixing coefficients decrease

fast enough we obtain that the Wasserstein distance decreases at the optimal rate O
�
1/
p
|In|
�
.

Otherwise, the rate of convergence is slower and depends on the mixing coefficients.

Our proofs rely on the Stein’s method and a result of Rio [2009] that allows to upper the Wasserstein-

p distance by an integral probability metric [Zolotarev 1984]. As those metrics are defined as the

supremum of differences of expectation of functions, the Stein’s method lends itself nicely to this

problem. The Stein’s method was first introduced in Stein [1972] as a new method to obtain a

Berry-Esseen bound and prove the central limit theorem for weakly dependent data. It has since

then become one of the most popular and powerful methods to prove asymptotic normality for

dependent data, and different adaptations of it have been proposed, notably the dependency neigh-

borhoods, the exchangeable pairs, the zero-bias coupling and the size-bias coupling [Ross 2011].

In addition to being used to prove the central limit theorem, it has since then been adapted to obtain

limit theorems for the Poisson distribution [Chen 1975] or for the exponential distribution [Chat-

terjee et al. 2011; Peköz & Röllin 2011]. It has also been used as a tool for comparing different

univariate distributions [Ley et al. 2017]. Our use of the Stein’s method is closely related to the

dependency neighborhood method described in Ross [2011].

We further remark that the theory we have developed has an interesting by-product. We prove

upper bounds on the absolute values of the cumulants of Wn (see Corollaries B.5 and F.11). Previ-

ously, Janson [1988] showed a similar bound under the dependency graph conditions and Heinrich

[1990]; Götze et al. [1995] tightened the results for m-dependent random fields. Götze & Hipp

[1983]; Lahiri [1993, 1996] obtained similar cumulant bounds for the strongly mixing sequences

in an effort to obtain Edgeworth expansions. Note that we also provide the bounds on the cumu-

lants of Wn for strongly mixing random fields in Appendix F, which is more general than the results

mentioned above. Furthermore, Döring & Eichelsbacher [2013]; Döring et al. [2022] showed that

cumulant bounds can be useful in problems including the analysis of moderate deviations.

1.3 Paper outline

In Section 2 we clarify some notations that we use throughout the paper. Then we present our

results under the hypothesis that the random variables under two different local dependence condi-

tions in Section 3, and provide some applications in Section 4. In Section 5 we show upper bounds

for the Wasserstein-p distance for mixing random fields. In Section 6, we make an overview of our

proof techniques. Finally all proofs are presented in the appendices.

5



3 WASSERSTEIN-P BOUNDS UNDER LOCAL DEPENDENCE

2 Notations

Notations concerning integers and sets In this paper, we will write ⌈x⌉ to denote the smallest

integer that is bigger or equal to x and ⌊x⌋ denotes the largest integer smaller or equal to x . We

use N to denote the set of non-negative integers and let N+ be the set of positive integers. For any

n ∈ N+, denote [n] := {ℓ ∈ N+ : 1 ≤ ℓ ≤ n}. Moreover, for a finite set B we denote by |B| its
cardinality.

Notations for sequences Given a sequence (x i) we will shorthand x1:ℓ = (x1, · · · , xℓ) and simi-

larly for any subset B ⊆ N+ we denote xB := (x i)i∈B.

Notations for functions For any real valued functions f ( · ), g( · ) : N+ → R, we write f (n) ®

g(n) or f (n) = O(g(n)) if there exists some constant C (with dependencies that are fixed in the

contexts) and an integer N > 0 such that the inequality f (n) ≤ C g(n) holds for all n ≥ N . We

further write f (n) ≍ g(n) as shorthand for f (n) ® g(n) and g(n) ® f (n).

Notations for probability distributions For a random variable X we write by L(X ) the distri-

bution of X .

3 Wp bounds under local dependence

Let p ≥ 1 be a positive real number and write ω := p + 1− ⌈p⌉ ∈ [0, 1]. We choose I to be an

infinite index set I and (In)
∞
n=1

to be a sequence of finite subsets of I1 ⊆ I2 ⊆ · · · ( I that satisfy

|In|
n→∞−−−→∞. Let
�
X
(n)

i

�
i∈In

be a triangular array of random variables, each row indexed by i ∈ In

(n = 1, 2, · · · ), and let Wn be the following empirical average empirical average

Wn := σ−1
n

∑

i∈In

X
(n)

i
, with σ2

n
:= Var
�∑

i∈In

X
(n)

i

�
.

Under the hypothesis that the random variables
�
X
(n)

i

�
are locally dependent we will, in this section,

bound the Wasserstein-p distance between Wn and its normal limit. The bound we obtain depends

on the size of the index set In, the moments of the random variables and the structure of local

dependence in question.

To capture the local dependence structure, we first provide the definition of dependency neigh-

borhoods following Ross [2011]. Given random variables (Yi)i∈I we call N(J) a dependency

neighborhood for the index subset J ⊆ I if {Yj : j /∈ N(J)} is independent of {Yj : j ∈ J}. In our

setting of the triangular array
�
X
(n)

i

�
, we define (Nn(i1:q))q by choosing the subsets of In that satisfy

the following conditions:

[LD-1]: For each i1 ∈ In, there exists a subset Nn(i1) ⊆ In such that
�
X
(n)

j
: j /∈ Nn(i1)
	

is indepen-

dent of X
(n)

i1
.

[LD-q] (q ≥ 2): For each i1 ∈ In, i2 ∈ Nn(i1), · · · , iq ∈ Nn(i1:(q−1)), there exists a subset Nn(i1:q)

such that
�
X
(n)

j
: j /∈ Nn(i1:q)
	

is independent of
�
X
(n)

i1
, · · · , X

(n)

iq

�
.

6



3 WASSERSTEIN-P BOUNDS UNDER LOCAL DEPENDENCE

We remark that the sequence of subsets (Nn(i1:q))q is increasing, i.e., Nn(i1:(q−1)) ⊆ Nn(i1:q) in q;

and that the neighborhoods Nn(i1:q) are allowed to be different for different values of n–which

reflects the triangular array structure of our problem. The condition of dependency neighborhoods

here generalizes the one in Ross [2011] and was also adopted in Fang [2019], inspired by Barbour

et al. [1989]; Chen & Shao [2004]. Barbour et al. [1989] obtained a Wasserstein-1 bound under

“decomposable” conditions similar to [LD-1] and [LD-2], and Chen & Shao [2004] showed a

Berry–Esseen type result under slightly stronger assumptions for local dependence, while finally

Fang [2019] obtained a Wasserstein-2 bound.

In order to define the remainder terms that will appear in our bounds, we introduce the following

notions. Given t ∈ N+ such that k ≥ 2, we say that the tuple (η1,η2, · · · ,ηℓ) where ℓ ∈ N+ is an

integer composition of t if and only if η1:ℓ are positive integers such that η1 +η2 + · · ·+ηℓ = t .

We denote by C(t) the set of those integer composition

C(t) :=
�
ℓ,η1:ℓ ∈ N+ :
∑ℓ

j=1
η j = t
	
.

Moreover, for any random variables (Yi)
t
i=1

, we define the order-t compositional expectation with

respect to η1:ℓ as

[η1, · · · ,ηℓ] ⊲ (Y1, · · · , Yt) := E
�
Y1 · · · Yη1

�
E
�
Yη1+1 · · ·Yη1+η2

�
· · · E
�
Yη1+···+ηℓ−1+1 · · · Yt

�
. (3.1)

Note that if ηℓ = 1, the last expectation reduces to E[Yt].

Next for any positive integer k and real valueω ∈ (0, 1], we define

Rk,ω,n :=
∑

(ℓ,η1:ℓ)∈C∗(k+2)

∑

i1∈In

∑

i2∈Nn(i1)

· · ·
∑

ik+1∈Nn(i1:k)

[η1, · · · ,ηℓ] ⊲
���X (n)

i1

��, · · · ,
��X (n)

ik+1

��,
� ∑

ik+2∈Nn(i1:(k+1))

��X (n)
ik+2

��
�ω�

,

(3.2)

where C∗(k+ 2) is given by

C∗(t) :=
�
(ℓ,η1:ℓ) ∈ C(t) : η j ≥ 2 for 1 ≤ j ≤ ℓ− 1,

	
⊆ C(t).

The terms (Rk,ω,n) are remainder terms that appear in our bound of the Wasserstein-p distance

between Wn and its normal limit.

Theorem 3.1. Let
�
X
(n)

i

�
i∈In

be a triangular array of mean zero random variables and suppose that

they satisfy [LD-1] to [LD-(⌈p⌉+1)]. Let σ2
n

:= Var
�∑

i∈In
X
(n)

i

�
and define Wn := σ−1

n

∑
i∈In

X
(n)

i
.

Further suppose for any j ∈ N+ such that j ≤ ⌈p⌉ − 1, it holds that R j,1,n

n→∞−→ 0 as n→∞. Then

there exists an integer N ∈ N+ such that for all n ≥ N , we have the following Wasserstein bounds:

Wp(L(Wn),N (0, 1))≤ Cp

�⌈p⌉−1∑

j=1

R
1/ j

j,1,n
+

⌈p⌉∑

j=1

R
1/( j+ω−1)

j,ω,n

�
, (3.3)

where ω= p+ 1− ⌈p⌉ and Cp is a constant that only depends on p.

7



3 WASSERSTEIN-P BOUNDS UNDER LOCAL DEPENDENCE

Remark. We note that the condition that the remainder terms R j,1,n shrink to 0 for all j ≤ ⌈p⌉−1

impose an implicit constraint on the size of the sets Nn(i1:q). In particular, for p = 1, 2 we have

W1(L(Wn),N (0, 1))≤ C1R1,1,n, (3.4)

W2(L(Wn),N (0, 1))≤ C2

�
R1,1,n + R

1/2

2,1,n

�
. (3.5)

where the remainders are given by

R1,1,n =σ
−3
n

∑

i∈In

∑

j∈Nn(i)

∑

k∈Nn(i, j)

�
E
���X (n)

i
X
(n)

j
X
(n)

k

���+E
���X (n)

i
X
(n)

j

��� E
���X (n)

k

���
�
,

R2,1,n =σ
−4
n

∑

i∈In

∑

j∈Nn(i)

∑

k∈Nn(i, j)

∑

ℓ∈Nn(i, j,k)

�
E
���X (n)i X

(n)

j X
(n)

k
X
(n)

ℓ

���

+E
���X (n)i X

(n)

j X
(n)

k

��� E
���X (n)

ℓ

���+E
���X (n)i X

(n)

j

��� E
���X (n)

k
X
(n)

ℓ

���
�
.

Note that (3.4) was proven by Barbour et al. [1989] and (3.5) is a corollary of Theorem 2.1, Fang

[2019]. The bound (3.3) with an integer p was also proposed as a conjecture in Fang [2019]. As

p grows, the right-hand-side of (3.3) becomes more and more complicated, which suggests the

necessity of new assumptions in order to be able to obtain a simplified result.

We further remark that the choice of Nn(i1:q) might not be unique (even if we require that it has the

smallest cardinality among all possible index sets that fulfill the assumption [LD-q]). Therefore, to

be able to obtain more interpretable upper-bounds for the remainder terms (R j,ω,n) , we impose a

slightly stronger assumption on the dependence structure:

[LD*]: We suppose that there exists a graph Gn = (Vn, En), with Vn := In being the vertex set and

En being the edge set, such that for any two disjoint subsets J1, J2 ⊆ In if there is no edge

between J1 and J2, then
�
X
(n)

j
: j ∈ J1

	
is independent of

�
X
(n)

j
: j ∈ J2

	
.

Introduced by Petrovskaya & Leontovich [1983] the graph Gn defined above is known as the de-

pendency graph and was later adopted in Janson [1988]; Baldi & Rinott [1989]; Ross [2011].

Please refer to Féray et al. [2016] for a detailed discussion.

If [LD*] is satisfied, for any subset J ⊆ In, we define Nn(J) to be the set of vertices in the neigh-

borhood of J ⊆ In in the graph G. To be precise, this is

Nn(J) := J ∪ {i ∈ In : e(i, j) ∈ En for some j ∈ J},

where e(i, j) denotes an edge between the vertices i and j. To simplify the notations, we further

denote Nn(J) by Nn(i1:q) if J = {i1, · · · , iq} for any 1 ≤ q ≤ ⌈p⌉ + 1. Then (Nn(i1:q)) not only

satisfies [LD-1] to [LD-(⌈p⌉+1)], but has the following properties as well:

(a) Nn(i1:q) = Nn

�
iπ(1), · · · , iπ(q)
�

for any permutation π on {1, · · · , q};

(b) iq ∈ Nn(i1:(q−1))⇔ i1 ∈ Nn(i2:q).

8



3 WASSERSTEIN-P BOUNDS UNDER LOCAL DEPENDENCE

We point out that by definition of the dependency graph even if
�
X
(n)

j
: j ∈ J1

	
is independent of�

X
(n)

j : j ∈ J2

	
, there can still be edges between the vertex sets J1 and J2. In fact, there might not

exist Gn such that there is no edge between J1 and J2 as long as
�
X
(n)

j
: j ∈ J1

	
is independent of�

X
(n)

j
: j ∈ J2

	
since pairwise independence does not imply joint dependence.

The condition [LD*] provides us with a tractable bound on Rk,ω,n, which is applicable in most of

the commonly encountered settings, including m-dependent random fields and U-statistics.

Proposition 3.2. Given M ∈ N+ and real numberω ∈ (0, 1], suppose that
�
X
(n)

i

�
i∈In

satisfies [LD*]

and that the cardinality of Nn(i1:(k+1)) is upper-bounded by M <∞ for any i1, · · · , ik+1 ∈ In. Then

there exists a constant Ck+ω only depending on k+ω such that

Rk,ω,n ≤ Ck+ωM k+ω
∑

i∈In

σ−(k+1+ω)
n

E
���X (n)i

��k+1+ω�
.

We remark that the upper bound on (Rk,ω,n) depends on the moments of the random variables
�
X
(n)

i

�

and the maximum size of the dependency neighborhoods. The results of Proposition 3.2 can be

used to propose a more interpretable upper bound for the Wasserstein-p distance.

Theorem 3.3. Suppose that
�
X
(n)

i

�
is a triangular array of mean zero random variables satisfying

[LD*], and that the cardinality of index set Nn

�
i1:(⌈p⌉+1)

�
is upper-bounded by Mn <∞ for any

i1, · · · , i⌈p⌉+1 ∈ In. Furthermore, assume that

M1+ω
n
σ−(ω+2)

n

∑

i∈In

E
���X (n)

i

��ω+2�→ 0, M p+1
n
σ−(p+2)

n

∑

i∈In

E
���X (n)

i

��p+2�→ 0.

Then there is N such that for all n ≥ N we have

Wp(L(Wn),N (0, 1))

≤Cp

�
M1+ω

n
σ−(ω+2)

n

∑

i∈In

E
���X (n)

i

��ω+2��1/ω
+ Cp

�
M p+1

n
σ−(p+2)

n

∑

i∈In

E
���X (n)

i

��p+2��1/p
,

(3.6)

for some constant Cp that only depends on p.

We notably remark that if the moments are nicely behaved in the sense that

B1 := sup
i, j∈In,n∈N+

‖X (n)
i
‖p+2

‖X (n)j ‖2
<∞,

and that the size of the dependency neighborhood are universally bounded, i.e.,

B2 := sup
n

sup
i1:(⌈p⌉+1)∈In

��Nn(i1:(⌈p⌉+1))
��<∞,

then there is a constant Kp that only depends on B1, B2 and p ≥ 1 such that for n large enough we

have

Wp(L(Wn),N (0, 1))≤
Kpp
|In|

.

The rate of convergence matches the known rate for independent random variables (see Bobkov

[2018]).
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4 APPLICATIONS

4 Applications

4.1 m-dependent random fields

Let d ∈ N+ be a positive integer, in this subsection we will study d-dimensional random fields.

Definition 4.1 (m-Dependent Random Field). A random field (X i)i∈T on T ⊆ Zd is m-dependent

if and only if for any subsets U1, U2 ⊆ Zd , the random variables (X i1
)i1∈U1∩T and (X i2

)i2∈U2∩T are

independent whenever ‖i1 − i2‖> m for all i1 ∈ U1 and i2 ∈ U2.

Here ‖·‖ denotes the maximum norm on Zd , that is ‖z‖ =max1≤ j≤d |z j| for z = (z1, · · · , zd).

Now we consider an increasing sequence T1 ⊆ T2 ⊆ · · · of finite subsets ofZd that satisfy |Tn|
n→∞−−−→

∞. We have the following result as a corollary of Theorem 3.3.

Corollary 4.2. Let p ∈ N+ and m ∈ N+ be positives integer. Suppose that
�
X
(n)

i

�
is a triangular

array where each row is an m-dependent random field indexed by finite subsets Tn ⊆ Zd such that

|Tn|
n→∞−−−→∞. Let σ2

n
:= Var
�∑

i∈Tn
X
(n)

i

�
and define Wn := σ−1

n

∑
i∈Tn

X
(n)

i
. Further suppose that

E
�
X
(n)

i

�
= 0 for any i ∈ Tn and that the following conditions hold:

• Moment condition: σ−(p+2)
n

∑
i∈Tn
E
���X (n)

i

��p+2�→ 0 as n→∞;

• Non-degeneracy condition: lim supnσ
−2
n

∑
i∈Tn
E
���X (n)

i

��2� ≤ M <∞ for some M ≥ 1.

Then for n large enough, we have

Wp(L(Wn),N (0, 1))≤ Cp,dm
(1+ω)d
ω M

p−ω
pω σ

− p+2
p

n

�∑

i∈Tn

E
���X (n)

i

��p+2��1/p
, (4.1)

where Cp,d only depends on p and d.

In particular, for a triangular array of m-dependent stationary random fields, suppose that we have

supnE
���X (n)

i

��p+2�
<∞, and that the non-degeneracy condition lim infnσ

2
n
/|Tn| > 0 holds. Then

we have

Wp(L(Wn),N (0, 1)) = O(|Tn|−1/2).

4.2 U-statistics

Definition 4.3 (U-Statistic). Let (X i)
n
i=1

be a sequence of i.i.d. random variables. Fix m ∈ N+ such

that m ≥ 2. Let h : Rm → R be a fixed Borel-measurable function. The Hoeffding U-statistic is

defined as ∑

1≤i1≤···≤im≤n

h
�
X i1

, · · · , X im

�
.

10



5 WASSERSTEIN-P BOUNDS FOR STRONGLY MIXING RANDOM FIELDS

Corollary 4.4. Given p ≥ 1, suppose that the U-statistic of an i.i.d. sequence (X i)
n
i=1

induced by

a symmetric function h : Rm→ R satisfies the following conditions

• Mean zero: E
�
h(X1, · · · , Xm)
�
= 0;

• Moment condition: E
���h(X1, · · · , Xm)

��p+2�
<∞;

• Non-degeneracy condition: E[g(X1)
2]> 0, where g(x) := E

�
h(X1, · · · , Xm)
�� X1 = x
�
.

If we let

Wn :=
1

σn

∑

1≤i1≤···≤im≤n

h
�
X i1

, · · · , X im

�
, where σ2

n
:= Var

� ∑

1≤i1≤···≤im≤n

h
�
X i1

, · · · , X im

��
,

the following Wasserstein bound holds:

Wp(L(Wn),N (0, 1)) = O(n−1/2).

5 Wp bounds for strongly mixing random fields

Let p ≥ 1 be an arbitrary real number and write ω := p + 1 − ⌈p⌉ ∈ (0, 1]. In this section we

will characterize the rate of convergence of the Wasserstein-p distance beyond the case of local

dependence. To do so we need to quantify the amount of dependence between random variables.

Introduced by Rosenblatt [1956], the strong mixing coefficient is one of the most widely-adopted

measurement for this purpose. See Bradley [2005] for a discussion of the different notions of

mixing coefficients.

Definition 5.1. Let (Ω,F ,P) be a probability space. Given two sub-σ-algebras A,B ⊆ F , the

strong mixing coefficient or α-mixing coefficient between A and B is defined by

α(A,B) = sup
A∈A,B∈B

��P(A∩ B)− P(A) P(B)
��. (5.1)

Let d ∈ N+ be an integer, in this subsection we will study d-dimensional random fields. Let (Tn)

be an increasing sequence T1 ⊆ T2 ⊆ · · · of finite subsets of Zd that satisfy |Tn|
n→∞−−−→ ∞. Let�

X
(n)

i

�
i∈Tn

be a triangular array where each row is a random field indexed by Tn.

We define the strong mixing coefficients associated to a random field as follows:

Definition 5.2. Given a finite index set T ⊆ Zd , suppose (X i)i∈T is a random field on T . For any

U ⊆ T , denote by FU := σ(X i : i ∈ U). For positive integers ℓ, k1, k2, define the strong mixing

coefficients of (X i)i∈T by

αk1,k2 ;ℓ := 0∨ sup
�
α(FU1

,FU2
) : U1, U2 ⊆ T, |U1| ≤ k1, |U2| ≤ k2, d(U1, U2) ≥ ℓ

	
, (5.2)

where d(U1, U2) :=min{‖i1 − i2‖ : i1 ∈ U1, i2 ∈ U2}. Here ‖·‖ denotes the maximum norm on Zd .

11



5 WASSERSTEIN-P BOUNDS FOR STRONGLY MIXING RANDOM FIELDS

Let (αk1,k2 ;ℓ,n) be the strong mixing coefficients associated with
�
X
(n)

i

�
i∈Tn

. In this section, we will

always consider the strong mixing coefficients with k1 = ⌈p⌉+ 1 and k2 = |Tn|. For convenience,

when there is no ambiguity we will denote αℓ,n := α⌈p⌉+1,|Tn| ;ℓ,n.

Note that the strongly mixing random field is a natural extension of the m-dependent random field

discussed in Section 4 as m-dependence corresponds to the case where αℓ,n = 0 for all ℓ≥ m+1. In

the rest of this section, we will extend the Wasserstein-p normal approximation results to random

fields whose strong mixing coefficients converge to 0 fast enough (uniformly on n).

Theorem 5.3. Let
�
X
(n)

i

�
i∈Tn

be a triangular array of real-valued stationary random fields with

strong mixing coefficients (αℓ,n)ℓ≥1. Let σ2
n

:= Var
�∑

i∈Tn
X
(n)

i

�
and define Wn := σ−1

n

∑
i∈Tn

X
(n)

i
.

Suppose that E
�
X
(n)

i

�
= 0 for any i ∈ Tn, and that the following conditions hold:

• Moment condition: There exists r > p+ 2 such that supnE
���X (n)i

��r�<∞;

• Non-degeneracy condition: lim infn→∞σ
2
n
/|Tn|> 0;

• Mixing condition I: supn

∑∞
ℓ=1
ℓd−1α

(r−p−2)/r

ℓ,n
<∞;

• Mixing condition II:

|Tn|−p/2

⌊|Tn|1/d ⌋∑

ℓ=1

ℓd(p+1)−ωα(r−p−2)/r

ℓ,n
→ 0, as n→∞.

Then the Wasserstein-p distance Wp(L(Wn),N (0, 1)) converges to 0 and we have

Wp(L(W),N (0, 1)) =O(|Tn|−1/2) +O

�
|Tn|−1/2
�⌊|Tn|1/d ⌋∑

ℓ=1

ℓd(p+1)−ωαℓ,n
(r−p−2)/r
�1/p�

. (5.3)

In particular, Wp(L(Wn),N (0, 1)) =O(|Tn|−1/2) if the condition supn

∑∞
ℓ=1
ℓd(p+1)−ωαℓ,n

(r−p−2)/r <

∞ holds.

If we assume that the mixing coefficients decrease polynomialy fast with ℓ then the statement of

Theorem 5.3 can be simplified in the following way.

Corollary 5.4. Assume that the conditions of Theorem 5.3 hold. Furthermore, suppose that αℓ,n ≤
Cℓ−v for some constants v > 0 and C > 0 that do not depend on n. Let u := (r−p−2)v/r−(1−ω).
Then the converging rate of the Wasserstein-p distance Wp(L(Wn),N (0, 1)) (p ≥ 1) is given by

Wp(L(Wn),N (0, 1)) =O(|Tn|−β)

where

β =






1

2
if u> d(p+ 1)

1
2
− ε if u= d(p+ 1)

1
2
−
�

p+1

p
− u

dp

�
if d(p/2+ 1) < u< d(p+ 1)

,

for any ε > 0.
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5 WASSERSTEIN-P BOUNDS FOR STRONGLY MIXING RANDOM FIELDS

As we can see, Corollary 5.4 implies that the Wasserstein-p distance converges if u> d(p/2+ 1).

In particular, if p = 1, we need u > 3d/2. We remark that this condition is sufficient but not

necessary. When p is integer valued the conditions on the mixing coefficients can be weakened in

the following way:

Theorem 5.5. Let p ∈ N+ and
�
X
(n)

i

�
i∈Tn

be a triangular array of real-valued stationary ran-

dom fields with strong mixing coefficients (αℓ,n)ℓ≥1. Let σ2
n

:= Var
�∑

i∈Tn
X
(n)

i

�
and define Wn :=

σ−1
n

∑
i∈Tn

X
(n)

i . Suppose E
�
X
(n)

i

�
= 0 for any i ∈ Tn, and they satisfy

• Moment condition: There exists r ≥ p+ 2 such that supnE[|X (n)i |r]<∞;

• Non-degeneracy condition: lim infn→∞σ
2
n
/|Tn|> 0;

• Mixing condition I: supn

∑∞
ℓ=1
ℓd−1α

(r−p−1)/r

ℓ,n
<∞;

• Mixing condition II: For some m ∈ N+ and δ ∈ [0, 1] (that can depend on n) we have that

each of the following terms converges to 0 as n→∞:

|Tn|−1/2m2d , |Tn|−1/2+(1−δ)/(2p)md
�m+1+⌊ |Tn |1/d

2 ⌋∑

ℓ=m+1

ℓdδ−δαℓ,n
(r−p−1−δ)/r
�1/p

,

|Tn|−1/2+1/(2p)
�m+1+⌊ |Tn |1/d

2 ⌋∑

ℓ=m+1

ℓdp−1α
(r−p−1)/r

ℓ,n

�1/p
.

Then the Wasserstein-p distance Wp(L(Wn),N (0, 1)) converges to 0 and we have

Wp(L(Wn),N (0, 1))

=O
�
|Tn|−1/2m2d
�
+O

�
|Tn|−1/2+(1−δ)/(2p)md

�m+1+⌊ |Tn |1/d
2 ⌋∑

ℓ=m+1

ℓdδ−δαℓ,n
(r−p−1−δ)/r
�1/p�

+O

�
|Tn|−1/2+1/(2p)
�m+1+⌊ |Tn|1/d

2 ⌋∑

ℓ=m+1

ℓdp−1αℓ,n
(r−p−1)/r
�1/p�

.

(5.4)

Note that in general the bound (5.4) is not comparable to (5.3). However, supposing that the strong

mixing coefficients converge with a polynomial rate, Theorem 5.3 leads to better convergence

rate for the Wasserstein-p distance if the mixing coefficients converge to 0 sufficiently fast while

Theorem 5.5 tends to give faster convergence when the mixing coefficients converge slower. The-

orem 5.5 also requires weaker conditions for the Wasserstein-p distance to converge. In specific,

we show the following two results.

Corollary 5.6. Let
�
X
(n)

i

�
i∈Tn

be a triangular array of real-valued stationary random fields with

strong mixing coefficients (αℓ,n)ℓ≥1. Let σ2
n

:= Var
�∑

i∈Tn
X
(n)

i

�
and define Wn := σ−1

∑
i∈Tn

X
(n)

i
.

Suppose that E
�
X
(n)

i

�
= 0 for any i ∈ Tn, and that the following conditions hold

13



5 WASSERSTEIN-P BOUNDS FOR STRONGLY MIXING RANDOM FIELDS

• Moment condition: There exists r ≥ 3 such that supnE
���X (n)

i

��r�<∞;

• Non-degeneracy condition: lim infn→∞σ
2
n
/|Tn|> 0;

• Mixing condition I: supn

∑∞
ℓ=1
ℓd−1α

(r−2)/r

ℓ,n
<∞;

• Mixing condition II (uniformly Cauchy): supn

∑∞
ℓ=m
ℓd−1α

(r−2−ε)/r
ℓ,n

m→∞−−−→ 0 for some ε > 0.

Then the Wasserstein-1 distance W1(L(Wn),N (0, 1)) converges to 0 as n→∞.

Corollary 5.7. Let p ∈ N+ and
�
X
(n)

i

�
i∈Tn

be a triangular array of real-valued stationary ran-

dom fields with strong mixing coefficients (αℓ,n)ℓ≥1. Let σ2
n

:= Var
�∑

i∈Tn
X
(n)

i

�
and define Wn :=

σ−1
n

∑
i∈Tn

X
(n)

i
. Suppose E
�
X
(n)

i

�
= 0 for any i ∈ Tn, and they satisfy

• Moment condition: There exists r > p+ 2 such that supnE
���X (n)

i

��r�<∞;

• Non-degeneracy condition: lim infn→∞σ
2
n
/|Tn|> 0;

• Mixing condition I: supn

∑∞
ℓ=1
ℓd−1α

(r−p−2)/r

ℓ,n
<∞;

• Mixing condition II: α
(r−p−2)/r

ℓ,n
≤ Cℓ−u holds for some constants u> d(p+ 1)/2 and C > 0.

Then the convergence rate of the Wasserstein-p distance Wp(L(Wn),N (0, 1)) (p ≥ 1) is given by

Wp(L(Wn),N (0, 1)) = O(|Tn|−β),

where

β =






1

2
if u > d(p+ 1)

1
2
− ε if u = d(p+ 1)

1
2
−min
�

p+1

p
− u

dp
, d

u+dp

	
if dp < u< d(p+ 1)

1
2
−
�

1
2p
+ ε
�

if u = dp
1
2
−
�

2p+1

2p
− u

dp

�
if d(p+ 1)/2< u< dp

,

for any ε > 0.

In particular, for p = 1 and α
(r−3)/r

ℓ,n
=O(ℓ−u), β is given by

β =






1
2

if u> 2d
1
2
− ε if u= 2d

1

2
−min
�
2− u

d
, d

u+d

	
if d < u < 2d

,

for any ε > 0.
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6 OVERVIEW OF THE PROOF TECHNIQUES

We make a final remark that there are also measurements of dependence besides strong mixing

coefficients. Volkonskii & Rozanov [1959] considered the assumption called absolute regularity

(also known as β-mixing), Kolmogorov & Rozanov [1960] introduced the ρ-mixing coefficients,

and Ibragimov [1959]; Cogburn [1960] studied the φ-mixing conditions. Only strong mixing

conditions are discussed in this paper because they are the most commonly studied ones and can

be upper-bounded by the other coefficients mentioned above. Please refer to Bradley [2005] for

more details on the comparison between these different conditions. We further suggest that our

proof method is potentially applicable to other dependence measurements as well.

6 Overview of the proof techniques

The key idea of our proofs is to approximate the sum of weakly dependent random variables�
X
(n)

i

�
i∈In

by the empirical average of qn i.i.d. random variables ξ
(n)

1 , · · · ,ξ(n)
qn

. Specifically, we

show (Lemma A.8) that as long as the third and higher-order cumulants of Wn decay then there

exist integers (qn) and i.i.d. random variables such that the first k (k ∈ N+) cumulants of

Vn :=
1
p

qn

qn∑

i=1

ξ
(n)

i

matches those of Wn for n large enough. The decay of the cumulants can be proven to hold by

exploiting the weak dependence assumptions (see Corollaries B.5 and F.11).

We then relate the cumulants to the Wasserstein-p bound thanks to the fact that the Wasserstein-p

distance can be upper-bounded by integral probability metrics (Lemma A.3) and the well-known

Stein equation. Indeed we establish local expansions of the latter to orders that will depend on our

choice of p ≥ 1. Notably for i.i.d. random variables
�
ξ
(n)

i

�qn

i=1
, Barbour [1986] showed that the

following approximation holds (restated in Lemma A.5)

E[h(Vn)]−Nh= E[ f ′(Vn)− Vn f (Vn)]

=
∑

(r,s1:r )∈Γ (⌈p⌉−1)

(−1)r
r∏

j=1

κs j+2(Vn)

(s j + 1)!
N
� r∏

j=1

(∂ s j+1
Θ) h
�
+ Remainders,

(6.1)

where f is the solution of the Stein equation (A.2) and κ j( · ) denotes the j-th cumulant of a random

variable. (All the other notations in (6.1) will be made clear in Appendix A.) We show that we can

obtain similar expansions for E[ f ′(Wn)−Wn f (Wn)] (see Lemma A.7):

E[h(Wn)]−Nh= E[ f ′(Wn)−Wn f (Wn)]

=
∑

(r,s1:r )∈Γ (⌈p⌉−1)

(−1)r
r∏

j=1

κs j+2(Wn)

(s j + 1)!
N
� r∏

j=1

(∂ s j+1
Θ) h
�
+ Remainders,

(6.2)

As mentioned in the previous paragraph, qn and ξ(n)
i

can be chosen to be such that κ j(Vn) = κ j(Wn)

for j = 1, · · · , ⌈p⌉+ 1. Thus, by taking the difference of (6.1) and (6.2), we get an upper bound on��E[h(Wn)]−E[h(Vn)]
�� for a large class of function h. As shown in Lemma A.3, this allows us to
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obtain an upper bound of the Wasserstein-p distance between L(Wn) and L(Vn) for a general p ≥ 1.

The desired result is therefore implied by the triangle inequality of the Wasserstein-p distance

Wp(L(Wn),N (0, 1))≤Wp(L(Wn),L(Vn)) +Wp(L(Vn),N (0, 1)),

and the already known Wasserstein-p bounds for i.i.d. random variables (Lemma A.6).

To be able to show that (6.2) holds, we develop two new techniques to obtain such expansions.

These techniques will be carefully elaborated and discussed in Appendices B and F to H.
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A Proof of Theorem 3.1

In this section, we provide the proofs of Theorems 3.1 and 3.3 using Stein’s method. We first in-

troduce some background definitions and lemmas before showing the proofs of the main theorems.

A.1 Preliminary definitions and notations

Definition A.1 (Hölder Space). For any k ∈ N and real number ω ∈ (0, 1], the Hölder space

Ck,ω(R) is defined as the class of k-times continuously differentiable functions f : R→ R such that

the k-times derivative of f is ω-Hölder continuous, i.e.,

| f |k,ω := sup
x 6=y∈R

|∂ k f (x)− ∂ k f (y)|
|x − y|ω <∞,

where ∂ denotes the differential operator. Hereω is called the Hölder exponent and | f |k,ω is called

the Hölder coefficient.

Using the notions of Hölder spaces, we define the Zolotarev’s ideal metrics, which are related to

the Wasserstein-p distances via Lemma A.3.

Definition A.2 (Zolotarev Distance). Suppose µ and ν are two probability distributions on R. For

any p > 0 and ω := p+ 1− ⌈p⌉ ∈ (0, 1], the Zolotarev-p distance between µ and ν is defined by

Zp(µ,ν) := sup
f ∈Λp

�∫

R

f (x)dµ(x)−
∫

R

f (x)dν(x)

�
,

where Λp := { f ∈ C⌈p⌉−1,ω(R) : | f |⌈p⌉−1,ω ≤ 1}

To bound Zp( · , · ) we rely on the Stein’s method which was introduced by Stein [1972] in order

to prove the central limit theorem for dependent data. It has been widely adapted to all kinds of

normal approximation problems. See Ross [2011] for a detailed exposition.
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A.2 Preliminary lemmas A PROOF OF THEOREM 3.1

Stein equation and its solutions

Let Z ∼N (0, 1) be a standard normal random variable. For any measurable function h : R→ R, if

h(Z) ∈ L1(R), we write Nh := E[h(Z)]. Thus, h(Z) ∈ L1(R) if and only if N |h|<∞. Moreover,

we define fh( · ) by

fh(Wn) :=

∫ w

−∞
e(w

2−t2)/2(h(t)−Nh)dt = −
∫ ∞

w

e(w
2−t2)/2(h(t)−Nh)dt . (A.1)

We remark that fh(·) is a solution of the Stein equation meaning that it satisfies

f ′(w)−wf (w) = h(w)−Nh, ∀w ∈ R. (A.2)

For the convenience of further discussion, we denote by Θ the operator that maps h to fh for any h

such that N |h|<∞, i.e.,

Θh= fh.

Note that Θh( · ) is a function. If h ∈ Λp, then we will see in Lemma A.4 that Θh can be bounded.

A.2 Preliminary lemmas

An important fact proven by Rio [2009] is that the Wasserstein-p distance can be controlled in

terms of the Zolotarev distance.

Lemma A.3 (Theorem 3.1 of Rio [2009]). For any p ≥ 1, there exists a positive constant Cp, such

that for any pair of distributions µ,ν on R with finite absolute moments of order p such that

Wp(µ,ν) ≤ Cp

�
Zp(µ,ν)
�1/p

.

In particular, W1(µ,ν) = Z1(µ,ν) by Kantorovich–Rubinstein duality.

To bound Zp( · , · ) we will use the Stein’s method and exploit the fact Θh can be controlled for any

function h ∈ Λp.

Lemma A.4 (Part of Lemma 6 of Barbour [1986]). For any p > 0, let h ∈ Λp be as defined in

Definition A.2. ThenΘh= fh in (A.1) is a solution to (A.2). Moreover, Θh ∈ C⌈p⌉−1,ω(R)∩C⌈p⌉,ω(R)
and the Hölder coefficients |Θh|⌈p⌉−1,ω and |Θh|⌈p⌉,ω are bounded by some constant only depending

on p.

Next we present two lemmas on the normal approximation for independent random variables.

Lemma A.5 provides an expansion for the difference between E[h(Sn)], where Sn is an empirical

average, and Nh. Lemma A.6 gives an upper bound on the Wasserstein distance between the

distribution of this empirical average, Sn, and the standard normal distribution.
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A.3 Main lemmas A PROOF OF THEOREM 3.1

Lemma A.5 (Theorem 1 of Barbour [1986]). For any p > 0, let h ∈ Λp and Sn :=
∑n

i=1
X i where

{X1, · · · , Xn} are independent, with E[X i] = 0 and E[S2
n
] = 1. Then it follows that

E[h(Sn)]−Nh=
∑

(r,s1:r )∈Γ (⌈p⌉−1)

(−1)r
r∏

j=1

κs j+2(Sn)

(s j + 1)!
N
� r∏

j=1

(∂ s j+1
Θ) h
�
+O

� n∑

i=1

E[|X i |p+2]

�
, (A.3)

where the first sum is over Γ (⌈p⌉ − 1) :=
�

r, s1:r ∈ N+ :
∑r

j=1
s j ≤ ⌈p⌉ − 1
	

.

Note that there is a slight abuse of notation in (A.3). The last
∏

indicates the composition of the

operators in the parentheses rather than the product.

Lemma A.6 (Theorem 1.1 of Bobkov [2018]). For any p ≥ 1, let Sn :=
∑n

i=1
X i where {X1, · · · , Xn}

are independent, with E[X i] = 0 and E[S2
n
] = 1. Then it follows that

Wp(L(Sn),N (0, 1))≤ Cp

� n∑

i=1

E[|X i |p+2]

�1/p
, (A.4)

where Cp continuously depends on p.

A.3 Main lemmas

We introduce two new lemmas crucial in the proof of Theorem 3.1. They will be proven in Ap-

pendix B and Appendix C.

Lemma A.7 (Local Expansion). Suppose that
�
X
(n)

i

�
i∈In

is a triangular array of random vari-

ables with dependency neighborhoods satisfying the local dependence conditions [LD-1] to [LD-

(⌈p⌉+1)]. Let Wn :=
∑

i∈In
X
(n)

i
with E
�
X
(n)

i

�
= 0, E[W 2

n
] = 1. Then for any p > 0 and h ∈ Λp, we

have

E[h(Wn)]−Nh=
∑

(r,s1:r)∈Γ (⌈p⌉−1)

(−1)r
r∏

j=1

κs j+2(Wn)

(s j + 1)!
N
� r∏

j=1

(∂ s j+1
Θ) h
�

+O

�⌈p⌉−1∑

j=1

R
p/ j

j,1,n
+

⌈p⌉∑

j=1

R
p/( j+ω−1)

j,ω,n

�
,

(A.5)

where the first sum is over Γ (⌈p⌉ − 1) :=
�

r, s1:r ∈ N+ :
∑r

j=1
s j ≤ ⌈p⌉ − 1
	

.

We can see that Lemmas A.5 and A.7 look quite similar to one another with the only differences

being the dependence structures of
�
X
(n)

i

�
and the remainder terms in the expansions. This sim-

ilarity inspires the proof of Theorem 3.1. To illustrate this, imagine that there would exist some

i.i.d. random variables
�
ξ
(n)

i

�qn

i=1
and a large sample size qn such that the first ⌈p⌉+1 cumulants

of Vn := q−1/2
n

∑qn

i=1
ξ
(n)

i match with those of Wn, then the expansion (A.5) and in (A.3) would be

almost identical, and the difference between those would be controlled by the remainder terms

(R j,1,n) and (R j,ω,n). If those remainder terms are small then we could exploit the asymptotic nor-

mality of Vn to obtain the asymptotic normality of Wn. We show that such a sequence exists when

|In| is large.
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A.4 Proof of Theorem 3.1 A PROOF OF THEOREM 3.1

Lemma A.8 (Cumulant Matching). Let p ≥ 1 and k := ⌈p⌉. If p > 1, let
�
u
(n)

j

�k−1

j=1
be a sequence of

real numbers. Suppose that for any j = 1, · · · , k−1, we have u
(n)

j
→ 0 as n→∞. Then there exist

constants Cp, C ′
p

only depending on p and a positive value N > 0 (that might depend on
�
u
(n)

j

�
)

such that for any n > N , there exists qn ∈ N+ and a random variable ξ(n) such that

(a) E[ξ(n)] = 0, E[(ξ(n))2] = 1;

(b) κ j+2(ξ
(n)) = q j/2

n
u
(n)

j
for j = 1, · · · , k− 1;

(c) Either max1≤ j≤k−1

��κ j+2(ξ
(n))
��= 0 or max1≤ j≤k−1

��κ j+2(ξ
(n))
��≥ Cp > 0;

(d) E[|ξ(n)|p+2]≤ C ′
p
.

Furthermore, qn can be chosen to be such that qn→∞ as |I | →∞.

We note that the condition that u
(n)

j
→ 0 as n → ∞ is crucial. Lemma A.8 is an asymptotic

statement in the sense that for a given n ≤ N , qn and ξ(n) might not exist.

Intuitively, Lemma A.8a and Lemma A.8b determines the cumulants of ξ(n) and relates them to

the cumulants of Wn. Lemma A.8c requires that the maximum max1≤ j≤k

��κ j+2(ξ
(n))
�� is either 0 or

bounded away from 0 as n grows. And Lemma A.8d indicates that the (p+2)-th absolute moment

is upper-bounded.

A.4 Proof of Theorem 3.1

The proof of Theorem 3.1 works in three stages:

1. Using Lemma A.8 we find a sequence of i.i.d. random variables
�
ξ
(n)

ℓ

�
ℓ

and a sample

size qn such that the first k+1 cumulants of Wn match the first k+1 cumulants of Vn :=

q−1/2
n

∑qn

i=1
ξ
(n)

i
;

2. Using Lemma A.3 we remark that we can bound the Wasserstein distance between the dis-

tributions of Wn and an empirical average, Vn, of i.i.d. observations in terms of
��E[h(Wn)]−

E[h(Vn)]
�� for a large class of functions h. We do so by exploiting Lemmas A.5 and A.7;

3. We remark that Lemma A.6 provides us with the bound on the Wasserstein distance between

the distribution of Vn and the standard normal.

Then Theorem 3.1 follows from the triangle inequality of the Wasserstein metric:

Wp(Wn,N (0, 1))≤Wp(L(Wn),L(Vn)) +Wp(L(Vn),N (0, 1)).

Proof of Theorem 3.1. Without loss of generality, we assume σn = 1 and denote Wn :=∑
i∈In

X
(n)

i
.
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A.4 Proof of Theorem 3.1 A PROOF OF THEOREM 3.1

Firstly, we remark that according to Corollary B.5, for all 1 ≤ j ≤ k − 1 we have
��κ j+2(Wn)
�� ®

R j,1,n. Moreover, by assumption we have R j,1,n → 0 as n →∞. Therefore,
��κ j+2(Wn)
�� → 0 as

n→∞ and the assumptions of Lemma A.8 hold, which implies that there exist constants Cp and

C ′
p

such that for any n large enough there are positive integers (qn) and random variables (ξ(n))

such that

(a) E[ξ(n)] = 0, E[(ξ(n))2] = 1;

(b) κ j+2(ξ
(n)) = q j/2

n
κ j+2(Wn) for j = 1, · · · , k− 1;

(c) Either max1≤ j≤k−1

��κ j+2(ξ
(n))
�� = 0 or max1≤ j≤k−1

��κ j+2(ξ
(n))
��≥ Cp > 0;

(d) E[|ξ(n)|p+2]≤ C ′
p
.

Furthermore, we know that (qn) satisfies that qn→∞ as n→∞.

As presented in the proof sketch we will use this to bound the distance between the distribution

of Wn to the one of an empirical average of at least qn i.i.d. random variables. Note that when

max1≤ j≤k−1 |κ j+2(ξ
(n))| > 0 then we can obtain (by combining items (b) and (c) ) a lower bound

on qn which will be crucial in our arguments as it will allow us to control the distance between

this empirical average and its normal limit. When κ3(Wn) = · · · = κk+1(Wn) = 0, such a lower

bound on qn cannot be obtained in a similar way. Thus, we introduce an alternative sequence (eqn)

by setting eqn := |In|2(p+1)/p ∨ qn if κ3(Wn) = · · · = κk+1(Wn) = 0, and eqn := qn otherwise. We

remark that the sequence (eqn) still respects eqn→∞ as n→∞.

Let ξ
(n)

1 , · · · ,ξ(n)eqn
be i.i.d. copies of ξ(n). Define Vn := eq−1/2

n

∑eqn

i=1
ξ
(n)

i
.

By construction, for any j ∈ N+ such that j ≤ k− 1 = ⌈p⌉ − 1 we have

κ j+2(Vn)
(∗)
= eq−( j+2)/2

n

eqn∑

i=1

κ j+2(ξ
(n)

i ) = eq− j/2
n
κ j+2(ξ

(n)) = κ j+2(Wn).

Here in (∗) we have used the fact that cumulants are cumulative for independent random variables,

which is directly implied by their definition. For more details on this, please refer to Lukacs [1970].

Thus, by Lemma A.5 and Lemma A.7, for any h ∈ Λp we have

��E[h(Wn)]−E[h(Vn)]
��®

k−1∑

j=1

R
p/ j

j,1,n
+

k∑

j=1

R
p/( j+ω−1)

j,ω,n
+ eq−(p+2)/2

n

eqn∑

i=1

E
���ξ(n)

i

��p+2�
. (A.6)

To be able to have this upper bound not depend on ξ
(n)

i we will upper-bound

eq−(p+2)/2
n

eqn∑

i=1

E[|ξ(n)
i
|p+2]

in terms of the remainders (R j,1,n) and (R j,ω,n). To do so we use the lower bounds on (eqn) implied

by the specific form we chose.

24



A.4 Proof of Theorem 3.1 A PROOF OF THEOREM 3.1

If max1≤ j≤k−1

��κ j+2(Wn)
��> 0, item (c) implies that

Cp ≤ max
1≤ j≤k−1

��κ j+2(ξ
(n))
�� (∗)= max

1≤ j≤k−1

�
eq j/2

n

��κ j+2(Wn)
��	 (∗∗)® max

1≤ j≤k−1

�
eq j/2

n
R j,1,n

	
.

where to get (∗) we used item (b) and to get (∗∗) we used Corollary B.5. Thus, the following holds

eq−p/2
n
= (eq− j0/2

n
)p/ j0 ® R

p/ j0
j0,1,n
≤

k−1∑

j=1

R
p/ j

j,1,n
,

where j0 is the integer satisfying that
��κ j0+2(ξ

(n))
�� =max1≤ j≤k−1

��κ j+2(ξ
(n))
��.

On the other hand, if κ j+2(Wn) = 0 for all 1 ≤ j ≤ k − 1, then by definitions we have eqn ≥
|In|2(p+1)/p, and therefore, eq−p/2

n
≤ |In|−(p+1). Moreover, by Hölder’s inequality we know that the

following holds ∑

i∈In

E
���X (n)

i

��2�≤ |In|p/(p+2)
�∑

i∈In

E
���X (n)

i

��p+2��2/(p+2)

. (A.7)

and �∑

i∈In

X
(n)

i

�2
≤ |In|
∑

i∈In

��X (n)
i

��2. (A.8)

Since E
��∑

i∈In
X
(n)

i

�2�
= σ2

n
= 1, we have

eq−p/2
n
≤|In|−(p+1)
�
E

��∑

i∈I

X
(n)

i

�2��(p+2)/2

(∗)
≤|In|−p/2
�∑

i∈I

E
���X (n)

i

��2�
�(p+2)/2

(∗∗)
≤
∑

i∈In

E
���X (n)

i

��p+2� ≤ Rk,ω,n,

where to obtain (∗) we used (A.8) and to obtain (∗∗) we used (A.7).

Thus, using item (d) and the fact that ξ
(n)

1 , · · · ,ξ(n)eqn
are i.i.d., we obtain

eq−(p+2)/2
n

eqn∑

i=1

E
���ξ(n)

i

��p+2�≤ C ′
p
eq−p/2

n
®

k−1∑

j=1

R
p/ j

j,1,n
+

k∑

j=1

R
p/( j+ω−1)

j,ω,n
. (A.9)

Therefore, by combining this with (A.6) we obtain that there is a constant K > 0 that does not

depend on h such that

��E[h(Wn)]−E[h(Vn)]
��≤ K
� k∑

j=1

R
p/ j

j,1,n
+

k+1∑

j=1

R
p/( j+ω−1)

j,ω,n

�
.
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By taking supremum over h ∈ Λp and by Lemma A.3 we obtain that

Wp(L(Wn),L(Vn))® sup
h∈Λp

��E[h(Wn)]−E[h(Vn)]
��1/p ®

k−1∑

j=1

R
1/ j

j,1,n
+

k∑

j=1

R
1/( j+ω−1)

j,ω,n
.

Moreover, by combining Lemma A.6 and (A.9) we have

Wp(L(Vn),N (0, 1))®
�
eq−(p+2)/2

n

eqn∑

i=1

E
���ξ(n)

i

��p+2��1/p
®

k−1∑

j=1

R
1/ j

j,1,n
+

k∑

j=1

R
1/( j+ω−1)

j,ω,n
.

Therefore, as the Wasserstein distance Wp satisfies the triangle inequality we conclude that

Wp(L(Wn),N (0, 1))≤Wp(L(Wn),L(Vn)) +Wp(L(Vn),N (0, 1))®

k−1∑

j=1

R
1/ j

j,1,n +

k∑

j=1

R
1/( j+ω−1)

j,ω,n .

B Proof of Lemma A.7

For ease of notation, when there is no ambiguity we will drop the dependence on n in our notation

and write W , N(·), σ, X i , I and R j,ω for respectively Wn, Nn(·), σn, X
(n)

i , In and R j,ω,n.

B.1 Example & Roadmap

Given the form of expression in Lemma A.7, it is natural to consider performing induction on ⌈p⌉.
In fact, Barbour [1986] used a similar induction idea to prove Lemma A.5, the analogous result to

Lemma A.7 for independent variables. As Fang [2019] suggested, the key of each inductive step

is the following expansion of E[W f (W )].

Proposition B.1 (Expansion of E[W f (W )]). Denote by κ j(W ) the j-th cumulant of W . Given

k ∈ N+ and real number ω ∈ (0, 1], for any f ∈ Ck,ω(R), we have

E[W f (W )] =

k∑

j=1

κ j+1(W )

j!
E[∂ j f (W )] +O(| f |k,ωRk,ω). (B.1)

The case k = ω = 1 is a well-known result in the literature of Stein’s method (for example see

Barbour et al. [1989]; Ross [2011]). The case k = 2,ω = 1 was first proven by Fang [2019], and

they also conjectured that it was true for any positive integer k with ω = 1. Inspired by Fang

[2019]’s method, we confirm that this conjecture is correct by proving Proposition B.1.

To help better understand the intuition behind our proof for the general settings, let’s first consider

the simplest case with k = ω = 1. Given a positive integer m, suppose that (X i)
n
i=1

is an m-

dependent random sequence (the special case of d = 1 in Definition 4.1). We let W :=
∑n

i=1
X i
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and require that E[X1] = 0 and E[W 2] = 1. For simplicity, we further assume f ∈ C2(R)∩C1,1(R)

meaning that f ′′ is a continuous and bounded function.

For any indexes i, j ∈ [n] (by convention [n] := {1, 2, · · · , n}), we write

N(i) = {ℓ ∈ [n] : |ℓ− i| ≤ m}, N(i, j) := {ℓ ∈ [n] : |ℓ− i| ≤ m or |ℓ− j| ≤ m}.

Denote Wi,m :=
∑

j /∈N(i) X j and Wi, j,m :=
∑
ℓ/∈N(i, j) Xℓ. The idea is that for each i, we split W into

two parts, Wi,m and W −Wi,m. The former is independent of X i while the latter is the sum of X j’s in

the neighborhood of X i and will converge to 0 when n grows to∞. Thus, we perform the Taylor

expansion for f (W ) around Wi,m.

We have

E
�
W f (W)− f ′(W )

�
=

n∑

i=1

E
�
X i

�
f (W )− f (Wi,m)− f ′(Wi,m)(W −Wi,m)

��

+

n∑

i=1

E[X i f (Wi,m)] +

n∑

i=1

E
�
X i(W −Wi,m) f

′(Wi,m)
�
−E[ f ′(W )]

=

n∑

i=1

E
�
X i

�
f (W )− f (Wi,m)− f ′(Wi,m)(W −Wi,m)

��

+

n∑

i=1

E[X i] E[ f (Wi,m)] +

n∑

i=1

∑

j∈N(i)

E
�
X iX j f ′(Wi,m)
�
−E[ f ′(W )]

=

n∑

i=1

E
�
X i

�
f (W )− f (Wi,m)− f ′(Wi,m)(W −Wi,m)

��

+
� n∑

i=1

∑

j∈N(i)

E
�
X iX j f ′(Wi,m)
�
−E[ f ′(W )]
�
=: E1 + E2. (B.2)

By assumption, ‖ f ′′‖ is bounded and we have

|E1|=
����

n∑

i=1

E
�
X i

�
f (W )− f (Wi,m)− f ′(Wi,m)(W −Wi,m)

������

≤‖ f
′′‖

2

n∑

i=1

E
���X i(W −Wi,m)

2
���= ‖ f

′′‖
2

n∑

i=1

E

�
|X i|
� ∑

j∈N(i)

X j

�2�

=
‖ f ′′‖

2

n∑

i=1

∑

j∈N(i)

∑

ℓ∈N(i)

E[|X iX jXℓ|]≤
‖ f ′′‖

2

n∑

i=1

∑

j∈N(i)

∑

ℓ∈N(i, j)

E[|X iX jXℓ|]. (B.3)

Now we bound E2.

E2 =

n∑

i=1

∑

j∈N(i)

E
�
X iX j f ′(Wi,m)
�
−E[ f ′(W )]
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=

n∑

i=1

∑

j∈N(i)

E
�
X iX j

�
f ′(Wi,m)− f ′(Wi, j,m)

��
+

n∑

i=1

∑

j∈N(i)

E
�
X iX j f ′(Wi, j,m)
�
−E[ f ′(W )]

(∗)
=

n∑

i=1

∑

j∈N(i)

E
�
X iX j

�
f ′(Wi,m)− f ′(Wi, j,m)

��
+

n∑

i=1

∑

j∈N(i)

E[X iX j] E[ f
′(Wi, j,m)]−E[ f ′(W)]

(∗∗)
=

n∑

i=1

∑

j∈N(i)

E
�
X iX j

�
f ′(Wi,m)− f ′(Wi, j,m)

��
+

n∑

i=1

∑

j∈N(i)

E[X iX j] E
�

f ′(Wi, j,m)− f ′(W)
�

(B.4)

=(t1) + (t2), (B.5)

where to obtain (∗) we have used the fact that Wi, j,m is independent of (X i, X j) in the second

equation and to obtain (∗∗) we have assumed hat E(W 2) = 1.

The first term in (B.4), namely (t1), can be upper-bounded by the mean value theorem as

����
n∑

i=1

∑

j∈N(i)

E
�
X iX j

�
f ′(Wi,m)− f ′(Wi, j,m)

������

≤
n∑

i=1

∑

j∈N(i)

‖ f ′′‖ E
���X iX j(Wi,m −Wi, j,m)

���

≤‖ f ′′‖
n∑

i=1

∑

j∈N(i)

∑

ℓ∈N(i, j)

E[|X iX jXℓ|].

By another application of the mean-value theorem, we remark that the second term in (B.4), namely

(t2), is controlled by

����
n∑

i=1

∑

j∈N(i)

E[X iX j] E
�

f ′(Wi, j,m)− f ′(W )
�����

≤
n∑

i=1

∑

j∈N(i)

‖ f ′′‖ E[|X iX j|] E
���Wi, j,m −W
���

≤‖ f ′′‖
n∑

i=1

∑

j∈N(i)

∑

ℓ∈N(i, j)

E[|X iX j|] E[|Xℓ|].

Thus,

��E
�
W f (W)− f ′(W )

���≤ ‖ f ′′‖
n∑

i=1

∑

j∈N(i)

∑

ℓ∈N(i, j)

�
3

2
E[|X iX jXℓ|]+E[|X iX j|] E[|Xℓ|]

�
≤ 3‖ f ′′‖

2
R1,1.

This gives us a bound that matches with (B.1).

For k ≥ 2, we would like to carry out the expansion in the same spirit. However, it would be too

tedious to write out every sum in the process. Thus, in Appendix B.2, we introduce the terms called

S-sums, T -sums, and R-sums, which serve as useful tools in tracking different quantities when we
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approximate E[ f ′(W ) −W f (W )] with respect to locally dependent random variables. Instead

of performing the expansion to get (B.1) for E[W f (W )], we first do it for any T -sum and use

induction to prove a more general result for the existence of such expansions (see Theorem B.3).

In the general situation of T -sums, the cumulants are replaced by other constants that only depend

on the specific T -sum in consideration and the joint distribution of (X i)i∈I . Finally, we prove that

in particular, those constants for E[W f (W)] are precisely the cumulants of W . This will be done

by direct calculation when f is a polynomial and then extended to more general f ’s by applying

Lemma B.4.

B.2 Notations and definitions

As in Section 3, given an integer k ≥ 1, suppose (X i)i∈I is a class of mean zero random variables

indexed by I that satisfy the local dependence assumptions [LD-1] to [LD-k]. Without loss of

generality, we always assume that σ2 := Var
�∑

i∈I X i

�
= 1. We denote W := σ−1

∑
i∈I X i =∑

i∈I X i .

S-sums

Fix k ∈ N+ and t1, · · · , tk ∈ Z be integers such that |t j| ≤ j − 1 for any j ∈ [k]. We set t1 = 0.

Let z =
��{ j : t j > 0}
�� be the number of indexes j for which t j is strictly positive. If z ≥ 1,

we write { j : t j > 0} = {q1, · · · , qz}. Without loss of generality, we suppose that the sequence

2≤ q1 < · · · < qz ≤ k is increasing. We further let q0 := 1 and qz+1 := k+1. We define an order-k

S-sum with respect to the sequence t1:k as

S[t1, · · · , tk] :=
∑

i1∈N1

∑

i2∈N2

· · ·
∑

ik∈Nk

[q1 − q0, · · · , qz+1 − qz] ⊲
�
X i1

, · · · , X ik

�

=
∑

i1∈N1

∑

i2∈N2

· · ·
∑

ik∈Nk

E
�
X iq0
· · ·X iq1−1

�
E
�
X iq1
· · ·X iq2−1

�
· · · E
�
X iqz
· · ·X iqz+1−1

�
, (B.6)

where N1 := I , and for j ∈ N+ such that j ≥ 2, we let

N j :=

¨
N(i1:|t j |) = N(i1, · · · , i|t j |) if t j 6= 0

; if t j = 0
.

Note that N j depends on t j and the sequence i1:( j−1). For ease of notation, we do not explicitly

write out the dependencies on i1:( j−1) when there is no ambiguity. Further note that if any t j, that

is not t1, is null then N j = ; therefore, the S-sum S[t1, · · · , tk] = 0.

By definition all S-sums are deterministic quantities, the value of which only depends on t1:k, and

the joint distribution of (X i)i∈I . We also remark that the signs of t j’s determine how a S-sum

factorizes into different expectations. Notably if z = 0 (meaning that all the t j are negative) then

the T -sum is

T f ,s[t1, · · · , tk] =
∑

i1∈N1

∑

i2∈N2

· · ·
∑

ik∈Nk

E

�
X i1
· · ·X ik

∂ k−1 f
�
Wi.[k− s]
��

.
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Since by assumption, X i’s are centered random variables, the S-sum vanishes if q j+1 = q j + 1 for

some 0 ≤ j ≤ z:

S[t1, · · · , tk] =
∑

i1∈N1

∑

i2∈N2

· · ·
∑

ik∈Nk

E
�
X iq0
· · ·X iq1−1

�
·

E
�
X iq1
· · ·X iq2−1

�
· · ·E[X iqj

] · · · E
�
X iqz
· · ·X iqz+1−1

�
= 0.

(B.7)

Furthermore, the absolute value of t j’s influences the range of running indexes. The bigger |t j| is
the larger the set N j is. The largest possible index set for i j+1 is N(i1:( j−1)), which corresponds to

the case |t j| = j − 1. On the other hand, if t j = 0, the sum is over an empty set and vanishes. In

particular, if we require that the S-sum is not always zero, then t2 is always taken to be −1 and

i2 ∈ N(i1).

T -sums

For any function f ∈ Ck−1(R) and integer s ∈ N such that s ≤ k, the order-k T -sum, with respect

to the sequence t1:k, is defined as

T f ,s[t1, · · · , tk] := (B.8)∑

i1∈N1

∑

i2∈N2

· · ·
∑

ik∈Nk

[q1 − q0, · · · , qz+1 − qz] ⊲
�
X i1

, · · · , X ik−1
, X ik
∂ k−1 f
�
Wi.[k− s]
��

=






∑
i1∈N1

∑
i2∈N2
· · ·
∑

ik∈Nk
E

�
X i1
· · ·X ik

∂ k−1 f
�
Wi.[k− s]
��

if z = 0

∑

i1∈N1

∑

i2∈N2

· · ·
∑

ik∈Nk

E
�
X iq0
· · ·X iq1−1

�
· · · E
�
X iq(z−1)

· · ·X iqz−1

�
·

E
�
X iqz
· · ·X ik

∂ k−1 f
�
Wi.[k− s]
�� if z ≥ 1,

where N1:k, z, q0:(z+1) are defined as in the definition of S-sums and Wi.[ j] is defined as

Wi.[ j] :=

¨
W if j = 0∑

i∈I\N(i1: j)
X i if 1≤ j ≤ k

.

Note that the bigger s is, the larger the set I\N(i1:(k−s)) is, which means that Wi.[k − s] is the sum

of more X i’s. Again we remark that the values of T -sums can depend on the values of s and the

sequences t1:k. In particular, if s = 0, then we have Wi.[k − s] = Wi.[k] =
∑

i∈I\N(i1:k)
X i , which

implies that Wi.[k− s] is independent of X i1
, · · · , X ik

by the assumption [LD-k]. Thus, we have

E
�
X iqz
· · ·X ik

∂ k−1 f
�
Wi.[k− s]
��
= E[X iqz

· · ·X ik
] E
�
∂ k−1 f
�
Wi.[k− s]
��

.

By definitions (B.6) and (B.8) we get

T f ,0[t1, · · · , tk] = S[t1, · · · , tk] E[∂
k−1 f (Wi.[k])]. (B.9)

This equation will be useful in our discussion later. In general if z > 0 then

T f ,s[t1, · · · , tk] = S[t1, · · · , tqz−1]
∑

iqz
∈Nqz

∑

iqz+1∈Nqz+1

· · ·
∑

ik∈Nk

E
�
X iqz
· · ·X ik

∂ k−1 f
�
Wi.[k− s]
��

.

(B.10)
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R-sums

For k ≥ 2 and given a real numberω ∈ (0, 1], we further define an order-k R-sum with respect to

the sequence t1:k as

Rω[t1, · · · , tk] :=
∑

i1∈N1

∑

i2∈N2

· · ·
∑

ik−1∈Nk−1

[q1 − q0, · · · , qz+1 − qz] ⊲
�
|X i1
|, · · · , |X ik−1

|,
�∑

ik∈Nk

|X ik
|
�ω�

=






∑
i1∈N1

∑
i2∈N2
· · ·
∑

ik∈Nk
E

�
X i1
· · ·X ik−1

�∑
ik∈Nk
|X ik
|
�ω�

if z = 0

∑

i1∈N1

∑

i2∈N2

· · ·
∑

ik∈Nk

E
�
X iq0
· · ·X iq1−1

�
· · · E
�
X iq(z−1)

· · ·X iqz−1

�
·

E

�
X iqz
· · ·X ik−1

�∑

ik∈Nk

|X ik
|
�ω� if z ≥ 1

(B.11)

We again remark that if z ≥ 1 then

Rω[t1, · · · , tk] =R1[t1, · · · , tqz−1]
∑

iqz
∈Nqz

∑

iqz+1∈Nqz+1

· · ·
∑

ik∈Nk

E
�
X iqz
· · ·X ik−1

�∑

ik∈Nk

|X ik
|
�ω�

.

We callω the exponent of the R-sum. Ifω= 1, the only difference between a R-sum and a S-sum

is that the X i j
’s in (B.6) are replaced by |X i j

|’s in (B.11). Thus, a S-sum is always upper-bounded

by the corresponding compositional 1-sum, i.e.,

��S[t1, · · · , tk]
�� ≤R1[t1, · · · , tk]. (B.12)

Another important observation is that we can compare the values of R-sums with respect to two

different sequences t1, · · · , tk and t ′
1
, · · · , t ′

k
in certain situations. In specific, if for any j ∈ [k] we

have that if t j and t ′
j
are of the same sign and |t j| ≤ |t ′j|, then

Rω[t1, · · · , tk]≤Rω[t
′
1
, · · · , t ′

k
]. (B.13)

In fact, the sequences (t j) and (t ′
j
) having the same sign indicates that { j : t j > 0} = { j : t ′

j
> 0}.

Thus, we can write

Rω[t
′
1
, · · · , t ′

k
] =
∑

i1∈N ′1

∑

i2∈N ′2

· · ·
∑

ik−1∈N ′
k−1

[q1 − q0, · · · , qz+1 − qz] ⊲
�
|X i1
|, · · · , |X ik−1

|,
�∑

ik∈N ′
k

|X ik
|
�ω�

,

(B.14)

where we note that N ′
1
= I = N1 and for j = 2, · · · , k we have

N ′
j
= N(i1, · · · , i|t ′

j
|) ⊇ N(i1, · · · , i|t j |) = N j.

By comparing (B.11) with (B.14), we obtain (B.13).
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Re-expression of the remainder terms Rk,ω

Using the notion of R-sums, we rewrite the Rk,ω in Section 3 as

Rk,ω :=
∑

(ℓ,η1:ℓ)∈C∗(k+2)

∑

i1∈N ′1

∑

i2∈N ′2

· · ·
∑

ik+1∈N ′
k+1

[η1, · · · ,ηℓ] ⊲
�
|X i1
|, · · · , |X ik+1

|,
� ∑

ik+2∈N ′
k+2

|X ik+2
|
�ω�

(B.15)

=
∑

t1:(k+2)∈M1,k+2

Rω[t1, t2, · · · , tk+2]. (B.16)

where N ′
1

:= I and N ′
j
:= N(i1:( j−1)) for j ≥ 2. C∗(k+ 2) and M1,k+2 are given by

C∗(k+ 2) =
�
ℓ,η1:ℓ ∈ N+ : η j ≥ 2 ∀ j ∈ [ℓ− 1],

ℓ∑

j=1

η j = k+ 2
	
,

and

M1,k+2 :=
¦

t1:(k+2) : t j+1 = ± j & t j ∧ t j+1 < 0 ∀1≤ j ≤ k+ 1
©

.

Note that t j∧ t j+1 < 0 for any j ∈ [k+1]means that there is at least one−1 in any two consecutive

signs, which corresponds to the requirement that η j ≥ 2 for j ∈ [ℓ− 1] in (B.15).

B.3 Proofs of Proposition B.1 and Lemma A.7

In this section, we carry out the local expansion technique and prove Proposition B.1 and Lemma A.7.

Firstly, we establish the following lemma, which will be crucial in the inductive step of proving

the main theorem.

Lemma B.2. Fix k ∈ N+. For any s ∈ [k]∪ {0} and f ∈ Ck,ω(R), we have
���T f ,s[t1, · · · , tk+1]− S[t1, · · · , tk+1] E[∂

k f (W )]

���

≤| f |k,ω

�
−(I(tk+1 < 0) ·Rω[t1, · · · , tk+1, k+ 1] + I(s ≥ 1)Rω[t1, · · · , tk+1,−(k+ 1)]

�
.

(B.17)

Given any ℓ ∈ [k] and s ∈ [ℓ]∪ {0}, we further have
����T f ,s[t1, · · · , tℓ]− S[t1, · · · , tℓ] E[∂

ℓ−1 f (W)]

− I(s ≥ 1) ·
k−ℓ+1∑

j=1

j∑

h=0

(−1)h
1

h!( j − h)!
T f , j[t1, · · · , tℓ, s− ℓ, · · · , s− ℓ︸ ︷︷ ︸

h times

,−ℓ, · · · ,−ℓ︸ ︷︷ ︸
( j−h) times

]

− (I(tℓ < 0)

k−ℓ+1∑

j=1

1

j!
T f , j[t1, · · · , tℓ,ℓ,−ℓ, · · · ,−ℓ︸ ︷︷ ︸

( j−1) times

]

����

≤
| f |k,ω

(k− ℓ+ 1)!

�
−I(tℓ < 0) ·Rω[t1, · · · , tℓ,ℓ,−ℓ, · · · ,−ℓ︸ ︷︷ ︸

(k−ℓ+1) times

] + I(s ≥ 1) ·Rω[t1, · · · , tℓ,−ℓ, · · · ,−ℓ︸ ︷︷ ︸
(k−ℓ+2) times

]
�
.

(B.18)
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Proof. Firstly, we remark that the definition of Hölder continuity implies that

��∂ k f (y)− ∂ k f (x)
��≤ | f |k,ω|y − x |ω, (B.19)

where ω is the Hölder exponent of f and | f |k,ω is the Hölder constant (see Definition A.1). Let

z =
��{ j ∈ [k+1] : t j > 0}

�� be the number of positive indexes (t j). If z ≥ 1, we write { j ∈ [k+1] :

t j > 0} = {q1, · · · , qz}. Without loss of generality, we suppose that the sequence 2 ≤ q1 < · · · <
qz ≤ k+ 1 is increasing. We further let q0 := 1 and qz+1 := k+ 2. Applying (B.19) we have
���E
�
X iqz
· · ·X ik+1

∂ k f
�
Wi.[k+ 1− s]
��
−E
�
X iqz
· · ·X ik+1

∂ k f
�
Wi.[k+ 1]
����� (B.20)

≤| f |k,ωE
���X iqz
· · ·X ik+1

�� ·
��Wi.[k+ 1− s]−Wi.[k+ 1]

��ω�

≤| f |k,ωE

���X iqz
· · ·X ik+1

�� ·
���
∑

i∈N(i1:(k+1))\N(i1:(k+1−s))

X i

���
ω
�

≤| f |k,ωE

���X iqz
· · ·X ik+1

�� ·
���
∑

i∈N(i1:(k+1))

X i

���
ω
�
,

where in the last inequality we have used the fact that N(i1:(k+1))\N(i1:(k+1−s)) ⊆ N(i1:(k+1)). If

z = 0, this directly implies that
���T f ,s[t1, · · · , tk+1]− T f ,0[t1, · · · , tk+1]

���≤ I(s ≥ 1) · | f |k,ωRω[t1, · · · , tk+1,−(k+ 1)]. (B.21)

If z ≥ 1, by definition (B.8) we have for s ≥ 1
���T f ,s[t1, · · · , tk+1]− T f ,0[t1, · · · , tk+1]

���

=

����
∑

i1∈N1

∑

i2∈N2

· · ·
∑

ik+1∈Nk+1

E
�
X iq0
· · ·X iq1−1

�
· · · E
�
X iqz−1
· · ·X iqz−1

�
·

E
�
X iqz
· · ·X ik+1

�
∂ k f (Wi.[k+ 1− s])− ∂ k f (Wi.[k+ 1])

������

≤
∑

i1∈N1

∑

i2∈N2

· · ·
∑

ik+1∈Nk+1

E
���X iq0
· · ·X iq1−1

��� · · · E
���X iqz−1

· · ·X iqz−1

���·
���E
�
X iqz
· · ·X ik+1

∂ k f (Wi.[k+ 1− s])− ∂ k f (Wi.[k+ 1])
����

(B.20)

≤ | f |k,ω

∑

i1∈N1

∑

i2∈N2

· · ·
∑

ik+1∈Nk+1

E
���X iq0
· · ·X iq1−1

��� · · · E
���X iqz−1

· · ·X iqz−1

��� ·

E

���X iqz
· · ·X ik+1

�� ·
���
∑

i∈N(i1:(k+1))

X i

���
ω
�

=| f |k,ωRω[t1, · · · , tk+1,−(k+ 1)].

Here the last equality is due to the definition (B.11). Thus, (B.21) is proven for both z = 0 and

z ≥ 1. Next we show that
���S[t1, · · · , tk+1]

�
E[∂ k f (W )]−E[∂ k f (Wi.[k+1])]

����≤ −I(tk+1 < 0)| f |k,ωRω[t1, · · · , tk+1, k+1].

(B.22)
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In this goal, we first note that if tk+1 ≥ 0, by definition (B.6) we know that qz = k+1 and therefore,

according to (B.7) we know that

S[t1, · · · , tk+1] = 0,

and so (B.22) holds. Otherwise, we note that we have

���E
�
∂ k f
�
W
��
−E
�
∂ k f
�
Wi.[k+ 1]
����� ≤ | f |k,ωE
���Wi.[k+ 1− s]−Wi.[k+ 1]

��ω�

≤| f |k,ωE

����
∑

i∈N(i1:(k+1))\N(i1:(k+1−s))

X i

���
ω
�
≤ | f |k,ωE

����
∑

i∈N(i1:(k+1))

X i

���
ω
�
.

(B.23)

This implies that

���S[t1, · · · , tk+1]
�
E[∂ k f (W )]−E[∂ k f (Wi.[k+ 1])]

����

≤
���S[t1, · · · , tk+1]

��� ·
���E
�
∂ k f
�
W
��
−E
�
∂ k f
�
Wi.[k+ 1]
�����

(∗)
≤| f |k,ωR1[t1, · · · , tk+1] E

����
∑

i∈N(i1:(k+1))

X i

���
ω
�

=| f |k,ω

∑

i1∈N1

∑

i2∈N2

· · ·
∑

ik+1∈Nk+1

[q1 − q0, · · · , qz+1 − qz] ⊲
�
|X i1
|, · · · , |X ik+1

|
�
E

����
∑

i∈N(i1:(k+1))

X i

���
ω
�

=| f |k,ω

∑

i1∈N1

∑

i2∈N2

· · ·
∑

ik+1∈Nk+1

[q1 − q0, · · · , qz+1 − qz, 1] ⊲
�
|X i1
|, · · · , |X ik+1

|,
� ∑

ik+2∈N(i1:(k+1))

|X ik+2
|
�ω�

=| f |k,ωRω[t1, · · · , tk+1, k+ 1].

where (∗) is due to (B.12) and (B.23). Taking the difference of (B.21) and (B.22), we obtain (B.17)

by applying the equation (B.9).

For ℓ≤ k, we apply the Taylor expansion with remainders taking the integral form and obtain that

∂ ℓ−1 f (y)− ∂ ℓ−1 f (x) =

m−ℓ∑

j=1

1

j!
(y − x) j∂ ℓ−1+ j f (x)

+
1

(k− ℓ+ 1)!
(y − x)k−ℓ+1

∫ 1

0

(k− ℓ+ 1)vk−ℓ∂ k f (vx + (1− v)y)dv (B.24)

(∗)
=

k−ℓ+1∑

j=1

1

j!
(y − x) j∂ ℓ−1+ j f (x)

+
1

(k− ℓ+ 1)!
(y − x)k−ℓ+1

∫ 1

0

(k− ℓ+ 1)vk−ℓ�∂ k f (vx + (1− v)y)− ∂ k f (x)
�

dv,

where to obtain (∗)we added and subtracted
(y−x)k−ℓ+1

(k−ℓ+1)!
∂ k f (x). Moreover, using the fact that ∂ k f (·)

is assumed to be Hölder continuous we obtain that

��∂ k f (vx + (1− v)y)− ∂ k f (x)
��≤ | f |k,ω(1− v)ω |y − x |ω ≤ | f |k,ω|y − x |ω. (B.25)
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Therefore, as
∫ 1

0
(k− ℓ+ 1)vk−ℓ dv = 1, by combining (B.25) with (B.24) we get that

����∂
ℓ−1 f (y)− ∂ ℓ−1 f (x)−

k−ℓ+1∑

j=1

1

j!
(y − x) j∂ ℓ−1+ j f (x)

����≤
| f |k,ω

(k− ℓ+ 1)!
|y − x |k−ℓ+1+ω. (B.26)

We prove that the following inequality holds:

����T f ,s[t1, · · · , tℓ]− T f ,0[t1, · · · , tℓ]

− I(s ≥ 1) ·
k−ℓ+1∑

j=1

j∑

h=0

(−1)h
1

h!( j − h)!
T f , j[t1, · · · , tℓ, s− ℓ, · · · , s− ℓ︸ ︷︷ ︸

h times

,−ℓ, · · · ,−ℓ︸ ︷︷ ︸
( j−h) times

]

����

≤
I(s ≥ 1) · | f |k,ω

(k− ℓ+ 1)!
Rω[t1, · · · , tℓ,−ℓ, · · · ,−ℓ︸ ︷︷ ︸

(k−ℓ+2) times

],

(B.27)

First, let’s establish (B.27). Let z =
��{ j ∈ [ℓ] : t j > 0}

��. If z ≥ 1, we write { j ∈ [ℓ] : t j > 0} =
{q1, · · · , qz}. Without loss of generality, we suppose that the sequence 2 ≤ q1 < · · · < qz ≤ ℓ is

increasing. We further let q0 := 1 and qz+1 := ℓ+ 1. Applying (B.26) we have

����E
�
X iqz
· · ·X iℓ

∂ ℓ−1 f
�
Wi.[ℓ− s]
��
−E
�
X iqz
· · ·X iℓ

∂ ℓ−1 f
�
Wi.[ℓ]
��

−
k−ℓ+1∑

j=1

1

j!
E
�
X iqz
· · ·X iℓ

(Wi.[ℓ− s]−Wi.[ℓ])
j∂ ℓ−1+ j f (Wi.[ℓ])

�����

≤
| f |k,ω

(k− ℓ+ 1)!
E
���X iqz
· · ·X iℓ

�� ·
��Wi.[ℓ− s]−Wi.[ℓ]

��k−ℓ+1+ω�
.

(B.28)

For convenience let

E1 :=
∑

iqz
∈Nqz

· · ·
∑

iℓ∈Nℓ

E
�
X iqz
· · ·X iℓ

∂ ℓ−1 f
�
Wi.[ℓ− s]
��
−E
�
X iqz
· · ·X iℓ

∂ ℓ−1 f
�
Wi.[ℓ]
��

,

E2, j :=
∑

iqz
∈Nqz

· · ·
∑

iℓ∈Nℓ

E
�
X iqz
· · ·X iℓ

(Wi.[ℓ− s]−Wi.[ℓ])
j∂ ℓ−1+ j f (Wi.[ℓ])

�
,

E3 :=
∑

iqz
∈Nqz

· · ·
∑

iℓ∈Nℓ

E
���X iqz
· · ·X iℓ

�� ·
��Wi.[ℓ− s]−Wi.[ℓ]

��k−ℓ+1+ω�
.

Then (B.28) reduces to

��E1 −
∑k−ℓ+1

j=1
E2, j/ j!
�� ≤ | f |k,ωE3/(k− ℓ+ 1)!. (B.29)
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Then we obersve that by definition of Wi.[·] we have

E
�
X iqz
· · ·X iℓ

(Wi.[ℓ− s]−Wi.[ℓ])
j∂ ℓ−1+ j f (Wi.[ℓ])

�

=E

�
X iqz
· · ·X iℓ

� ∑

i∈N(i1:ℓ)

X i −
∑

i∈N(i1:ℓ−s)

X i

� j
∂ ℓ−1+ j f (Wi.[ℓ])

�

=

j∑

h=0

(−1)h
�

j

h

�
E

�
X iqz
· · ·X iℓ

� ∑

i∈N(i1:ℓ−s)

X i

�h� ∑

i∈N(i1:ℓ)

X i

� j−h

∂ ℓ−1+ j f (Wi.[ℓ])

�
,

(B.30)

and that

E
���X iqz
· · ·X iℓ

�� ·
��Wi.[ℓ− s]−Wi.[ℓ]

��k−ℓ+1+ω�
(B.31)

≤E
���X iqz

· · ·X ik+1

�� ·
���
∑

i∈N(i1:(k+1))\N(i1:(k+1−s))

X i

���
k−ℓ+1+ω
�

≤E
���X iqz

· · ·X ik+1

�� ·
���
∑

i∈N(i1:(k+1))

X i

���
k−ℓ+1+ω
�

≤E
���X iqz

· · ·X ik+1

�� ·
� ∑

i∈N(i1:(k+1))

|X i|
�k−ℓ+1

·
���
∑

i∈N(i1:(k+1))

X i

���
ω
�
.

If z = 0, we take the sum of (B.30) or (B.31) over iqz
∈ Nqz

, · · · , iℓ ∈ Nℓ. By definition (B.8) and

(B.11) we have

E1 = T f ,s[t1, · · · , tℓ]− T f ,0[t1, · · · , tℓ],

E2, j =

j∑

h=0

(−1)h
�

j

h

�
T f , j[t1, · · · , tℓ, s− ℓ, · · · , s− ℓ︸ ︷︷ ︸

h times

,−ℓ, · · · ,−ℓ︸ ︷︷ ︸
( j−h) times

],

E3 ≤Rω[t1, · · · , tℓ,ℓ,−ℓ, · · · ,−ℓ︸ ︷︷ ︸
(k−ℓ+1) times

].

(B.32)

Combining (B.32) and (B.29), we have for s ≥ 1

����T f ,s[t1, · · · , tℓ]− T f ,0[t1, · · · , tℓ]

−
k−ℓ+1∑

j=1

j∑

h=0

(−1)h
1

h!( j − h)!
T f , j[t1, · · · , tℓ, s− ℓ, · · · , s− ℓ︸ ︷︷ ︸

h times

,−ℓ, · · · ,−ℓ︸ ︷︷ ︸
( j−h) times

]

����

(B.32)
=
��E1 −

k−ℓ+1∑

j=1

E2, j/ j!
�� (B.29)

≤ | f |k,ωE3/(k− ℓ+ 1)!

(B.32)

≤
| f |k,ω

(k− ℓ+ 1)!
Rω[t1, · · · , tℓ,−ℓ, · · · ,−ℓ︸ ︷︷ ︸

(k−ℓ+2) times

].

Thus, (B.27) holds for z = 0.
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If z ≥ 1, similar to (B.31) we have

S[t1, · · · , tqz−1] · E1 = T f ,s[t1, · · · , tℓ]− T f ,0[t1, · · · , tℓ],

S[t1, · · · , tqz−1] · E2, j =

j∑

h=0

(−1)h
�

j

h

�
T f , j[t1, · · · , tℓ, s− ℓ, · · · , s− ℓ︸ ︷︷ ︸

h times

,−ℓ, · · · ,−ℓ︸ ︷︷ ︸
( j−h) times

],

R1[t1, · · · , tqz−1] · E3 ≤Rω[t1, · · · , tℓ,−ℓ, · · · ,−ℓ︸ ︷︷ ︸
(k−ℓ+2) times

].

(B.33)

Combining (B.33) and (B.29) we get for s ≥ 1

����T f ,s[t1, · · · , tℓ]− T f ,0[t1, · · · , tℓ]

−
k−ℓ+1∑

j=1

j∑

h=0

(−1)h
1

h!( j − h)!
T f , j[t1, · · · , tℓ, s− ℓ, · · · , s− ℓ︸ ︷︷ ︸

h times

,−ℓ, · · · ,−ℓ︸ ︷︷ ︸
( j−h) times

]

����

(B.33)
=
��S[t1, · · · , tqz−1]

�� ·
��E1 −

k−ℓ+1∑

j=1

E2, j/ j!
�� (B.12)

≤ R1[t1, · · · , tqz−1] ·
��E1 −

k−ℓ+1∑

j=1

E2, j/ j!
��

(B.29)

≤ R1[t1, · · · , tqz−1] · | f |k,ωE3/(k− ℓ+ 1)!
(B.33)

≤
| f |k,ω

(k− ℓ+ 1)!
Rω[t1, · · · , tℓ,−ℓ, · · · ,−ℓ︸ ︷︷ ︸

(k−ℓ+2) times

].

Thus, we have shown (B.27) for both z = 0 and z ≥ 1.

Next we prove that the following inequality holds:

����S[t1, · · · , tℓ]
�
E[∂ ℓ−1 f (W)]−E[∂ ℓ−1 f (Wi.[ℓ])]

�

− I(tℓ < 0) ·
k−ℓ+1∑

j=1

1

j!
T f , j[t1, · · · , tℓ,ℓ,−ℓ, · · · ,−ℓ︸ ︷︷ ︸

( j−1) times

]

����

≤
I(tℓ < 0) · | f |k,ω

(k− ℓ+ 1)!
Rω[t1, · · · , tℓ,ℓ,−ℓ, · · · ,−ℓ︸ ︷︷ ︸

(k−ℓ+1) times

].

(B.34)

For (B.34), we apply (B.26) again and get that

����E
�
∂ k f (W)
�
−E
�
∂ k f (Wi.[ℓ])
�

−
k−ℓ+1∑

j=1

1

j!
E
�
(Wi. −Wi.[ℓ])

j∂ ℓ−1+ j f (Wi.[ℓ])
����� ≤

| f |k,ω

(k− ℓ+ 1)!
E
���W −Wi.[ℓ]
��k−ℓ+1+ω�

.

(B.35)

For convenience let

E4 := E[∂ ℓ−1 f (W)]−E[∂ ℓ−1 f (Wi.[ℓ])],
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E5, j := E
�
(Wi. −Wi.[ℓ])

j∂ ℓ−1+ j f (Wi.[ℓ])
�
,

E6 := E
���W −Wi.[ℓ]
��k−ℓ+1+ω�

.

Then (B.35) reduces to
��E4 −
∑k−ℓ+1

j=1
E5, j/ j!
�� ≤ | f |k,ωE6/(k− ℓ+ 1)!. (B.36)

We first note that if tℓ ≥ 0 then S[t1, · · · , tℓ] = 0 therefore, (B.34) holds. Moreover, similar to

(B.33), we have for tℓ < 0

S[t1, · · · , tℓ] · E4 = S[t1, · · · , tℓ]
�
E[∂ ℓ−1 f (W )]−E[∂ ℓ−1 f (Wi.[ℓ])]

�
,

S[t1, · · · , tℓ] · E5, j = T f , j[t1, · · · , tℓ,ℓ,−ℓ, · · · ,−ℓ︸ ︷︷ ︸
( j−1) times

],

R1[t1, · · · , tℓ] · E6 ≤Rω[t1, · · · , tℓ,ℓ,−ℓ, · · · ,−ℓ︸ ︷︷ ︸
(k−ℓ+1) times

].

(B.37)

Combining (B.37) and (B.36), we have

����S[t1, · · · , tℓ]
�
E[∂ ℓ−1 f (W )]−E[∂ ℓ−1 f (Wi.[ℓ])]

�
−

k−ℓ+1∑

j=1

1

j!
T f , j[t1, · · · , tℓ,ℓ,−ℓ, · · · ,−ℓ︸ ︷︷ ︸

( j−1) times

]

����

(B.37)
=
��S[t1, · · · , tℓ]
�� ·
��E4 −

k−ℓ+1∑

j=1

E5, j/ j!
�� (B.12)

≤ R1[t1, · · · , tℓ] ·
��E4 −

k−ℓ+1∑

j=1

E5, j/ j!
��

(B.36)

≤ R1[t1, · · · , tℓ] · | f |k,ωE6/(k− ℓ+ 1)!
(B.37)

≤
| f |k,ω

(k− ℓ+ 1)!
Rω[t1, · · · , tℓ,ℓ,−ℓ, · · · ,−ℓ︸ ︷︷ ︸

(k−ℓ+1) times

].

Therefore, we have established both (B.27) and (B.34). Taking their difference and applying (B.9),

we obtain (B.18).

Equipped with the tools in Lemma B.2, we approximate any T -sum T f ,s[t1, · · · , tℓ] by order- j

S-sums ( j = ℓ, · · · , k+ 1) with remainder terms being order-(k+ 2) R-sums.

Theorem B.3. Fix k ∈ N+. For any ℓ ∈ [k + 1], s ∈ [ℓ] ∪ {0}, and t1, · · · , tℓ ∈ Z such that

|t j| ≤ j − 1 for any j ∈ [ℓ], there exist Qℓ, · · · ,Qk+1 (which depend on s and t1:ℓ and the joint

distribution of (X i)i∈I ) and a constant Ck,ℓ (Ck,ℓ ≤ 4k−ℓ+1) such that for any f ∈ Ck,ω(R), we have

����T f ,s[t1, · · · , tℓ]−
k+1∑

j=ℓ

Q jE[∂
j−1 f (W )]

����≤ Ck,ℓ| f |k,ωRk,ω. (B.38)

Note that by (B.16) Rk,ω is given as

Rk,ω =
∑

t1:(k+2)∈M1,k+2

Rω[t1, t2, · · · , tk+2].

where

M1,k+2 :=
¦

t1:(k+2) : t j+1 = ± j & t j ∧ t j+1 < 0 ∀1≤ j ≤ k+ 1
©

.
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Proof. If there exists an integer 2≤ j ≤ ℓ such that t j = 0 or there exists j ∈ [ℓ−1] such that t j

and t j+1 are both positive, then T f ,s[t1, · · · , tℓ] = 0 by definition and the theorem already holds by

setting Q j = · · ·= Qk+1 = 0.

Otherwise, we claim:

Claim. Let T f ,s[t1, · · · , tℓ] be a T -sum. For any j = ℓ+ 1, · · · , k+ 1, let

Eℓ+1, j :=
�

t(ℓ+1): j : |th+1| ≤ h & th ∧ th+1 ∀ℓ≤ h≤ j − 1
	
.

For all j = ℓ+ 1, · · · , k+ 1, ν ∈ [ j]∪ {0}, and (tℓ+1, · · · , t j) ∈ Eℓ, j, there are coefficients a j,ν,t(ℓ+1): j

(additionally depending on s) such that if we write

Q j =
∑

t(l+1): j∈Eℓ, j

j∑

ν=0

a j,ν,t(ℓ+1): j
T f ,ν[t1, · · · , tℓ, tℓ+1, · · · , t j], (B.39)

then the following holds

����T f ,s[t1, · · · , tℓ]−
k+1∑

j=ℓ

Q jE[∂
j−1 f (W )]

����≤ 4k−ℓ+1| f |k,ω

∑

t(ℓ+1):(k+2)∈Mℓ,k+1

Rω

�
t1, · · · , tℓ, · · · , tk+2

�
,

(B.40)

where

Mℓ+1,k+2 :=
¦

t(ℓ+1):(k+2) : t j+1 = ± j & t j ∧ t j+1 < 0 ∀ℓ≤ j ≤ k+ 1
©

.

We establish this claim by performing induction on ℓ with ℓ taking the value k+1, k, · · · , 1 in turn.

For ℓ= k+ 1, by (B.17) we have

���T f ,s[t1, · · · , tk+1]− S[t1, · · · , tk+1] E[∂
k f (W )]

���

≤| f |k,ω

�
I(tk+1 < 0) ·Rω[t1, · · · , tk+1, k+ 1] + I(s ≥ 1) ·Rω[t1, · · · , tk+1,−(k+ 1)]

�
.

If there exists j ∈ [k] such that t j and t j+1 are both positive, then T f ,s[t1, · · · , tk+1] = 0 and the

claim holds with all a j,ν,tℓ:(k+1)
= 0. Otherwise, for all j ≤ k either t j is negative or t j+1 is negative

for j ∈ [k]. If tk+1 < 0, then we have

I(tk+1 < 0) ·Rω[t1, · · · , tk+1, k+ 1] + I(s ≥ 1) ·Rω[t1, · · · , tk+1,−(k+ 1)]

=Rω[t1, · · · , tk+1, k+ 1] + I(s ≥ 1) ·Rω[t1, · · · , tk+1,−(k+ 1)]

(∗)
≤Rω[0, sgn(t2), 2 sgn(t3), · · · , k · sgn(tk+1), k+ 1]

+Rω[0, sgn(t2), 2 sgn(t3), · · · , k · sgn(tk+1),−(k+ 1)]

≤
∑

tk+2=±(k+1):
tk+1∧tk+2<0

Rω

�
t1, · · · , tk+1, tk+2

�
.

where (∗) is a consequence of (B.13) and sgn(x) = 0, 1, or − 1 denotes the sign of a real number

x .
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Further note that if tk+1 > 0, then I(tk+1 < 0) = 0 and we get

I(tk+1 < 0) ·Rω[t1, · · · , tk+1, k+ 1] + I(s ≥ 1) ·Rω[t1, · · · , tk+1,−(k+ 1)]

=I(s ≥ 1) ·Rω[t1, · · · , tk+1,−(k+ 1)]

(∗)
≤Rω[0, sgn(t2), 2 sgn(t3), · · · , k · sgn(tk+1),−(k+ 1)]

≤
∑

tk+2=±(k+1):
tk+1∧tk+2<0

Rω

�
t1, · · · , tk+1, tk+2

�
,

where (∗) is a consequence of (B.13). Thus, we have shown that

���T f ,s[t1, · · · , tk+1]− S[t1, · · · , tk+1] E[∂
k f (W )]

���

≤| f |k,ω

�
I(tk+1 < 0) ·Rω[t1, · · · , tk+1, k+ 1] + I(s ≥ 1) ·Rω[t1, · · · , tk+1,−(k+ 1)]

�

≤| f |k,ω

∑

tk+2=±(k+1):
tk+1∧tk+2<0

Rω

�
t1, · · · , tk+1, tk+2

�
.

Now suppose the claim holds for ℓ+ 1 and consider the case of ℓ. By (B.18) we have

����T f ,s[t1, · · · , tℓ]− S[t1, · · · , tℓ] E[∂
ℓ−1 f (W)]

− I(s ≥ 1) ·
k−ℓ+1∑

j=1

j∑

h=0

(−1)h
1

h!( j − h)!
T f , j[t1, · · · , tℓ, s− ℓ, · · · , s− ℓ︸ ︷︷ ︸

h times

,−ℓ, · · · ,−ℓ︸ ︷︷ ︸
( j−h) times

]

+ I(tℓ < 0)

k−ℓ+1∑

j=1

1

j!
T f , j[t1, · · · , tℓ,ℓ,−ℓ, · · · ,−ℓ︸ ︷︷ ︸

( j−1) times

]

����

≤
| f |k,ω

(k− ℓ+ 1)!

�
I(tℓ < 0) ·Rω[t1, · · · , tℓ,ℓ,−ℓ, · · · ,−ℓ︸ ︷︷ ︸

(k−ℓ+1) times

] + I(s ≥ 1) ·Rω[t1, · · · , tℓ,−ℓ, · · · ,−ℓ︸ ︷︷ ︸
(k−ℓ+2) times

]
�
.

Note that T f , j[t1, · · · , tℓ, s− ℓ, · · · , s− ℓ︸ ︷︷ ︸
h times

,−ℓ, · · · ,−ℓ︸ ︷︷ ︸
( j−h) times

] and T f , j[t1, · · · , tℓ,ℓ,−ℓ, · · · ,−ℓ︸ ︷︷ ︸
( j−1) times

] are T -sums

of order at least ℓ+ j ( j ≥ 1). Therefore, we can apply inductive hypothesis on them. In specific,

the remainder term (R-sums) in the expansion of

T f , j[t1, · · · , tℓ, s− ℓ, · · · , s− ℓ︸ ︷︷ ︸
h times

,−ℓ, · · · ,−ℓ︸ ︷︷ ︸
( j−h) times

]

is given by this

4k−ℓ− j+1| f |k,ω

∑

t(ℓ+ j+1):(k+2)∈Mℓ+ j+1,k+2

Rω

�
t1, · · · , tℓ, s− ℓ, · · · , s− ℓ︸ ︷︷ ︸

h times

,−ℓ, · · · ,−ℓ︸ ︷︷ ︸
( j−h) times

, tℓ+ j+1, · · · , tk+2

�

(B.13)

≤ 4k−ℓ− j+1| f |k,ω

∑

t(ℓ+ j+1):(k+2)∈Mℓ+ j+1,k+2

Rω

�
t1, · · · , tℓ,−ℓ,−(ℓ+ 1), · · · ,−(ℓ+ j − 1), tℓ+ j+1, · · · , tk+2

�
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≤4k−ℓ− j+1| f |k,ω

∑

t(ℓ+2):(k+2)∈Mℓ+2,k+2

Rω

�
t1, · · · , tℓ,−ℓ, tℓ+2, · · · , tk+2

�
=: 4k−ℓ− j+1| f |k,ω · U1.

Similarly the remainder term in the expansion of T f , j[t1, · · · , tℓ,ℓ,−ℓ, · · · ,−ℓ︸ ︷︷ ︸
( j−1) times

] is given by

4k−ℓ− j+1| f |k,ω

∑

t(ℓ+ j+1):(k+2)∈Mℓ+ j+1,k+2

Rω

�
t1, · · · , tℓ,ℓ,−ℓ, · · · ,−ℓ︸ ︷︷ ︸

( j−1) times

, tℓ+ j+1, · · · , tk+2

�

≤4k−ℓ− j+1| f |k,ω

∑

t(ℓ+2):(k+2)∈Mℓ+2,k+2

Rω

�
t1, · · · , tℓ,ℓ, tℓ+2, · · · , tk+2

�
=: 4k−ℓ− j+1| f |k,ω · U2.

Note that U1 + I(tℓ < 0) · U2 is controlled by

U1 + I(tℓ < 0) · U2

=
∑

t(ℓ+2):(k+2)∈Mℓ+2,k+2

Rω

�
t1, · · · , tℓ,−ℓ, tℓ+2, · · · , tk+2

�

+ I(tℓ < 0) ·
∑

t(ℓ+2):(k+2)∈Mℓ+2,k+2

Rω

�
t1, · · · , tℓ,ℓ, tℓ+2, · · · , tk+2

�

≤
∑

t(ℓ+1):(k+2)∈Mℓ+1,k+2

Rω

�
t1, · · · , tℓ, tℓ+1, · · · , tk+2

�
. (B.41)

As we mentioned above, by inductive hypothesis we have that there exist coefficients Q j satisfying

(B.39) such that

����T f ,s[t1, · · · , tℓ]−
k+1∑

j=ℓ

Q j E[∂
j−1 f (W )]

����

≤
k−ℓ+1∑

j=1

j∑

h=0

1

h!( j − h)!
4k−ℓ− j+1| f |k,ω · U1 + I(tℓ < 0)

k−ℓ+1∑

j=1

1

j!
4k−ℓ− j+1| f |k,ω · U2

+
| f |k,ω

(k− ℓ+ 1)!

�
I(tℓ < 0) ·Rω[t1, · · · , tℓ,ℓ,−ℓ, · · · ,−ℓ︸ ︷︷ ︸

(k−ℓ+1) times

] +Rω[t1, · · · , tℓ,−ℓ, · · · ,−ℓ︸ ︷︷ ︸
(k−ℓ+2) times

]
�
.

Noting that
∑ j

h=0
1/(h!( j − h)!) = 2 j/ j!, we have

����T f ,s[t1, · · · , tℓ]−
k+1∑

j=ℓ

Q j E[∂
j−1 f (W )]

����

≤
k−ℓ+1∑

j=1

2 j · 4k−ℓ− j+1

j!
| f |k,ω ·
�
U1 + I(tℓ < 0) · U2

�

+
| f |k,ω

(k− ℓ+ 1)!

�
I(tℓ < 0) · U2 + U1

�

≤
�
1+
∑k−ℓ+1

j=1
22k−2ℓ− j+2
�
| f |k,ω

�
U1 + I(tℓ < 0) · U2

�
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≤ 4k−ℓ+1| f |k,ω

�
U1 + I(tℓ < 0) · U2

�

(B.41)

≤ 4k−ℓ+1| f |k,ω

∑

t(ℓ+1):(k+2)∈Mℓ+1,k+2

Rω

�
t1, · · · , tℓ, tℓ+1, · · · , tk+2

�
.

Thus, we have shown (B.40).

Finally we note that for all t1:ℓ ∈M1,ℓ and then by (B.13) we have

∑

t(ℓ+1):(k+1)∈Mℓ+1,k+2

Rω

�
t1, · · · , tℓ, · · · , tk+2

�

≤
∑

t(ℓ+1):(k+2)∈Mℓ+1,k+2

Rω

�
0, sgn(t2), 2 sgn(t3), · · · , (ℓ− 1) sgn(tℓ), tℓ+1 · · · , tk+2

�

≤
∑

t1:(k+2)∈M1,k+2

Rω[t1, t2, · · · , tk+2] = Rk,ω.

We remark that if f is a polynomial of degree at most k, then the Hölder constant | f |k,ω = 0 and

hence the remainder Ck,ℓ| f |k,ωRk,ω vanishes.

For any T -sum, we have established the existence of expansions in Theorem B.3. Next we show

the uniqueness of such expansions.

Lemma B.4 (Uniqueness). Under the same settings as Theorem B.3, suppose that there exist two

sets of coefficients Qℓ, · · · ,Qk+1 and Q′
ℓ
, · · · ,Q′

k+1
only depending on s and t1:ℓ, and the joint dis-

tribution of (X i)i∈I such that for any polynomial f of degree at most ℓ, we have

T f ,s[t1, · · · , tℓ] =QℓE[∂
ℓ−1 f (W)] + · · ·+Qk+1E[∂

k f (W)]

=Q′
ℓ
E[∂ ℓ−1 f (W)] + · · ·+Q′

k+1
E[∂ k f (W)],

Then Q j =Q′
j
for any j = ℓ, · · · , k+ 1.

Proof. We prove this lemma by contradiction.

Let j be the smallest number such that Q j 6= Q′
j
. Since the coefficients Qℓ, · · · ,Qk+1 do not depend

on f , we can choose f (x) = cx j−1 such that ∂ j−1 f (x) = c( j − 1)! 6= 0. But Q j+1E[∂
j f (W )] =

· · · = Qk+1E[∂
k f (W )] = 0, which implies cQ j = cQ′

j
. This is a contradiction. Therefore, Q j =Q′

j

for any j = ℓ, · · · , k+ 1.

Proof of Proposition B.1. Applying Theorem B.3 with ℓ= 1, and s = t1 = t2 = 0, we have for

any f ∈ Ck,ω(R),

E[W f (W )] =
∑

i1∈I

E[X i1
f (W)] = T f ,0[0] =

k+1∑

j=1

Q jE[∂
j−1 f (W )] +O(| f |k,ωRk,ω),

for some Q1, · · · ,Qk+1 that only depend on the distribution of (X i)i∈I and where Rk,ω is defined in

(B.16). Suppose that f is a polynomial of degree at most k, then we observe that f ∈ Ck,ω(R) and
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| f |k,ω = 0. Thus, this implies that

T f ,0[0] = E[W f (W)] =

k+1∑

j=1

Q jE[∂
j−1 f (W )]. (B.42)

On the other hand, for any random variable, the moments (µ j) j≥0 and cumulants (κ j) j≥0, provided

that they exist, are connected through the following relations [Smith 1995]:

µn =

n∑

j=1

�
n− 1

j − 1

�
κ jµn− j. (B.43)

Using this we will obtain a similar expansion to (B.42) by using the cumulants (κ j). In this goal,

we first remark that if f (x) = x j where j ≤ k, then by using (B.43) we obtain that

E[W f (W)] = µ j+1(W ) =

j+1∑

h=1

�
j

h− 1

�
κh(W)µ j+1−h(W )

=

j∑

h=0

�
j

h

�
κh+1(W)µ j−h(W ) =

k∑

h=0

κh+1(W)

h!
E[∂ h f (W )].

Moreover, we remark that this can be generalized to arbitrary polynomials f of degree k. Indeed,

any polynomial f of degree k can be written as f (x) =
∑k

j=0
a j x

j for certain coefficients (a j). By

the linearity of expectations, we know that

E[W f (W )] =

k∑

j=0

κ j+1(W )

j!
E[∂ j f (W)].

Compare this to (B.42) and apply Lemma B.4. We conclude that Q j = κ j(W)/( j − 1)! for any

j ∈ [k+ 1]. In particular, Q1 = 0= κ1(W).

Next we upper-bound the cumulants of W using Rk,1.

Corollary B.5 (Bounds for Cumulants). For any k ∈ N+, there exists a constant Ck that only

depends on k such that
��κk+2(W)
��≤ CkRk,1.

Proof. Let f (x) = x k+1/(k + 1)!. We remark that f ∈ Λk+1 where Λk+1 := { f ∈ Ck,1(R) :

| f |k,1 ≤ 1}. Moreover, by using Proposition B.1 we have

E[W f (W )] =

k∑

j=1

κ j+1(W )

j!
E[∂ j f (W )] +O(Rk,1).

Here the constant dropped from the big O analysis is controlled by 4k. On the other hand, by

(B.43) we have

E[W f (W )] =
1

(k+ 1)!
µk+2(W)
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=

k+1∑

j=1

�
k+ 1

j

�
κ j+1(W )µk+1− j(W)

=

k∑

j=1

κ j+1(W )

j!
E[∂ j f (W )] +

κk+2(W )

(k+ 1)!
.

Thus, there exists Ck such that
��κk+2(W )
��≤ CkRk,1.

Finally, we are able to prove Lemma A.7 based on Proposition B.1 and Corollary B.5.

Proof of Lemma A.7. We perform induction on k := ⌈p⌉. We start with k = 1. In this goal,

we first remark that by Lemma A.4, we have f = Θh ∈ C1,ω(R) and that | f |1,ω is bounded by a

constant. Moreover, as f = Θh is the solution to the Stein equation (A.2). By Proposition B.1 we

obtain that

E[h(W )]−Nh= E[ f ′(W )]−E[W f (W )] =O(R1,ω).

Therefore, the desired result is established for 1. Suppose that the proposition holds for 1, · · · , k−1,

we want to prove that it will also hold for k. Let f = Θh, then by Lemma A.4 we know that

f ∈ Ck,ω(R) and that | f |k,ω is bounded by some constant that only depends on k,ω. Thus, by

Proposition B.1, we have

E[W f (W )] =

k∑

j=1

κ j+1(W )

j!
E[∂ j f (W )] +O(Rk,ω).

Hence we have the following expansion of the Stein equation

E[h(W)]−Nh=E[ f ′(W)]−E[W f (W )] = −
k∑

j=2

κ j+1(W )

j!
E[∂ j f (W )] +O(Rk,ω)

=−
k−1∑

j=1

κ j+2(W )

( j + 1)!
E[∂ j+1

Θh(W)] +O(Rk,ω). (B.44)

Noting that ∂ j+1
Θh ∈ Ck− j−1,ω(R) and |∂ j+1

Θh|k− j−1,ω is bounded by a constant only depending

on k,ω, then by inductive hypothesis we obtain that

E[∂ j+1
Θh(W)]−N [∂ j+1

Θh] =
∑

(r,s1:r )∈Γ (k− j−1)

(−1)r
r∏

ℓ=1

κsℓ+2(W )

(sℓ + 1)!
N
� r∏

ℓ=1

(∂ sℓ+1
Θ) ◦ ∂ j+1

Θ h
�

+O

�k− j−1∑

ℓ=1

R
(k− j−1+ω)/ℓ

ℓ,1
+

k− j∑

ℓ=1

R
(k− j−1+ω)/(ℓ+ω−1)

ℓ,ω

�
, (B.45)

where we denoted Γ (k− j − 1) :=
�

r, s1:r ∈ N+ :
∑r
ℓ=1

sℓ ≤ k− j − 1
	

.

By Corollary B.5 and Young’s inequality, we have

|κ j+2(W )R
k− j+ω−1
ℓ+ω−1

ℓ,ω
|® R j,1R

k− j+ω−1
ℓ+ω−1

ℓ,ω
≤ j

k+ω− 1
R

k+ω−1
j

j,1
+

k− j +ω− 1

k+ω− 1
R

k+ω−1
ℓ+ω−1

ℓ,ω
,

|κ j+2(W )R
k− j+ω−1

ℓ

ℓ,1
|® R j,1R

k− j+ω−1
ℓ

ℓ,1
≤ j

k+ω− 1
R

k+ω−1
j

j,1
+

k− j +ω− 1

k+ω− 1
R

k+ω−1
ℓ

ℓ,1
.

(B.46)
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Thus, we derive that

E[h(W)]−Nh

(B.44)
= −

k−1∑

j=1

κ j+2(W )

( j + 1)!
E[∂ j+1

Θh(W)] +O(Rk,ω)

(B.45)
= −

k−1∑

j=1

κ j+2(W )

( j + 1)!
N [∂ j+1

Θh]

+

k−1∑

j=1

κ j+2(W )

( j + 1)!

∑

(r,s1:r )∈Γ (k− j−1)

(−1)r
r∏

ℓ=1

κsℓ+2(W )

(sℓ + 1)!
N
� r∏

ℓ=1

(∂ sℓ+1
Θ) ◦ ∂ j+1

Θ h
�

+O

�
Rk,ω+

k−1∑

j=1

|κ j+2(W )|
k− j−1∑

ℓ=1

R
(k+ω− j−1)/ℓ

ℓ,1
+

k−1∑

j=1

|κ j+2(W )|
k− j∑

ℓ=1

R
(k+ω− j−1)/(ℓ+ω−1)

ℓ,ω

�

(B.46)
= −

k−1∑

j=1

κ j+2(W )

( j + 1)!
N [∂ j+1

Θh]

+

k−1∑

j=1

κ j+2(W )

( j + 1)!

∑

(r,s1:r )∈Γ (k− j−1)

(−1)r
r∏

ℓ=1

κsℓ+2(W )

(sℓ + 1)!
N
� r∏

ℓ=1

(∂ sℓ+1
Θ) ◦ ∂ j+1

Θ h
�

+O

�
Rk,ω+

k−1∑

j=1

R
(k+ω−1)/ j

j,1
+

k−1∑

j=1

k− j−1∑

ℓ=1

R
(k+ω−1)/ℓ

ℓ,1
+

k−1∑

j=1

k− j∑

ℓ=1

R
(k+ω−1)/(ℓ+ω−1)

ℓ,ω

�

=
∑

(r,s1:r)∈Γ (k−1)

(−1)r
r∏

ℓ=1

κsℓ+2(W )

(sℓ + 1)!
N
� r∏

ℓ=1

(∂ sℓ+1
Θ) h
�

+O

�k−1∑

ℓ=1

R
(k+ω−1)/ℓ

ℓ,1
+

k∑

ℓ=1

R
(k+ω−1)/(ℓ+ω−1)

ℓ,ω

�
.

Therefore, the desired property was established by induction.

C Proof of Lemma A.8

In Lemma A.8, we would like to find a random variable with a given sequence of real numbers

as its cumulants. Constructing a random variable from its cumulants can be difficult in practice.

However, there is a rich literature on establishing the existence of a random variable given the

moment sequence. And it is well-known that the moments can be recovered from the cumulants,

and vice versa. The explicit expression between moments µn and cumulants κn is achieved by

using the Bell polynomials, i.e.,

µn = Bn(κ1, · · · ,κn) =

n∑

j=1

Bn, j(κ1, · · · ,κn− j+1), (C.1)
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κn =

n∑

j=1

(−1) j−1( j − 1)!Bn, j(µ1, · · · ,µn− j+1), (C.2)

where Bn and Bn, j are the exponential Bell polynomial defined by

Bn(x1, · · · , xn) :=

n∑

j=1

Bn, j(x1, x2, · · · , xn− j+1),

Bn, j(x1, x2, · · · , xn− j+1) :=
∑ n!

i1!i2! · · · in− j+1!

� x1

1!

�i1� x2

2!

�i2 · · ·
� xn− j+1

(n− j + 1)!

�in− j+1

.

(C.3)

The sum here is taken over all sequences i1, · · · , in− j+1 of non-negative integers such that the fol-

lowing two conditions are satisfied:

i1 + i2 + · · ·+ in− j+1 = j,

i1 + 2i2 + · · ·+ (n− j + 1)in− j+1 = n.

In mathematics, the classical moment problem is formulated as follows: Given a sequence (µi)i≥0,

does there exist a random variable defined on a given interval such that µ j = E[X
j] for any non-

negative integer j? There are three essentially different types of (closed) intervals. Either two

end-points are finite, one end-point is finite, or no end-points are finite, which corresponds to

the Hamburger, Hausdorff, and Stieltjes moment problem respectively. See Akhiezer [2020]; Berg

[1995] or Tamarkin et al. [1943] for a detailed discussion. For our purpose, there is no restriction on

the support of random variables. Thus, the following lemma for the Hamburger moment problem

is all we need.

Lemma C.1. The Hamburger moment problem is solvable, i.e., (µ j) j≥0 is a sequence of moments

if and only if µ0 = 1 and the corresponding Hankel kernel

H =





µ0 µ1 µ2 · · ·
µ1 µ2 µ3 · · ·
µ2 µ3 µ4 · · ·
...

...
...

. . .



 (C.4)

is positive definite, i.e., ∑

j,k≥0

µ j+kc jck ≥ 0

for every real sequence (c j) j≥0 with finite support, i.e., c j = 0 except for finitely many j’s.

If we define the ( j+1)-th upper-left determinant of a Hankel matrix by

H j(x0, x1, · · · , x2 j) :=

��������

x0 x1 · · · x j

x1 x2 · · · x j+1
...

...
. . .

...

x j x j+1 · · · x2 j

��������
, (C.5)
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by Sylvester’s criterion in linear algebra [Gilbert 1991], the positive-definite condition above is

equivalent to H j(µ0, · · · ,µ2 j) > 0 for any j ∈ N+.

In order to prove Lemma A.8, we construct a Hankel matrix from given values of cumulants and

ensure that the upper-left determinants of (C.4) are all positive. Then by Lemma C.1, there exists a

random variable that has matched moments with the ones in (C.4) and hence it also has the required

cumulants by (C.2).

For convenience, we write

L j(x1, · · · , x2 j) := H j(1, B1(x1), B2(x1, x2), · · · , B2 j(x1, · · · , x2 j)).

Taking x1 = 0, from the definitions (C.3) and (C.5), there is an expansion

L j(0, x2, · · · , x2 j) = H j(1, 0, B2(0, x2), · · · , B2 j(0, x2, · · · , x2 j)) =
∑

a( j)
t2 ,··· ,t2 j

x
t2

2 · · · x
t2 j

2 j
, (C.6)

where the sum is taken over

t2+ t3 + · · ·+ t2 j ≥ j,

2t2 + 3t3 + · · ·+ (2 j)t2 j = j( j + 1).

We further define in the following way a sequence of univariate polynomials which will be essential

in our construction in Lemma A.8, by setting

Pj(x) := L j(0, 1, x , x2, x3, · · · , x2 j−2).

Firstly, we present a lemma on the properties of Pj(x).

Lemma C.2. Pj(x) is a polynomial of degree at most j( j − 1) with only even-degree terms and if

we write

Pj(x) =

j( j−1)/2∑

ℓ=0

b
( j)

2ℓ
x2ℓ,

we have b
( j)

0 = a
( j)

j( j+1)/2,0,··· ,0 ≥ 2 for any j ≥ 2, j ∈ N+.

Proof. Note that by applying (C.6) we obtain that

Pj(x) = L j(0, 1, x , · · · , x2 j−2) =
∑

a( j)
t2 ,··· ,t2 j

x t3+2t4+···+(2 j−2)t2 j , (C.7)

where the sum is taken over

t2+ t3 + · · ·+ t2 j ≥ j,

2t2 + 3t3 + · · ·+ (2 j)t2 j = j( j + 1).

The degree of each term in (C.7) is

t3+ 2t4 + · · ·+ (2 j − 2)t2 j
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=(2t2+ 3t3 + · · ·+ (2 j)t2 j)− 2(t2 + t3+ · · ·+ t2 j)

= j( j + 1)− 2(t2+ t3 + · · ·+ t2 j).

This is even and no greater than j( j − 1) since t2 + t3 + · · ·+ t2 j ≥ j.

Then we show the constant term b
( j)

0 ≥ 2. Consider a standard normal random variable ξ ∼
N (0, 1). Then κ j(ξ) = 0 for all j ≥ 1, j 6= 2, and κ2(ξ) = 1, which is straightforward by checking

that the moment generating function of ξ is exp(t2/2). By Lemma C.1, we have

b
( j)

0 = Pj(0) = L j(0, 1, 0, · · · , 0)

=L j(κ1(ξ),κ2(ξ), · · · ,κ2 j(ξ))

=H j(µ0(ξ),µ1(ξ), · · · ,µ2 j(ξ))> 0.

Since µ2ℓ(ξ) = (2ℓ−1)!! and µ2ℓ−1(ξ) = 0 are integers for ℓ ∈ N+, b
( j)

0 is also an integer. Checking

Leibniz formula of the determinant for the Hankel matrix H j [Lang 2012], we observe that there

is an even number of terms and that each term is odd. In specific, the determinant for the Hankel

matrix is given by

b
( j)

0 = H j(µ0(ξ),µ1(ξ), · · · ,µ2 j(ξ)) =
∑

τ∈S j

sgn(τ)

j∏

i=1

µτ(i)+i−2(ξ),

where by abuse of notation sgn is the sign function of permutations in the j-th permutation group

S j , which returns+1 and−1 for even and odd permutations, respectively. Since µ2ℓ(ξ) = (2ℓ−1)!!

and µ2ℓ−1(ξ) = 0 for all ℓ ∈ N+, we have

sgn(τ)

j∏

i=1

µτ(i)+i−2(ξ)

¨
is odd if τ(i) + i is even ∀i = 1, · · · , j

= 0 otherwise
.

Noting that the number of permutations τ that satisfies τ(i) + i is even for all i = 1, · · · , j is ( j!)2,

which is even when j ≥ 2, we conclude that b
( j)

0 is even, and thus, it should be at least 2.

As we have explained at the beginning of this section, we would like to construct a ‘moment’

sequence such that the corresponding Hankel kernel is positive definite. The following lemma

offers one single step in the construction.

Lemma C.3. Suppose there is some constant C such that |µℓ| ≤ C for ℓ = 1, · · · , 2 j + 1 and

H j(µ0, · · · ,µ2 j) ≥ 1. Then there exists C ′ only depending on j and C such that

H j+1(µ0, · · · ,µ2 j,µ2 j+1, C ′) ≥ 1.

Proof. Let C ′ = ( j + 1)( j + 1)!C j+2 + 1. Then by the Laplace expansion [Lang 2012] of the

determinant, we have

H j+1(µ0, · · · ,µ2 j,µ2 j+1, C ′) =C ′H j(µ0, · · · ,µ2 j) +

j∑

ℓ=0

(−1) j+1+ℓµ j+1+ℓA j+2,ℓ+1
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≥C ′ − ( j + 1)C · ( j + 1)!C j+1 ≥ 1,

where A j+2,ℓ+1 is the determinant of the ( j+1)× ( j+1) submatrix obtained by deleting the ( j+2)-th

row and (ℓ+1)-th column of

A=





µ0 µ1 · · · µ j+1

µ1 µ2 · · · µ j+2
...

...
. . .

...

µ j+1 µ j+2 · · · C ′



 .

Now we prove Lemma A.8.

Proof of Lemma A.8. The key of the proof will be to use Lemma C.1. To do so we need to

postulate an infinite sequence that will be our candidates for of potential moments and check that

the conditions of Lemma C.1 hold. We remark that as we already know what we want the first

k+1 cumulants to be, we already know what the candidates are for the first k+1 moments; and we

only to find adequate proposal for the (k+2)-th moment onward. We will do so by iteratively using

Lemma C.3.

In this goal, we remark that since by Lemma C.2 we know that b
( j)

0 ≥ 2. Therefore, we can choose

a small enough constant 0 < Cp < 1 only depending on k = ⌈p⌉ such that

b
( j)

0 −
j( j−1)/2∑

ℓ=1

∑

2t2+2t3+···+2t2 j= j( j+1)−2ℓ

2t2+3t3+···+2 j t2 j= j( j+1)

|a( j)
t2 ,··· ,t2 j
|C2ℓ

p
≥ 1, (C.8)

for any integer j = 1, · · · , (k + 1)/2. Given an index set In, if u
(n)

j
= 0 for all j = 1, · · · , k− 1, let

ξ(n) ∼N (0, 1) and qn≫ |In|. Then qn and ξ(n) satisfy all the requirements since κ j(ξ
(n)) = 0 for all

j ∈ N+, j 6= 2 and κ2(ξ
(n)) = 1, which is straightforward by checking that the momemt generating

function of ξ(n) is exp(t2/2).

Otherwise, let

qn :=
�

min
1≤ j≤k−1,u

(n)

j
6=0

�
C2

p
|u(n)j |−2/ j
	�

, (C.9)

where ⌊x⌋ denotes the largest integer not exceeding x . Since by assumption, for any j = 1, · · · , k−
1, u

(n)

j
→ 0 as n→∞, then we know that there exists N > 0 such that (i) qn ≥ 1 for any n > N

and (ii) qn →∞ as n→∞. We note that by definition min1≤ j≤k−1,u
(n)

j
6=0

�
C2

p
|u(n)j |−2/ j
	
< qn + 1,

which implies

max
1≤ j≤k−1

�
q j/2

n
|u(n)

j
|
	
> C j

p

�
qn/(qn + 1)
� j/2
> C p

p
/2p/2. (C.10)

On the other hand, (C.9) also implies that C2
p
|u(n)

j
|−2/ j ≥ qn. Thus, q j/2

n
|u(n)

j
| ≤ C j

p
. Now let eκ j+2 :=

q j/2
n

u
(n)

j . We remark that eκ j+2 ≤ C j
p

and κ̃ j+2 ≥ C p
p
/2p/2. We write eµ j+2 := B j+2(0,eκ2, · · · , eκ j+2) for

j = 1, · · · , k − 1. Those will be our candidates for the first k+1 moments. Moreover, if k is odd,

we also propose a candidate for (k+2)-th moment by setting eµk+2 := 0.
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For j = 1, · · · , ⌈k/2⌉ by (C.6) we have

H j(1, 0, eµ2, eµ3, · · · , eµ2 j) = L j(0,eκ2,eκ3, · · · ,eκ2 j)

=
∑

2t2+3t3+···+2 j t2 j= j( j+1)

a( j)
t2,··· ,t2 j
eκt2

2 · · · eκ
t2 j

2 j
=

j( j−1)/2∑

ℓ=0

∑

2t2+2t3+···+2t2 j= j( j+1)−2ℓ

2t2+3t3+···+2 j t2 j= j( j+1)

a( j)
t2,··· ,t2 j
eκt2

2 · · · eκ
t2 j

2 j

(a)

≥b
( j)

0 −
j( j−1)/2∑

ℓ=1

∑

2t2+2t3+···+2t2 j= j( j+1)−2ℓ

2t2+3t3+···+2 j t2 j= j( j+1)

��a( j)
t2,··· ,t2 j
eκt2

2 · · · eκ
t2 j

2 j

��

(b)

≥b
( j)

0 −
j( j−1)/2∑

ℓ=1

∑

2t2+2t3+···+2t2 j= j( j+1)−2ℓ

2t2+3t3+···+2 j t2 j= j( j+1)

|a( j)
t2 ,··· ,t2 j
|C2ℓ

p

(c)

≥ 1.

where to get (a) we used the definition of b
( j)

0 , and where to obtain (b) we used the fact that

|eκ j+2| ≤ C j
p
, and where to get (c) we used (C.8). Moreover, as |eκ j+2| ≤ C j

p
, then we know that

there exists some constant C ′
p

such that |eµ j+2| = |B j+2(0, eκ2, · · · , eκ j+2)| ≤ C ′
p

for any integer j =

1, · · · , 2⌈k/2⌉ − 1. Therefore, by Lemma C.3, there exists C ′′
p

depending on k = ⌈p⌉ and C ′
p

such

that

H⌈k/2⌉+1(1, 0, eµ2, · · · , eµ2⌈k/2⌉+1, C ′′
p
) ≥ 1.

Let eµ2⌈k/2⌉+2 := C ′′
p

. Applying Lemma C.3 repeatedly, we get a sequence (eµ j) j≥1 such that eµ0 = 1

and H j(eµ0, eµ1, · · · , eµ2 j) ≥ 1 > 0 for any j ∈ N+. The sequence (µ̃ j) is then our candidate for the

moments and we remark that they satisfy the conditions of Lemma C.1. Therefore, by Lemma C.1,

we conclude that there exists ξ(n) such that µ j(ξ
(n)) = eµ j for any j ∈ N+. As the first k+1 moments

uniquely define the first k+1 cumulants of a random variable we have κ j+2(ξ
(n)) = eκ j+2 = q j/2

n
u
(n)

j

for all j = 1, · · · , k − 1. Thus, the qn and ξ(n) that we have constructed meet the requirements of

Lemmas A.8a and A.8b. Moreover, (C.10) implies that Lemma A.8c is also satisfied. Lastly, to

show Lemma A.8d we note that

E[|ξ(n)|p+2] = ‖ξ(n)‖p+2

p+2

(∗)
≤ ‖ξ(n)‖p+2

2⌈k/2⌉+2
=
�
µ2⌈k/2⌉+2(ξ

(n))
�(p+2)/(2⌈k/2⌉+2) ≤ (C ′′

p
)(p+2)/(2⌈k/2⌉+2).

Here (∗) is due to the fact that k = ⌈p⌉ ≥ p.

D Proofs of other results in Sections 3 and 4

In this section, we provide the proofs of Proposition 3.2, Theorem 3.3, and Corollaries 4.2 and 4.4.

D.1 Proof of Proposition 3.2

For ease of notation, in this subsection we will drop the dependence on n in our notation and write

W , N( · ), σ, X i , I and R j,ω for respectively Wn, Nn( · ), σn, X
(n)

i
, In and R j,ω,n.
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Before we prove the bounds for Rk,ω, we note that Rk,ω can be defined without assuming local

dependence [LD*]. Thus, we first aim to generalize this concept, which makes the result derived

in Proposition D.1 also applicable in general dependent situations. Let (X i)i∈I be a class of mean

zero random variables indexed by I . For any graph G (not necessarily the dependency graph) with

the vertex set I and a subset J ⊆ I , we define N(J) to be vertex set of the neighborhood of J . As

in Appendix B, we assume Var
�∑

i∈I X i

�
= 1, without loss of generality. Let W =

∑
i∈I X i .

We extend the notation of R-sums defined in (B.11) to this general setting. Given an integer k ∈ N+
such that k ≥ 2, for any t1:k ∈ Z such that |t j| ≤ j − 1 for any j ∈ [k], let z =

��{ j : t j > 0}
��. If

z ≥ 1, we write { j : t j > 0} = {q1, · · · , qz}, where the sequence 2 ≤ q1 < · · · < qz ≤ k is taken to

be increasing. We further let q0 := 1 and qz+1 := k+ 1. Then we could still define the R-sums by

Rω[t1, t2, · · · , tk] :=
∑

i1∈N1

∑

i2∈N2

· · ·
∑

ik−1∈Nk−1

[q1 − q0, · · · , qz+1 − qz] ⊲
�
|X i1
|, · · · , |X ik−1

|,
�∑

ik∈Nk

|X ik
|
�ω�

,

where N1 := I , and for 2≤ j ≤ k

N j :=

¨
N(i1:|t j |) = N(i1, · · · , i|t j |) if t j 6= 0

; if t j = 0
.

Now the remainder term Rk,ω is defined as

Rk,ω :=
∑

(ℓ,η1:ℓ)∈C∗(k+2)

∑

i1∈N ′
1

∑

i2∈N ′
2

· · ·
∑

ik+1∈N ′
k+1

[η1, · · · ,ηℓ] ⊲
�
|X i1
|, · · · , |X ik+1

|,
� ∑

ik+2∈N ′
k+2

|X ik+2
|
�ω�

=
∑

t1:(k+2)∈M1,k+2

Rω[t1, t2, · · · , tk+2]. (D.1)

where N ′
1

:= I and N ′
j
:= N(i1:( j−1)) for j ≥ 2. C∗(k+ 2) and M1,k+2 are given by

C∗(k+ 2) =
�
ℓ,η1:ℓ ∈ N+ : η j ≥ 2 ∀ j ∈ [ℓ− 1],

ℓ∑

j=1

η j = k+ 2
	
,

and

M1,k+2 :=
¦

t1:(k+2) : t j+1 = ± j & t j ∧ t j+1 < 0 ∀1≤ j ≤ k+ 1
©

.

Note that the expressions of R-sums and Rk,ω have the same forms as those in Appendix B.2, but

here we do not impose the assumption of the local dependence of (X i)i∈I anymore as N(i1:q)’s are

defined directly from the graph structure we constructed on I . The main goal of this section is to

prove the following proposition.

Proposition D.1. Fix k ∈ N+ such that k ≥ 2 and real number ω ∈ (0, 1]. Let N(J) be defined

as above and suppose the cardinality of N(J) is upper-bounded by M for any |J | ≤ k. Then there

exists a constant Ck+ω only depending on k+ω such that

Rω[t1, t2, · · · , tk]≤ Ck+ωM k−2+ω
∑

i∈I

E[|X i|k−1+ω].
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Before proving Proposition D.1, we need the following two lemmas. Lemma D.2 helps us change

the order of summation in Rω[t1, · · · , tk] and Lemma D.3 is a generalized version of Young’s

inequality, which allows us to bound the expectations of products by sums of moments.

Lemma D.2. Fix k ∈ N+ such that k ≥ 2. For any J ⊆ I , let N(J) be defined as above. Suppose

(i1, · · · , ik) is a tuple such that i1 ∈ I , i2 ∈ N(i1), · · · , ik ∈ N(i1:(k−1)). Then for any 1 ≤ h ≤ k,

there exists a permutation π on [k] such that π(1) = h, iπ(1) ∈ I , iπ(2) ∈ N
�
iπ(1)
�
, · · · , iπ(k) ∈

N
�
iπ(1), · · · , iπ(k−1)

�
.

Proof. We perform induction on k.

Firstly, suppose that k = 2, then we remark that i2 ∈ N(i1)⇔ i1 ∈ N(i2). For h = 1, we can

choose π to be the identity and the desired identity holds. For h = 2, we let π(1) := 2 and

π(2) := 1 and remark than once again the desired result holds.

Suppose that the proposition is true for 2, · · · , k−1. We want to prove that it holds for k. If h< k,

consider the tuple (i1, · · · , ih). By inductive hypothesis, there is a permutation eπ on {1, 2, · · · , h}
such that eπ(1) = h, ieπ(2) ∈ N

�
ieπ(1)
�
, · · · , ieπ(h) ∈ N
�
ieπ(1), · · · , ieπ(q−1)

�
. Define

π( j) :=

�
eπ( j) if 1 ≤ j ≤ h

j if h+ 1≤ j ≤ k
.

Then π satisfies the requirements in the lemma.

Now suppose h = k. ik ∈ N(i1:(k−1)) indicates that ik is a neighbor of {i1, · · · , ik−1}. Then there

exists 1 ≤ ℓ ≤ k − 1 such that there is an edge between ik and iℓ in the graph G = (I , E). Thus,

ih ∈ N(iℓ).

By inductive hypothesis, there is a permutation eπ on [ℓ] such that eπ(1) = ℓ, ieπ(2) ∈ N
�
ieπ(1)
�
, · · · ,

ieπ(ℓ) ∈ N
�
ieπ(1), · · · , ieπ(ℓ−1)

�
.

Define

π( j) :=






k if j = 1

eπ( j − 1) if 2≤ j ≤ ℓ+ 1

j − 1 if ℓ+ 2 ≤ j ≤ k

.

Then π(1) = h = k, and moreover, we have iπ(2) = iℓ ∈ N(ik) = N
�
iπ(1)
�
. Moreover, we note that

for all j = 3, · · · ,ℓ we have iπ( j+1) = ieπ( j) ∈ N
�
ieπ(1), · · · , ieπ( j−1)

�
= N
�
iπ(1), · · · , iπ( j)
�
. Finally for

all j ≥ ℓ+ 1 we have iπ( j+1) = i j ∈ N(i1:( j−1)) ⊆ N
�
i1, · · · , i j−1, ik

�
= N
�
iπ(1), · · · , iπ( j)
�
. Thus, the

lemma holds for k as well. By induction, the proof is complete.

Also, we need a generalization of Young’s inequality.

Lemma D.3. Given t ∈ N+, let Y1, · · · , Yt be a sequence of random variables, and real numbers

p1, · · · , pt > 1 satisfy that 1/p1 + · · ·+ 1/pt = 1. Then for any (ℓ,η1:ℓ) ∈ C(t) := {ℓ,η1:ℓ ∈ N+ :∑ℓ
j=1
η j = t}, we have that

[η1, · · · ,ηℓ] ⊲ (|Y1|, · · · , |Yt |)≤
1

p1

E[|Y1|p1] + · · ·+ 1

pt

E[|Yt |pt ]. (D.2)
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Proof. First, we prove

E[|Y1 · · ·Yt |]≤
1

p1

E[|Y1|p1] + · · ·+ 1

pt

E[|Yt |pt ], (D.3)

E[|Y1|] · · ·E[|Yt |]≤
1

p1

E[|Y1|p1] + · · ·+ 1

pt

E[|Yt |pt]. (D.4)

In this goal, note that Young’s inequality is stated as follows: For any a1, · · · , at ≥ 0, and p1, · · · , pt >

1 such that 1/p1 + · · ·+ 1/pt = 1, we have

a1 · · · at ≤
1

p1

a
p1

1 + · · ·+
1

pt

a
pt

t .

Thus, by Young’s inequality we know that

|Y1 · · ·Yt | ≤
1

p1

|Y1|p1 + · · ·+ 1

pt

|Yt |pt .

Taking the expectation, we have

E[|Y1 · · ·Yt |]≤
1

p1

E[|Y1|p1] + · · ·+ 1

pt

E[|Yt |pt].

Again by Young’s inequality, we obtain that

E[|Y1|] · · ·E[|Yt |]≤
1

p1

E[|Y1|]p1 + · · ·+ 1

pt

E[|Yt |]pt .

By Jensen’s inequality, E[|Yi|]pi ≤ E[|Yi|pi] for i ∈ [t]. This implies that

E[|Y1|] · · ·E[|Yt |]≤
1

p1

E[|Y1|p1] + · · ·+ 1

pt

E[|Yt |pt].

Finally, we prove (D.2). Let 1/q j :=
∑η j

i=η j−1+1 1/pi for 1≤ j ≤ k.

[η1, · · · ,ηℓ] ⊲ (|Y1|, · · · , |Yk|)
=E
���Y1 · · ·Yη1

��� E
���Yη1+1 · · ·Yη2

��� · · · E
���Yη1+···+ηℓ−1+1 · · · Yk

���

(D.4)

≤ 1

q1

E
���Y1 · · · Yη1

��q1
�
+ · · ·+ 1

qk

E
���Yη1+···+ηℓ−1+1 · · · Yk

��qk
�

(D.3)

≤ 1

p1

E[|Y1|p1] + · · ·+ 1

pη1

E[|Yη1
|pη1] + · · ·

+
1

pη1+···+ηℓ−1+1

E[|Yk+1−uℓ
|pη1+···+ηℓ−1+1] + · · ·+ 1

pk

E[|Yk|pk].

Now we are ready to prove Proposition D.1.
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Proof of Proposition D.1. By (B.13), we only need to prove that the following inequality holds

for any k ∈ N+:

Rω[0,±1, · · · ,±k] ® M k−1+ω
∑

i∈I

E[|X i |k+ω].

Once again we write z :=
��{ j : t j > 0}
��. If z ≥ 1, we write { j : t j > 0} = {q1, · · · , qz}, where

2≤ q1 < · · · < qz ≤ k is increasing. Further let q0 := 1 and qz+1 := k+ 1.

Noticing that
1

k+ω
+ · · ·+ 1

k+ω︸ ︷︷ ︸
k times

+
ω

k+ω
= 1,

we apply Lemma D.3 and obtain that

[q1 − q0, · · · , qz+1 − qz] ⊲

�
|X i1
|, · · · , |X ik

|,
�

1

M

∑

ik+1∈N(i1:k)

��X ik+1

��
�ω�

®E[|X i1
|k+ω] + · · · +E[|X ik

|k+ω] +E
��

1

M

∑

ik+1∈N(i1:k)

��X ik+1

��
�k+ω�

. (D.5)

Now by Jensen’s inequality and the fact that
��N(i1:k)
��≤ M , we get that

E

��
1

M

∑

ik+1∈N(i1:k)

��X ik+1

��
�k+ω�

≤ 1

M

∑

ik+1∈N(i1:k)

E[|X ik+1
|k+ω].

Moreover, we remark that

Mω[q1 − q0, · · · , qz+1 − qz] ⊲

�
|X i1
|, · · · , |X ik

|,
�

1

M

∑

ik+1∈N(i1:k)

��X ik+1

��
�ω�

=[q1 − q0, · · · , qz+1 − qz] ⊲

�
|X i1
|, · · · , |X ik

|,
� ∑

ik+1∈N(i1:k)

��X ik+1

��
�ω� (D.6)

Thus, this implies that

Rω[0,±1, · · · ,±k] (D.7)

=
∑

i1∈I

· · ·
∑

ik∈N(i1:(k−1))

[q1 − q0, · · · , qz+1 − qz] ⊲

�
|X i1
|, · · · , |X ik

|,
� ∑

ik+1∈N(i1:k)

��X ik+1

��
�ω�

®Mω
∑

i1∈I

· · ·
∑

ik∈N(i1:(k−1))

�
E[|X i1

|k+ω] + · · ·+E[|X ik
|k+ω] + 1

M

∑

ik+1∈N(i1:k)

E[|X ik+1
|k+ω]
�

. (D.8)

Since the cardinality of N(i1), · · · , N(i1:k) are bounded by M , for j = 1 we have

∑

i1∈I

∑

i2∈N(i1)

· · ·
∑

ik∈N(i1:(k−1))

E[|X i j
|k+ω]≤ M k−1
∑

i∈I

E[|X i|k+ω]. (D.9)
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Now we bound ∑

i1∈I

∑

i2∈N(i1)

· · ·
∑

ik∈N(i1:(k−1))

E[|X i j
|k+ω],

where j = 2, · · · , k.

By Lemma D.2, for any tuple (i1, · · · , ik) in the summation, there exists a permutation π such that

π(1) = j, iπ(2) ∈ N
�
iπ(1)
�
, · · · , iπ(k) ∈ N
�
iπ(1), · · · , iπ(k−1)

�
. Let φ j be a map that sends (i1, · · · , ik)

to
�
iπ(1), · · · , iπ(k)
�
. Then no more than (k − 1)! tuples are mapped to the same destination since

(i1, · · · , ik) is a permutation of
�
iπ(1), · · · , iπ(k)
�

and i j is fixed to be iπ(1). Thus, we obtain that

∑

i1∈I

∑

i2∈N(i1)

· · ·
∑

ik∈N(i1:(k−1))

E[|X i j
|k+ω]

≤(k− 1)!
∑

π:π(1)= j

∑

iπ(1)∈I

∑

iπ(2)∈N(iπ(1))

· · ·
∑

iπ(k)∈N(iπ(1),··· ,iπ(k−1))

E[|X iπ(1)
|k+ω]

≤(k− 1)!
∑

π:π(1)= j

∑

i1∈I

∑

i2∈N(i1)

· · ·
∑

ik∈N(i1:(k−1))

E[|X i j
|k+ω]

≤((k− 1)!)2M k−1
∑

i∈I

E[|X i|k+ω] ® M k−1
∑

i∈I

E[|X i|k+ω]. (D.10)

Similarly, ∑

i1∈I

∑

i2∈N(i1)

· · ·
∑

ik+1∈N(i1:k)

E[|X ik+1
|k+ω]® M k
∑

i∈I

E[|X i |k+ω]. (D.11)

Substituting (D.9), (D.10), and (D.11) into (D.7), we conclude

Rω[t1, t2, · · · , tk]≤Rω
�
0, sgn(t2), 2 · sgn(t3), · · · , (k− 1) sgn(tk−1)

�

®M k−2+ω
∑

i∈I

E[|X i|k−1+ω].

Proof of Proposition 3.2. By Proposition D.1, we have

Rk,ω

(D.1)
=
∑

t1:(k+2)∈M1,k+2

Rω[t1, t2, · · · , tk+2]®
∑

t1:(k+2)∈M1,k+2

M k+ω
∑

i∈I

E[|X i|k+1+ω].

Noting that |M1,k+2|< 2k+1 [Heubach & Mansour 2009], we conclude that

Rk,ω ® M k+ω
∑

i∈I

E[|X i |k+1+ω].

D.2 Proof of Theorem 3.3

The proof of Theorem 3.3 relies on Theorem 3.1 and Proposition 3.2.

55



D.2 Proof of Theorem 3.3 D PROOFS OF OTHER RESULTS IN SECTIONS 3 AND 4

Proof of Theorem 3.3. Let k := ⌈p⌉. Then p = k+ω−1. Without loss of generality, we assume

σn = 1. By Proposition 3.2,

R j,ω,n ® M j+ω
n

∑

i∈In

E
���X (n)

i

�� j+1+ω�
.

If we let q1 = (k − 1)/(k − j) and q2 = (k − 1)/( j − 1), then 1/q1 + 1/q2 = 1 and (2+ω)/q1 +

(k+ 1+ω)/q2 = j + 1+ω. Thus,

��X (n)
i

�� j+1+ω
=
��X (n)

i

��(2+ω)/q1 ·
��X (n)

i

��(k+1+ω)/q2
.

By Hölder’s inequality,

M j+ω
n

∑

i∈In

E
���X (n)

i

�� j+1+ω�

≤
�
M1+ω

n

∑

i∈In

E
���X (n)

i

��2+ω�
�1/q1
�
M k+ω

n

∑

i∈In

E
���X (n)

i

��k+1+ω��1/q2

=
�
M1+ω

n

∑

i∈In

E
���X (n)

i

��2+ω�
�(k− j)/(k−1)�

M k+ω
n

∑

i∈In

E
���X (n)

i

��k+1+ω��( j−1)/(k−1)

.

Since
ω(k− j)

(k− 1)( j +ω− 1)
+
( j − 1)(k+ω− 1)

(k− 1)( j +ω− 1)
= 1,

by Young’s inequality (See Lemma D.3 for details), we get

�
M1+ω

n

∑

i∈In

E
���X (n)

i

��2+ω�
� k− j

(k−1)( j+ω−1)
�
M k+ω

n

∑

i∈In

E
���X (n)

i

��k+1+ω�� j−1

(k−1)( j+ω−1)

≤ ω(k− j)

(k− 1)( j +ω− 1)

�
M1+ω

n

∑

i∈In

E
���X (n)

i

��2+ω�
�1/ω

+
( j − 1)(k+ω− 1)

(k− 1)( j +ω− 1)

�
M k+ω

n

∑

i∈In

E
���X (n)

i

��k+1+ω��1/(k+ω−1)

.

Thus, we have

R
1/( j+ω−1)

j,ω,n
®

�
M1+ω

n

∑

i∈In

E
���X (n)

i

��2+ω�
�1/ω

+
�
M k+ω

n

∑

i∈In

E
���X (n)

i

��k+1+ω��1/(k+ω−1)

.

Similarly, we derive that

R
1/ j

j,1,n
®

�
M j+1

n

∑

i∈In

E
���X (n)

i

�� j+2��1/ j

≤
�
M1+ω

n

∑

i∈In

E
���X (n)

i

��2+ω�
� k+ω− j−1

k j
�
M k+ω

n

∑

i∈In

E
���X (n)

i

��k+1+ω�� j−ω(k−1) j

®

�
M1+ω

n

∑

i∈In

E
���X (n)

i

��2+ω�
�1/ω

+
�
M k+ω

n

∑

i∈In

E
���X (n)

i

��k+1+ω��1/(k+ω−1)

.
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Since by assumption M1+ω
n

∑
i∈In
E
���X (n)

i

��ω+2�→ 0 and M k+ω
n

∑
i∈In
E
���X (n)

i

��p+2�→ 0 as n→∞,

we have that R j,1,n → 0 as n → ∞. Therefore, by Theorem 3.1 and noting the fact that p =

k+ω− 1, we conclude

Wp(L(Wn),N (0, 1))≤ Cp

��
M1+ω

n

∑

i∈In

E
���X (n)

i

��ω+2��1/ω
+
�
M p+1

n

∑

i∈In

E
���X (n)

i

��p+2��1/p�
,

where Cp only depends on p.

D.3 Proofs of Corollaries 4.2 and 4.4

Proof of Corollary 4.2. Define the graph (Tn, En) to be such that there is an edge between i1, i2 ∈
Tn if and only if ‖i1 − i2‖ ≤ m. From the definition of the m-dependent random field,

�
X
(n)

i

�
i∈Tn

satisfies [LD*]. We will therefore apply Theorem 3.3 to obtain the desired result. We remark that

j ∈ Nn

�
i1:(⌈p⌉+1)

�
only if there is ℓ ∈ [⌈p⌉+ 1] such that ‖iℓ − j‖ ≤ m, which directly implies that��Nn

�
i1:(⌈p⌉+1)

���≤ (2m+ 1)d(⌈p⌉+ 1).

Moreover, by Hölder’s inequality, we have

∑

i∈Tn

E
���X (n)

i

��ω+2� ≤
�∑

i∈Tn

E
���X (n)

i

��2�
�(p−ω)/p�∑

i∈Tn

E
���X (n)

i

��p+2��ω/p

(a)

≤M (p−ω)/pσ2(p−ω)/p
�∑

i∈Tn

E
���X (n)

i

��p+2��ω/p
.

Here (a) is due to the non-degeneracy condition. And this directly implies that

m(1+ω)d/ω
�
σ−(ω+2)

n

∑

i∈Tn

E
���X (n)

i

��ω+2��1/ω

≤m
(1+ω)d
ω M

p−ω
pω

�
σ−(p+2)

n

∑

i∈Tn

E
���X (n)

i

��p+2��1/p → 0 as n→∞.

Therefore, by Theorem 3.3, there exists Cp,d > 0 such that for n large enough we have

Wp(L(Wn),N (0, 1))≤ Cp,dm
(1+ω)d
ω M

p−ω
pω σ

− p+2
p

n

�∑

i∈Tn

E
���X (n)

i

��p+2��1/p
.

Moreover, if
�
X
(n)

i

�
is in addition assumed to be stationary, then by assumption there is a constant

K such that lim infn→∞σ
2
n
/|Tn| ≥ K . Therefore, we get that

σ−(p+2)
n

∑

i∈Tn

E
���X (n)

i

��p+2�≍ |Tn|−(p+2)/2 · |Tn| = |Tn|−p/2→ 0,

57



E PROOFS OF RESULTS IN SECTION 5

and

Wp(L(Wn),N (0, 1))≤ Cp,dm
(1+ω)d
ω M

p−ω
pω σ

− p+2
p

n

�∑

i∈Tn

E
���X (n)

i

��p+2��1/p
= O(|Tn|−1/2).

Proof of Corollary 4.4. Consider the index set In = {i= (i1, · · · , im) : 1≤ i1 ≤ · · · ≤ im ≤ n} ⊆
Zm. For each i ∈ In, let ξi := h(X i1

, · · · , X im
). Then Wn = σ

−1
n

∑
i∈I ξi. Let (In, En) be the graph

such that there is an edge between i,j ∈ In if and only if {i1, · · · , im} ∩ { j1, · · · , jm} 6= ;.
Then we remark that the conditions [LD*] holds. Moreover, note that j is in Nn(i1:(⌈p⌉+1)) only if

there is ℓ ∈ [⌈p⌉+ 1] and k1, k2 ∈ [m] such that jk1
= (iℓ)k2

, where (iℓ)k2
denotes the k2-th com-

ponent of the vector iℓ. This directly implies that the cardinality of the dependency neighborhoods

are bounded by nm −
�
n−m(⌈p⌉+ 1)
�m ≍ nm−1. Moreover, the non-degeneracy condition of the

U-statistic implies that σ2
n
≍ n2m−1 [Chen & Shao 2007]. Applying Theorem 3.3, we get that

Wp(L(Wn),N (0, 1))

®

�
nm(nm−1)1+ω

1

σω+2
n

E
���h(X1, · · · , Xm)

��ω+2��1/ω

+
�
nm(nm−1)p+1 1

σ
p+2
n

E
���h(X1, · · · , Xm)

��p+2��1/p

®n−1/2
�
E
���h(X1, · · · , Xm)

��ω+2��1/ω
+ n−1/2
�
E
���h(X1, · · · , Xm)

��p+2��1/p

≤n−1/2


h(X1, · · · , Xm)


(ω+2)/ω

p+2
+ n−1/2


h(X1, · · · , Xm)


(p+2)/p

p+2
.

By the moment condition,


h(X1, · · · , Xm)




p+2
<∞. Thus, we conclude Wp(L(Wn),N (0, 1)) =

O(n−1/2).

E Proofs of results in Section 5

In this section, we establish Theorems 5.3 and 5.5 and Corollaries 5.4, 5.6 and 5.7. Similar to

the role of Lemma A.7 plays in the proof of Theorem 3.1, we need lemmas on the high-order

expansion of the Stein equation with respect to the strongly mixing fields. Thus, we introduce

Lemma E.1 for the proof of Theorem 5.3 and Lemma E.2 for the proof of Theorem 5.5. Further-

more, Corollaries 5.4 and 5.7 are directly applications of Theorems 5.3 and 5.5 for random fields

with strong mixing coefficients converging at a polynomial rate.

Lemma E.1. Let p ≥ 1 be a real number and ω := p + 1 − ⌈p⌉ ∈ (0, 1]. Set (Tn) ⊆ Zd be an

increasing sequence of finite index sets such that |Tn| → ∞ and let
�
X
(n)

i

�
i∈Tn

be a real-valued

stationary random field with strong mixing coefficients (αℓ,n)ℓ≥1. Suppose that E
�
X
(n)

i

�
= 0,

supnE
���X (n)

i

��r� < ∞ for some r > p + 2, and that the non-degeneracy condition holds that
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lim infn→∞σ
2
n
/|Tn| > 0, where σ2

n
:= Var
�∑

i∈Tn
X
(n)

i

�
. Denote Wn := σ−1

n

∑
i∈Tn

X
(n)

i
. Further-

more, suppose that the mixing coefficients satisfy that supn

∑∞
ℓ=1
ℓd−1α

(r−p−2)/r

ℓ,n
≤ M <∞. Define

M1,n := |Tn|−p/2 + |Tn|−p/2

⌊|Tn|1/d ⌋∑

ℓ=1

ℓd(p+1)−ωα(r−p−2)/r

ℓ,n
. (E.1)

If M1,n → 0 as n → ∞, then for any j ∈ [p − 1], we have κ j+2(Wn) = O
�
M

j/p

1,n

�
, and for any

h ∈ Λp, we have the expansion

E[h(Wn)]−Nh=
∑

(r,s1:r )∈Γ (⌈p⌉−1)

(−1)r
r∏

j=1

κs j+2(Wn)

(s j + 1)!
N
� r∏

j=1

(∂ s j+1
Θ) h
�
+O(M1,n), (E.2)

where Γ (⌈p⌉ − 1) =
�

r, s1:r ∈ N+ :
∑r

j=1
s j ≤ ⌈p⌉ − 1
	

.

Now we provide the proof of Theorem 5.3 by utilizing Lemma E.1. Lemma E.1 is also a novel

result, whose proof is shown in Appendix F.6. The proof of Lemma E.1 requires new tools and

theories that will be established throughout Appendix F.

Proof of Theorem 5.3. By Lemma E.1, we know that
��κ j+2(Wn)
�� ® M

j/p

1,n → 0 as n → ∞,

where M1,n is defined in (E.1). Apply Lemma A.8 with u
(n)

j
= κ j+2(Wn) where j ∈ [k − 1]. For n

large enough, there exist constants Cp and C ′
p

(that do not depend on n) and positive integers (qn)

and random variables (ξ(n)) such that

(a) E[ξ(n)] = 0, E[(ξ(n))2] = 1;

(b) κ j+2(ξ
(n)) = q j/2

n
κ j+2(Wn) for j ∈ [k− 1];

(c) Either max1≤ j≤k−1

��κ j+2(ξ
(n))
�� = 0 or max1≤ j≤k−1

��κ j+2(ξ
(n))
��≥ Cp > 0;

(d) E[|ξ(n)|p+2]≤ C ′
p
.

Furthermore, we know that (qn) satisfy qn→∞ diverges to infinity as n→∞.

Similar to the proof of Theorem 3.1, we will use this to bound the distance between the distribution

of Wn to the one of an empirical average of at least qn i.i.d. random variables. Again we introduce

an alternative sequence (eqn) that can be lower-bounded for all cases. In specific, we let eqn :=

|T |2(p+1)/p ∨ qn if κ3(Wn) = · · · = κk+1(Wn) = 0, and eqn := qn otherwise. Then we still have

eqn→∞ as n→∞.

Let ξ
(n)

1 , · · · ,ξ(n)eqn
be i.i.d. copies of ξ(n). Define Vn := eq−1/2

n

∑eqn

i=1
ξ
(n)

i
.

By construction for any j ∈ [k− 1] we have

κ j+2(Vn) = eq−( j+2)/2
n

eqn∑

i=1

κ j+2(ξ
(n)

i ) = eq− j/2
n
κ j+2(ξ

(n)) = κ j+2(Wn).
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Thus, by Lemma A.5 and Lemma A.7, for any h ∈ Λp we have

��E[h(Wn)]−E[h(Vn)]
��® M1,n + eq−(p+2)/2

n

eqn∑

i=1

E
���ξ(n)

i

��p+2�
. (E.3)

To be able to have this upper bound not depend on ξ(n) we will upper-bound

eq−(p+2)/2
n

eqn∑

i=1

E
���ξ(n)

i

��p+2�

in terms of M1,n. To do so we use the lower bounds on (eqn) implied by their choice.

If max1≤ j≤k−1

��κ j+2(Wn)
��> 0, item (c) implies that there exists

Cp ≤ max
1≤ j≤k−1

��κ j+2(ξ
(n)

1 )
�� (∗)= max

1≤ j≤k−1

�
eq j/2

n

��κ j+2(Wn)
��	 (∗∗)® max

1≤ j≤k−1

�
eq j/2

n
M

j/p

1,n

	
,

where to get (∗) we use item (b) and to get (∗∗) we use Lemma E.1. Thus, the following holds

eq−p/2
n
= (eq− j0/2

n
)p/ j0 ® M1,n,

where j0 is the integer satisfying that
��κ j0+2(ξ

(n))
�� = max1≤ j≤k−1

��κ j+2(ξ
(n))
��. Note that M1,n does

not depend on the value of j0 anymore.

On the other hand, if κ j+2(Wn) = 0 for any j ∈ [k−1], then by definitions we have eqn ≥ |Tn|2(p+1)/p.

Moreover, by Hölder’s inequality we obtain that

∑

i∈Tn

E
���X (n)

i

��2� ≤ |Tn|p/(p+2)
�∑

i∈Tn

E
���X (n)

i

��p+2��2/(p+2)

, (E.4)

and that �∑

i∈Tn

X
(n)

i

�2
≤ |Tn|
∑

i∈Tn

��X (n)
i

��2. (E.5)

Since σ2
n
= E
��∑

i∈Tn
X
(n)

i

�2�
, we have

eq−p/2
n
≤|Tn|−(p+1)σ−(p+2)

n

�
E

��∑

i∈Tn

X
(n)

i

�2��(p+2)/2

(∗)
≤σ−(p+2)

n
|Tn|−p/2
�∑

i∈Tn

E
���X (n)i

��2�
�(p+2)/2

(∗∗)
≤σ−(p+2)

n

∑

i∈Tn

E
���X (n)i

��p+2�
® |Tn|−p/2 ≤ M1,n,

where to obtain (∗) we use (E.5) and to obtain (∗∗) we use (E.4).
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Thus, using item (d) and the fact that ξ
(n)

1 , · · · ,ξ(n)eqn
are i.i.d., we obtain

eq−(p+2)/2
n

eqn∑

i=1

E
���ξ(n)

i

��p+2�≤ C ′
p
eq−p/2

n
® M1,n. (E.6)

Therefore, by combining this with (E.3) we have that there is a constant K > 0 that does not depend

on h such that ��E[h(Wn)]−E[h(Vn)]
��≤ KM1,n.

By taking supremum over h ∈ Λp and by Lemma A.3, we obtain that

Wp(L(Wn),L(Vn))® sup
h∈Λp

��E[h(Wn)]−E[h(Vn)]
��1/p ®
�
M1,n+eq−(p+2)/2

n

eqn∑

i=1

E
���ξ(n)

i

��p+2��1/p
® M

1/p

1,n .

Moreover, by combining Lemma A.6 and (E.6) we have

Wp(L(Vn),N (0, 1))®
�
eq−(p+2)/2

n

eqn∑

i=1

E
���ξ(n)

i

��p+2��1/p
® M

1/p

1,n .

Therefore, as the Wasserstein distance Wp satisfies the triangle inequality we conclude that

Wp(L(Wn),N (0, 1))≤Wp(L(Wn),L(Vn)) +Wp(L(Vn),N (0, 1))

®M
1/p

1,n ® |Tn|−1/2 + |Tn|−1/2
�⌊|Tn |1/d⌋∑

ℓ=1

ℓd(p+1)−ωα(r−p−2)/r

ℓ,n

�1/p
.

Now we consider random fields with strong mixing coefficients converging to zero at a polynomial

rate as a special case of Theorem 5.3.

Proof of Corollary 5.4. By assumption we know α
(r−p−2)/r

ℓ,n
≤ Cℓ−(u−ω+1). Thus, we have

⌊|Tn |1/d⌋∑

ℓ=1

ℓd(p+1)−ωα(r−p−2)/r

ℓ,n
®

⌊|Tn|1/d ⌋∑

ℓ=1

ℓd(p+1)−ωℓu−ω+1 =

⌊|Tn |1/d⌋∑

ℓ=1

ℓd(p+1)−u−1.

If u> d(p+ 1), then we have d(p+ 1)− u− 1 < −1. Thus, the sum is finite and does not depend

on n, which implies that Wp(L(Wn),N (0, 1)) =O(|Tn|−1/2).

If u= d(p+ 1), then similarly we have

Wp(L(Wn),N (0, 1)) = O(|Tn|−1/2) +O

�
|Tn|−1/2

⌊|Tn |1/d⌋∑

ℓ=1

ℓ−1

�
=O
�
|Tn|−1/2 log|Tn|
�
.

Lastly if d(p/2+ 1) < u< d(p+ 1), we derive that

Wp(L(Wn),N (0, 1)) =O(|Tn|−1/2) +O

�
|Tn|−1/2
�⌊|Tn|1/d ⌋∑

ℓ=1

ℓd(p+1)−u−1
�1/p�
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=O
�
|Tn|−1/2⌊|Tn|1/d⌋

d(p+1)−u
p

�
= O
�
|Tn|−1/2−u/(dp)+(p+1)/p

�
,

which concludes the proof.

In order to prove Theorem 5.5, we need the following lemma similar to Lemma E.1.

Lemma E.2. Let p ∈ N+. Set (Tn) ⊆ Zd be an increasing sequence of finite index sets such

that |Tn| → ∞ and let
�
X
(n)

i

�
i∈Tn

be a real-valued stationary random field with strong mixing

coefficients (αℓ,n)ℓ≥1. Suppose that E
�
X
(n)

i

�
= 0, supnE
���X (n)

i

��r�<∞ for some r > p+2, and that

the non-degeneracy condition lim infnσ
2
n
/|Tn| > 0 holds, where σ2

n
:= Var
�∑

i∈Tn
X
(n)

i

�
. Denote

Wn := σ−1
n

∑
i∈Tn

X i . Furthermore, suppose that the mixing coefficients satisfy that

sup
n

∞∑

ℓ=1

ℓd−1α
(r−p−1)/r

ℓ,n
≤ M <∞.

For any m ∈ N+ and δ ∈ [0, 1] (m and δ can depend on n), let

M2,m,δ,n :=|Tn|−p/2m2dp + |Tn|−(p−1+δ)/2mdp

m+1+⌊ |Tn |1/d
2 ⌋∑

ℓ=m+1

ℓdδ−δα(r−p−1−δ)/r
ℓ,n

+ |Tn|−(p−1)/2

m+1+⌊ |Tn |1/d
2 ⌋∑

ℓ=m+1

ℓdp−1α
(r−p−1)/r

ℓ,n
.

(E.7)

If M2,m,δ,n → 0 as n→∞, then for any j ∈ [p − 1], we have κ j+2(Wn) = O
�
M

j/p

2,m,δ,n

�
, and that

there exists eκp+1,n = O
�
M
(p−1)/p

2,m,δ,n

�
depending on p and the joint distribution of (X i)i∈Tn

such that

for any h ∈ Λp the following holds

E[h(Wn)]−Nh=
∑

(r,s1:r)∈Γ (p−1)

(−1)r
r∏

j=1

κs j+2(Wn)

(s j + 1)!
N
� r∏

j=1

(∂ s j+1
Θ) h
�

+
eκp+1,n −κp+1(Wn)

p!
N [∂ p

Θ h] +O(M2,m,δ,n).

(E.8)

Lemma E.2 will also be proven in Appendix F.6. We remark that Lemma E.2 is different from

Lemma E.1 in the following ways:

• p is required to be an integer (this is mainly due to the proof technique we use),

• The remainder is controlled using M2,m,δ,n instead of M1,n, which will lead to different con-

vergence rates in the theorem,

• κp+1(Wn) is replaced by eκp+1,n.

62



E PROOFS OF RESULTS IN SECTION 5

Note that in general M1,n does not dominate M2,m,δ,n, and vice versa, which leads to different

conditions and convergence rates for the Wp bounds in Theorems 5.3 and 5.5.

Proof of Theorem 5.5. We follow techniques similar to the proof of Theorem 5.3. By Lemma E.2,

we have that
��κ j+2(Wn)
�� ® M

j/p

2,m,δ,n
→ 0 for any j ∈ [p − 1] and

��eκp+1,n

�� ® M
(p−1)/p

2,m,δ,n
→ 0 as

|Tn| →∞, where M2,m,δ,n is given in (E.7).

We will repeat all the derivation in the proof of Theorem 5.3 with κp+1(Wn) replaced by eκp+1,n and

M1,n replaced by M2,m,δ,n. We now apply Lemma A.8 with u
(n)

j
= κ j+2(Wn) where j ∈ [p− 2] and

u
(n)

p−1 = eκp+1,n. For any index set Tn with n large enough, there exist constants Cp and C ′
p

(that do

not depend on n) and positive integers (qn) and random variables (ξ(n)) such that

(a) E[ξ(n)] = 0, E[(ξ(n))2] = 1;

(b) κ j+2(ξ
(n)) = q j/2

n
κ j+2(Wn) for j ∈ [p− 2], κp+1(ξ

(n)) = q(p−1)/2
n
eκp+1,n;

(c) Either max1≤ j≤p−1

��κ j+2(ξ
(n))
��= 0 or max1≤ j≤p−1

��κ j+2(ξ
(n))
��≥ Cp > 0;

(d) E[|ξ(n)|p+2]≤ C ′
p
.

Furthermore, we know that qn→∞ as n→∞.

Again we will bound the distance between the distance between the distribution of Wn to the one

of an empirical average of at least qn i.i.d. random variables, and will need the lower bounds on

(qn) for the convergence of the distribution of the empirical average to a standard normal. Thus,

we introduce an alternative sequence (eqn) by setting eqn := |Tn|2(p+1)/p ∨ qn if κ3(Wn) = · · · =
κp(Wn) = eκp+1,n = 0, and eqn := qn otherwise. Then we still have (eqn)→∞ as |Tn| →∞.

Let ξ
(n)

1 , · · · ,ξ(n)eqn
be i.i.d. copies of ξ(n). Define Vn := eq−1/2

n

∑eqn

i=1
ξ
(n)

i .

By construction, for any integer j such that 1 ≤ j ≤ p− 1, we have

κ j+2(Vn) = eq−( j+2)/2
n

eqn∑

i=1

κ j+2(ξ
(n)

i ) = eq− j/2
n
κ j+2(ξ

(n)) =

¨
κ j+2(Wn) 1 ≤ j ≤ p− 2

eκp+1,n j = p− 1
.

Thus, by Lemma A.5 and Lemma A.7, for any h ∈ Λp, we have

��E[h(Wn)]−E[h(Vn)]
��® M2,m,δ,n + eq−(p+2)/2

n

eqn∑

i=1

E[|ξ(n)
i
|p+2]. (E.9)

To be able to have this upper bound not depend on ξ(n) we will upper-bound

eq−(p+2)/2
n

eqn∑

i=1

E[|ξ(n)
i
|p+2]

in terms of M2,m,δ,n. To do so we utilize the lower bounds on (eqn) implied by its choice.
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If |eκp+1,n| ∨max1≤ j≤p−2

��κ j+2(Wn)
�� > 0, item (c) implies that there exists

Cp ≤ max
1≤ j≤p−1

��κ j+2(ξ
(n)

1 )
�� (∗)® max

1≤ j≤p−1

�
eq j/2

n
M

j/p

2,m,δ,n

	
,

where we use item (b) and Lemma E.2 in (∗). Thus, we have the following inequality for some

j0 ∈ [p− 1]

eq−p/2
n
= (eq− j0/2

n
)p/ j0 ® M2,m,δ,n.

On the other hand, if κ3(Wn) = · · · = κp(Wn) = eκp+1,n = 0, then we get eqn ≥ |Tn|2(p+1)/p by

definition of eqn. Since σ2
n
= E
��∑

i∈Tn
X
(n)

i

�2�
, we have

eq−p/2
n
=|Tn|−(p+1)σ−(p+2)

n

�
E

��∑

i∈Tn

X
(n)

i

�2��(p+2)/2

(∗)
≤σ−(p+2)

n
|Tn|−p/2
�∑

i∈Tn

E
���X (n)

i

��2�
�(p+2)/2

(∗∗)
≤σ−(p+2)

n

∑

i∈T

E
���X (n)

i

��p+2�
® |Tn|−p/2 ≤ M2,m,δ,n,

where to obtain (∗) we use (E.5) and to obtain (∗∗) we use (E.4).

Thus, using item (d) and the fact that ξ
(n)

1 , · · · ,ξ(n)eqn
are i.i.d., we obtain

eq−(p+2)/2
n

eqn∑

i=1

E
���ξ(n)i

��p+2� ≤ C ′
p
eq−p/2

n
® M2,m,δ,n. (E.10)

By taking supremum over h ∈ Λp and by Lemma A.3, we obtain that

Wp(L(Wn),L(Vn)) ® sup
h∈Λp

��E[h(Wn)]−E[h(Vn)]
��1/p

®

�
M2,m,δ,n+ eq−(p+2)/2

n

eqn∑

i=1

E
���ξ(n)i

��p+2��1/p
® M

1/p

2,m,δ,n
.

Moreover, by combining Lemma A.6 and (E.10) we have

Wp(L(Vn),N (0, 1))®
�
eq−(p+2)/2

n

eqn∑

i=1

E
���ξ(n)

i

��p+2��1/p
® M

1/p

2,m,δ,n
.

Therefore, as the Wasserstein distance Wp satisfies the triangle inequality we conclude that

Wp

�
L(Wn),N (0, 1)
�
≤Wp

�
L(Wn),L(Vn)
�
+Wp

�
L(Vn),N (0, 1)
�
® M

1/p

2,m,δ,n
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®|Tn|−1/2m2d + |Tn|−1/2+(1−δ)/(2p)md
�m+1+⌊ |Tn|1/d

2 ⌋∑

ℓ=m+1

ℓdδ−δα(r−p−1−δ)/r
ℓ,n

�1/p

+ |Tn|−1/2+1/(2p)
�m+1+⌊ |Tn |1/d

2 ⌋∑

ℓ=m+1

ℓdp−1α
(r−p−1)/r

ℓ,n

�1/p
.

As an application of Theorem 5.5, we show Corollary 5.6.

Proof of Corollary 5.6. We apply Theorem 5.5 with p = 1, δ = ε, m ≍ |Tn|
ε∧(1/3)

2d . Then

m→∞ as n→∞. Since
∞∑

ℓ=1

ℓd−1α
(r−2)/r

ℓ,n
≤
∞∑

ℓ=1

ℓd−1α
(r−2−ε)/r
ℓ,n

,

the mixing condition I of Theorem 5.5 is satisfied. Now we check that

|Tn|−1/2m2d
® |Tn|−1/2+ε n→∞−−−→ 0,

|Tn|−ε/2md

m+1+⌊ |Tn|1/d
2 ⌋∑

ℓ=m+1

ℓdε−εα(r−2−ε)/r
ℓ,n

®

∞∑

ℓ=m+1

ℓd−1α
(r−2−ε)/r
ℓ,n

,

m+1+⌊ |Tn |1/d
2 ⌋∑

ℓ=m+1

ℓd−1α
(r−2)/r

ℓ,n
≤

∞∑

ℓ=m+1

ℓd−1α
(r−2−ε)/r
ℓ,n

.

Since m→∞ as n→∞, we have that by assumption
∑∞
ℓ=m+1

ℓd−1α
(r−2−ε)/r
ℓ,n

converges to zero.

Thus, mixing condition II of Theorem 5.5 is also satisfied and the result follows.

Lastly, we prove Corollary 5.7 by applying Theorem 5.5 to random fields with strong mixing

coefficients that converge at a polynomial rate, and combining the results of Corollary 5.4.

Proof of Corollary 5.7.

If u≥ d(p+ 1), the results are directed implied by Corollary 5.4.

If dp < u < d(p + 1), on one hand, Corollary 5.4 gives that β ≥ 1/2+ u/(dp)− (p + 1)/p. On

the other hand, we apply Theorem 5.5 with δ = 1 and m ≍ |Tn|
1

2(u+dp) . Then we have

|Tn|−1/2m2d ≍ |Tn|−1/2+d/(u+dp),

|Tn|−1/2+(1−δ)/(2p)md
�m+1+⌊ |Tn|1/d

2 ⌋∑

ℓ=m+1

ℓdδ−δα(r−p−1−δ)/r
ℓ,n

�1/p
≍ |Tn|−

1
2+

d
2(u+dp)

− u−d
2(u+dp)p

® |Tn|−1/2+d/(u+dp),

|Tn|−1/2+1/(2p)
�m+1+⌊ |Tn |1/d

2 ⌋∑

ℓ=m+1

ℓdp−1α
(r−p−1)/r

ℓ,n

�1/p
≍ |Tn|−

1
2+

1
2p−

u−dp

2(u+dp)p

= |Tn|−1/2+d/(u+dp).
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Thus, by Theorem 5.5 we get Wp(L(Wn),N (0, 1)) =O
�
|Tn|−1/2+d/(u+dp)

�
.

If u= dp, apply Theorem 5.5 with δ = m = 1 and get that

|Tn|−1/2m2d ≍ |Tn|−1/2,

|Tn|−1/2+(1−δ)/(2p)md
�m+1+⌊ |Tn |1/d

2 ⌋∑

ℓ=m+1

ℓdδ−δα(r−p−1−δ)/r
ℓ,n

�1/p
≤ |Tn|−1/2
�⌈|Tn|1/d ⌉∑

ℓ=1

ℓdp−1α
(r−p−2)/r

ℓ,n

�1/p

≍ |Tn|−1/2 log|Tn|,

|Tn|−1/2+1/(2p)
�m+1+⌊ |Tn |1/d

2 ⌋∑

ℓ=m+1

ℓdp−1α
(r−p−1)/r

ℓ,n

�1/p
≤ |Tn|−1/2+1/(2p)

�⌈|Tn|1/d ⌉∑

ℓ=1

ℓdp−1α
(r−p−2)/r

ℓ,n

�1/p

≍ |Tn|−1/2+1/(2p) log|Tn|.

Thus, we get

Wp(L(Wn),N (0, 1)) =O(|Tn|−1/2) +O
�
|Tn|−1/2+1/(2p)

⌊|Tn |1/d⌋∑

ℓ=1

ℓ−1
�
=O
�
|Tn|−1/2+1/(2p) log|Tn|

�
.

If d(p+ 1)/2 < u< dp, the results also follows from Theorem 5.5 as

|Tn|−1/2m2d ≍ |Tn|−1/2,

|Tn|−1/2+(1−δ)/(2p)md
�m+1+⌊ |Tn |1/d

2 ⌋∑

ℓ=m+1

ℓdδ−δα(r−p−1−δ)/r
ℓ,n

�1/p
≤ |Tn|−1/2
�⌊|Tn |1/d⌋∑

ℓ=1

ℓdp−u−1
�1/p

≍ |Tn|−
1
2+

dp−u
dp ,

|Tn|−1/2+1/(2p)
�m+1+⌊ |Tn |1/d

2 ⌋∑

ℓ=m+1

ℓdp−1α
(r−p−1)/r

ℓ,n

�1/p
® |Tn|−

1
2+

1
2p+

dp−u
dp

= |Tn|−
1
2+

2p+1
2p − u

dp .

Thus, Corollary 5.7 is proven.

F Proofs of Lemmas E.1 and E.2

In this section, whenever it is not ambiguous we will drop the n notation and write αℓ, σ, W , X i

and T for respectively αℓ,n, σn, Wn, X
(n)

i
and Tn.
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F.1 Example & Roadmap

Similar to the role Proposition B.1 plays in deriving Lemma A.7, the key step in proving Lemma E.1

is to obtain the following expansion of E[W f (W)] for f ∈ Ck,ω(R):

E[W f (W )] =

k∑

j=1

κ j+1(W )

j!
E[∂ j f (W )] +Remainders, (F.1)

where κ j+1(W ) is the ( j + 1)-th cumulant of W .

To gain intuition, we first consider the simpler case of a stationary random sequence (X i)
n
i=1

with

k=ω= d=1. We let W := σ−1
∑n

i=1
X i where σ2 := Var

�∑n
i=1

X i

�
and require that E[X1] = 0

and E[|X1|r] <∞ for a given r > 3. For simplicity, we further assume f ∈ C2(R) ∩ C1,1(R),

i.e., f ′′ is continuous and bounded (see Definition A.1). We will see that (F.1) reduces to an upper

bound on the absolute value of E[ f ′(W )−W f (W)].

Fixing a positive integer m ∈ N. For any positive integers i, j, we denote

Wi, j :=
1

σ

�i− j−1∑

ℓ=1

Xℓ +

n∑

ℓ=i+ j+1

Xℓ

�
, W ∗

i, j
:=

1

σ

�i− j−1∑

ℓ=1

Xℓ +

n∑

ℓ=i+ j

Xℓ

�
,

where Xℓ := 0 if ℓ≤ 0 or ℓ≥ n+ 1. Note that W ∗
i, j
−Wi, j = X i+ j and Wi, j−1 −W ∗

i, j
= X i− j if j ≥ 2.

Now we have

E
�
W f (W )− f ′(W)

�

=
1

σ

n∑

i=1

E
�
X i

�
f (W )− f (Wi,m)− f ′(W)(W −Wi,m)

��

+
1

σ

n∑

i=1

E[X i f (Wi,m)] +
1

σ

n∑

i=1

E
�
X i(W −Wi,m) f

′(W)
�
−E[ f ′(W )]

=:E1 + E2 + E3 −E[ f ′(W )]. (F.2)

Intuitively, for each i, we split W into two parts, Wi,m and W −Wi,m. The latter has limited number

of X j’s and converges to 0 when n is relatively large compared to m. Although the first part, Wi,m,

has a lot of X j’s in the sum, it is less dependent on X i . As a result, the expectation terms can be

controlled using the strong mixing conditions of the random sequence.

To study E1 in (F.2), we apply the Taylor expansion and Young’s inequality and obtain that

|E1|=
����
1

σ

n∑

i=1

E
�
X i

�
f (W )− f (Wi,m)− f ′(W)(W −Wi,m)

������

≤‖ f
′′‖

2σ

n∑

i=1

E
���X i(W −Wi,m)

2
��� = ‖ f

′′‖
2σ3

n∑

i=1

E

�
|X i|
� i+m∑

j=i−m

X j

�2�

=
‖ f ′′‖
2σ3

n∑

i=1

i+m∑

j=i−m

i+m∑

ℓ=i−m

E[|X iX jXℓ|] (F.3)
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≤‖ f
′′‖

2σ3

n∑

i=1

i+m∑

j=i−m

i+m∑

ℓ=i−m

1

3

�
E[|X i |3] +E[|X j|3] +E[|Xℓ|3]

�

≤2(m+ 1)2‖ f ′′‖
σ3

n∑

i=1

E[|X i|3]® ‖ f ′′‖m2n−1/2. (F.4)

Next we consider E2, and observe that

E2 =
1

σ

n∑

i=1

E[X i f (Wi,m)] =
1

σ

n∑

i=1

n−1∑

j=m+1

E
�
X i

�
( f (Wi, j−1)− f (W ∗

i, j
)) + ( f (W ∗

i, j
)− f (Wi, j))
��

(F.5)

=
1

σ

n∑

i=1

n−1∑

j=m+1

E
�
X i

�
f (Wi, j−1)− f (Wi, j)− f ′(Wi, j−1)(Wi, j−1−W ∗

i, j
)− f ′(W ∗

i, j
)(W ∗

i, j
−Wi, j)
��

+
1

σ2

n∑

i=1

n−1∑

j=m+1

E
�
X i

�
X i− j f

′(Wi, j) + X i+ j f
′(W ∗

i, j
)
��

=
1

σ

n∑

i=1

n−1∑

j=m+1

E
�
X i

�
f (Wi, j−1)− f (Wi, j)− f ′(Wi, j−1)(Wi, j−1−W ∗

i, j
)− f ′(W ∗

i, j
)(W ∗

i, j
−Wi, j)
��

+
1

σ2

n∑

i=1

n−1∑

j=m+1

E

�
X i

�
X i− j

�
f ′(Wi, j)−E[ f ′(Wi, j)]

�
+ X i+ j

�
f ′(W ∗

i, j
)−E[ f ′(W ∗

i, j
)]
���

+
1

σ2

n∑

i=1

n−1∑

j=m+1

�
E[X iX i− j] E[ f

′(Wi, j)] +E[X iX i+ j] E[ f
′(W ∗

i, j
)]
�

=
1

σ

n∑

i=1

n−1∑

j=m+1

E
�
X i

�
f (Wi, j−1)− f (Wi, j)− f ′(Wi, j−1)(Wi, j−1−W ∗

i, j
)− f ′(W ∗

i, j
)(W ∗

i, j
−Wi, j)
��

+
1

σ2

n∑

i=1

n−1∑

j=m+1

E

�
X i

�
X i− j

�
f ′(Wi, j)−E[ f ′(Wi, j)]

�
+ X i+ j

�
f ′(W ∗

i, j
)−E[ f ′(W ∗

i, j
)]
���

+
1

σ2

n∑

i=1

n−1∑

j=m+1

�
E[X iX i− j]
�
E[ f ′(Wi, j)]−E[ f ′(W )]

�
+E[X iX i+ j]
�
E[ f ′(W ∗

i, j
)]−E[ f ′(W )]
��

+
1

σ2

n∑

i=1

n−1∑

j=m+1

E[X i(X i− j + X i+ j)] E[ f
′(W)]

= : E4 + E5 + E6 + E7. (F.6)

Intuitively, E4 to E6 can be controlled with the strong mixing conditions of (X i)
n
i=1

. For example

in E6, the strong mixing coefficient between the σ-algebra generated by X i and the σ-algebra

generated by X i− j or X i+ j is no greater than α j. We will illustrate how this helps get an upper

bound later.

68



F.1 Example & Roadmap F PROOFS OF LEMMAS E.1 AND E.2

As for E3 in (F.2), we have

E3 =
1

σ

n∑

i=1

E
�
X i(W −Wi,m) f

′(W)
�
=

1

σ2

n∑

i=1

i+m∑

j=i−m

E[X iX j f
′(W )]

=
1

σ2

n∑

i=1

i+m∑

j=i−m

E
�
X iX j

�
f ′(W )−E[ f ′(W )]

��
+

1

σ2

n∑

i=1

i+m∑

j=i−m

E[X iX j] E[ f
′(W )]

=
1

σ2

n∑

i=1

i+m∑

j=i−m

E
�
X iX j

�
f ′(W )− f ′(Wi, j,m)

��
+

1

σ2

n∑

i=1

i+m∑

j=i−m

E[X iX j]
�
E[ f ′(Wi, j,m)]−E[ f ′(W )]

�

+
1

σ2

n∑

i=1

i+m∑

j=i−m

E
�
X iX j

�
E[ f ′(Wi, j,m)]− f ′(Wi, j,m)

��
+

1

σ2

n∑

i=1

i+m∑

j=i−m

E[X iX j] E[ f
′(W )]

= : E8 + E9 + E10 + E11, (F.7)

where we set

Wi, j,m :=
1

σ

�i∧ j−m−1∑

ℓ=1

Xℓ +

n∑

ℓ=i∨ j+m+1

Xℓ

�
.

Next we observe that

E7 + E11 =
1

σ2

n∑

i=1

n−1∑

j=m+1

E[X i(X i− j + X i+ j)] E[ f
′(W )] +

1

σ2

n∑

i=1

i+m∑

j=i−m

E[X iX j] E[ f
′(W)]

=
1

σ2
E

�� n∑

i=1

X i

�2�
E[ f ′(W )] = E[ f ′(W )].

Thus, E7 + E11 cancels out with −E[ f ′(W)] in (F.6).

The terms E8 and E9 can be bounded by the Taylor expansion and Young’s inequality in a way

similar to (F.3). E10 can be controlled with the strong mixing conditions of (X i)
n
i=1

by utilizing the

covariance inequality as stated below.

Lemma F.1 (Theorem 3 in Chapter 1.2 of Doukhan [1994]). Suppose X , Y are two random vari-

ables. X is measurable with respect to the σ-algebra A and Y is measurable with respect to the

σ-algebra B. Denoting ‖X‖p =
�
E[|X |p]
�1/p

, we have

|Cov(X , Y )| ≤ 8α1/r(A,B)‖X‖p‖Y ‖q, (F.8)

for any p, q, r ≥ 1 such that 1/p+ 1/q + 1/r = 1.

To illustrate on how to use the strong mixing conditions, we consider a special case, where f ∈
C2(R)∩ C0,1(R)∩ C1,1(R), i.e, both f ′ and f ′′ are continuous and bounded. Under this condition,

the second term in (F.2) can be controlled more easily. By Lemma F.1, we have

E[|X iX j |]≤ 8α
(r−2)/r

|i− j| ‖X i‖r‖X j‖r = 8α
(r−2)/r

|i− j| ‖X1‖2r .
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Thus,

1

σ

����
n∑

i=1

E[X i f (Wi,m)]

����≤
1

σ

����
n∑

i=1

n−1∑

j=m+1

E
�
X i

�
f (Wi, j)− f (Wi, j+1)

������

≤ 1

σ

n∑

i=1

n−1∑

j=m+1

��E
�
X i

�
f (Wi, j)− f (Wi, j+1)

����

≤‖ f
′‖
σ2

n∑

i=1

n−1∑

j=m+1

E
�
|X i|
�
|X i− j|+ |X i+ j|
��

=
2‖ f ′‖
σ2

∑

i, j:|i− j|≥m+1

E[|X iX j|]

≤2‖ f ′‖
σ2

∑

i, j:|i− j|≥m+1

8α
(r−2)/r

|i− j| ‖X1‖2r

®‖ f ′‖
n−1∑

ℓ=m+1

α
(r−2)/r

ℓ
. (F.9)

Hence, this term vanishes at n = m =∞ if
∑∞
ℓ=1
α
(r−2)/r

ℓ
converges. For this special case, we

need n≫ m4→∞ so that both (F.3) and (F.9) will approach 0.

We omit the technical details on the rest of the derivation because the aim here is only to help build

intuition. Please refer to Sunklodas [2007]; Bentkus & Sunklodas [2007] for more information on

this case.

More generally, consider a mean-zero random field (X i)i∈T indexed by a finite set T ( Zd (d ≥ 1).

To be able to bound E[ f ′(W )−W f (W )], it is important to carefully keep track of which indexes

in T are at a distance of less than m of each other as the corresponding random variables X i’s

are non-negligibly dependent. Similarly, we will also want to keep track of which indexes are at

distance of more than m from each other. Indeed if all the indexes in U1 ( T and U2 ( T are at

distance of more than m from each other, then the dependence between (X i1
)i1∈U1

and (X i2
)i2∈U2

is

negligible and we can control the correlation between those thanks to the mixing coefficients.

For k ≥ 1, we would like to get an expansion (F.1) of E[W f (W )] with controllable remainders

instead of directly bounding E[W f (W) − f ′(W )]. Following an idea similar to Appendix B,

we can achieve this by encoding the structure of all possible sums appearing in the process and

reformulate the expansion using a better representation called the “genogram”. As we have seen

in the example of the simple case k = 1, we expect to obtain an expansion, where each summand

of the remainders (e.g. E1, E4, E5, E6, E8, E9, E10) is an expectation or the product of expectations.

We will use two different tools to control them, namely the Taylor expansion and the fact that

covariances can be controlled by the mixing coefficients (see Lemma F.1).

For k = 1, we have shown that

E
�
W f (W )− f ′(W)

�
= E1 + E2 + E3 −E[ f ′(W )]
= E1 + (E4 + E5 + E6 + E7) + (E8+ E9 + E10 + E11)−E[ f ′(W )]
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= E1 + E4 + E5 + E6 + E8 + E9 + E10. (F.10)

Note that we use the word “summand” here to refer to the variable that is being summed. For

example, E7 is defined as

1

σ2

n∑

i=1

n−1∑

j=m+1

E[X i(X i− j + X i+ j)] E[ f
′(W )].

Then the summand in E7 refers to

1

σ2
E[X i(X i− j + X i+ j)] E[ f

′(W )],

and it factorizes into two expectations

E[X i(X i− j + X i+ j)] and E[ f ′(W )]

with a scaling constant σ−2.

Re-examining the procedure, we see that what we actually have done is approximatingE[W f (W)]

by E7 + E11 with error terms E1, E4, E5, E6, E8, E9, E10. Then the “local” errors, E1, E8, E9, are

bounded directly by remainder estimation from the Taylor expansion, while to study the other

terms we need to apply Lemma F.1. As we try to generalize this, we need to be careful that to

apply Lemma F.1, the error terms need to have a factor that appears as a covariance rather than

any arbitrary expectation. The idea to enforce this requirement is that for any random variables

X , Y , we keep track of Cov(X , Y ) a priori instead of writing out E[X Y ] and E[X ] E[Y ] separately.

To generalize, we will introduce a multilinear operator D∗. In particular, for any random variables

X , Y, Z , we let

D∗(X ) := E[X ], D∗(X , Y ) := Cov(X , Y ),

D∗(X , Y, Z) := E[X Y Z]−E[X Y ] E[Z]−E[X ] E[Y Z] +E[X ] E[Y ] E[Z].

In the previous example, we can rewrite the expansion as

E[W f (W )] = (E1 + E3) + E2

= E1 + (E3 − E11) + E11 + E4 + E5 + E6 + E7.
(F.11)

Here

E1 + E3 =
1

σ

n∑

i=1

D∗
�
X i , f (W )− f (Wi,m)

�
, E2 =

1

σ

n∑

i=1

D∗
�
X i , f (Wi,m)
�
.

Noting that

f (W)− f (Wi,m)− f ′(W )(W −Wi,m) = (W −Wi,m)

∫ 1

0

�
f ′
�
νW + (1− ν)Wi,m

�
− f ′(W )
�

dν

=
1

σ

i+m∑

j=i−m

X j

∫ 1

0

�
f ′
�
νW + (1− ν)Wi,m

�
− f ′(W )
�

dν,
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we get

E1 =
1

σ

n∑

i=1

E
�
X i

�
f (W)− f (Wi,m)− f ′(W )(W −Wi,m)

��

=
1

σ2

n∑

i=1

i+m∑

j=i−m

E

�
X iX j

∫ 1

0

�
f ′
�
νW + (1− ν)Wi,m

�
− f ′(W)
�

dν

�

=
1

σ2

n∑

i=1

i+m∑

j=i−m

D∗
�

X i , X j

∫ 1

0

�
f ′
�
νW + (1− ν)Wi,m

�
− f ′(W )
�

dν

�
. (F.12)

We can further check that

E3 − E11 =
1

σ2

n∑

i=1

i+m∑

j=i−m

D∗
�
X i , X j , f ′(W)
�
,

E11 =
1

σ2

n∑

i=1

i+m∑

j=i−m

D∗(X i, X j) D
∗( f ′(W)),

E4 =
1

σ2

n∑

i=1

n−1∑

j=m+1

D∗
�

X i , X i− j

∫ 1

0

�
f ′
�
νWi, j−1 + (1− ν)W ∗i, j

�
− f ′(Wi, j−1)
��

,

+
1

σ2

n∑

i=1

n−1∑

j=m+1

D∗
�

X i , X i+ j

∫ 1

0

�
f ′
�
νW ∗

i, j
+ (1− ν)Wi, j

�
− f ′(W ∗

i, j
)
��

,

E5 =
1

σ2

n∑

i=1

n−1∑

j=m+1

�
D∗
�
X i , X i− j , f ′(Wi, j−1)

�
+D∗
�
X i , X i+ j , f ′(W ∗

i, j
)
��

,

E6 =
1

σ2

n∑

i=1

n−1∑

j=m+1

�
D∗
�
X i , X i− j

�
D∗
�
f ′(Wi, j−1)− f ′(W )

�

+D∗
�
X i , X i+ j

�
D∗
�

f ′(W ∗
i, j
)− f ′(W)
��

,

E7 =
1

σ2

n∑

i=1

n−1∑

j=m+1

D∗(X i , X i− j + X i+ j) D
∗( f ′(W )).

Thus, each summand in E1 + E3, E2, E1, E3 − E11, E11, E4, · · · , E7 is either a D∗ term or the product

of two D∗ terms with some scaling constant.

Next we aim to encode the structure of these sums in a more efficient way. In general, we need to

take into account the following issues:

• How each summand in the expansion factorizes into D∗ terms;

• How each D∗ term is constructed;

• Which values the running indexes in the summand are allowed to take.
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To address all these issues, we introduce an abstract structure called a “genogram”, consisting of

a rooted tree and integers bigger or equal to −1 (called “identifiers”), each attached to a vertex

of the rooted tree and satisfying certain requirements. Then we represent each sum (e.g. E1 +

E3, E2, E1, E3 − E11, E11, E4, · · · , E7) with the help of genograms such that

• Each vertex of the rooted tree corresponds to a running index of summation (i.e., i1, i2, · · · );

• Each branch (or each leaf) of the rooted tree corresponds to a D∗ factor of the summand;

• The signs of identifiers control how each D∗ term is contructed;

• The values of identifiers help determine the sets of values that running indexes take by encod-

ing their distance structure, which reflects the dependency between corresponding random

variables.

Interestingly, the process of expanding E[W f (W)] precisely corresponds to growing a class of

genograms. Instead of deriving the expansion solely for E[W f (W)], we get a similar expansion for

any genogram G and quantities T f (G) (formally defined in (F.23)). In the expansion of T f (G), the

cumulants in (F.1) are replaced by other constants that depend on both G and the joint distribution

of (X i)i∈T but not on f .

As we will see later, E[W f (W )] corresponds to T f (G) with G being the order-1 genogram, which

consists of only the root vertex. For this special case, directly calculation with f set to be polyno-

mials helps recover the constants as the cumulants of W , and thus, (F.1) is obtained for general f

by uniqueness of the constants. Finally, we carefully collect and control the remainders with the

mixing coefficients.

The rest of the section is constructed as follows: In Appendix F.2, we formally define a genogram

and related concepts. In Appendix F.3, we define three types of sums corresponding to a genogram,

which will be used later in the expansion. In Appendix F.4, we show how to achieve the expansion

by growing a class of genograms. In Appendix F.5, we control the remainders using the mixing

coefficients. Finally, in Appendix F.6, we provide the proofs of Lemmas E.1 and E.2.

F.2 Genograms

A rooted tree is a tree in which one vertex has been designated the root. In a rooted tree, the

parent of a vertex v is the vertex connected to v on the path from the root to v; every vertex has a

unique parent except the root, which has no parent. A child of a vertex v is a vertex of which v is

the parent. An ancestor of a vertex v is any vertex other than v which is on the path from the root

to v. A sibling to a vertex v is any other vertex on the tree which has the same parent as v. A leaf

is a vertex with no children. See Bender & Williamson [2010] for a detailed exposition.

An order-k genogram is defined as the tuple G :=
�
V, E, {sv}v∈V

�
, where (V, E) is a rooted tree

with a vertex set V (|G| := |V | = k) and an edge set E, and sv is an integer called the identifier

associated to each v ∈ V that satisfies the requirements below:
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• sv = 0 for the root v. sv ≥ −1 for any other vertex v;

• sv ≥ 0 if v is a child of the root;

• If v has more than one child, identifiers of v’s children must be non-negative and mutually

different.

Beware that the identifiers are part of the genograms by definition. We say that a vertex v is

negative if and only if sv = −1, nil if and only if sv = 0, positive if and only if sv ≥ 1. The

requirements above implies that the identifier of each child of v is different, and therefore, v’s

children can be uniquely identified by their identifiers. The last requirement also suggests that if v

has more than one child, there is no negative and at most one nil among them. In other words, a

negative vertex has no sibling, a nil vertex only has positive siblings, and any vertex must have an

identifier different from all its siblings.

Furthermore, denote the set of all possible order-k genograms by G(k). Figure 1 depicts two

examples of genograms G1, G2 ∈ G(7), where each circle represents a vertex, the one representing

the root is filled with gray, and the identifiers are marked inside the circles.

0

2

1

0
−1

2

0

(a) G1.

0

0
3

2

1

−1

5

(b) G2.

Figure 1: Examples of order-7 genograms.

We remark that the notion of genograms resembles the ordered trees in combinatorics. An ordered

(rooted) tree (V, E,≺) is a rooted tree (V, E) where the children of every vertex are ordered (the

order denoted by ≺) [Stanley 2011]. Note that ≺ is a strict partial order on the vertex set V . By

definition every genogram induces a unique ordered tree if we set v1 ≺ v2⇔ sv1
> sv2

whenever

v1, v2 ∈ V are siblings. However, an ordered tree corresponds to infinitely many genograms since

the largest identifier is allowed to take any sufficiently large value in N∪ {−1}.

Compatible labeling, parent, progenitor, and ancestor

Next we consider a labeling of the vertices of a genogram (or the induced ordered tree of a

genogram). We say a labeling V =
�

v[1], · · · , v[k]
	

is compatible with G (or (V, E,≺)) if and

only if

(a) It follows from a depth-first traversal: v[1] is the root, and for any 1 ≤ j ≤ k− 1, the vertex

v[ j+1] is chosen to be a children of the vertex with the largest label ℓ≤ j that has children.

In particular, v[ j + 1] is v[ j]’s child as long as v[ j] has a child;

(b) It respects the partial order ≺ induced by G: If v[ j] and v[h] (2 ≤ j, h ≤ k, j 6= h) are

siblings, then we have s j > sh⇔ j < h (or equivalently, v[ j] ≺ v[h]⇔ j < h). In other
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words, if a vertex has more than one child, a child with a larger identifier has a smaller label.

In particular, if s j = 0, then v[ j] has the largest label j.

Figure 2 shows the compatible labelings of G1 and G2, where the labels are marked outside the

circles that represent the vertices.

0

1

2 2

1 3

0

4

−1

5

2 6

0 7

(a) G1.

0

1

0

2

3

4
2 5

1

6

−1

7

5

3

(b) G2.

Figure 2: Examples of order-7 genograms with the compatible labeling.

We remark that there is a unique compatible labeling given any genogram G (or any ordered tree

(V, E,≺)).
Now we introduce more notations in order to express the compatible requirements for identifiers

and the labeling in a more concise manner. Let G = (V, E, s1:k) be an order k−genogram with

vertices labelled as V =
�

v[1], · · · , v[k]
	

and where s j is the identifier of v[ j] for 1 ≤ j ≤ k. We

denote the label of v[ j]’s parent by p( j, G) for 2 ≤ j ≤ k+1, and the label set of v[ j]’s ancestors

by A( j, G) (we set A(1, G) = ;). Moreover, we write

g( j, G) := sup{ℓ : ℓ= 1 or ℓ ∈ A( j, G) & sℓ ≥ 1}, (F.13)

and call v[g( j, G)] the progenitor of v[ j]. In particular, we have that g(1, G) = 1. Intuitively,

v[g( j, G)] is the positive vertex closest to v[ j] in its ancestry if such vertex exists, in which case

there is a path from v[g( j, G)] to v[p( j, G)], the parent of v[ j], such that v[g( j, G)] is the only

positive vertex along the path. Otherwise, v[g( j, G)] is set to be the root. Note that v[g( j, G)] 6=
v[ j] for 2 ≤ j ≤ k. Take the genograms G1 and G2 in Figure 2 as examples, g( j, G1) = 1 for all

1 ≤ j ≤ 7 while in G2, g(1, G2) = g(2, G2) = g(3, G2) = g(4, G2) = 1, g(5, G2) = g(6, G2) = 4,

and g(7, G2) = 6. We further denote

u( j, G) := sup{ℓ ∈ { j} ∪ A( j, G) : sℓ ≥ 0}. (F.14)

In other words, v[u( j, G)] is the closest non-negative vertex in v[ j]’s ancestry if v[ j] is negative,

otherwise u( j, G) = j. In particular, s j = −1⇔ u( j, G) < j, s j ≥ 0⇔ u( j, G) = j. For example,

in the genogram G1 shown in Figure 2a, u(5, G1) = 4 and u( j, G1) = j for j 6= 5. For ease of

notation, when there is no ambiguity, we will abuse notations and write p( j), A( j), g( j), u( j) to

mean p( j, G), A( j, G), g( j, G), u( j, G).

We remark that the labeling has to respect the following properties

Proposition F.2. Let k be a positive integer, (V, E) be a rooted tree with the vertex set V =�
v[1], · · · , v[k]
	

and edge set E, and s1, · · · , sk be k integers.
�
V, E, {s1:k}
�

is a genogram with

the compatible labeling if and only if all the following statements are true:
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(a) p( j + 1) =max{p(ℓ) : ℓ ≥ j + 1, p(ℓ) ≤ j} for 1 ≤ j ≤ k− 1;

(b) s1 = 0. s j ≥ −1 for 2 ≤ j ≤ k;

(c) If s j = −1 (2 ≤ j ≤ k), then (i) p( j) 6= 1, (ii) p( j) = p(h)⇔ j = h for 2 ≤ h≤ k;

(d) If p( j) = p(h) (2≤ j, h≤ k), then s j > sh⇔ j < h, s j = sh⇔ j = h.

Induced sub-genograms

Lastly, given G = (V, E, s1:k) and 1 ≤ j ≤ k, we call an order- j genogram G[ j] := (V ′, E′, s1: j) the

induced sub-genogram of G the genograms by setting V ′ :=
�

v[1], · · · , v[ j]
	

and E′ ⊆ E be the

set of all edges between the vertices V ′ in G. We further denote H ⊆ G or G ⊇ H if and only if a

genogram H is a sub-genogram of G. If j < k, we say G[ j] is a proper sub-genogram of G and

write G[ j] ( G or G ) G[ j].

F.3 Constructing sums from genograms

Consider a d-dimensional random field (X i)i∈T with the index set T satisfying T ( Zd and |T | <
∞. We write

σ2 := Var
�∑

i∈T

X i

�
W := σ−1
∑

i∈T

X i.

For any index subset J ⊆ T , we denote

W (J) := σ−1
∑

i∈T\J
X i.

In this subsection, we build sums S(G),T f (G),U f (G) from a genogram G and a given function

f ∈ Ck−1(R) in four steps:

• Use the genogram G to define the sets of values taken by running indexes;

• Introduce the generalized covariance operator D∗;

• Construct an operator EG from G, which leads to the summand;

• Define S(G),T f (G),U f (G).

Note that these sums will be used in the next subsection to track the expansion of the quantity

E[W f (W )].

Firstly, as we have pointed in the roadmap, we will construct from an order-k genogram G sums

with k running indexes, where the v[ j] corresponds to the j-th running index, denoted by i j . Since

i j will appear in the subscript of X i j
, the value of i j needs to be chosen from T . It is important to

note that the vertices v[1], · · · , v[k] as well as the genogram do not represent specific values of
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i1, · · · , ik. The genogram reflects the dependency structure of random variables appearing in the

sum by encoding the distance structure between the running indexes.

Setting B1 := T and D1 := ;, i1 will be summed over B1\D1 = T . Next given the choice of the

first j − 1 running indexes ( j ≥ 2), we aim to define two index sets, B j and Dj , using the chosen

values i1, · · · , i j−1 and the order- j sub-genogram G[ j]. In the last step, we will take the sums

over ik ∈ Bk\Dk, T\Bk or T\Dk, and then ik−1 ∈ Bk−1\Dk−1, · · · , i1 ∈ B1\D1 in turn. We call B j

the outer constraint (set) of the running index i j , and Dj, the inner constraint (set) of i j . For

ease of notation, on most occasions we do not explicitly write out the dependencies on G[ j] and

i1, · · · , i j−1 when referring to the constraint sets B j and Dj . However, if we are considering multiple

genograms, we will use B j(G) and Dj(G) to specify the constraint sets of i j with respect to G to

avoid ambiguity.

We will formally define B j and Dj for 2 ≤ j ≤ k later by induction. Bur first we consider the case

j = 2 to build intuition. When the first running index is set to be some specific element i1 ∈ T , we

define B2, D2 ⊆ T using i1 and s2, and i2 will be summed over B2\D2. If s2 = 0, i2 will be summed

over all the indexes of distance no greater than m from i1, in which case B2 and D2 are defined by

B2 := {i ∈ T : ‖i − i1‖ ≤ m}, D2 := ;,
where ‖·‖ is the maximum norm on Zd . Note that m is a positive integer that we have fixed earlier.

Otherwise, s2 ≥ 1, we let i2 take the sum over a singleton B2\D2. In other words, the second

running index has only one possible choice in the summation. Different values of 1 ≤ s2 ≤
��{i ∈

T : ‖i− i1‖ ≥ m+1}
�� =: s∗ will correspond to different singletons of elements in {i ∈ T : ‖i− i1‖ ≥

m + 1}. Let ≺ be a strict total order on Zd . With the first level comparing the value of ‖i − i1‖
and the second level using the strict order ≺, we perform a two-level sorting of all elements i from

{i ∈ T : ‖i − i1‖ ≥ m+ 1} and obtain an ascending sequence, z1, · · · , zs∗ . Now i2 is chosen to be

zs2
, and

B2 := {i ∈ T : ‖i−i1‖ ≤ m}∪{z j : 1 ≤ j ≤ s2}, D2 := {i ∈ T : ‖i−i1‖ ≤ m}∪{z j : 1 ≤ j ≤ s2−1}.

The motivation of using singletons arises from deriving (F.5), where we have decomposed the

quantity E[X i f (Wi,m)] into a telescoping sum:

E[X i f (Wi,m)] =

n−1∑

j=m+1

E
�
X i

�
( f (Wi, j−1)− f (W ∗

i, j
)) + ( f (W ∗

i, j
)− f (Wi, j))
��

.

In order to accurately approximate the differences f (Wi, j−1)− f (W ∗
i, j
) and f (W ∗

i, j
)− f (Wi, j) by the

Taylor expansions, the differences between the inputs of f need to be small enough. The best we

can do is to put exactly one random variable in each of such differences.

In general, we introduce some new notations in order to define B j and Dj (2 ≤ j ≤ k) more

conveniently. Denote the m-neighborhood of J ⊆ T as

N(J) := {i ∈ T : d(i, J) ≤ m}, where d(i, J) :=min
j∈J
‖i − j‖. (F.15)

We will treat each element of T\N(J) sequentially starting from the closest elements to J . To

make this precise, for any positive integer j, we write A( j)(J) := {i ∈ T : d(i, J) = j} to be the set
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of indexes in T that are at distance of j from J . Notably we remark that T\N(J) =
⋃|T |

j=m+1
A( j)(J).

We write rk(i, J) =
∑ j

ℓ=m+1
|A(ℓ)(J)|+ r if d(i, J) = j+1 ( j ≥ m) and i is the r-th smallest element

of A( j+1)(J) with respect to the order ≺. Therefore, rk(·, J) is a bijection between T\N(J) and

{ℓ ∈ Z : 1 ≤ ℓ ≤ |T\N(J)|}. The smaller rk(i, J) is, the closer i is from J . The value of rk(·, J)

does not have an intrinsic mathematical significance but will allow us to determine the order in

which we will treat the indexes in T\N(J). Now denote

N (s)(J) := {i ∈ T : i ∈ N(J) or rk(i, J) ≤ s}. (F.16)

We note in particular that N (0)(J) = N(J), and N (sL)(J) = {i ∈ T : d(i, J) ≤ L} for sL :=∑L

ℓ=0
|A(ℓ)(J)|.

For any 2 ≤ j ≤ k, fixing the genogram G and a sequence i1 ∈ B1\D1, · · · , i j−1 ∈ B j−1\Dj−1, we

define

B j :=

¨
N (s j)
�
iℓ : ℓ ∈ A( j)
�
∪ Dg( j) if s j ≥ 0

Bu( j) if s j = −1
., (F.17)

Dj :=

¨
N (s j−1)
�
iℓ : ℓ ∈ A( j)
�
∪ Dg( j) if s j ≥ 1

Dg( j) if s j ≤ 0
. (F.18)

Here (by abuse of notation) A( j) is the label set of v[ j]’s ancestors, and u( j) and g( j) are defined in

(F.14) and (F.13). Note that B j and Dj depend on G[ j] through s j, A( j), u( j), and g( j). Moreover,

by definition, we have that Dj ⊆ B j for any 1 ≤ j ≤ k. We remark that when the identifier s j = 0

is nill then B j\Dj ⊆ N(iℓ : ℓ ∈ A( j)), and when s j ≥ 1 then B j\Dj is either empty or a singleton

with element the unique i such that rk
�
i, {iℓ ∈ T : ℓ ∈ A( j)}

�
= s j . Finally, if s j = −1, then

B j\Dj = Bp( j)\Dp( j).

For instance, we consider the genograms G1 and G2 shown in Figure 2. The constraint sets of the

running indexes are presented in Table 1.

Table 1: The constraint sets with respect to G1 and G2.

j 1 2 3 4

G1

B j(G1) T N (2)(i1) N (1)(i1) N(i1)

Dj(G1) ; N (1)(i1) N(i1) ;

G2

B j(G2) T N(i1) N (5)(i1, i2) N (3)(i1, i2)

Dj(G2) ; ; N (4)(i1, i2) N (2)(i1, i2)

j 5 6 7

G1

B j(G1) N(i1) N (2)(i1, i4, i5) N(i1, i4, i5)

Dj(G1) ; N (1)(i1, i4, i5) ;

G2

B j(G2) N (2)(i1, i2, i4)∪ N (2)(i1, i2) N (1)(i1, i2, i4)∪ N (2)(i1, i2) N (1)(i1, i2, i4)∪ N (2)(i1, i2)

Dj(G2) N (1)(i1, i2, i4)∪ N (2)(i1, i2) N(i1, i2, i4)∪ N (2)(i1, i2) N(i1, i2, i4)∪ N (2)(i1, i2)

Secondly, as described in the roadmap, we define the generalized covariance operator D∗ on a

finite sequence of random variables (Yi)i≥1. To do so, we also need to inductively define another
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operator D that takes in a finite sequence of random variables and outputs a new random variable.

For any random variable Y , define

D∗(Y ) := E[Y ], D(Y ) := Y −D∗(Y ) = Y −E[Y ].

Suppose D is already defined for a random sequence of length t−1. Then for any random variables

Y1, · · · , Yt , let

D(Y1, Y2, · · · , Yt) := D
�
Y1D(Y2, · · · , Yt)
�
= Y1D(Y2, · · · , Yt)−E

�
Y1D(Y2, · · · , Yt)
�
,

D∗(Y1, Y2, · · · , Yt) := D∗
�
Y1D(Y2, · · · , Yt)
�
= E
�
Y1D(Y2, · · · , Yt)
�
.

In particular, for any two random variables Y1 and Y2, D∗(Y1, Y2) = Cov(Y1, Y2) gives the covariance

between Y1 and Y2. Here we remark that D(Y1, · · · , Yt) and D∗(Y1, · · · , Yt) are well-defined for a

tuple of t random variables (Yi)
t
i=1

supposing that for any i, j ∈ N+ such that i ≤ j ≤ t we have

E
�
|YiYi+1 · · · Yj|
�
< ∞. It is straightforward to see from the definition that both operators are

multilinear. We will show more properties of them in Appendix H.

Thirdly, we construct from any genogram a new operator EG that maps from |G| random variables

to a real number. Note that this EG operator will provide us with the summands in S(G), T f (G),

and U f (G). If |G|= 1, for any random variable Y , define EG(Y ) := D∗(Y ) = E[Y ]. Suppose EG is

already defined for |G| ≤ k− 1. Consider the case where |G|= k. Let

q0 := sup{ j : j = 1 or p( j) 6= j − 1 for 2≤ j ≤ k}, (F.19)

In other words, either v[q0 − 1] is the leaf with the largest label smaller than k, or alternatively

v[k] is the only leaf and q0 = 1. Intuitively, v[q0] is the starting vertex of the last branch of G.

Next we set w :=
��{t : q0 + 1 ≤ t ≤ k & st ≥ 0}

�� to be the number of all indices q0 + 1 ≤ t ≤ k

such that the identifier st ≥ 0. If w = 0, define

EG(Y1, · · · , Yk) :=

¨
D∗
�
Y1Y2 · · · Yk

�
if q0 = 1

EG[q0−1]

�
Y1, · · · , Yq0−1

�
·D∗
�
Yq0

Yq0+1 · · · Yk

�
if q0 ≥ 2

, (F.20)

where G[q0 − 1] ⊆ G is the unique order-(q0 − 1) sub-genogram of G as defined in Appendix F.2.

Otherwise, we write {t : q0 + 1 ≤ t ≤ k & st ≥ 0} = {q1, · · · , qw}. Without loss of generality, we

suppose that q0 + 1 ≤ q1 < · · ·< qw ≤ k is increasing. We define

EG(Y1, · · · , Yk) :=






D∗
�
Y1 · · · Yq1−1 , Yq1

· · ·Yq2−1 , · · · , Yqw
· · · Yk

�
if q0 = 1

EG[q0−1]

�
Y1, · · · , Yq0−1

�
·

D∗
�
Yq0
· · ·Yq1−1 , Yq1

· · · Yq2−1 , · · · , Yqw
· · · Yk

� if q0 ≥ 2
. (F.21)

By definition, we can see that EG(Y1, · · · , Yk) is either a D∗ term or the product of multiple D∗

terms, each of which corresponds to a branch of the rooted tree (V, E).

Taking the genograms G1 and G2 shown in Figure 2 as examples, EG1
and EG2

are provided by

EG1
(Y1, · · · , Y7) = D∗(Y1, Y2) D

∗(Y3) D
∗(Y4Y5 , Y6) D

∗(Y7),
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EG2
(Y1, · · · , Y7) = D∗(Y1, Y2, Y3) D

∗(Y4, Y5) D
∗(Y6Y7).

Finally, we define S(G),T f (G),U f (G) with respect to any genogram G = (V, E, s1:k) ∈ G(k) and

function f ∈ Ck−1(R).

S(G) := σ−k
∑

i1∈B1\D1

∑

i2∈B2\D2

· · ·
∑

ik∈Bk\Dk

EG

�
X i1

, · · · , X ik−1
, X ik

�
, (F.22)

T f (G) := σ−k
∑

i1∈B1\D1

∑

i2∈B2\D2

· · ·
∑

ik∈Bk\Dk

EG

�
X i1

, · · · , X ik−1
, X ik

∂ k−1 f
�
W (Dk)
��

, (F.23)

U f (G) := σ−(k−1)
∑

i1∈B1\D1

∑

i2∈B2\D2

· · ·
∑

ik−1∈Bk−1\Dk−1

EG

�
X i1

, · · · , X ik−1
, ∆ f (G)
�
, (F.24)

where

∆ f (G) :=






∂ k−2 f
�
W (Bk)
�
− ∂ k−2 f
�
W (Dk)
�

if u(k) = k∫ 1

0

(k− u(k))vk−1−u(k)
�
∂ k−2 f
�
vW (Dk) + (1− v)W (Bk)

�

− ∂ k−2 f
�
W (Dk)
��

dv

if u(k) ≤ k− 1
.

is called the adjusted f -difference. Note that ∆ f (G) depends on G and i1, · · · , ik−1 through

Bk, Dk and u(k), where k = |G|. For ease of notation, we do not write out the other dependen-

cies i1, · · · , ik−1.

Intuitively, S(G) is analogous to the S-sums defined for the local dependence case while T f (G) is

analogous to the T -sums. And U f (G) is defined in a similar spirit to the R-sums as they are both

used to handle the remainders. ∆ f is obtained from the integral-form remainders of the Taylor

expansions (see (F.12) and Lemma F.5). Eventually, we would like to expand T f (G) using S(H)

and U f (H) for some H ⊇ G as shown in Theorem F.6.

Now we revisit the case k = d = 1 discussed in Appendix F.2. We rewrite the quantities that

appear in (F.11), i.e. E[W f (W)], E1 + E3, E2, E1, E3 − E11, E11, E4, · · · , E7 using the notations we

have developed so far. For example,

E[W f (W )] =

n∑

i=1

E[X i f (W )] =
∑

i1∈B1\D1

D∗(X i1
f (W(D1))) = T f

�
0

�
, (F.25)

and E2 is written as

E2 =
1

σ

n∑

i=1

D∗
�
X i , f (Wi,m)
�

=
1

σ

n∑

i=1

n−1∑

j=m+1

�
D∗
�
X i , f (Wi, j−1)− f (W ∗

i, j
)
�
+D∗
�
X i , f (W ∗

i, j
)− f (Wi, j)
��

=−
n−1∑

j=m+1

U f

�
0

2( j−m)

−1

�
−

n−1∑

j=m+1

U f

�
0 2( j−m)

�
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=−
2(n−m−1)∑

j=1

U f

�
0 j
�

.

Furthermore, we can express all the other quantities in a similar way, and (F.11) will transform into

the following equation (details omitted):

T f

�
0
�
= −U f

�
0 0
�
−

2(n−m−1)∑

j=1

U f

�
0 j
�

= U f

�
0 0 −1
�
−

2(n−m−1)∑

j=0

U f

�
0 0 j
�
+ S
�

0 0
�
E[ f ′(W )]

+

2(n−m−1)∑

j=1

U f

�
0 j −1

�
−

2(n−m−1)∑

j=1

2(n−m−1)∑

ℓ=0

U f

�
0 j ℓ
�
+

2(n−m−1)∑

j=1

j−1∑

ℓ=0

U f

�
0

j

ℓ

�

+

2(n−m−1)∑

j=1

S
�

0 j
�
E[ f ′(W)].

F.4 Expansions

Firstly, we consider how to grow a genogram by following the compatible labeling order of the

vertices. Initially, there is only the root and |G| = 1. We would like |G| to increase from 1 to k

after repeatedly choosing a “growing” vertex and adding a child to that vertex. In order to obtain a

genogram with the compatible labeling at each step, we observe that the growing vertex needs to

be v[|G|] or an ancestor of v[|G|], which is formally stated in Lemma F.3. Moreover, a negative

vertex can only be added to v[|G|] because negative vertices do not have siblings as required in the

definition of genograms (see Proposition F.2c).

Lemma F.3. Let (V, E) be a rooted tree with V := {v[1], · · · , v[k]}, whose vertex labels satisfy

Proposition F.2a. Then for any 1≤ j ≤ k−1 either p( j+1) = j or p( j+1) ∈ A( j) and j is a leaf.

The proof of Lemma F.3 is in Appendix G.

In general, a genogram can be constructed by repeating the following two operations (not neces-

sarily consecutively):

(a) G   Ω[ j, s|G|+1](G): Fix the growing vertex v[ j] to be v[|G|] or an ancestor of v[|G|] that

satisfies mint≤|G|:p(t)= j{st} ≥ 1. Add a non-negative child v[|G|+1] to v[ j] and choose s|G|+1

to satisfy 0 ≤ s|G|+1 <mint≤|G|:p(t)= j{st};

(b) G  Λ[h](G): Add a path of h negative vertices to v[|G|]. In other words, v[|G|+t] is added

as the single child of v[|G|+ t − 1] for t = 1, · · · , h, and we set s|G|+1 = · · ·= s|G|+h = −1.

Take G2 shown in Figure 2b as an example. A negative vertex can only be added as a child of v[7]

while a non-negative vertex can be added as a child of v[4] with the identifier 0, 1 or 2, a child of

v[6] with identifier 0, or a child of v[7] with any non-negative identifier.
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Figure 3: Adding a new vertex to G2.

From the derivation of (F.5), we note that the expansion of T f (G) is typically achieved by con-

structing a telescoping sum followed by the Taylor expansions. We will see later that the first

operation of growing genograms corresponds to the telescoping sum argument, and the second one

corresponds to the Taylor expansion, which will be formalized in Lemmas F.4 and F.5.

Lemma F.4. Given an integer ℓ and an order-ℓ genogram G, let Ω[ j, s](G) (1 ≤ j ≤ ℓ, s ≥ 0) be

the genogram obtained by growing a child from the vertex v[ j], as defined in (a). Then we have

T f (G)− S(G) E
�
∂ ℓ−1 f (W )
�
=−
∑

s≥0

U f

�
Ω[ℓ, s](G)
�
+
∑

j∈A(ℓ):s j≥1

s j−1∑

s=0

U f

�
Ω[p( j), s](G)
�
, (F.26)

=−
∑

H∈G(ℓ+1):
H⊇G,

sℓ+1≥0,
p(ℓ+1,H)=ℓ

U f (H) +
∑

H∈G(ℓ+1):
H⊇G,

sℓ+1≥0,
p(ℓ+1,H)<ℓ

U f (H), (F.27)

where p( j) is the label of the parent of v[ j], s j is the identifier, and G(k) is the set of all order-k

genograms, all of which are defined in Appendix F.2.

Note that Lemma F.4 (proved in Appendix G) generalizes the idea of expanding to a telescoping

sum while deriving (F.5).

Lemma F.5. Given two integers ℓ ≥ 1, k ≥ 0, and an order-ℓ genogram G, let Λ[ j](G) (0 ≤ j ≤
k + 1) be the genogram obtained by gluing a path of j negative vertices to v[ℓ], as defined in (b)

of Appendix F.2. Then we have

U f (G) =

k∑

j=0

(−1) j+1 (ℓ− u(ℓ))!

( j + 1+ ℓ− u(ℓ))!
T f

�
Λ[ j](G)
�
+(−1)k+1 (ℓ− u(ℓ))!

(k+ 1+ ℓ− u(ℓ))!
U f

�
Λ[k+1](G)
�
,

(F.28)

where u( j) is given by (F.14).

As we have pointed out, Lemma F.5 is a direct consequence of the Taylor expansion, and the proof

is also provided in Appendix G.

Theorem F.6. Given a genogram G and an integer k ≥ |G|, then the equation below holds for any

f ∈ Ck−1(R)

T f (G) =
∑

H⊇G:
|H|≤k,

s|G|+1≥0

aH,G S(H) E
�
∂ |H|−1 f (W)
�
+
∑

H∈G(k+1):
H⊇G,

s|G|+1≥0

bH,G U f (H), (F.29)
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where the coefficients aH,G and bH,G are provided by

aH,G :=

¨
1 if |H| = |G|
(−1)γH−γG+τH−τG

∏|H|
j=|G|+1

1
j+1−u( j,H)

if |H| ≥ |G|+ 1
, (F.30)

bH,G :=

¨
(−1)γH−γG+τH−τG+1 if |H| = |G|+ 1

(−1)γH−γG+τH−τG+1
∏|H|−1

j=|G|+1

1
j+1−u( j,H)

if |H| ≥ |G|+ 2
. (F.31)

Here γG denotes the number of leaves on G and τG is the number of negative vertices on G.

It will be useful in the future to note that for all genograms H ⊇ G with |H| ≥ |G| + 1 we have

aH,G = −
bH,G

|H|+1−u(|H|,H) .

Proof. For convenience, denote ℓ := |G|. We prove by performing induction on k (k ≥ ℓ).
If k = ℓ, then we note that the set {H ⊇ G : |H| ≤ k} = {G} only contains the genogram G.

Moreover, in (F.30) we set aG,G = 1. Therefore, we obtain that

∑

H⊇G:
|H|≤k,

s|G|+1≥0

aH,G S(H) E
�
∂ |H|−1 f (W )
�
+
∑

H∈G(k+1):
H⊇G,

s|G|+1≥0

bH,G U f (H)

=S(G) E
�
∂ |H|−1 f (G)
�
+
∑

H∈G(ℓ+1):
H⊇G,

sℓ+1≥0

bH,G U f (H).

Next let H ∈ G(ℓ+ 1) be a genogram of order ℓ+ 1 such that H ⊇ G and such that sℓ+1 ≥ 0. Note

that sℓ+1 ≥ 0 implies that τH = τG . To calculate γH − γG, we check that the parent of v[ℓ+ 1] is

either v[ℓ] (i.e., p(ℓ + 1, H) = ℓ) or an ancestor of v[ℓ]. If its parent is v[ℓ] then the number of

leaves in H, denoted by γH , is the same as that of G, and hence by (F.31) bH,G = −1. Otherwise,

the number of leaves increases by exactly one: γH = γG + 1, which implies bH,G = 1. Thus, (F.29)

reduces to ∑

H∈G(ℓ+1):
H⊇G,

sℓ+1≥0

bH,G U f (H) = −
∑

H∈G(ℓ+1):
H⊇G,

sℓ+1≥0,
p(ℓ+1,H)=ℓ

U f (H) +
∑

H∈G(ℓ+1):
H⊇G,

sℓ+1≥0,
p(ℓ+1,H)<ℓ

U f (H),

Using Lemma F.4 we directly obtain that

T f (G) = S(G) E
�
∂ ℓ−1 f (W )
�
−
∑

H∈G(ℓ+1):
H⊇G,

sℓ+1≥0,
p(ℓ+1,H)=ℓ

U f (H) +
∑

H∈G(ℓ+1):
H⊇G,

sℓ+1≥0,
p(ℓ+1,H)<ℓ

U f (H),

and the desired result is proven.

Now supposing the statement is true for k, we will establish that the desired result also holds for

k+ 1.
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By inductive hypothesis we have

T f (G) =
∑

H⊇G:
|H|≤k,
sℓ+1≥0

aH,G S(H) E
�
∂ |H|−1 f (W )
�
+
∑

H∈G(k+1):
H⊇G,

sℓ+1≥0

bH,G U f (H). (F.32)

For any H ∈ G(k+ 1), by Lemma F.5 we have

U f (H) = −
1

k+ 2− u(k+ 1, H)

�
T f (H) + U f

�
Λ[1](H)
��

. (F.33)

Combining (F.33) with (F.32), we get

T f (G) =
∑

H⊇G:
|H|≤k,
sℓ+1≥0

aH,G S(H) E
�
∂ |H|−1 f (W )
�
−
∑

H∈G(k+1):
H⊇G,

sℓ+1≥0

bH,G

k+ 2− u(k+ 1, H)
T f (H)

−
∑

H∈G(k+1):
H⊇G,

sℓ+1≥0

bH,G

k+ 2− u(k+ 1, H)
U f

�
Λ[1](H)
�

(a)
=
∑

H⊇G:
|H|≤k,
sℓ+1≥0

aH,G S(H) E
�
∂ |H|−1 f (W )
�
+
∑

H∈G(k+1):
H⊇G,

sℓ+1≥0

aH,GT f (H) +
∑

K∈G(k+2):
K⊇G,

sℓ+1≥0,
sk+2=−1

bK,GU f

�
K
�
. (F.34)

Note that sk+2 = −1 implies that τK = τH + 1 and γK = γH (since p(k+ 2, K) = k+ 1). Moreover,

equality (a) is due to the fact that for any H ∈ G(k+ 1) we have aH,G = −
bH,G

k+2−u(k+1,H)
, and that for

any K ∈ G(k+ 2) with sk+2 = −1 we have bK,G = (−1)γK−γH+τK−τH
bH,G

k+2−u(k+1,H)
= − bH,G

k+2−u(k+1,H)
.

Next by another application of Lemma F.4, we get that

T f (H)− S(H) E
�
∂ k f (W )
�
= −
∑

K∈G(k+2):
K⊇H,

sk+2≥0,
p(k+2,K)=k+1

U f (K) +
∑

K∈G(k+2):
K⊇H,

sk+2≥0,
p(k+2,K)<k+1

U f (K). (F.35)

Combining this with (F.34), we get

T f (G) =
∑

H⊇G:
|H|≤k,
sℓ+1≥0

aH,G S(H) E
�
∂ |H|−1 f (W )
�
+
∑

H∈G(k+1):
H⊇G,

sℓ+1≥0

aH,GS(H) E[∂
k f (W )]

−
∑

K∈G(k+2):
K⊇H⊇G,
sℓ+1≥0,
sk+2≥0,

p(k+2,K)=k+1

aH,GU f (K) +
∑

K∈G(k+2):
K⊇H⊇G,
sℓ+1≥0,
sk+2≥0,

p(k+2,K)<k+1

aH,GU f (K) +
∑

K∈G(k+2):
K⊇G,

sℓ+1≥0,
sk+2=−1

bK,GU f

�
K
�
, (F.36)

where H is the order-(k+ 1) sub-genogram of K .
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Now we simplify (F.36). For K ∈ G(k + 2) such that p(k + 2, K) = k + 1, we have γK = γH .

And sk+2 ≥ 0 implies that τK = τH . Thus, bK,G = (−1)γK−γH+τK−τH
bH,G

k+2−u(k+1,H)
=

bH,G

k+2−u(k+1,H)
=

−aH,G . For K ∈ G(k + 2) such that p(k + 2, K) < k + 1, we have γK = γH + 1. Thus, bK,G =

(−1)γK−γH+τK−τH
bH,G

k+2−u(k+1,H)
= − bH,G

k+2−u(k+1,H)
= aH,G. (F.36) reduces to

T f (G) =
∑

H⊇G:
|H|≤k,
sℓ+1≥0

aH,G S(H) E
�
∂ |H|−1 f (W)
�
+
∑

H∈G(k+1):
H⊇G,

sℓ+1≥0

aH,GS(H) E[∂
k f (W)]

+
∑

K∈G(k+2):
K⊇G,

sℓ+1≥0,
sk+2≥0,

p(k+2,K)=k+1

bK,GU f (K) +
∑

K∈G(k+2):
K⊇G,

sℓ+1≥0,
sk+2≥0,

p(k+2,K)<k+1

bK,GU f (K) +
∑

K∈G(k+2):
K⊇G,

sℓ+1≥0,
sk+2=−1

bK,GU f

�
K
�

=
∑

H⊇G:
|H|≤k+1,

sℓ+1≥0

aH,G S(H) E
�
∂ |H|−1 f (W)
�
+
∑

K∈G(k+2):
K⊇G,

sℓ+1≥0

bK,G U f (K). (F.37)

The last equality is from the observation that

{H ⊇ G : |H| ≤ k+ 1, sℓ+1 ≥ 0}
= {H ⊇ G : |H| ≤ k, sℓ+1 ≥ 0} ⊔ {H ∈ G(k+ 1) : H ⊇ G, sℓ+1 ≥ 0},

{K ∈ G(k+ 2) : K ⊇ G, sℓ+1 ≥ 0}
= {K ∈ G(k+ 2) : K ⊇ G, sℓ+1 ≥ 0, sk+2 ≥ 0, p(k+ 2, K) = k+ 1}⊔
{K ∈ G(k+ 2) : K ⊇ G, sℓ+1 ≥ 0, sk+2 ≥ 0, p(k+ 2, K) < k+ 1}⊔
{K ∈ G(k+ 2) : K ⊇ G, sℓ+1 ≥ 0, sk+2 = −1},

where ⊔ denotes the disjoint union of sets. Note that (F.37) is precisely (F.29) for the case k + 1.

By induction Theorem F.6 is proven.

Lemma F.7. Given a genogram G and an integer k ≥ |G|, suppose there exist two sets of constants

that only depend on G and the joint distribution of (X i)i∈T , (Q|G|, · · · ,Qk) and (Q′|G|, · · · ,Q′k), which

satisfy that for any polynomial f of degree at most k− 1,

T f (G) =

k∑

j=|G|
Q jE[∂

j−1 f (W )] =

k∑

j=|G|
Q′

j
E[∂ j−1 f (W )].

Then Q j =Q′
j
for any |G| ≤ j ≤ k.

Proof. We prove the lemma by contradiction.

Let j be the smallest number such that Q j 6= Q′
j
. Since Q|G|, · · · ,Qk does not depend on f , we

choose f (x) = cx j such that ∂ j f (x) = c j! 6= 0. But Q j+1E[∂
j+1 f (W )] = · · · =QkE[∂

k−1 f (W )] =

0, which implies cQ j = cQ′
j
. This is a contradiction. Therefore, Q j = Q′

j
for any |G| ≤ j ≤ k.

Let P0(k) := {G ∈ G(k) : s j ≤ 0, for any 1 ≤ j ≤ k} denote the set of order-k genograms with

no positive vertex. Let G0(k) := G(k)\P0(k) denote the set of order-k genograms with at least one
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positive vertex. Let P1(k) := {G ∈ G(k) : s j ≤ 0, 1 ≤ j ≤ k − 1, sk ≥ 1} be the set of order-k

genograms where v[k] is the only positive vertex. Note that from the compatible conditions of

identifiers, we know any genogram in P0(k) or P1(k) has only one branch.

Corollary F.8. Given k ≥ 2, the equation below holds for any f ∈ Ck(R)

E[W f (W )] =

k∑

j=1

κ j+1(W )

j!
E[∂ j f (W )] +

∑

H∈G(k+2)

bHU f (H) (F.38)

=

k−1∑

j=1

κ j+1(W )

j!
E[∂ j f (W )] +
eκk+1

k!
E[∂ k f (W)] +

∑

H∈P0(k+2)⊔
P1(k+2)⊔G0(k+1)

bHU f (H), (F.39)

where eκk+1 and bH are defined as

eκk+1 :=κk+1(W ) +
∑

H∈G0(k+1)

k! bH

k+ 2− u(k+ 1)
S(H), (F.40)

bH :=

¨
(−1)γH+τH if |H| = 2

(−1)γH+τH

∏|H|−1

j=2

1
j+1−u( j)

if |H| ≥ 3
. (F.41)

Here γH is the number of leaves on H, and τH is the number of negative vertices on H.

Proof. We write G0 = (1,;, 0) to be the genogram consisting only of the root. We remark that

as already discussed in (F.25),

T f (G0) = E[W f (W )].

As G0 is a genogram of order-1, applying Theorem F.6 we have that for any f ∈ Ck(R),

T f (G0) = E[W f (W )] =

k+1∑

j=1

Q jE[∂
j−1 f (W )] +
∑

H∈G(k+2)

bH,G0
U f (H), (F.42)

where Q1 = S(G0) = 0 and for all j ≥ 2 we take

Q j =
∑

H∈G( j):H⊇G0,s2≥0

aH,G0
S(H)

(a)
= −
∑

H∈G( j)

bH,G0

j + 1− u( j, H)
S(H), (F.43)

where aH,G0
and bH,G0

are defined in Theorem F.6, and where to obtain (a) we used the fact that

for all genograms H of order bigger than 2, we have aH,G0
= − bH,G0

|H|+1−u(|H|,H) . The expression above

shows that Q j only depends on the joint distribution of (X i)i∈T . Furthermore, we see that by

definition bH,G0
is identical to the bH defined in the corollary.

For any H ∈ G(k + 2) and polynomial f of degree at most k, ∂ k f is a constant. Therefore,

∆ f (H) = 0, which directly implies that

U f (H) = σ
−(k+1)
∑

i1∈B1\D1

∑

i2∈B2\D2

· · ·
∑

ik+1∈Bk+1\Dk+1

EG

�
X i1

, · · · , X ik+1
, ∆ f (H)
�
= 0.
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Therefore, by combining this with (F.42) we obtain that

E[W f (W)] =

k+1∑

j=1

Q jE[∂
j−1 f (W )]. (F.44)

On the other hand, we note that for any random variable, the moments (µ j) j≥0 and cumulants

(κ j) j≥0 are connected through (B.43). If we choose f (x) = x j where j ∈ [k], then by (B.43) we

have

E[W f (W)] = µ j+1(W ) =

j+1∑

h=1

�
j

h− 1

�
κh(W)µ j+1−h(W )

=

j∑

h=0

�
j

h

�
κh+1(W)µ j−h(W ) =

k+1∑

h=1

κh(W )

h!
E[∂ h−1 f (W )].

Any polynomial f of degree at most k can be written as f (x) =
∑k

j=0
a j x

j. By linearity of

expectations, we know

E[W f (W)] =

k+1∑

j=1

κ j(W )

( j − 1)!
E[∂ j f (W )].

Compare this to (B.42) and apply Lemma F.7. We conclude that Q j = κ j(W )/( j − 1)! for any

j ∈ [k+ 1]. Thus, for any f ∈ Ck(R), we have shown

E[W f (W)] =

k+1∑

j=2

Q jE[∂
j−1 f (W )] +
∑

H∈G(k+2)

bHU f (H)

=

k∑

j=1

Q j+1E[∂
j f (W )] +
∑

H∈G(k+2)

bHU f (H)

=

k∑

j=1

κ j+1(W )

j!
E[∂ j f (W )] +

∑

H∈G(k+2)

bHU f (H).

Since f ∈ Ck(R) ⊆ Ck−1(R), we also have

E[W f (W )] =

k−1∑

j=1

κ j+1(W )

j!
E[∂ j f (W )] +

∑

H∈G(k+1)

bHU f (H). (F.45)

As P0(k+ 1) ⊆ G(k+ 1) we can decompose
∑

H∈G(k+1) bHU f (H) into two sums as

∑

H∈G(k+1)

bHU f (H) =
∑

H∈P0(k+1)

bHU f (H) +
∑

H∈G0(k+1)\P0(k+1)

bHU f (H). (F.46)

For H ∈ P0(k+ 1), applying Lemma F.5 we obtain

∑

H∈P0(k+1)

bHU f (H) =−
∑

H∈P0(k+1)

bH

k+ 2− u(k+ 1)
T f (H)−
∑

H∈P0(k+1)

∑

K∈G(k+2):
K)H,

sk+2=−1

bH

k+ 2− u(k+ 1)
U f (K)
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(∗)
= −
∑

H∈P0(k+1)

bH

k+ 2− u(k+ 1)
T f (H) +
∑

K∈P0(k+2):
sk+2=−1

bKU f (K) (F.47)

where in (∗) we use the fact that bK = (−1)γK−γH+τK−τH
bH

k+2−u(k+1)
= − bH

k+2−u(k+1)
since sk+2 = −1

implies that γK = γH and τK = τH + 1.

Noting that for any H ∈ P0(k + 1), if an order-(k + 2) genogram K satisfies that K ) H, then we

have p(k+ 2, K) = k+ 1 since we have that s j ≤ 0 for any j ∈ [k+ 1]. Thus, Lemma F.4 implies

that
∑

H∈P0(k+1)

�
T f (H)− S(H) E[∂ k f (W )]

�
= −
∑

H∈P0(k+1)

∑

K∈G(k+2):
K)H,

sk+2≥0

U f (K)

=−
∑

K∈P0(k+2):
sk+2=0

U f (K)−
∑

K∈P1(k+2)

U f (K).

Combining this with (F.47) we get

∑

H∈P0(k+1)

bHU f (H) =−
∑

H∈P0(k+1)

bH

k+ 2− u(k+ 1)
S(H) E
�
∂ k f (W )
�
+
∑

K∈P0(k+2):
sk+2=−1

bKU f (K)

+
∑

K∈P0(k+2):
sk+2=0

bH

k+ 2− u(k+ 1)
U f (K) +
∑

K∈P1(k+2)

bH

k+ 2− u(k+ 1)
U f (K)

(F.48)

(a)
= −
∑

H∈P0(k+1)

bH

k+ 2− u(k+ 1)
S(H) E
�
∂ k f (W )
�
+
∑

K∈P0(k+2):
sk+2=−1

bKU f (K)

+
∑

K∈P0(k+2):
sk+2=0

bKU f (K) +
∑

K∈P1(k+2)

bKU f (K)

=−
∑

H∈P0(k+1)

bH

k+ 2− u(k+ 1)
S(H) E
�
∂ k f (W )
�
+
∑

K∈P0(k+2)⊔P1(k+2)

bKU f (K).

(F.49)

Again (a) is obtained by checking that γK = γH and τK = τH , and thus, bK =
bH

k+2−u(k+1)
.

Since we have already established that Q j = κ j(W )/( j − 1)!, by (F.43), the following equation

holds that
κk+1(W)

k!
= Qk+1 = −
∑

H∈G(k+1)

bH

k+ 2− u(k+ 1)
S(H).

Thus, we get

eκk+1

k!
=
κk+1(W )

k!
+
∑

H∈G0(k+1)

bH

k+ 2− u(k+ 1)
S(H) = −
∑

H∈P0(k+1)

bH

k+ 2− u(k+ 1)
S(H). (F.50)
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Combining (F.46), (F.49), and (F.50) with (F.45), we obtain (F.39).

Properties of the coefficients bH

We remark that from the definition of bH , it is straightforward that for any H, we have the bound

|bH | ≤ 1. Moreover, if two genograms H1, H2 share the same tree structure (V, E) and the set of

negative vertices (i.e., { j : s j = −1}), then bH1
= bH2

.

F.5 Controlling the remainders

From now on, we consider the case when (X i)i∈T is a strongly mixing, stationary random field

of mean-zero random variables (see Definition 5.2), and proceed to control the terms S(H) and

U f (H) in Corollary F.8.

Throughout this subsection for a genogram H we write

bH :=

¨
(−1)γH+τH if |H| = 2

(−1)γH+τH
∏|H|−1

j=2

1
j+1−u( j)

if |H| ≥ 3

where γH designates the number of leaves on H and τH denotes the number of negative vertices on

H.

Lemma F.9. Let T ⊆ Zd and (X i)i∈T be a random field. Given k ≥ 1, suppose that there is a real

number r > k+1 such that E[X1] = 0, E[|X1|r] <∞. Assume that the non-degeneracy condition

holds that lim inf|T |→∞σ
2/|T |> 0. Then for any m ∈ N+ we have

∑

H∈G0(k+1)

��S(H)
�� ® |T |−(k−1)/2

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓdk−1α
(r−k−1)/r

ℓ
. (F.51)

(Where the constant dropped from using the notation ® does not depend on m.)

Given ω ∈ (0, 1], for any f ∈ Ck−1,ω(R) and m ∈ N+, we have

����
∑

H∈G0(k+1)

bHU f (H)

���� ® | f |k−1,ω|T |−(k+ω−2)/2

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓd(k+ω−1)−ωα(r−k−ω)/r
ℓ

, (F.52)

����
∑

H∈P0(k+1)

bHU f (H)

���� ® | f |k−1,ω|T |−(k+ω−2)/2md(k+ω−1). (F.53)

Moreover, if k ≥ 2, for any f ∈ Ck−2,1(R) ∩ Ck−1,1(R), m ∈ N+ and real number δ ∈ [0, 1], we

have

����
∑

H∈P1(k+1)

bHU f (H)

���� ® | f |1−δk−2,1
| f |δ

k−1,1
|T |−(k−2+δ)/2md(k−1)

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓdδ−δα(r−k−δ)/r
ℓ

. (F.54)
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The proof of this lemma is long and technical, so we postpone it to Appendix H. Now combining

Corollary F.8 and Lemma F.9, we have the following results.

Corollary F.10. Under the same settings as Lemma F.9, for any f ∈ Ck,ω(R) and m ∈ N+ we have

E[W f (W)] =

k∑

j=1

κ j+1(W )

j!
E[∂ j f (W )] +O

�
| f |k,ω|T |−(k+ω−1)/2

�
md(k+ω)

+

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓd(k+ω)−ωα(r−k−1−ω)/r
ℓ

��
.

(F.55)

For any f ∈ Ck−1,1(R)∩ Ck,1(R), m ∈ N+ and real number δ ∈ [0, 1] we have the following

E[W f (W )] =

k−1∑

j=1

κ j+1(W )

j!
E[∂ j f (W)] +
eκk+1

k!
E[∂ k f (W )] +O

�
| f |k,1|T |−k/2md(k+1)

+ | f |1−δ
k−1,1
| f |δ

k,1
|T |−(k−1+δ)/2mdk

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓdδ−δα(r−k−1−δ)/r
ℓ

+ | f |k−1,1|T |−(k−1)/2

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓdk−1α
(r−k−1)/r

ℓ

�
,

(F.56)

where eκk+1 is some constant that only depends on the joint distribution of (X i)i∈T , and it satisfies

that

��eκk+1 − κk+1(W )
��® |T |−(k−1)/2

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓdk−1α
(r−k−1)/r

ℓ
.

Proof. By Corollary F.8, we have the expansion

E[W f (W )] =

k∑

j=1

κ j+1(W )

j!
E[∂ j f (W )] +

∑

H∈G(k+2)

bHU f (H).

By Lemma F.9 with m ∈ N+ we get the upper bound:
����
∑

H∈G(k+2)

bHU f (H)

���� ≤
����
∑

H∈P0(k+2)

bHU f (H)

����+
����
∑

H∈G0(k+2)

U f (H)

����

®| f |k,ω|T |−(k+ω−1)/2
�
md(k+ω) +

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓd(k+ω)−ωα(r−k−1−ω)/r
ℓ

�
.

Again by Corollary F.8, we have

E[W f (W )] =

k−1∑

j=1

κ j+1(W)

j!
E[∂ j f (W )]

+
eκk+1

k!
E[∂ k f (W )] +

∑

H∈G0(k+1)

bHU f (H) +
∑

H∈P0(k+2)∪P1(k+2)

bHU f (H),
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where eκk+1 satisfies that

eκk+1 := κk+1(W)−
∑

H∈G0(k+1)

k! bH

k+ 2− u(k+ 1)
S(H).

Note that |bH | ≤ 1. By Lemma F.9 we get

��eκk+1− κk+1(W)
��≤k!
∑

H∈G0(k+1)

��S(H)
��® |T |−(k−1)/2

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓdk−1α
(r−k−1)/r

ℓ
.

By Lemma F.9 with ω= 1 we have
����
∑

H∈P0(k+2)

bHU f (H)

����+
����
∑

H∈P1(k+2)

bHU f (H)

����+
����
∑

H∈G0(k+1)

bHU f (H)

����

®| f |k,1|T |−k/2md(k+1) + | f |1−δ
k−1,1
| f |δ

k,1
|T |−(k−1+δ)/2mdk

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓdδ−δα(r−k−1−δ)/r
ℓ

+ | f |k−1,1|T |−(k−1)/2

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓdk−1α
(r−k−1)/r

ℓ
.

Therefore, (F.56) is proven.

Corollary F.11. Under the same settings as Lemma F.9, the (k + 1)-th cumulant of W (k ≥ 2) is

upper-bounded by

��κk+1(W)
��® |T |−(k−1)/2
�
mdk +

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓdk−1α
(r−k−1)/r

ℓ

�
. (F.57)

Proof. Applying Corollary F.10 with f (x) = x k/k! ∈ Λk where Λk :=
�

f ∈ Ck−1,1(R) :

| f |k−1,1 ≤ 1
	

, we have

E[W f (W )] =

k−1∑

j=1

κ j+1(W)

j!
E[∂ j f (W)] +O

�
|T |−(k−1)/2
�
mdk +

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓdk−1α
(r−k−1)/r

ℓ

��
.

On the other hand, by (B.43) we have

E[W f (W )] =
1

k!
µk+1(W ) =

k∑

j=1

�
k

j

�
κ j+1(W )µk− j(W ) =

k−1∑

j=1

κ j+1(W)

j!
E[∂ j f (W )] +

κk+1(W)

k!
.

Thus, we conclude that

��κk+1(W)
��® |T |−(k−1)/2
�
mdk +

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓdk−1α
(r−k−1)/r

ℓ

�
.
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F.6 Proofs of Lemmas E.1 and E.2

Proof of Lemma E.1. Let k := ⌈p⌉. For convenience, for any j ∈ [k− 1], we denote

bR j,ω := |T |−( j+ω−1)/2
�
1+

⌊|T |1/d ⌋∑

ℓ=1

ℓd( j+ω)−ωα(r− j−2)/r

ℓ

�
.

Then we have that M1 = bRk,ω, and that by Corollary F.11,
��κ j+2(W )
��® bR j,1.

Firstly, we perform induction on k to prove that

E[h(W )]−Nh=
∑

(r,s1:r)∈Γ (k−1)

(−1)r
r∏

j=1

κs j+2(W)

(s j + 1)!
N
� r∏

j=1

(∂ s j+1
Θ) h
�

+O

�∑

(k)

bRs1,1
bRs2,1 · · ·bRsr−1,1
bRsr ,ω

�
,

(F.58)

where Γ (k− 1) = {r, s1:r ∈ N+ : s1 + · · · sr = k− 1}.
For p = 1, by Lemma A.4, f = Θh ∈ C0,1(R)∩ C1,1(R). Both | f |0,1 and | f |1,1 is bounded by some

constant. By the Stein equation and (F.55), we derive that

E[h(W )]−Nh= E[ f ′(W )]−E[W f (W )] = O

�
|T |−1/2
�
1+

⌊|T |1/d ⌋∑

ℓ=1

ℓ2d−1α
(r−3)/r

ℓ

��
=O(bR1,1).

Suppose the proposition holds for 1 ≤ p ≤ k − 1 (k ≥ 2), consider the case of k − 1 < p ≤ k

(p = k +ω− 1). By Lemma A.4, f = Θh ∈ Ck+1,ω(R) and | f |k+1,ω is bounded by some constant

that only depends on p. Thus, by (F.10), we have

E[h(W )]−Nh= E[ f ′(W )]−E[W f (W )]

=−
k∑

j=2

κ j+1(W)

j!
E[∂ j f (W)] +O

�
|T |−p/2
�
1+

⌊|T |1/d ⌋∑

ℓ=1

ℓd(p+1)−ωα(r−p−2)/r

ℓ

��

=−
k−1∑

j=1

κ j+2(W)

( j + 1)!
E[∂ j+1

Θh(W)] +O(bRk,ω).

Noting that ∂ j+1
Θh ∈ Ck− j−1,ω(R) and |∂ j+1

Θh|k− j−1,ω is bounded by a constant only depending

on k, the inductive hypothesis shows that

E[∂ j+1
Θh(W)]−N [∂ j+1

Θh] =
∑

(r,s1:r )∈Γ (k− j−1)

(−1)r
r∏

ℓ=1

κsℓ+2(W )

(sℓ + 1)!
N
� r∏

ℓ=1

(∂ sℓ+1
Θ) ◦ ∂ j+1

Θ h
�

+O

� ∑

(r,s1:r )∈Γ (k− j)

bRs1,1 · · · bRsr−1,1
bRsr ,ω

�
.
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Here we use Γ (k− j) =
�

r, s1:r ∈ N+ :
∑r
ℓ=1

sℓ ≤ k− j
	

.

Since
��κ j+2(W )
��® bR j,1, we have

E[h(W )]−Nh= −
k−1∑

j=1

κ j+2(W )

( j + 1)!
E[∂ j+1

Θh(W)] +O(bRk,1)

=−
k−1∑

j=1

κ j+2(W )

( j + 1)!
N [∂ j+1

Θh]

+

k−1∑

j=1

κ j+2(W)

( j + 1)!

∑

(r,s1:r )∈Γ (k− j−1)

(−1)r
r∏

ℓ=1

κsℓ+2(W )

(sℓ + 1)!
N
� r∏

ℓ=1

(∂ sℓ+1
Θ) ◦ ∂ j+1

Θ h
�

+O

�
bRk,ω+

k−1∑

j=1

bR j,1

∑

(r,s1:r)∈Γ (k− j)

bRs1,1 · · ·bRsr−1,1
bRsr ,ω

�

=
∑

(r,s1:r )∈Γ (k−1)

(−1)r
r∏

ℓ=1

κsℓ+2(W )

(sℓ + 1)!
N
� r∏

ℓ=1

(∂ sℓ+1
Θ) h
�
+O

� ∑

(r,s1:r)∈Γ (k)

bRs1,1 · · ·bRsr−1,1
bRsr ,ω

�
.

By induction, (F.58) is true for any non-negative integer k.

Next we prove

bRs1,1 · · · bRsr−1,1
bRsr ,ω ≤ bRk,ω(1+M)k, for any s1 + · · ·+ sr = k, s j ≥ 1, 1 ≤ j ≤ r. (F.59)

In fact, by Hölder’s inequality, we get

bR j,1 ≤|T |− j/2
�
1+

⌊|T |1/d ⌋∑

ℓ=1

ℓd( j+1)−1α
(r−p−2)/r

ℓ

�

≤|T |− j/2
�
1+

⌊|T |1/d ⌋∑

ℓ=1

ℓd(k+ω)−ωα(r−p−2)/r

ℓ

� jd

kd−(d−1)(1−ω)
�
1+

⌊|T |1/d ⌋∑

ℓ=1

ℓd( j+1)−1α
(r−p−2)/r

ℓ

� (k− j)d−(d−1)(1−ω)
kd−(d−1)(1−ω)

,

bR j,ω ≤|T |−( j+ω−1)/2
�
1+

⌊|T |1/d ⌋∑

ℓ=1

ℓd−1α
(r−p−2)/r

ℓ

�

≤|T |−( j+ω−1)/2
�
1+

⌊|T |1/d ⌋∑

ℓ=1

ℓd(k+ω)−ωα(r−p−2)/r

ℓ

� jd−(d−1)(1−ω)
kd−(d−1)(1−ω)
�
1+

⌊|T |1/d ⌋∑

ℓ=1

ℓd−1α
(r−p−2)/r

ℓ

� (k− j)d

kd−(d−1)(1−ω)
.

By substituting them into (F.59), we have

bRs1,1 · · ·bRsr−1,1
bRsr ,ω ≤|T |−(k+ω−1)

�
1+

⌊|T |1/d ⌋∑

ℓ=1

ℓd(k+ω)−ωα(r−p−2)/r

ℓ

��
1+

⌊|T |1/d ⌋∑

ℓ=1

ℓd−1α
(r−p−2)/r

ℓ

�k

≤bRk,ω

�
1+

∞∑

ℓ=1

ℓd−1α
(r−p−2)/r

ℓ

�k
≤ bRk,ω(1+M)k.
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Note that M <∞ by assumption and M1 = bRk,ω. (E.2) is proven.

Finally, we prove
��κ j+2(W )
�� ® M

j/p

1 for any 1 ≤ j ≤ p − 1. In fact, by Hölder’s inequality again,

we get

bR j,1 ≤|T |− j/2
�
1+

⌊|T |1/d ⌋∑

ℓ=1

ℓd( j+1)−1α
(r−p−2)/r

ℓ

�

≤|T |− j/2
�
1+

⌊|T |1/d ⌋∑

ℓ=1

ℓd(k+ω)−1α
(r−p−2)/r

ℓ

� j
k+ω−1
�
1+

⌊|T |1/d ⌋∑

ℓ=1

ℓd−1α
(r−p−2)/r

ℓ

� k+ω−1− j
k+ω−1

≤M
j/p

1 (1+M)
k+ω−1− j

k+ω−1 .

Thus, we get the upper bounds for the cumulants in terms of M1:

��κ j+2(W )
��® bR j,1 ® M

j/p

1 , for any 1≤ j ≤ p− 1.

Lemma E.1 is proven.

Now let’s prove Lemma E.2.

Proof of Lemma E.2. Note that p is required to be an integer in this lemma. For convenience,

for any k ∈ [p], we denote

bRk := |T |−k/2
�
md(k+1) +

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓd(k+1)−1α
(r−k−2)/r

ℓ

�
.

Then by Corollary F.11,
��κk+2(W)
��® bRk.

Also denote

eRp :=|T |−p/2md(p+1) + |T |−(p−1+δ)/2md(p−1)

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓdδ−δα(r−p−1−δ)/r
ℓ

+ |T |−(p−1)/2

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓdp−1α
(r−p−1)/r

ℓ
.

Then by definition eRp ≤ M2,m,δ.

Firstly, we perform induction on p to prove that

E[h(W)]−Nh

=
∑

(r,s1:r)∈Γ (p−1)

(−1)r
r∏

j=1

κs j+2(W)

(s j + 1)!
N
� r∏

j=1

(∂ s j+1
Θ) h
�
+O

� p∑

j=1

bRp/ j

j

�
(F.60)

=
∑

(r,s1:r)∈Γ (p−1)

(−1)r
r∏

j=1

κs j+2(W)

(s j + 1)!
N
� r∏

j=1

(∂ s j+1
Θ) h
�
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+
eκp+1 − κp+1(W )

k!
N [∂ p

Θ h] +O

�p−1∑

j=1

bRp/ j

j +
eRp

�
, (F.61)

where Γ (p− 1) =
�

r, s1:r ∈ N+ :
∑r
ℓ=1

sℓ ≤ p− 1
	

.

For p = 1, by Lemma A.4, f = Θh ∈ C0,1(R)∩ C1,1(R). Both | f |0,1 and | f |1,1 is bounded by some

constant. By Stein equation and (F.55), we get

E[h(W )]−Nh= E[ f ′(W )]−E[W f (W )] =O

�
|T |−1/2
�
m2d+

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓ2d−1α
(r−3)/r

ℓ

��
=O(bR1).

By (F.56), we also have

E[h(W )]−Nh= E[ f ′(W)]−E[W f (W )] =
�
1− eκ2

�
E[ f ′(W )] +O(eR1).

Suppose the proposition holds for 1, · · · , p− 1, consider the case of p. By Lemma A.4, f = Θh ∈
Cp,1(R)∩Cp+1,1(R). Both | f |p,1 and | f |p+1,1 are bounded by some constant that only depends on p.

Thus, by (F.10), we have

E[h(W )]−Nh= E[ f ′(W )]−E[W f (W )]

=−
p∑

j=2

κ j+1(W )

j!
E[∂ j f (W)] +O

�
|T |−p/2
�
md(p+1) +

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓd(p+1)−1α
(r−p−2)/r

ℓ

��

=−
p−1∑

j=1

κ j+2(W )

( j + 1)!
E[∂ j+1

Θh(W)] +O(bRp),

and

E[h(W)]−Nh= E[ f ′(W )]−E[W f (W)]

=−
p−2∑

j=1

κ j+2(W)

( j + 1)!
E[∂ j+1

Θh(W)]−
eκp+1

p!
E[∂ p

Θh(W)] +O(eRp),

where eκp+1 is some constant that only depends on the joint distribution of (X i)i∈T , and it satisfies

that

��eκp+1 − κp+1(W )
��® |T |−(p−1)/2

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓdp−1α
(r−p−1)/r

ℓ
< eRp.

Noting that ∂ j+1
Θh ∈ Cp− j−1,1(R) and |∂ j+1

Θh|p− j−1,1 is bounded by a constant only depending on

k, the inductive hypothesis is given by

E[∂ j+1
Θh(W)]−N [∂ j+1

Θh]

=
∑

(r,s1:r )∈Γ (p− j−1)

(−1)r
r∏

ℓ=1

κsℓ+2(W)

(sℓ + 1)!
N
� r∏

ℓ=1

(∂ sℓ+1
Θ) ◦ ∂ j+1

Θ h
�
+O

� p− j∑

ℓ=1

bR(p− j)/ℓ

ℓ

�
.
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Here we use Γ (p− j − 1) =
�

r, s1:r ∈ N+ :
∑r
ℓ=1

sℓ ≤ p− j − 1
	

.

By Corollary B.5 and Young’s inequality, we have the following bounds:

��κ j+2(W)bR(p− j)/ℓ

ℓ

�� ® bR j
bR(p− j)/ℓ

ℓ
≤ bRp/ j

j
+ bRp/ℓ

ℓ
,

��eκp+1
bR1/ℓ

ℓ

�� ® (bRp−1+ eRp)bR1/ℓ

ℓ
® bRp/(p−1)

p−1 + eRp/(p−1)
p

+ bRp/ℓ

ℓ
.

On one hand, we now have

E[h(W )]−Nh= −
p−1∑

j=1

κ j+2(W )

( j + 1)!
E[∂ j+1

Θh(W)] +O(bRp)

=−
p−1∑

j=1

κ j+2(W )

( j + 1)!
N [∂ j+1

Θh]

+

p−1∑

j=1

κ j+2(W )

( j + 1)!

∑

(r,s1:r)∈Γ (p− j−1)

(−1)r
r∏

ℓ=1

κsℓ+2(W )

(sℓ + 1)!
N
� r∏

ℓ=1

(∂ sℓ+1
Θ) ◦ ∂ j+1

Θ h
�

+O

�
bRp +

p−1∑

j=1

bRp/ j

j
+

p−1∑

j=1

p− j∑

ℓ=1

bRp/ℓ

ℓ

�

=
∑

(r,s1:r)∈Γ (p−1)

(−1)r
r∏

ℓ=1

κsℓ+2(W )

(sℓ + 1)!
N
� r∏

ℓ=1

(∂ sℓ+1
Θ) h
�
+O

� p∑

ℓ=1

bRp/ℓ

ℓ

�
.

Thus, (F.60) holds for the case p.

On the other hand, we derive that

E[h(W )]−Nh= E[ f ′(W)]−E[W f (W )]

=−
p−2∑

j=1

κ j+2(W )

( j + 1)!
E[∂ j+1

Θh(W)]−
eκp+1

p!
E[∂ p

Θh(W)] +O(eRp)

=−
p−2∑

j=1

κ j+2(W )

( j + 1)!
N [∂ j+1

Θh]

+

p−2∑

j=1

κ j+2(W )

( j + 1)!

∑

(r,s1:r)∈Γ (p− j−1)

(−1)r
r∏

ℓ=1

κsℓ+2(W )

(sℓ + 1)!
N
� r∏

ℓ=1

(∂ sℓ+1
Θ) ◦ ∂ j+1

Θ h
�

−
eκp+1

p!
N [∂ p

Θh] +O

�
eRp + eRp/(p−1)

p

p−1∑

j=1

bRp/ j

j +

p−1∑

j=1

p− j∑

ℓ=1

bRp/ℓ

ℓ

�

=
∑

(r,s1:r)∈Γ (p−1)

(−1)r
r∏

j=1

κs j+2(W )

(s j + 1)!
N
� r∏

j=1

(∂ s j+1
Θ) h
�

+
eκp+1 −κp+1(W)

k!
N [∂ p

Θ h] +O

� p−1∑

j=1

bRp/ j

j
+ eRp

�
.
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Thus, (F.61) also holds for the case p. By induction, we have established (F.60) and (F.61).

Next we prove that if
∑∞
ℓ=1
ℓd−1α

(r−p−1)/r

ℓ
<∞, then for any j ∈ [k], bR1/ j

j
has the following bound:

bR1/ j

j
® |T |−1/2
�
m2dk +

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓd(k+1)−1α
(r−k−1)/r

ℓ

�1/k
. (F.62)

In fact, by Hölder’s inequality, we get

|T | jk/2 · bRk
j
≤
�
md( j+1) +

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓd( j+1)−1α
(r−k−1)/r

ℓ

�k

≤
�
md( j+1)k/ j +

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓd(k+1)−1α
(r−k−1)/r

ℓ

� j�
1+

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓd−1α
(r−k−1)/r

ℓ

�k− j

®

�
m2dk +

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓd(k+1)−1α
(r−k−1)/r

ℓ

� j
.

By taking 1/ j-th power on both sides, (F.62) is proven.

For (F.61), we apply (F.62) with k = p− 1 and get for j ∈ [p− 1]

bRp/ j

j
®|T |−p/2
�
m2d(p−1) +

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓdp−1α
(r−p−1)/r

ℓ

�p/(p−1)

®|T |−p/2m2dp +
�
|T |−(p−1)/2

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓdp−1α
(r−p−1)/r

ℓ

�p/(p−1)

®|T |−p/2m2dp + |T |−(p−1)/2

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓdp−1α
(r−p−1)/r

ℓ
≤ M2,m,δ,

given that M2,m,δ converges to 0 as |T | →∞.

By substituting this into (F.61), we complete the proof of (E.8). Moreover, we have
��κ j+2(W)
��® bR j ® M

j/p

2,m,δ
, for any 1≤ j ≤ p− 1,

��eκp+1 −κp+1(W)
�� ® |T |−(p−1)/2

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓdp−1α
(r−p−1)/r

ℓ
≤ M2,m,δ.

Thus, Lemma E.2 is proven.

G Proofs of Lemmas F.4 and F.5

Before establishing Lemmas F.4 and F.5, we introduce the following lemma and prove Lemma F.3.
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Lemma G.1. Let (V, E) be a rooted tree whose vertices are ordered from a depth-first traversal

(i.e., the labels satisfy Proposition F.2a). Suppose i /∈ A( j) and j /∈ A(i) for some 1 ≤ i < j ≤ k.

Then for any t such that i ∈ A(t), we have t < j.

Proof. First let ≺ be the strict total order on V such that for any u, w ∈ V , u ≺ w if and only

if the label of u is smaller than the label of w. For any two vertex subsets U , W ⊆ V , we denote

U ≺W if and only if u≺ w for any u ∈ U and w ∈W .

Claim. Let ≺ be defined as above. Suppose u, w ∈ V (u 6= w) are siblings in (V, E). Let

U := {v : v = u or u is an ancestor of v}, W := {v : v = w or w is an ancestor of v}.
Then either U ≺W or W ≺ U .

To prove this we can perform induction on k = |U |+ |W |. If k = 2, this is true because U and W

each contain one element and ≺ is a strict total order on V . Now suppose the claim is true for k

and consider the case for k + 1. Without loss of generality, assume |U | ≥ 2, and thus, u is not a

leaf.

If there is only one leaf in U , denoted by u0 (u0 6= u), then restricting on V ′ := V\{u0}, we get a

new rooted tree (V ′, E′) and the order on V ′ is induced by that on V . Then (V ′, E′) also satisfies

Proposition F.2a and u, w are still siblings in (V ′, E′). By inductive hypothesis, either U\{u0} ≺W

or W ≺ U\{u0}. Since u0 is the only leaf in U , the parent of u0, denoted by u1 has only one child,

which implies that u0 :=min≺{v : u1 ≺ v}. Thus, we have U ≺W or W ≺ U .

If there are at least two leaves in U , two of which are denoted by u1 and u2 (u, u1, u2 are mutually

different). Let V ′
1

:= V\{u1} and V ′
2

:= V\{u2}. Restricting on V ′
1

or V ′
2
, we get a new rooted

tree (V ′
1
, E′

1
) or (V ′

2
, E′

2
) with the vertex order on V ′

1
or V ′

2
induced by ≺, respectively. By inductive

hypothesis on (V ′
1
, E′

1
), we get U\{u1} ≺ W or W ≺ U\{u1}. Similarly we have U\{u2} ≺ W or

W ≺ U\{u2}. Since u ∈ (U\{u1}) ∩ (U\{u2}) 6= ; and U = (U\{u1}) ∪ (U\{u2}), we conclude

that U ≺W or W ≺ U .

By induction the claim is true. Let h :=max A(i)∩ A( j), which is the closest common ancestor of

v[i] and v[h]. Since i /∈ A( j), we have h < i and similarly h< j. Let v[i0] be the vertex such that

i0 ∈ A(i) and p(i0) = h, and v[ j0] be the vertex such that j0 ∈ A( j) and p( j0) = h. The definition

of h implies that i0 6= j0.

Let U := {v[t] : t = i0 or i0 ∈ A(t)} and W := {v[t] : t = j0 or j0 ∈ A(t)}. Note that v[i0]

and v[ j0] are siblings. Using the claim above we get U ≺ W or W ≺ U . Noticing that v[i] ∈ U ,

v[ j] ∈W and i < j, we conclude that U ≺W . If i ∈ A(t), then we have v[t] ∈ U and t < j.

Proof of Lemma F.3. Firstly, if p( j + 1) 6= j, then v[ j] is a leaf. Otherwise, suppose v[ j] has a

child v[h] where h> j + 1. Then p(h) > p( j + 1) contradicts Proposition F.2a.

Suppose p( j + 1) 6= j and p( j + 1) /∈ A( j). Proposition F.2a implies that p( j + 1) ≤ j. Thus, we

know p( j + 1) < j. Since v[ j] is a leaf, we have j /∈ A(p( j + 1)). Thus, by Lemma G.1, for any t

such that p( j+ 1) ∈ A(t), we have t < j. In particular, let t = j+ 1 and we get j+ 1< j. This is a

contradiction. Thus, either p( j + 1) = j or v[ j] is a leaf and p( j + 1) ∈ A( j).
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Proof of Lemma F.4. Consider the label set of all positive ancestors of v[ℓ], i.e., { j ∈ A(ℓ) :

s j ≥ 1}. Let z :=
��{ j ∈ A(ℓ) : s j ≥ 1}

��. If z ≥ 1, we write

{ j ∈ A(ℓ) : s j ≥ 1}= {r1, r2, · · · , rz},

where 2 ≤ r1 < r2 < · · ·< rz ≤ ℓ− 1.

Then consider all possible genograms constructed by adding a non-negative child to a vertex of G.

On one hand, Proposition F.2d implies that it is only possible to add such a child to v[ℓ] or v[p(r j)]

for some 1 ≤ j ≤ z (provided that z ≥ 1), and if a genogram is obtained by adding v[ℓ+ 1] as a

non-negative child of v[p(r j)], then sℓ+1 ≤ sr j
− 1 because ℓ+ 1> r j.

On the other hand, we show that for 1≤ j ≤ z,

sr j
≤ st for any t ≤ ℓ such that p(t) = p(r j).

Supposing this is true and v[ℓ] is added as a child of v[p(r j)]with sℓ+1 ≤ sr j
−1, then sℓ+1 is smaller

than the identifiers of all v[ℓ + 1]’s siblings. Hence Proposition F.2 holds and Ω[p(r j, s)](G) is

indeed a genogram with the compatible labeling.

In fact, p(t) = p(r j) (t ≤ ℓ) implies that t /∈ A(r j) and r j /∈ A(t). If t > r j, by Lemma G.1, for any

t ′ such that r j ∈ A(t ′), we have t ′ < t . In particular, let t ′ = ℓ. Then ℓ < t , contradicting t ≤ ℓ.
Thus, t ≤ r j. Proposition F.2d implies that st ≥ sr j

.

Thus, we have shown

H :=
�
H ∈ G(ℓ+ 1) : H ⊇ G, sℓ+1 ≥ 0

	

=
�
Ω[p(r j), s](G) : 1 ≤ j ≤ w, 0 ≤ s ≤ sr j

− 1
	
⊔
�
Ω[ℓ, s](G) : s ≥ 0

	
,

(G.1)

where ⊔ denotes the disjoint union of sets. This directly implies that

−
∑

s≥0

U f

�
Ω[ℓ, s](G)
�
+
∑

j∈A(ℓ):s j≥1

s j−1∑

s=0

U f

�
Ω[p( j), s](G)
�
= −
∑

H∈G(ℓ+1):
H⊇G,

sℓ+1≥0,
p(ℓ+1)=ℓ

U f (H) +
∑

H∈G(ℓ+1):
H⊇G,

sℓ+1≥0,
p(ℓ+1)<ℓ

U f (H).

(G.2)

Therefore, to conclude the proof we only need to show that this is also equal to

T f (G)− S(G) E
�
∂ ℓ−1 f (W )
�
.

For convenience, we list all elements of H (see (G.1)) in a sequence. If z = 0, we write

Ht := Ω[ℓ, t − 1](G).

Otherwise, let

Ht :=

¨
Ω[p(r j), s− 1](G) if t =

∑ j−1

i=1
ri + s

Ω[ℓ, s− 1](G) if t =
∑z

i=1
ri + s

.
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In other words, Ht is a genogram of order ℓ+ 1 and the sequence (Ht)t≥1 can be enumerated as

(Ht)t≥1 : Ω[p(r1), 0](G) , Ω[p(r1), 1](G) , · · · , Ω[p(r1), sr1
− 1](G) ,

Ω[p(r2), 0](G) , Ω[p(r2), 1](G) , · · · , Ω[p(r2), sr2
− 1](G) ,

· · · · · · ,
Ω[p(rz), 0](G) , Ω[p(rz), 1](G) , · · · , Ω[p(rz), srz

− 1](G) ,

Ω[ℓ, 0](G) , Ω[ℓ, 1](G) , · · ·

We write

c0 :=

¨
1 if z = 0

sr1
+ · · ·+ srz

+ 1 if z ≥ 1
,

and remark that Ht = Ω[ℓ, t − c0](G) for t ≥ c0.

For any t ≥ 1, we note that Ht is an order-(ℓ+ 1) genogram. We write B j(Ht) and Dj(Ht) respec-

tively the outer and inner constraints of i j with respect to Ht . We remark that as Ht[ℓ] = G, this

directly implies that B j(Ht) = B j(G) = B j and Dj(Ht) = Dj(G) = Dj for all j ≤ ℓ.
Let i1, · · · , iℓ be indexes in i j ∈ B j\Dj for 1 ≤ j ≤ ℓ. We note that the sets Bℓ+1(Ht) and Dℓ+1(Ht)

will depend on the value of t ≥ 1.

Firstly, in H1 we remark that by definition (F.13), if z ≥ 1, the vertices v[ℓ+1] and v[r1] have the

same parent and that the indentifier of ℓ+ 1 is 0. This implies that if z ≥ 1,

Dℓ+1(H1) = Dg(ℓ+1,H1)
= Dg(r1,H1)

= Dg(r1,G) = Dg(r1)
= D1 = ;.

If z = 0, the progenitor of v[ℓ + 1] is either v[ℓ] or v[1]. In both cases, the inner constraint is

empty, i.e., Dℓ = D1 = ;. Thus,

Dℓ+1(H1) = Dg(ℓ+1,H1)
= ;.

Note that here we have used g( j, H) to denote the progenitor label of v[ j] with respect to the

genogram H. Throughout the proof, H is omitted only if H = G.

Next we establish that for all t ≥ 1 the following holds: Bℓ+1(Ht) = Dℓ+1(Ht+1).

If z = 0, the result is directly implied by the definitions (F.17) and (F.18) as we have

Bℓ+1(Ht) = N (t)
�
it : t ∈ A(ℓ+ 1, Ht)

�
∪ Dg(ℓ+1,Ht)

= N (t)
�
it : t ∈ A(ℓ+ 1, Ht+1)

�
∪ Dg(ℓ+1,Ht+1)

= Dℓ+1(Ht+1).

Note that A( j, H) is used to denote the label set of v[ j]’s ancestors with respect to the genogram

H. Again H is omitted only if H = G.

If z ≥ 1, we remark that according to the values of t the relationship between the genograms Ht+1

and Ht will be different. To make this clear, we distinguish 4 different cases according to the values

of t:
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(i) t =
∑ j−1

i=1
ri + k+ 1 for 1 ≤ j ≤ z and 0 ≤ k ≤ sr j

− 2, in which case we observe that

Bℓ+1(Ht) = Bℓ+1

�
Ω[p(r j), k](G)
�
, Dℓ+1(Ht+1) = Dℓ+1

�
Ω[p(r j), k+ 1](G)

�
;

(ii) t =
∑z

i=1
ri + k+ 1 for k ≥ 0, where we have

Bℓ+1(Ht) = Bℓ+1

�
Ω[ℓ, k](G)
�
, Dℓ+1(Ht+1) = Dℓ+1

�
Ω[ℓ, k+ 1](G)
�
;

(iii) t =
∑ j

i=1
ri for 1≤ j ≤ z − 1, where we observe that

Bℓ+1(Ht) = Bℓ+1

�
Ω[p(r j), sr j

− 1](G)
�
, Dℓ+1(Ht) = Dℓ+1

�
Ω[p(r j+1), 0](G)

�
;

(iv) t =
∑z

i=1
ri, in which case we have

Bℓ+1(Ht) = Bℓ+1

�
Ω[p(rz), srz

− 1](G)
�
, Dℓ+1(Ht+1) = Dℓ+1

�
Ω[ℓ, 0](G)
�
.

Again cases (i) and (ii) are directly implied by the definitions (F.17) and (F.18). Indeed, for all

1≤ j ≤ z, we have

Bℓ+1(Ht) = N (k+1)
�
it : t ∈ A(ℓ+ 1, Ht)

�
∪ Dg(ℓ+1,Ht)

= N (k+1)
�
it : t ∈ A(ℓ+ 1, Ht+1)

�
∪ Dg(ℓ+1,Ht+1)

= Dℓ+1(Ht+1).

We now prove cases (iii) and (iv). In this goal, let t =
∑ j

i=1
ri for a given j ≤ z − 1. Since in

Ht , the vertices v[ℓ + 1] and v[r j] are siblings, we have A(ℓ + 1, Ht) = A(r j, Ht) = A(r j) and

g(ℓ + 1, Ht) = g(r j, Ht) = g(r j). On the other hand, for case (iii) we notice that as in Ht+1 the

vertices v[ℓ + 1] and v[r j+1] are siblings, we have g(ℓ + 1, Ht+1) = g(r j+1) = r j. For case (iv),

similarly we have g(ℓ+ 1, Ht+1) = g(ℓ) = r j. Equipped with those equations, we remark that

Bℓ+1(Ht) = N
(sr j
−1)
�
it : t ∈ A(ℓ+ 1, Ht)

�
∪ Dg(ℓ+1,Ht)

= N
(sr j
−1)
�
it : t ∈ A(r j)
�
∪ Dg(r j)

,

On the other hand, we also remark that as the indentifier of ℓ+ 1 in Ht+1 is 0, we have

Dℓ+1(Ht+1) = Dg(ℓ+1,Ht+1)
= Dr j

= N
(sr j
−1)
�
it : t ∈ A(r j)
�
∪ Dg(r j)

.

Thus, Bℓ+1(Ht) = Dℓ+1(Ht+1).

Therefore, we have established that Bℓ+1(Ht) = Dℓ+1(Ht+1) for any t ≥ 1.

Since the index set T of the random field is finite, there exists a finite number c1 ≥ c0 such that

N (c1−c0)
�
it : t ∈ A(ℓ) or t = ℓ

�
= T . Then

Bℓ+1(Hc1
) ⊇ N (c1−c0)
�
it : t ∈ A(ℓ+ 1, Hc1

)
�
= N (c1−c0)
�
it : t ∈ A(ℓ) or t = ℓ

�
= T.

On the other hand, Bℓ+1(Hc1
) ⊆ T . Thus, we have Bℓ+1(Hc1

) = T . We remark that by definition of

c0 and c1 we have

; = Dℓ+1(H1) ⊆ Bℓ+1(H1) ⊆ · · · ⊆ Bℓ+1(Hc0
) ⊆ · · · ⊆ Bℓ+1(Hc1

) = T.

101



G PROOFS OF LEMMAS F.4 AND F.5

We prove that for c0 ≤ t ≤ c1 − 1,

− EHt

�
X i1

, · · · , X iℓ
, ∆ f (Ht)
�

=EG

�
X i1

, · · · , X iℓ

�
∂ ℓ−1 f
�
W (Dℓ+1(Ht))
�
− ∂ ℓ−1 f
�
W (Bℓ+1(Ht))
���

− EG

�
X i1

, · · · , X iℓ

��
E
�
∂ ℓ−1 f
�
W (Dℓ+1(Ht))
��
−E
�
∂ ℓ−1 f
�
W (Bℓ+1(Ht))
���

;

and similarly that for 1 ≤ t ≤ c0 − 1,

EHt

�
X i1

, · · · , X iℓ
, ∆ f (Ht)
�

=EG

�
X i1

, · · · , X iℓ

��
E
�
∂ ℓ−1 f
�
W (Bℓ+1(Ht))
��
−E
�
∂ ℓ−1 f
�
W (Dℓ+1(Ht))
���

.
(G.3)

Note that by definition EG is the product of D∗ factors. Let

q0 := sup
�

j : j = 1 or p( j) 6= j − 1 for 2≤ j ≤ ℓ
	
.

Intuitively, v[q0] is the starting vertex of the last branch of (V, E). Now set w =
��{t : q0 + 1 ≤

t ≤ ℓ & st ≥ 0}
��. If w ≥ 1, we set {q1, · · · , qw} = {t : q0 + 1 ≤ t ≤ ℓ & st ≥ 0}. Without loss of

generality, we suppose that the sequence q0 + 1 ≤ q1 < · · · < qw ≤ ℓ is increasing. By definition,

the last factor in EG(X i1
, · · · , X iℓ

) is given by

¨
D∗
�
X iq0
· · ·X iℓ

�
if w = 0

D∗
�
X iq0
· · ·X iq1−1

, · · · , X iqw
· · ·X iℓ

�
if w ≥ 1

.

And the last factor in EG(X i1
, · · · , X iℓ−1

, X iℓ
∂ ℓ−1 f
�
W (Dℓ)
�
) is

¨
D∗
�
X iq0
· · ·X iℓ

∂ ℓ−1 f
�
W (Dℓ)
��

if w = 0

D∗
�
X iq0
· · ·X iq1−1

, · · · , X iq(w−1)
· · ·X iqw−1

, X iqw
· · ·X iℓ

∂ ℓ−1 f
�
W (Dℓ)
��

if w ≥ 1
.

For convenience, in this proof we temporarily denote

D
∗( · ) :=

¨
D∗( · ) if w = 0

D∗
�
X iq0
· · ·X iq1−1

, · · · , X iq(w−1)
· · ·X iqw−1

, ·
�

if w ≥ 1
.

Since sℓ+1 ≥ 0, we have

∆ f (Ht) = ∂
ℓ−1 f
�
W (Bℓ+1(Ht))
�
− ∂ ℓ−1 f
�
W (Dℓ+1(Ht))
�
.

For c0 ≤ t ≤ c1 − 1, we derive that

−D∗
�
X iqw
· · ·X iℓ

, ∆ f (Ht)
�

=D∗
�
X iqw
· · ·X iℓ

, ∂ ℓ−1 f
�
W (Dℓ+1(Ht))
�
− ∂ ℓ−1 f
�
W (Bℓ+1(Ht))
��
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(∗)
=D∗
�
X iqw
· · ·X iℓ

D
�
∂ ℓ−1 f
�
W (Dℓ+1(Ht))
�
− ∂ ℓ−1 f
�
W (Bℓ+1(Ht))
���

=D∗
�
X iqw
· · ·X iℓ

�
∂ ℓ−1 f
�
W (Dℓ+1(Ht))
�
− ∂ ℓ−1 f
�
W (Bℓ+1(Ht))
���

−D∗
�
X iqw
· · ·X iℓ

��
E
�
∂ ℓ−1 f
�
W (Dℓ+1(Ht))
��
−E
�
∂ ℓ−1 f
�
W (Bℓ+1(Ht))
���

.

Here the equality (∗) is implied by Lemma H.1. Noticing that v[ℓ + 1] is the child of v[ℓ], we

combine this with the definition of the EG operator and obtain (G.3).

For 1≤ t ≤ c0 − 1, we note that

D
∗�X iqw

· · ·X iℓ

�
D∗(∆ f (Ht))

=D∗
�
X iqw
· · ·X iℓ

��
E
�
∂ ℓ−1 f
�
W (Bℓ+1(Ht))
��
−E
�
∂ ℓ−1 f
�
W (Dℓ+1(Ht))
���

.

Since v[ℓ+ 1] is added as a child of v[r j] for some 1 ≤ j ≤ z and r j < ℓ, v[ℓ] is a leaf in Ht . We

obtain (G.3) by applying the definition of the EG operator again.

Finally, using the definitions of T f (G) and S(G), we derive

T f (G)− S(G) E
�
∂ ℓ−1 f (W )
�
=

σ−ℓ
∑

i1∈B1\D1

∑

i2∈B2\D2

· · ·
∑

iℓ∈Bℓ\Dℓ

�
EG

�
X i1

, · · · , X iℓ−1
, X iℓ
∂ ℓ−1 f
�
W (Dℓ)
��

− EG

�
X i1

, · · · , X iℓ−1
, X iℓ

�
E
�
∂ ℓ−1 f (W )
��

.

Note that

EG

�
X i1

, · · · , X iℓ−1
, X iℓ
∂ ℓ−1 f
�
W (Dℓ)
��
− EG

�
X i1

, · · · , X iℓ

�
E
�
∂ ℓ−1 f (W )
�

=EG

�
X i1

, · · · , X iℓ−1
, X iℓ
∂ ℓ−1 f
�
W (Bℓ+1(Hc0−1))

��
− EG

�
X i1

, · · · , X iℓ

�
E
�
∂ ℓ−1 f
�
W (Dℓ+1(H1))
��

=−
c1−1∑

t=c0

EHt

�
X i1

, · · · , X iℓ
, ∆ f (Ht)
�
+

c0−1∑

t=1

EHt

�
X i1

, · · · , X iℓ
, ∆ f (Ht)
�
.

The last equality is due to a telecoping sum argument since Bℓ+1(Ht) = Dℓ+1(Ht+1) for 1 ≤ t ≤
c0 − 1 and for c0 ≤ t ≤ c1 − 1. Taking the sums over i j ∈ B j\Dj where 1≤ j ≤ ℓ, we obtain

T f (G)− S(G) E
�
∂ ℓ−1 f (W )
�
=−

c1−1∑

t=c0

U f

�
Ht

�
+

c0−1∑

t=1

U f

�
Ht

�

=−
∑

s≥0

U f

�
Ω[ℓ, s](G)
�
+
∑

j∈A(ℓ):s j≥1

s j−1∑

s=0

U f

�
Ω[p( j), s](G)
�
.

Proof of Lemma F.5. If u(ℓ) = ℓ then by definition,

∆ f (G) = ∂
ℓ−2 f
�
W (Bℓ)
�
− ∂ ℓ−2 f
�
W (Dℓ)
�
.
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Applying the Taylor expansion with integral-form remainders, we get

∆ f (G) =

k+1∑

j=1

1

j!

�
W (Bℓ)−W (Dℓ)

� j
∂ ℓ−2+ j f
�
W (Dℓ)
�
+

1

(k+ 1)!

�
W (Bℓ)−W (Dℓ)

�k+1· (G.4)

∫ 1

0

(k+ 1)vk

�
∂ k+ℓ−1 f
�
vW (Dℓ) + (1− v)W (Bℓ)

�
− ∂ k+ℓ−1 f
�
W (Dℓ)
��

dv

=

k+1∑

j=1

(−1) jσ− j 1

j!

� ∑

i∈Bℓ\Dℓ

X i

� j
∂ ℓ−2+ j f
�
W (Dℓ)
�
+ (−1)k+1σ−(k+1) 1

(k+ 1)!

� ∑

i∈Bℓ\Dℓ

X i

�k+1

·

∫ 1

0

(k+ 1)vk

�
∂ k+ℓ−1 f
�
vW (Dℓ) + (1− v)W (Bℓ)

�
− ∂ k+ℓ−1 f
�
W (Dℓ)
��

dv

(∗)
=

k+1∑

j=1

(−1) jσ− j 1

j!

∑

iℓ∈Bℓ\Dℓ

· · ·
∑

iℓ+ j−1∈Bℓ+ j−1\Dℓ+ j−1

X iℓ
· · ·X iℓ+ j−1

∂ ℓ+ j−2 f
�
W (Dℓ+ j)
�

+ (−1)k+1σ−(k+1) 1

(k+ 1)!

∑

iℓ∈Bℓ\Dℓ

· · ·
∑

iℓ+k∈Bℓ+k\Dℓ+k

X iℓ
· · ·X iℓ+k

·

∫ 1

0

(k+ 1)vk

�
∂ ℓ+k−1 f
�
vW (Dℓ+k+1) + (1− v)W(Bℓ+k+1)

�
− ∂ ℓ+k−1 f
�
W (Dℓ+k+1)
��

dv

=−σ−1
∑

iℓ∈Bℓ\Dℓ

X iℓ
∂ ℓ−1 f
�
W (Dℓ)
�

+

k+1∑

j=2

(−1) jσ− j 1

j!

∑

iℓ∈Bℓ\Dℓ

· · ·
∑

iℓ+ j−1∈Bℓ+ j−1\Dℓ+ j−1

X iℓ
· · ·X iℓ+ j−2

X iℓ+ j−1
∂ ℓ+ j−2 f
�
W (Dℓ+ j−1)
�

+ (−1)k+1σ−(k+1) 1

(k+ 1)!

∑

iℓ∈Bℓ\Dℓ

· · ·
∑

iℓ+k∈Bℓ+k\Dℓ+k

X iℓ
· · ·X iℓ+k

∆ f

�
Λ[k+ 1](G)
�
.

where to obtain (∗) we have used the fact that v[ℓ+ 1], · · · , v[ℓ + k + 1] are negative vertices in

Λ[k+1](G) and Λ[ j](G)⊆ Λ[k+1](G) for 0 ≤ j ≤ k, which implies that Bℓ = Bℓ+1 = · · ·= Bℓ+k+1

and Dℓ = Dℓ+1 = · · · = Dℓ+k+1 from the constructions of B j’s and Dj’s.

In (F.19), we defined q0 to be

q0 := sup
�

j : j = 1 or p( j) 6= j − 1 for 2≤ j ≤ ℓ
	
.

We write w :=
��{t : q0 + 1 ≤ t ≤ ℓ & st ≥ 0}

��. Since ℓ = u(ℓ), we know sℓ ≥ 0 and w ≥ 1. We

suppose without loss of generality that the elements of {t : q0+1≤ t ≤ ℓ & st ≥ 0} = {q1, · · · , qw}
are presented in increasing order: q0 + 1 ≤ q1 < · · · < qw = ℓ. Moreover, by definition, the term

EG(X i1
, · · · , X iℓ−1

,∆ f (G)) is the product of D∗ factors, and we remark that its last factor is

¨
D∗
�
X iq0
· · ·X iℓ−1

, ∆ f (G)
�

if w = 1

D∗
�
X iq0
· · ·X iq1−1

, · · · , X iq(w−1)
· · ·X iℓ−1

, ∆ f (G)
�

if w ≥ 2
.
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For convenience, in this proof we temporarily denote

D
∗( · ) :=

¨
D∗
�
X iq0
· · ·X iℓ−1

, ·
�

if w = 1

D∗
�
X iq0
· · ·X iq1−1

, · · · , X iq(w−1)
· · ·X iℓ−1

, ·
�

if w ≥ 2
.

And write

EG(X i1
, · · · , X iℓ−1

,∆ f (G)) = E ·D∗(∆ f (G)).

Combining this with (G.4) we obtain that

EG(X i1
, · · · , X iℓ−1

,∆ f (G)) = E ·D∗(∆ f (G))

=−σ−1
∑

iℓ∈Bℓ\Dℓ

E ·D∗
�
X iℓ
∂ ℓ−1 f
�
W (Dℓ)
��

+

k+1∑

j=2

(−1) jσ− j 1

j!

∑

iℓ∈Bℓ\Dℓ

· · ·
∑

iℓ+ j−1∈Bℓ+ j−1\Dℓ+ j−1

E ·D∗
�
X iℓ
· · ·X iℓ+ j−2

X iℓ+ j
∂ ℓ+ j−1 f
�
W (Dℓ+ j)
��

+ (−1)k+1σ−(k+1) 1

(k+ 1)!

∑

iℓ∈Bℓ\Dℓ

· · ·
∑

iℓ+k∈Bℓ+k\Dℓ+k

E ·D∗
�
X iℓ
· · ·X iℓ+k

∆ f

�
Λ[k+ 1](G)
��

(∗)
= −σ−1
∑

iℓ∈Bℓ\Dℓ

EG

�
X i1

, · · · , X iℓ−1
, X iℓ
∂ ℓ−1 f
�
W (Dℓ)
��

+

k+1∑

j=2

(−1) jσ− j 1

j!

∑

iℓ∈Bℓ\Dℓ

· · ·
∑

iℓ+ j−1∈Bℓ+ j−1\Dℓ+ j−1

EΛ[ j−1](G)

�
X i1

, · · · , X iℓ+ j−2
, X iℓ+ j

∂ ℓ+ j−1 f
�
W (Dℓ+ j)
��

+ (−1)k+1σ−(k+1) 1

(k+ 1)!

∑

iℓ∈Bℓ\Dℓ

· · ·
∑

iℓ+k∈Bℓ+k\Dℓ+k

EΛ[k+1](G)

�
X i1

, · · · , X iℓ+k
,∆ f

�
Λ[k+ 1](G)
��

.

where to get (∗) we have used the condition that v[ℓ + 1], · · · , v[ℓ+ k + 1] are negative vertices

in Λ[k + 1](G). Indeed, the factorization stay the same due to the fact that they are all added to

the same branch, and q1, · · · , qw remain the same since v[ℓ+ 1], · · · , v[ℓ+ k+ 1] are all negative.

Taking the sum over i j ∈ B j\Dj for 1 ≤ j ≤ ℓ− 1, we have

U f (G) =

k+1∑

j=1

(−1) j 1

j!
T f

�
Λ[ j − 1](G)
�
+ (−1)k+1 1

(k+ 1)!
U f

�
Λ[k+ 1](G)
�

=

k∑

j=0

(−1) j+1 1

( j + 1)!
T f

�
Λ[ j](G)
�
+ (−1)k+1 1

(k+ 1)!
U f

�
Λ[k+ 1](G)
�
. (G.5)

Now consider the case u(ℓ) < ℓ. Let G[u(ℓ)] := (V ′, E′, s1:u(ℓ)) ⊆ G be the order-u(ℓ) sub-

genogram of G as defined in the last paragraph of Appendix F.2. Now by (G.5), we have

U f (G[u(ℓ)]) =

k∑

j=0

(−1) j+1 1

( j + 1)!
T f

�
Λ[ j](G[u(ℓ)])
�
+ (−1)k+1 1

(k+ 1)!
U f

�
Λ[k+ 1](G[u(ℓ)])

�
.
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Replacing k by ℓ− u(ℓ)− 1 and ℓ− u(ℓ) + k respectively, we get that

U f (G[u(ℓ)]) =

ℓ−u(ℓ)−1∑

j=0

(−1) j+1 1

( j + 1)!
T f

�
Λ[ j](G[u(ℓ)])
�

+ (−1)ℓ−u(ℓ) 1

(ℓ− u(ℓ))!
U f

�
Λ[ℓ− u(ℓ)](G[u(ℓ)])

�
, (G.6)

U f (G[u(ℓ)]) =

ℓ−u(ℓ)+k∑

j=0

(−1) j+1 1

( j + 1)!
T f

�
Λ[ j](G[u(ℓ)])
�

+ (−1)ℓ−u(ℓ)+k+1 1

(ℓ− u(ℓ) + k+ 1)!
U f

�
Λ[ℓ− u(ℓ) + k+ 1](G[u(ℓ)])

�
. (G.7)

By taking the difference of (G.6) and (G.7) we obtain that

(−1)ℓ−u(ℓ) 1

(ℓ− u(ℓ))!
U f

�
Λ[ℓ− u(ℓ)](G[u(ℓ)])

�

=

ℓ−u(ℓ)+k∑

j=ℓ−u(ℓ)

(−1) j+1 1

( j + 1)!
T f

�
Λ[ j](G[u(ℓ)])
�

+ (−1)ℓ−u(ℓ)+k+1 1

(ℓ− u(ℓ) + k+ 1)!
U f

�
Λ[ℓ− u(ℓ) + k+ 1](G[u(ℓ)])

�
.

Thus, we have

U f (G) = U f

�
Λ[ℓ− u(ℓ)](G[u(ℓ)])

�

=

k∑

j=0

(−1) j+1 (ℓ− u(ℓ))!

( j + 1+ ℓ− u(ℓ))!
T f

�
Λ[ j + ℓ− u(ℓ)](G[u(ℓ)])

�

+ (−1)k+1 (ℓ− u(ℓ))!

(k+ 1+ ℓ− u(ℓ))!
U f

�
Λ[k+ 1+ ℓ− u(ℓ)](G[u(ℓ)])

�

=

k∑

j=0

(−1) j+1 (ℓ− u(ℓ))!

( j + 1+ ℓ− u(ℓ))!
T f

�
Λ[ j](G)
�
+ (−1)k+1 (ℓ− u(ℓ))!

(k+ 1+ ℓ− u(ℓ))!
U f

�
Λ[k+ 1](G)
�
.

H Proof of Lemma F.9

Firstly, let’s show some properties of the D and D∗ operators that will be useful later.

Lemma H.1. Let (Yi)
t
i=1

be a sequences of random variables. Suppose for any i, j ∈ N+ such that

i ≤ j ≤ t , we have E
�
|Yi · · ·Yj|
�
<∞. Then the following holds for all t ∈ N+ such that t ≥ 2

and for any j = 1, · · · , t − 1:

D∗
�
Y1, · · · , YjD(Yj+1, · · · , Yt)

�
= D∗(Y1, · · · , Yt), (H.1)
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D
�
Y1, · · · , YjD(Yj+1, · · · , Yt)

�
= D(Y1, · · · , Yt). (H.2)

In particular,

D∗(Y1, · · · , Yt) = D∗(Y1, · · · , Yt−2 , Yt−1D(Yt))

=D∗(Y1, · · · , Yt−2 , Yt−1Yt)−D∗(Y1, · · · , Yt−1) E[Yt].
(H.3)

Moreover, we know that

E
�
D(Y1, · · · , Yt)
�
= 0.

Proof of Lemma H.1. We perform induction on j to prove that

D∗
�
Y1, · · · , YjD(Yj+1, · · · , Yt)

�
= D∗(Y1, · · · , Yt).

If j = 1, this is precisely the definition. Supposing the lemma holds for j ( j ≤ t − 1), consider the

case for j + 1. By definition,

D
�
Y1, · · · , Yj+1D(Yj+2, · · · , Yt)

�

=D
�
Y1D
�
Y2, · · · , Yj+1D(Yj+2, · · · , Yt)

��

=D
�
Y1D(Y2, · · · , Yt)
�
= D(Y1, · · · , Yt).

Note that we have used the inductive hypothesis in the second equation. By induction, (H.2) is

proven.

Now for any j = 1 · · · t − 1,

D∗
�
Y1, · · · , YjD(Yj+1, · · · , Yt)

�

=E
�
Y1D
�
Y2, · · · , YjD(Yj+1, · · · , Yt)

��

=E
�
Y1D(Y2, · · · , Yt)
�
= D∗(Y1, · · · , Yt).

Finally we remark that

E
�
D(Y1, . . . , Yt)
�
= E
�
D(Y1D(Y2, . . . , Yt))

�

= E
�
Y1D(Y2, . . . , Yt)
�
−E
�
Y1D(Y2, . . . , Yt)
�
= 0.

Lemma H.2. Let (Yi)
t
i=1

be a sequences of random variables. Suppose for any i, j ∈ N+ such that

i ≤ j ≤ t , we haveE
�
|Yi · · ·Yj|
�
<∞. Then we have the following expression for D∗(Y1, Y2, · · · , Yt)

and D(Y1, Y2, · · · , Yt):

D∗(Y1, Y2, · · · , Yt) =
∑

(ℓ,η1:ℓ)∈C(t)

(−1)ℓ−1[η1, · · · ,ηℓ] ⊲ (Y1, Y2, · · · , Yt), (H.4)

D(Y1, Y2, · · · , Yt) = Y1Y2 · · ·Yt −D∗(Y1, · · · , Yt)−
ℓ−1∑

j=1

Y1 · · ·Yj D
∗(Yj+1, · · · , Yt). (H.5)

where C(t) = {ℓ,η1:ℓ ∈ N+ :
∑ℓ

j=1
η j = t}.
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Proof of Lemma H.2. We perform induction on t .

If t = 1, then by definition D∗(Y1) = E[Y1] = [1] ⊲ (Y1) and D(Y1) = Y1 −E[Y1] = Y1 −D∗(Y1).

Supposing the results hold for 1, 2, · · · , t − 1, we consider the case t . Suppose that we have

E[|Y1 · · ·Yt |]<∞. By the inductive hypothesis, we have

D∗(Y1, Y2, · · · , Yt) = E[Y1D(Y2, · · · , Yt)]

(a)
=E[Y1Y2 · · ·Yt]−E(Y1)D

∗(Y2, . . . , Yt)−
t∑

j=3

E[Y1 · · · Yj−1 D∗(Yj, · · · , Yt)]

=E[Y1Y2 · · ·Yt]−
t∑

j=2

E[Y1 · · · Yj−1 D∗(Yj, · · · , Yt)]

(b)
=E[Y1Y2 · · ·Yt]−

t∑

j=2

∑

C(t− j+1)

E[Y1 · · · Yj−1 (−1)ℓ−1[η1, · · · ,ηℓ] ⊲ (Yj, · · · , Yt)]

=E[Y1Y2 · · ·Yt] +

t∑

j=2

∑

C(t− j+1)

(−1)ℓ[ j − 1,η1, · · · ,ηℓ] ⊲ (Y1, · · · , Yt)

(c)
=E[Y1Y2 · · ·Yt] +

∑

C(t)\{ℓ=1, η1=t}
(−1)ℓ−1[η1, · · · ,ηℓ] ⊲ (Y1, · · · , Yt)

=
∑

C(t)

(−1)ℓ−1[η1, · · · ,ηℓ] ⊲ (Y1, · · · , Yt).

where to get (a) we have used the fact that by inductive hypothesis (H.5) holds for t − 1, and to

get (b) we have used the fact that we assumed that (H.4) hold for t − 1. Finally to get (c) we have

used the fact that

C(t) =
�
ℓ,η1:ℓ ∈ N+ :
∑ℓ

j=1
η j = t
	

={ℓ= 1, η1 = t} ∪
⋃t

i=2

�
ℓ,η1:ℓ ∈ N+ : ℓ≥ 2, η1 = i,

∑ℓ
j=1
η j = t
	
.

Moreover, we also have

D(Y1, Y2, · · · , Yt) = Y1D(Y2, · · · , Yt)−D∗(Y1, · · · , Yt)

=Y1Y2 · · · Yt − Y1D
∗(Y2, · · · , Yt)−

t−1∑

j=2

Y1 · · · YjD
∗(Yj+1, · · · , Yt)−D∗(Y1, · · · , Yt)

=Y1Y2 · · · Yt −D∗(Y1, · · · , Yt)−
t−1∑

j=1

Y1 · · · YjD
∗(Yj+1, · · · , Yt).

Thus, the results also hold for t . And the proof is complete by induction.

Next we need the following notions of compositional D∗ and D operators.

[η1, · · · ,ηℓ] ⊲D∗(Y1, · · · , Yt) := D∗(Y1 · · · Yη1
, Yη1+1 · · · Yη1+η2

, · · · , Yη1+···+ηℓ−1+1 · · ·Yt), (H.6)
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[η1, · · · ,ηℓ] ⊲D(Y1, · · · , Yt) := D(Y1 · · · Yη1
, Yη1+1 · · · Yη1+η2

, · · · , Yη1+···+ηℓ−1+1 · · ·Yt). (H.7)

Note that a compositional D term is a random variable while a compositional D∗ operator gives a

deterministic value. We remark that

E
�
[η1, . . . ,ηl] ⊲D(Y1, . . . , Yt)

�
= E
�
D
�
Y1 · · ·Yη1

, · · · , Yη1+1 · · · Yη1+···+ηℓ−1+1 · · · Yt

��
= 0. (H.8)

Moreover, by definition and (H.1), we can directly check that

[η1, · · · ,ηℓ] ⊲D∗
�
Y1, · · · , Yt

�

=[η1, · · · ,ηs−1,ηs + 1] ⊲D∗
�
Y1, · · · , Yη1+···+ηs

, [ηs+1, · · · ,ηℓ] ⊲D
�
Yη1+···+ηs+1, · · · , Yt

��
.

(H.9)

The following lemma shows some upper bounds on their norms.

Lemma H.3. Let (Yi)
t
i=1

be random variable such that for all i, j ∈ N+ such that i ≤ j ≤ t we

have E
�
|YiYi+1 · · · Yj|
�
<∞. Then for any q ≥ 1 the following holds

��[η1, · · · ,ηℓ] ⊲D∗(Y1, · · · , Yt)
��≤
∑

(s,ζ1:s)∈C(t)

[ζ1, · · · ,ζs] ⊲
�
|Y1|, · · · , |Yt |
�
, (H.10)

��[η1, · · · ,ηℓ] ⊲D∗(Y1, · · · , Yt)
��≤
��E[Y1 · · · Yt]
��

+

t−1∑

j=1

∑

(s,ζ1:s)∈C( j)

[ζ1, · · · ,ζs] ⊲
�
|Y1|, · · · , |Yj|
�
·
��E[Yj+1 · · · Yt]
��, (H.11)



[η1, · · · ,ηℓ] ⊲D(Y1, · · · , Yt)




q
≤ 2
∑

(s,ζ1:s)∈C(t)

�
[ζ1, · · · ,ζs] ⊲
�
|Y1|q, · · · , |Yt |q
��1/q

. (H.12)

where C(t) := {s,ζs ∈ N+ :
∑s

j=1
ζ j = t}.

Proof. Applying Lemma H.2, we get

��[η1, · · · ,ηℓ] ⊲D∗(Y1, · · · , Yt)
��

=
��D∗
�
Y1 · · · Yη1

, Yη1+1 · · · Yη1+η2
, · · · , Yη1+···+ηℓ−1+1 · · ·Yt

���

=

���
∑

(s,ζ1:s)∈C(t)

(−1)s−1[ζ1, · · · ,ζs] ⊲
�
Y1 · · · Yη1

, Yη1+1 · · ·Yη1+η2
, · · · , Yη1+···+ηℓ−1+1 · · · Yt

����

≤
∑

(s,ζ1:s)∈C(t)

[ζ1, · · · ,ζs] ⊲
�
|Y1 · · ·Yη1

| , |Yη1+1 · · ·Yη1+η2
| , · · · , |Yη1+···+ηℓ−1+1 · · ·Yt |

�

≤
∑

(s,λ1:s)∈C(t)

[λ1, · · · ,λs] ⊲
�
|Y1| , |Y2| , · · · , |Yt |

�
,

where in the last inequality we have used the fact that for every (s,ζ1:s) ∈ C(t), if we write

λ1 :=
∑ζ1

h=1
ηh and λ j :=
∑ζ j

h=ζ j−1
ηh for all j ≤ s, we have that (s,λ1:s) ∈ C(t) and

[λ1, · · · ,λs] ⊲ (|Y1|, |Y2|, · · · , |Yt |)
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=[ζ1, · · · ,ζs] ⊲
�
|Y1 · · · Yη1

| , |Yη1+1 · · · Yη1+η2
| , · · · , |Yη1+···+ηℓ−1+1 · · ·Yt |

�
.

Using similar ideas, we observe that

��[η1, · · · ,ηℓ] ⊲D∗(Y1, · · · , Yt)
��

=
��D∗
�
Y1 · · ·Yη1

, Yη1+1 · · · Yη1+η2
, · · · , Yη1+···+ηℓ−1+1 · · · Yt

���
(H.4)
=

���
∑

(s,ζ1:s)∈C(t)

(−1)s−1[ζ1, · · · ,ζs] ⊲
�
Y1 · · · Yη1

, · · · , Yη1+···+ηℓ−1+1 · · · Yt

����

=

���E[Y1 · · · Yt] +

ℓ−1∑

j=1

∑

(s,ζ1:s)∈C( j)

(−1)s[ζ1, · · · ,ζs]⊲

�
Y1 · · ·Yη1

, · · · , Yη1+···+η j−1+1 · · · Yη1+···+η j

�
·E[Yη1+···+η j+1 · · ·Yt]

���

≤
��E[Y1 · · · Yt]
��+

ℓ−1∑

j=1

∑

(s,ζ1:s)∈C( j)

[ζ1, · · · ,ζs]⊲

���Y1 · · · Yη1

�� , · · · ,
��Yη1+···+η j−1+1 · · ·Yη1+···+η j

��� ·
��E[Yη1+···+η j+1 · · · Yt]

��

(∗)
≤
��E[Y1 · · · Yt]
��+

ℓ−1∑

j=1

∑

(s,λ1:s)∈C(η1+···+η j)

[ζ1, · · · ,ζs]⊲

�
|Y1| , |Y2| , · · · ,

��Yη1+···+η j

��� ·
��E[Yη1+···+η j+1 · · · Yt]

��

≤
��E[Y1 · · · Yt]
��+

t−1∑

h=1

∑

(s,λ1:s)∈C(h)

[λ1, · · · ,λs] ⊲
�
|Y1| , |Y2| , · · · , |Yh|

�
·
��E[Yh+1 · · · Yt]
��.

where to obtain (∗) we have used the fact that

[λ1, · · · ,λs] ⊲
�
|Y1|, · · · ,
��Yη1+···+η j

���

=[ζ1, · · · ,ζs] ⊲
���Y1 · · · Yη1

��, · · · ,
��Yη1+···+η j−1+1 · · · Yη1+···+η j

���.

Now let’s prove (H.12). By Lemma H.2, we observe that



[η1, · · · ,ηℓ] ⊲D(Y1, · · · , Yt)




q

=


D
�
Y1 · · ·Yη1

, Yη1+1 · · · Yη1+η2
, · · · , Yη1+···+ηℓ−1+1 · · · Yt

�


q

(H.5)
=





Y1Y2 · · ·Yt −D∗
�
Y1 · · · Yη1

, · · · , Yη1+···+ηℓ−1+1 · · · Yt

�

−
ℓ−1∑

j=1

Y1 · · ·Yη1+···+η j
·D∗
�
Yη1+···+η j+1 · · ·Yη1+···+η j+1

, · · · , Yη1+···+ηℓ−1+1 · · ·Yt

�




q

=





Y1Y2 · · ·Yt − [η1, · · · ,ηℓ] ⊲D∗(Y1, · · · , Yt)−
ℓ−1∑

j=1

Y1 · · · Yη1+···+η j
·

∑

(s,ζ1:s)∈C(ℓ− j)

(−1)s−1[ζ1, · · · ,ζs] ⊲
�
Yη1+···+η j+1 · · · Yη1+···+η j+1

, · · · , Yη1+···+ηℓ−1+1 · · · Yt

�




q
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We upper-bound this using the triangle inequality. Indeed we obtain that



[η1, · · · ,ηℓ] ⊲D(Y1, · · · , Yt)




q

≤
��[η1, · · · ,ηℓ] ⊲D∗(Y1, · · · , Yt)

��+ ‖Y1Y2 · · · Yt‖q +
ℓ−1∑

j=1

∑

(s,ζ1:s)∈C(ℓ− j)

‖Y1 · · ·Yη1+···+η j
‖q·

���[ζ1, · · · ,ζs] ⊲
�
Yη1+···+η j+1 · · · Yη1+···+η j+1

, · · · , Yη1+···+ηℓ−1+1 · · · Yt

����

(∗)
≤
��[η1, · · · ,ηℓ] ⊲D∗(Y1, · · · , Yt)

��+ ‖Y1Y2 · · · Yt‖q +
ℓ−1∑

j=1

∑

(s,ζ1:s)∈C(ℓ− j)

‖Y1 · · ·Yη1+···+η j
‖q·

�
[ζ1, · · · ,ζs] ⊲
�
|Yη1+···+η j+1 · · ·Yη1+···+η j+1

|q, · · · , |Yη1+···+ηℓ−1+1 · · · Yt |q
��1/q

(∗∗)
≤
��[η1, · · · ,ηℓ] ⊲D∗(Y1, · · · , Yt)

��+ ‖Y1Y2 · · · Yt‖q +
ℓ−1∑

j=1

∑

(s,λ1:s)∈C(η j+1+···+ηℓ)
‖Y1 · · ·Yη1+···+η j

‖q·

�
[λ1, · · · ,λs] ⊲
�
|Yη1+···+η j+1|q, · · · , |Yt |q

��1/q

≤
��[η1, · · · ,ηℓ] ⊲D∗(Y1, · · · , Yt)

��+ ‖Y1Y2 · · · Yt‖q +
t−1∑

h=1

∑

(s,λ1:s)∈C(t−h)

‖Y1 · · · Yh‖q·

�
[λ1, · · · ,λs] ⊲
�
|Yh+1|q, · · · , |Yt |q

��1/q

=
��[η1, · · · ,ηℓ] ⊲D∗(Y1, · · · , Yt)

��+
∑

(s,λ1:s)∈C(t)

�
[λ1, · · · ,λs] ⊲
�
|Y1|q, · · · , |Yt |q
��1/q

(H.10)

≤
∑

(s,ζ1:s)∈C(t)

[ζ1, · · · ,ζs] ⊲
�
|Y1|, · · · , |Yt |
�
+
∑

(s,ζ1:s)∈C(t)

�
[ζ1, · · · ,ζs] ⊲
�
|Y1|q, · · · , |Yt |q
��1/q

≤ 2
∑

(s,ζ1:s)∈C(t)

�
[ζ1, · · · ,ζs] ⊲
�
|Y1|q, · · · , |Yt |q
��1/q

,

where to obtain (∗) we have used the fact that by Jensen inequality for any random variable X ∈
Lq(R) we have
��E[X ]
�� ≤
�
E[|X |q]
�1/q

; and where to obtain (∗∗) we have used the fact that

[λ1, · · · ,λs] ⊲
�
|Yη1+···+η j+1|q, · · · , |Yt |q

�

=[ζ1, · · · ,ζs] ⊲
�
|Yη1+···+η j+1 · · ·Yη1+···+η j+1

|q, · · · , |Yη1+···+ηℓ−1+1 · · ·Yt |q
�
.

Lemma H.4. Let (X i)i∈T be a stationary random field of random variables with a finite index set

T and finite Lr-norms, i.e., ‖X i‖r <∞, where r is a real number such that r > 2. Let ST0,ω be a

random variable that satisfies |ST0,ω| ≤
��∑

i∈T0
X i

��ω where T0 ⊆ T is an index set and 0 ≤ ω ≤ 1.

Fix t ∈ N+ such that 1≤ t < r − 1 and i1:t ∈ T .

For any ℓ,η1:ℓ ∈ N+ such that η1 + · · ·+ηℓ = t + 1, we have

��[η1, · · · ,ηℓ] ⊲D∗(X i1
, · · · , X it

, X it+1
)
��≤ 2t‖X i1

‖t+1
r

, (H.13)
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��[η1, · · · ,ηℓ] ⊲D∗(X i1
, · · · , X it

, ST0 ,ω)
��≤ 2t |T0|ω‖X i1

‖t+ω
r

. (H.14)

We further let j be an integer that satisfies 2≤ j ≤ t + 1 and define the σ-algebras F1 and F2 by

F1 := σ
�
X i1

, · · · , X i j

�
, F2 := σ
�
X i j+1

, · · · , X it+1

�
, F3 :=

¨
σ
�
X i j

, · · · , X it
, ST0 ,ω

�
if j ≤ t

σ(ST0 ,ω) if j = t + 1
.

For any s,ℓ,η1:ℓ ∈ N+ such that η1 + · · ·+ηs = j − 1 and η1 + · · ·+ηℓ = t + 1, we have

��[η1, · · · ,ηℓ] ⊲D∗(X i1
, · · · , X it

, X it+1
)
�� ≤ 2t+3
�
α(F1,F2)
�(r−t−1)/r‖X i1

‖t+1
r

, (H.15)
��[η1, · · · ,ηℓ] ⊲D∗(X i1

, · · · , X it
, ST0 ,ω)
��≤ 2t+3|T0|ω
�
α(F1,F3)
�(r−t−ω)/r‖X i1

‖t+ω
r

, (H.16)

where α(F1,F2) is the strong mixing coefficients between F1 and F2, and α(F1,F3) is the strong

mixing coefficients between F1 and F3.

Proof. For ease of notation denote M := ‖X i1
‖r . To prove (H.13), we remark that

���[η1, · · · ,ηℓ] ⊲D∗
�
X i1

, · · · , X it+1

����
(H.10)

≤
∑

(ℓ′,ζ1:ℓ′)∈C(t+1)

[ζ1, · · · ,ζℓ′] ⊲
�
|X i1
|, · · · , |X it+1

|
�

(∗)
≤ 2t 1

t + 1

�

X i1



t+1

t+1
+ · · ·+


X it+1



t+1

t+1

�
≤ 2t M t+1,

where (∗) is implied by Lemma D.3 and the fact that |C(t + 1)|= 2t [Heubach & Mansour 2009].

For (H.14), we have
���[η1, · · · ,ηℓ] ⊲D∗

�
X i1

, · · · , X it
, ST0 ,ω

����
(H.10)

≤
∑

(ℓ′,ζ1:ℓ′)∈C(t+1)

[ζ1, · · · ,ζℓ′] ⊲
�
|X i1
|, · · · , |X it

|, |ST0,ω|
�

≤ |T0|ω
∑

(ℓ′,ζ1:ℓ′ )∈C(t+1)

[ζ1, · · · ,ζℓ′] ⊲
�
|X i1
|, · · · , |X it

|,
����

1

|T0|
∑

i∈T0

X i

����
ω�

(∗)
≤ |T0|ω
∑

(ℓ′,ζ1:ℓ′ )∈C(t+1)

�
1

t +ω

�

X i1



t+ω
t+ω
+ · · ·+


X it



t+ω
t+ω

�
+
ω

t +ω






1

|T0|
∑

i∈T0

X i






t+ω

t+ω

�

(∗∗)
≤ 2t |T0|ω
�

1

t +ω

�

X i1



t+ω
t+ω
+ · · ·+


X it



t+ω
t+ω

�
+
ω

t +ω

1

|T0|
∑

i∈T0



X i



t+ω
t+ω

�

≤ 2t |T0|ω ·M t+ω.

Here we have used Lemma D.3 in (∗), and (∗∗) is implied by |C(t+1)| ≤ 2t and Jensen’s inequality

as 

 1
|T0|
∑

i∈T0
X i



t+ω
t+ω
= E
��� 1
|T0|
∑

i∈T0
X i

��t+ω�

≤E
�

1
|T0|
∑

i∈T0
|X i|t+ω
�
= 1
|T0 |
∑

i∈T0
E[|X i|t+ω] = 1

|T0|
∑

i∈T0
‖X i‖t+ω

t+ω
.
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To show (H.15), we remark that assumption we have that s is such that η1 + · · · + ηs = j − 1.

Therefore, according to (H.9), we get that

[η1, · · · ,ηℓ] ⊲D∗
�
X i1

, · · · , X it+1

�

=[η1, · · · ,ηs, · · · ,ηℓ] ⊲D∗
�
X i1

, · · · , X i j
, · · · , X it+1

�

=[η1, · · · ,ηs−1,ηs + 1] ⊲D∗
�
X i1

, · · · , X i j−1
, [ηs+1, · · · ,ηℓ] ⊲D

�
X i j

, · · · , X it+1

��
. (H.17)

Moreover, by exploiting (H.11), we obtain that
����[η1, · · · ,ηs−1,ηs + 1] ⊲D∗

�
X i1

, · · · , X i j−1
, [ηs+1, · · · ,ηℓ] ⊲D

�
X i j

, · · · , X it+1

������

≤
���E
�
X i1
· · ·X i j−1

· [ηs+1, · · · ,ηℓ] ⊲D
�
X i j

, · · · , X it+1

�����

+

j−2∑

w=1

∑

(s′,ζ1:s′ )∈C(w)

[ζ1, · · · ,ζs′] ⊲
�
|X i1
|, · · · , |X iw

|
�
·

���E
�
X iw+1
· · ·X i j−1

· [ηs+1, · · · ,ηℓ] ⊲D
�
X i j

, · · · , X it+1

�����

(H.18)

By Lemma D.3, we know that

[ζ1, · · · ,ζs′] ⊲
�
|X i1
|, · · · , |X iw

|
�
≤ 1

w

�
‖X i1
‖w

w
+ · · ·+ ‖X iw

‖w
w

�
≤ M w. (H.19)

Combining (H.17), (H.18), and (H.19), we get
���[η1, · · · ,ηℓ] ⊲D∗

�
X i1

, · · · , X it+1

����

≤
���E
�
X i1
· · ·X i j−1

· [ηs+1, · · · ,ηℓ] ⊲D
�
X i j

, · · · , X it+1

�����

+

j−2∑

w=1

∑

(s′,ζ1:s′ )∈C(w)

M w

���E
�
X iw+1
· · ·X i j−1

· [ηs+1, · · · ,ηℓ] ⊲D
�
X i j

, · · · , X it+1

�����

(∗)
=

j−2∑

w=0

2(w−1)∨0M w

���E
�
X iw+1
· · ·X i j−1

· [ηs+1, · · · ,ηℓ] ⊲D
�
X i j

, · · · , X it+1

�����

=

j−1∑

w=1

2(w−2)∨0M w−1

���E
�
X iw
· · ·X i j−1

· [ηs+1, · · · ,ηℓ] ⊲D
�
X i j

, · · · , X it+1

�����. (H.20)

where (∗) is due to the fact that |C(w)|= 2w−1.

As mentioned in (H.8), by definition of the compositional D operator we know that

E
�
[ηs+1, · · · ,ηℓ] ⊲D

�
X i j

, · · · , X it+1

��
= 0.

Thus, we can apply Lemma F.1:
���E
�
X iw
· · ·X i j−1

· [ηs+1, · · · ,ηℓ] ⊲D
�
X i j

, · · · , X it+1

�����

≤8
�
α(F1,F2)
�(r−t+w−2)/r

X iw

· · ·X i j−1




r/( j−w)

·


[ηs+1, · · · ,ηℓ] ⊲D

�
X i j

, · · · , X it+1

�


r/(t− j+2)

.

(H.21)
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By Lemma D.3, we get



X iw
· · ·X i j−1




r/( j−w)

=
�
E

���X iw
· · ·X i j−1

��r/( j−w)
��( j−w)/r

≤
� 1

j −w

�
‖X iw
‖r

r
+ · · ·+ ‖X i j−1

‖r
r

��( j−w)/r

= M j−w.
(H.22)

Moreover, remark that


[ηs+1, · · · ,ηℓ] ⊲D

�
X i j

, · · · , X it+1

�


r/(t− j+2)

(H.12)

≤ 2
∑

(ℓ′,ζ1:ℓ′ )∈C(t− j+2)

�
[ηs+1, · · · ,ηℓ] ⊲

�
|X i j
|r/(t− j+2), · · · , |X it+1

|r/(t− j+2)
��(t− j+2)/r

(∗)
≤ 2t− j+2
� 1

t − j + 2

�
‖X i j
‖r

r
+ · · ·+ ‖X it+1

‖r
r

��(t− j+2)/r

= 2t− j+2M t− j+2. (H.23)

Note that (∗) is implied by the fact that |C(t − j + 2)|= 2t− j+1 and Lemma D.3.

Substituting (H.22) and (H.23) into (H.21), we get
���E
�
X iw
· · ·X i j−1

· [ηs+1, · · · ,ηℓ] ⊲D
�
X i j

, · · · , X it+1

����� ≤ 2t− j+5
�
α(F1,F2)
�(r−t+w−2)/r

M t−w+2.

Combining this and (H.20), we get
���[η1, · · · ,ηℓ] ⊲D∗

�
X i1

, · · · , X it+1

����

≤
j−1∑

w=1

2(w−2)∨0 · 2t− j+5
�
α(F1,F2)
�(r−t+w−2)/r

M t+1

≤2t+3
�
α(F1,F2)
�(r−t−1)/r

M t+1.

Lastly, we prove (H.16). We consider two cases, 2≤ j ≤ t and j = t + 1.

If 2 ≤ j ≤ t , by (H.9), we have

[η1, · · · ,ηℓ] ⊲D∗
�
X i1

, · · · , X it
, ST0 ,ω

�

=[η1, · · · ,ηs, · · · ,ηℓ] ⊲D∗
�
X i1

, · · · , X i j
, · · · , X it

, ST0 ,ω

�

=[η1, · · · ,ηs−1,ηs + 1] ⊲D∗
�
X i1

, · · · , X i j−1
, [ηs+1, · · · ,ηℓ] ⊲D

�
X i j

, · · · , X it
, ST0 ,ω

��
. (H.24)

By (H.11), we get
����[η1, · · · ,ηs−1,ηs + 1] ⊲D∗

�
X i1

, · · · , X i j−1
, [ηs+1, · · · ,ηt] ⊲D

�
X i j

, · · · , X it
, ST0 ,ω

������

≤
���E
�
X i1
· · ·X i j−1

· [ηs+1, · · · ,ηℓ] ⊲D
�
X i j

, · · · , X it
, ST0,ω

�����

+

j−2∑

w=1

∑

(s′,ζ1:s′)∈C(w)

[ζ1, · · · ,ζs′] ⊲
�
|X i1
|, · · · , |X iw

|
�
·

���E
�
X iw+1
· · ·X i j−1

· [ηs+1, · · · ,ηℓ] ⊲D
�
X i j

, · · · , X it
, ST0 ,ω

�����.

(H.25)
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Combining (H.24), (H.25), and (H.19), we have

���[η1, · · · ,ηℓ] ⊲D∗
�
X i1

, · · · , X it
, ST0 ,ω

����

≤
���E
�
X iw
· · ·X i j−1

· [ηs+1, · · · ,ηℓ] ⊲D
�
X i j

, · · · , X it
, ST0 ,ω

�����

+

j−2∑

w=1

∑

(s′,ζ1:s′ )∈C(w)

M w

���E
�
X iw+1
· · ·X i j−1

· [ηs+1, · · · ,ηℓ] ⊲D
�
X i j

, · · · , X it
, ST0 ,ω

�����

(∗)
=

j−1∑

w=1

2(w−2)∨0M w−1

���E
�
X iw
· · ·X i j−1

· [ηs+1, · · · ,ηℓ] ⊲D
�
X i j

, · · · , X it
, ST0 ,ω

�����, (H.26)

where (∗) is due to the fact that |C(w)|= 2w−1.

We apply Lemma F.1 and obtain

���E
�
X iw
· · ·X i j−1

· [ηs+1, · · · ,ηℓ] ⊲D
�
X i j

, · · · , X it
, ST0 ,ω

�����

≤8
�
α(F1,F3)
�(r−t+w−1−ω)/r

X iw

· · ·X i j−1




r/( j−w)

·


[ηs+1, · · · ,ηℓ] ⊲D

�
X i j

, · · · , X it
, ST0 ,ω

�


r/(t+1+ω− j)

.

(H.27)

We observe that



[ηs+1, · · · ,ηℓ] ⊲D
�
X i j

, · · · , X it
, ST0,ω

�


r/(t+1+ω− j)

(H.12)

≤ 2|T0|ω
∑

(ℓ′,λ1:ℓ′ )∈C(t+2− j)

�
[λ1, · · · ,λℓ′] ⊲
�
|X i j
| r

t+1+ω− j , · · · , |X it
| r

t+1+ω− j ,

����
1

|T0|
∑

i∈T0

X i

����

rω
t+1+ω− j
�� t+1+ω− j

r

(∗)
≤ 2|T0|ω
∑

(ℓ′,λ1:ℓ′ )∈C(t+2− j)

�
1

t + 1+ω− j

�
‖X i j
‖r

r
+ · · ·+ ‖X it

‖r
r

�
+

ω

t + 1+ω− j






1

|T0|
∑

i∈T0

X i






r

r

� t+1+ω− j
r

(∗∗)
≤ 2t+2− j|T0|ω
�

1

t + 1+ω− j

�
‖X i j
‖r

r
+ · · ·+ ‖X it

‖r
r

�
+

ω

t + 1+ω− j

1

|T0|
∑

i∈T0

‖X i‖rr
� t+1+ω− j

r

≤ 2t+2− j|T0|ωM t+1+ω− j, (H.28)

where we have used Lemma D.3 in (∗), and (∗∗) is implied by |C(t+2− j)|= 2t+1− j and Jensen’s

inequality as



 1
|T0|
∑

i∈T0
X i



r
r
= E
��� 1
|T0|
∑

i∈T0
X i

��r� ≤ E
�

1
|T0|
∑

i∈T0
|X i|r
�
= 1
|T0 |
∑

i∈T0
E[|X i |r] = 1

|T0|
∑

i∈T0
‖X i‖rr .

Substituting (H.22) and (H.28) into (H.27), we have

���E
�
X iw
· · ·X i j−1

· [ηs+1, · · · ,ηℓ] ⊲D
�
X i j

, · · · , X it
, ST0 ,ω

�����

≤2t+5− j|T0|ω
�
α(F1,F3)
�(r−t+w−1−ω)/r

M t+1+ω−w.
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Combining this with (H.26), we obtain

���[η1, · · · ,ηℓ] ⊲D∗
�
X i1

, · · · , X it
, ST0 ,ω

����

≤
j−1∑

w=1

2(w−2)∨0M w−1 · 2t+5− j|T0|ω
�
α(F1,F3)
�(r−t+w−1−ω)/r

M t+1+ω−w

≤2t+3|T0|ω
�
α(F1,F3)
�(r−t−ω)/r

M t+ω.

If j = t + 1, then η1 + · · ·+ηs = j − 1 = t implies that s = ℓ− 1 and ηℓ = 1. By (H.9) we have

[η1, · · · ,ηℓ] ⊲D∗
�
X i1

, · · · , X it
, ST0 ,ω

�

=[η1, · · · ,ηs, 1] ⊲D∗
�
X i1

, · · · , X it
, ST0 ,ω

�

=[η1, · · · ,ηs−1,ηs + 1] ⊲D∗
�
X i1

, · · · , X it
,D(ST0,ω)
�
. (H.29)

By (H.11), we get

���[η1, · · · ,ηs−1,ηs + 1] ⊲D∗
�
X i1

, · · · , X it
,D(ST0 ,ω)
����

≤
���E
�
X i1
· · ·X it
·D(ST0,ω)
����

+

t∑

w=1

∑

(s′,ζ1:s′)∈C(w)

[ζ1, · · · ,ζs′] ⊲
�
|X i1
|, · · · , |X iw

|
�
·
���E
�
X iw+1
· · ·X it
·D(ST0,ω)
����

(∗)
≤

t∑

w=1

2(w−2)∨0M w−1

���E
�
X iw
· · ·X it
·D(ST0,ω)
����, (H.30)

where (∗) is due to (H.19) and the fact that |C(w)|= 2w−1.

Combining (H.29) and (H.30), we have

���[η1, · · · ,ηℓ] ⊲D∗
�
X i1

, · · · , X it
, ST0,ω

���� ≤
t∑

w=1

2(w−2)∨0M w−1

���E
�
X iw
· · ·X it
·D(ST0,ω)
����. (H.31)

Again we apply Lemma F.1 and obtain

���E
�
X iw
· · ·X it
·D(ST0 ,ω)
����≤ 8
�
α(F1,F3)
�(r−t+w−1−ω)/r

X iw

· · ·X it




r/(t+1−w)

·


D(ST0,ω)




r/ω
.

(H.32)

Note that



D(ST0,ω)




r/ω
≤ 2


ST0 ,ω




r/ω
≤ 2






∑

i∈T0

X i






ω

r

≤2|T0|ω






1

|T0|
∑

i∈T0

X i






ω

r

(∗)
≤ 2|T0|ω
�

1

|T0|
∑

i∈T0

‖X i‖rr
�ω/r
≤ 2|T0|ωMω. (H.33)
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Once again we have used Jensen’s inequality to get (∗).
Substituting (H.22) and (H.33) into (H.32), we get
���E
�
X iw
· · ·X it
·D(ST0 ,ω)
���� ≤ 16
�
α(F1,F3)
�(r−t+w−1−ω)/r |T0|ωM t−w+ω+1.

Combining this and (H.31), we obtain
���[η1, · · · ,ηℓ] ⊲D∗

�
X i1

, · · · , X it
, ST0 ,ω

����

≤
t∑

w=1

2(w−2)∨0M w−1 · 16
�
α(F1,F3)
�(r−t+w−1−ω)/r |T0|ωM t−w+ω+1

≤2t+3|T0|ω
�
α(F1,F3)
�(r−t−ω)/r

M t+ω.

Before providing the upper bound for the sums of S(H) and U f (H), we first control the EG operator

defined in Appendix F.3 using strong mixing coefficients.

Lemma H.5. Let (X i)i∈T be a stationary random field of random variables with a finite index set T

and finite Lr-norms, i.e., ‖X i‖r <∞. Given an order-(k+ 1) genogram G, we have the following

bounds:

(a) For any real number r > k+ 1, we have
��EG

�
X i1

, · · · , X ik
, X ik+1

���≤ 2k‖X i1
‖k+1

r
. (H.34)

(b) For any f ∈ Ck−1,ω(R), we have
��EG

�
X i1

, · · · , X ik
,∆ f (G)
���≤ 2kσ−ω
��Bk+1\Dk+1

��ω · | f |k−1,ω‖X i1
‖k+ω

r
, (H.35)

where σ2 := Var
�∑

i∈T X i

�
.

If k ≥ 2, for any f ∈ Ck−2,1(R)∩ Ck−1,1(R) and ω ∈ [0, 1], we have
��EG

�
X i1

, · · · , X ik
,∆ f (G)
���≤ 2k+1σ−ω
��Bk+1\Dk+1

��ω · | f |1−ω
k−2,1
| f |ω

k−1,1
‖X i1
‖k+ω

r
. (H.36)

(c) For any f ∈ Ck−1,ω(R) and c1, c2 ∈ N+ such that c1 < c2, we have
����
∑

c1≤sk+1<c2

EG

�
X i1

, · · · , X ik
,∆ f (G)
�����≤ 2kσ−ω(c2 − c1)

ω| f |k−1,ω‖X i1
‖k+ω

r
,

where the sum is taken over genograms whose c1 ≤ sk+1 < c2 with the vertex set, the edge

set, and s1:k fixed.

If k ≥ 2, for any f ∈ Ck−2,1(R)∩ Ck−1,1(R), ω ∈ [0, 1] and c1, c2 ∈ N+ such that c1 < c2, we

have
����
∑

c1≤sk+1<c2

EG

�
X i1

, · · · , X ik
,∆ f (G)
�����≤ 2k+1σ−ω(c2 − c1)

ω| f |1−ω
k−2,1
| f |ω

k−1,1
‖X i1
‖k+ω

r
.
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Now suppose there exists 1< j ≤ k+ 1 such that s j ≥ 1. Then the following holds:

(d) For any real number r > k+ 1, we have
��EG

�
X i1

, · · · , X ik
, X ik+1

��� ≤ 2k+3α
(r−k−1)/r

ℓ0
‖X i1
‖k+1

r
, (H.37)

where ℓ0 is the smallest integer ℓ such that

k(2ℓ+ 1)d ≥ max
1≤ j≤k+1

s j + k(2m+ 1)d .

(e) For any f ∈ Ck−1,ω(R), we have
��EG

�
X i1

, · · · , X ik
,∆ f (G)
��� ≤ 2k+3σ−ω
��Bk+1\Dk+1

��ω · | f |k−1,ωα
(r−k−ω)/r
ℓ0

‖X i1
‖k+ω

r
, (H.38)

where ℓ0 is defined as above.

If k ≥ 2, for any f ∈ Ck−2,1(R)∩ Ck−1,1(R) and ω ∈ [0, 1], we have
��EG

�
X i1

, · · · , X ik
,∆ f (G)
���≤ 2k+4σ−ω
��Bk+1\Dk+1

��ω · | f |1−ω
k−2,1
| f |ω

k−1,1
α
(r−k−ω)/r
ℓ0

‖X i1
‖k+ω

r
,

(H.39)

(f) For any f ∈ Ck−1,ω(R) and c1, c2 ∈ N+ such that c1 < c2, we have
����
∑

c1≤sk+1<c2

EG

�
X i1

, · · · , X ik
,∆ f (G)
�����≤ 2k+3σ−ω(c2 − c1)

ω| f |k−1,ωα
(r−k−ω)/r
ℓ0

‖X i‖k+ωr
, (H.40)

where ℓ0 is the smallest integer ℓ such that

k(2ℓ+ 1)d ≥ c1∨max
1≤ j≤k

s j + k(2m+ 1)d.

If k ≥ 2, for any f ∈ Ck−2,1(R)∩ Ck−1,1(R), ω ∈ [0, 1] and c1, c2 ∈ N+ such that c1 < c2, we

have
��EG

�
X i1

, · · · , X ik
,∆ f (G)
��� ≤ 2k+4σ−ω(c2 − c1)

ω · | f |1−ω
k−2,1
| f |ω

k−1,1
α
(r−k−ω)/r
ℓ0

‖X i1
‖k+ω

r
. (H.41)

Proof of Lemma H.5. We will perform induction on k to prove this lemma. But before that, we

will present some prelimenary results.

Firstly, we observe that if sk+1 ≥ 1, then Bk+1 \ Dk+1 is a singleton and therefore,
��Bk+1 \ Dk+1

��= 1

which implies that Lemma H.5b is a special case of Lemma H.5c and that Lemma H.5e is a special

case of Lemma H.5f by setting c2 = c1+ 1. For notational convenience, we combine the two cases

by denoting

e∆ f :=

¨
∆ f (G) if sk+1 ≤ 0∑

c1≤sk+1<c2
∆ f (G) if sk+1 ≥ 1

.

Then by definition of EG, we have

EG

�
X i1

, · · · , X ik
, e∆ f

�
=

¨
EG

�
X i1

, · · · , X ik
,∆ f (G)
�

if sk+1 ≤ 0∑
c1≤sk+1<c2

EG

�
X ih

, · · · , X ik
,∆ f (G)
�

if sk+1 ≥ 1
.
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Further let

eBk+1 :=

¨
Bk+1 if sk+1 ≤ 0

N (c2−1)
�
iℓ : ℓ ∈ A(k+ 1)

�
∪ Dg(k+1) if sk+1 ≥ 1

,

eDk+1 :=

¨
Dk+1 if sk+1 ≤ 0

N (c1−1)
�
iℓ : ℓ ∈ A(k+ 1)

�
∪ Dg(k+1) if sk+1 ≥ 1

If sk+1 ≥ c1 ≥ 1, we have u(k+1) = k+1. The following holds due to a telescoping sum argument:

e∆ f = ∂
k−1 f
�
W (eBk+1)
�
− ∂ k−1 f
�
W (eDk+1)
�
.

Thus, we get that

e∆ f =






∂ k−1 f (W (eBk+1))− ∂ k−1 f (W (eDk+1)) if u(k+ 1) = k+ 1∫ 1
0
(k+ 1− u(k+ 1))vk−u(k+1)·�
∂ k−1 f (vW(eDk+1) + (1− v)W(eBk+1))− ∂ k−1 f (W (eDk+1))

�
dv

if u(k+ 1) ≤ k
.

If u(k+ 1) = k+ 1, we have

|e∆ f | ≤
��∂ k−1 f
�
W (eBk+1)
�
− ∂ k−1 f
�
W (eDk+1)
��� ≤ σ−ω| f |k−1,ω

����
∑

i∈eBk+1\eDk+1

X i

����
ω

.

If u(k+ 1) ≤ k, we have

|e∆ f | ≤
∫ 1

0

(k+ 1− u(k+ 1))vk−u(k+1)·
���∂ k−1 f
�
vW (eDk+1) + (1− v)W(eBk+1)

�
− ∂ k−1 f
�
W (eDk+1)
����dv

≤σ−ω| f |k−1,ω ·
����
∑

i∈eBk+1\eDk+1

X i

����

∫ 1

0

(k+ 1− u(k+ 1))vk−u(k+1)dv

≤σ−ω| f |k−1,ω

����
∑

i∈eBk+1\eDk+1

X i

����
ω

.

Therefore, in both cases, we can write

e∆ f = σ
−ω| f |k−1,ωST0,ω,

where T0 = eBk+1\eDk+1 and ST0 ,ω (which depends on f by definition) satisfies

|ST0 ,ω| ≤
��∑

i∈T0
X i

��ω.

If k ≥ 2 and f ∈ Ck−2,1(R)∩ Ck−1,1(R), f ∈ Ck−1,1(R) implies that

|e∆ f | ≤ σ−1| f |k−1,1

��∑
i∈T0

X i

��.
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On the other hand, f ∈ Ck−2,1(R) implies that

|e∆ f | ≤ 2| f |k−2,1.

Thus, for any ω ∈ [0, 1], we have

|e∆ f | ≤ 2σ−ω| f |1−ω
k−2,1
| f |ω

k−1,1

��∑
i∈T0

X i

��ω.

In this setting, we can write
e∆ f = 2σ−ω| f |1−ω

k−2,1
| f |ω

k−1,1
ST0 ,ω,

where T0 = eBk+1\eDk+1 and ST0 ,ω (which depends on f by definition) satisfies

|ST0 ,ω| ≤
��∑

i∈T0
X i

��ω.

Then Lemmas H.5b and H.5c reduce to

(g) ��EG

�
X i1

, · · · , X ik
, ST0 ,ω

���≤ 2k
��T0

��ω‖X i1
‖k+ω

r
. (H.42)

And Lemmas H.5e and H.5f reduce to

(h) ��EG

�
X i1

, · · · , X ik
, ST0,ω

��� ≤ 2k+3
��T0

��ωα(r−k−ω)/r
ℓ0

‖X i1
‖k+ω

r
, (H.43)

where ℓ0 is the smallest integer ℓ such that

k(2ℓ+ 1)d ≥ c1∨max
1≤ j≤k

s j + k(2m+ 1)d.

Secondly, if s j ≥ 1 for some 1 < j ≤ k+ 1, we denote the σ-algebras F j− := σ(X it
: t ∈ A( j)) and

F j+ :=

¨
σ(X i : i ∈ T\Dj) if 2 ≤ j ≤ k

σ(X i : i ∈ T\eDk+1) if j = k+ 1
.

We will establish that α(F j−,F j+) ≤ αℓ0 where α( · , · ) is defined in Definition 5.1.

In this goal, we will write B‖·‖(i, b) := {z ∈ Zd : ‖i − z‖ ≤ b} for any i ∈ Zd , where ‖ · ‖ is the

maximum norm on Zd . This is the set of elements at a distance at most b from i. Similarly if

I ⊂ Zd we write B‖·‖(I , b) := {z ∈ Zd : mini∈I ‖i − z‖ ≤ b}. We denote by ℓ (ℓ ≥ m + 1) the

distance between i j and {it : t ∈ A( j)} in Zd , and by q the number of indices whose distance from

{i1, · · · , i j−1} is at least m+ 1 and at most ℓ meaning that we set

q :=
��{s ∈ T : d({i1, . . . , i j−1}, s) ∈ [m+1,ℓ]}

�� =
��T∩B‖·‖
�
{i1, . . . , i j−1},ℓ
�
\B‖·‖
�
{i1, . . . , i j−1}, m
���.

To bound q, we note that for any i ∈ Zd and b ∈ N we have exactly (2b+1)d elements in B‖·‖(i, b).

Thus, we have

q ≤ ( j − 1)
�
(2ℓ+ 1)d − (2m+ 1)d

�
≤ k
�
(2ℓ+ 1)d − (2m+ 1)d

�
.
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Moreover, by definition, N (s j)(it : t ∈ A( j)) \ N(it : t ∈ A( j)) contains the smallest s j indexes

(with respect to the strict order on Zd) in T \ N(it : t ∈ A( j)). We remark that all the elements in

N (s j)(it : t ∈ A( j)) \ N(it : t ∈ A( j)) have distance at least m+ 1 and at most ℓ from {it : t ∈ A( j)}
meaning that

N (s j)(it : t ∈ A( j))\N(it : t ∈ A( j)) ⊆ B‖·‖
�
{i1, · · · , i j−1},ℓ
�
\B‖·‖
�
{i1, . . . , i j−1}, m
�
.

Thus, we have q ≥ s j . As a result,

k(2ℓ+ 1)d ≥ s j + k(2m+ 1)d.

As ℓ0 := minℓ{ℓ : k(2ℓ + 1)d ≥ s j + k(2m + 1)d}, we have ℓ ≥ ℓ0. Thus, we obtain that

α(F j−,F j+) ≤ αℓ ≤ αℓ0.
Now we finish the proof of Lemmas H.5a, H.5d, H.5g and H.5h by performing induction on k.

Let M := ‖X i‖r for any i ∈ T .

If k = 1, by definition we have

EG(X i1
, X i2
) = D∗(X i1

, X i2
), EG(X i1

, ST0 ,ω) = D∗(X i1
, ST0,ω).

By (H.13) and (H.14), we have

��D∗(X i1
, X i2
)
��≤ 2M2,
��D∗(X i1

, ST0,ω)
��≤ 2|T0|ωM1+ω.

Thus, Lemmas H.5a and H.5g hold for k = 1. Now supposing s2 ≥ 1, by (H.15) and (H.16), we

get

��D∗(X i1
, X i2
)
��≤ 24
�
α(F1,F2)
�(r−2)/r

M2,
��D∗(X i1

, ST0,ω)
��≤ 24|T0|ω
�
α(F1,F3)
�(r−1−ω)/r

M1+ω,

where F1 := σ(X i1
) = F2−, F2 := σ(X i2

) ⊆ F2+, and

F3 := σ(X i : i ∈ T0) = σ(X i : i ∈ eB2\eD2) ⊆ σ(X i : i ∈ T\eD2) = F2+.

As we have shown α(F2−,F2+) ≤ αℓ0, we obtain

α(F1,F2) ≤ αℓ0, α(F1,F3) ≤ αℓ0.

Thus, Lemmas H.5d and H.5h also hold for k = 1.

Suppose Lemmas H.5a, H.5d, H.5g and H.5h are true for |G| ≤ k. Consider the case where

|G|= k+ 1. Let

q0 := sup{ j : j = 1 or p( j) 6= j − 1 for 2 ≤ j ≤ k+ 1}, (H.44)

We remark that q0 is the first vertex in the branch of G with the highest indexes. We set w :=
��{t :

q0 + 1 ≤ t ≤ k + 1 & st ≥ 0}
�� to be the number of all indices q0 + 1 ≤ t ≤ k + 1 such that the

identifier st ≥ 0. If max1≤ j≤k+1 s j ≥ 1, we let j0 be an integer that satisfies s j0
=max1≤ j≤k+1 s j ≥ 1.

We remark that such an index always exists.
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We will first propose a simplified formulation for EG that will hold irrespective of the value of w.

Then we will distinguish two main cases in our analysis namely (i) when q0 = 1 and (ii) when

q0 ≥ 2.

In this goal, we first remark that if w = 0, by definition we know that for any random variables

Y1, · · · , Yk+1 the following holds

EG(Y1, · · · , Yk+1) =

¨
D∗
�
Y1Y2 · · · Yk+1

�
if q0 = 1

EG[q0−1]

�
Y1, · · · , Yq0−1

�
·D∗
�
Yq0

Yq0+1 · · · Yk+1

�
if q0 ≥ 2

,

where G[q0 − 1] ⊆ G is the unique order-(q0 − 1) sub-genogram of G as defined in Appendix F.2.

For w ≥ 1, we write {t : q0 + 1 ≤ t ≤ k + 1 & st ≥ 0} = {q1, · · · , qw}. Without loss of generality,

we suppose that the sequence q0 + 1≤ q1 < · · · < qw ≤ k+ 1 is increasing. By definition

EG(Y1, · · · , Yk+1) =






D∗
�
Y1 · · · Yq1−1 , Yq1

· · · Yq2−1 , · · · , Yqw
· · ·Yk+1

�
if q0 = 1

EG[q0−1]

�
Y1, · · · , Yq0−1

�
·

D∗
�
Yq0
· · · Yq1−1 , Yq1

· · · Yq2−1 , · · · , Yqw
· · ·Yk+1

� if q0 ≥ 2
.

Set qw+1 := k+ 2, then by exploiting the definition of compositional D∗ operators, we remark that

EG will take the following form irrespectively of the fact that w ≥ 1 or not:

EG(Y1, · · · , Yk+1) :=






[q1 − q0, · · · , qw+1 − qw] ⊲D
∗�Y1, · · · , Yk+1

�
if q0 = 1

EG[q0−1]

�
Y1, · · · , Yq0−1

�
·

[q1 − q0, · · · , qw+1 − qw] ⊲D
∗�Yq0

, · · · , Yk+1

� if q0 ≥ 2
. (H.45)

In particular, we know that

EG(X i1
, · · · , X ik+1

) =
¨
[q1 − q0, · · · , qw+1 − qw] ⊲D

∗�X i1
, · · · , X ik+1

�
if q0 = 1

EG[q0−1]

�
X i1

, · · · , X iq0−1

�
· [q1 − q0, · · · , qw+1 − qw] ⊲D

∗�X iq0
, · · · , X ik+1

�
if q0 ≥ 2

, (H.46)

EG(X i1
, · · · , X ik

, ST0,ω) =¨
[q1 − q0, · · · , qw+1 − qw] ⊲D

∗�X i1
, · · · , X ik

, ST0,ω

�
if q0 = 1

EG[q0−1]

�
X i1

, · · · , X iq0−1

�
· [q1 − q0, · · · , qw+1 − qw] ⊲D

∗�X iq0
, X iq0+1

, · · · , X ik
, ST0,ω

�
if q0 ≥ 2

.

(H.47)

We will use this simplified representation to prove the desired result. If q0 = 1, by (H.13) and

(H.14) we remark that

��[q1 − q0, · · · , qw+1− qw] ⊲D
∗(X i1

, · · · , X ik+1
)
��≤ 2k+3M k+1,��[q1 − q0, · · · , qw+1− qw] ⊲D

∗(X i1
, · · · , X ik

, ST0 ,ω)
��≤ 2k+3|T0|ωM k+ω.

Therefore, Lemmas H.5a and H.5g are true when q0 = 1.
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Supposing s j0
=max1≤ j≤k+1 s j ≥ 1 ( j0 ≥ 2 since s1 = 0), by definition of q1, · · · , qw we know there

is some 1≤ w′ ≤ w such that qw′ = j0. Hence

(q1 − q0) + · · ·+ (qw′ − qw′−1) = j0 − 1.

By (H.15) and (H.16) we have

��[q1 − q0, · · · , qw+1 − qw] ⊲D
∗(X i1

, · · · , X ik+1
)
��≤ 2k+3
�
α(F1,F2)
�(r−k−1)/r

M k+1,
��[q1 − q0, · · · , qw+1 − qw] ⊲D

∗(X i1
, · · · , X ik

, ST0 ,ω)
��≤ 2k+3|T0|ω
�
α(F1,F3)
�(r−k−ω)/r

M k+ω,

where

F1 := σ(X i1
, · · · , X i j0−1

) = F j0−,

F2 := σ(X i j0
, · · · , X ik+1

)
(∗)
⊆
¨
σ(X i : i ∈ T\Dj0

) = F j0+
if j0 ≤ k

σ(X i : i ∈ T\eDk+1) = F j0+
if j0 = k+ 1

,

F3 :=






σ(X i j0
, · · · , X ik

, ST0 ,ω) ⊆ σ(X i : i = j0, · · · k, or i ∈ T\eDk+1)
(∗∗)
⊆ σ(X i : i ∈ T\Dj0

) = F j0+

if j0 ≤ k

σ(ST0 ,ω) ⊆ σ(X i : i ∈ T\eDk+1) = F j0+
if j0 = k+ 1

.

Here (∗) and (∗∗) are due to the fact that p( j) = j − 1 for any 2 ≤ j ≤ k + 1 since it implies that

1, · · · , j0 − 1 ∈ A( j) for any j0 ≤ j ≤ k+ 1. Thus, we have

��[q1 − q0, · · · , qw+1 − qw] ⊲D
∗(X i1

, · · · , X ik+1
)
��≤ 2k+3α

(r−k−1)/r

ℓ0
M k+1,

��[q1 − q0, · · · , qw+1 − qw] ⊲D
∗(X i1

, · · · , X ik
, ST0,ω)
��≤ 2k+3|T0|ωα(r−k−ω)/r

ℓ0
M k+ω.

Therefore, Lemmas H.5d and H.5h are true when q0 = 1.

If q0 ≥ 2, note that ��EG[q0−1]

�
X i1

, · · · , X iq0−1

���≤ 2q0−2Mq0−1, (H.48)

which is true for q0 = 2 since EG[1](X i1
) = E[X i1

] and is precisely the inductive hypothesis for

q0 ≥ 3.

Thus, we have

��EG(X i1
, · · · , X ik+1

)
��

≤
��EG[q0−1]

�
X i1

, · · · , X iq0−1

��� ·
��[q1 − q0, · · · , qw+1 − qw] ⊲D

∗�X iq0
, X iq0+1

, · · · , X ik+1

���
(∗)
≤2q0−2Mq0−1 · 2k+1−q0 M k+2−q0 ≤ 2kM k+1,

where (∗) is due to (H.48) and (H.13). Similarly we have

��EG(X i1
, · · · , X ik

, ST0 ,ω)
��

≤
��EG[q0−1]

�
X i1

, · · · , X iq0−1

��� ·
��[q1 − q0, · · · , qw+1 − qw] ⊲D

∗�X iq0
, X iq0+1

, · · · , X ik
, ST0,ω

���

≤2q0−2Mq0−1 · 2k+1−q0|T0|ωM k+1+ω−q0 ≤ 2k|T0|ωM k+ω.

123



H PROOF OF LEMMA F.9

Therefore, Lemmas H.5a and H.5g are true when q0 ≥ 2.

Supposing s j0
= max1≤ j≤k+1 s j ≥ 1, we claim that p( j0) = j0 − 1. In fact, if p( j0) < j0 − 1, set

j′
0
= p( j0)+1. Since j′

0
< j0 and v[ j′

0
] and v[ j0] are siblings, by Proposition F.2d we have s j′

0
> s j0

,

which contradicts the definition of j0. Therefore, we have shown p( j0) = j0 − 1, and thus, j0 6= q0

by definition of q0.

If j0 ≥ q0 + 1, by definition of q1, · · · , qw we know there is some 1 ≤ w′ ≤ w such that qw′ = j0.

Hence

(q1 − q0) + · · ·+ (qw′ − qw′−1) = j0− q0.

Thus, by (H.15) and (H.16) we have

��[q1 − q0, · · · , qw+1 − qw] ⊲D
∗(X iq0

, · · · , X ik+1
)
��

≤ 2k−q0+4
�
α(F1,F2)
�(r−k+q0−2)/r

M k−q0+2,��[q1 − q0, · · · , qw+1 − qw] ⊲D
∗(X iq0

, · · · , X ik
, ST0,ω)
��

≤ 2k−q0+4|T0|ω
�
α(F1,F3)
�(r−k+q0−1−ω)/r

M k−q0+1+ω,

where

F1 := σ(X iq0
, · · · , X i j0−1

) = F j0−,

F2 := σ(X i j0
, · · · , X ik+1

)
(∗)
⊆
¨
σ(X i : i ∈ T\Dj0

) = F j0+
if j0 ≤ k

σ(X i : i ∈ T\eDk+1) = F j0+
if j0 = k+ 1

,

F3 :=






σ(X i j0
, · · · , X ik

, ST0 ,ω) ⊆ σ(X i : i = j0, · · · k, or i ∈ T\eDk+1)
(∗∗)
⊆ σ(X i : i ∈ T\Dj0

) = F j0+

if j0 ≤ k

σ(ST0 ,ω) ⊆ σ(X i : i ∈ T\eDk+1) = F j0+
if j0 = k+ 1

.

Here (∗) and (∗∗) are due to the fact that p( j) = j − 1 for any q0 + 1 ≤ j ≤ k + 1 since it implies

that q0, · · · , j0− 1 ∈ A( j) for any j0 ≤ j ≤ k+ 1. Thus, we have

��EG(X i1
, · · · , X ik+1

)
��

≤
��EG[q0−1]

�
X i1

, · · · , X iq0−1

��� ·
��[q1 − q0, · · · , qw+1 − qw] ⊲D

∗�X iq0
, X iq0+1

, · · · , X ik+1

���

≤2q0−2Mq0−1 · 2k−q0+4α
(r−k+q0−2)/r

ℓ0
M k−q0+2 ≤ 2k+3α

(r−k−1)/r

ℓ0
M k+1,

and

��EG(X i1
, · · · , X ik

, ST0 ,ω)
��

≤
��EG[q0−1]

�
X i1

, · · · , X iq0−1

��� ·
��[q1 − q0, · · · , qw+1 − qw] ⊲D

∗�X iq0
, X iq0+1

, · · · , X ik
, ST0,ω

���

≤2q0−2Mq0−1 · 2k−q0+4|T0|ωα(r−k+q0−1−ω)/r
ℓ0

M k−q0+1+ω ≤ 2k+3|T0|ωα(r−k−ω)/r
ℓ0

M k+ω.

If 2 ≤ j0 ≤ q0 − 1, by inductive hypothesis we have

��EG[q0−1](X i1
, · · · , X iq0−1

)
��≤ 2q0+1α

r−q0+1

ℓ0
Mq0−1. (H.49)
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Thus, we have

��EG(X i1
, · · · , X ik+1

)
��

≤
��EG[q0−1]

�
X i1

, · · · , X iq0−1

��� ·
��[q1 − q0, · · · , qw+1 − qw] ⊲D

∗�X iq0
, X iq0+1

, · · · , X ik+1

���
(∗)
≤2q0+1α

(r−q0+1)/r

ℓ0
Mq0−1 · 2k−q0+1M k−q0+2 ≤ 2k+3α

(r−k−1)/r

ℓ0
M k+1,

where (∗) is implied by (H.49) and (H.34). Similarly

��EG(X i1
, · · · , X ik

, ST0 ,ω)
��

≤
��EG[q0−1]

�
X i1

, · · · , X iq0−1

��� ·
��[q1 − q0, · · · , qw+1 − qw] ⊲D

∗�X iq0
, X iq0+1

, · · · , X ik
, ST0,ω

���

≤2q0+1α
r−q0+1

ℓ0
Mq0−1 · 2k−q0+1|T0|ωM k−q0+1+ω ≤ 2k+3|T0|ωα(r−k−ω)/r

ℓ0
M k+ω.

Therefore, Lemmas H.5d and H.5h are true when q0 ≥ 2.

By induction the proof is complete.

Equipped with the tools in Lemma H.5, we are able to show the proof of Lemma F.9.

Proof of Lemma F.9. For ease of notation, let M := ‖X i‖r . For each of (F.51)–(F.54), we

conduct the sum in two steps:

1. Fixing an ordered tree (V, E,≺)with the compatible labeling. Here V =
�

v[1], · · · , v[k+1]
	

denotes the vertex set and E denotes the edge set. We take the sum of S(H) or U f (H) over

all possible values of s1, · · · , sk+1 such that H is a genogram that induces (V, E,≺);

2. Sum over all possible ordered trees (V, E,≺) of order-(k+ 1).

Note that an ordered tree corresponds to infinitely many genograms (as there is an infinite number

of possible identifiers). However, when the index set T of the random field is finite, only finitely

many genograms give non-zero values of S(H) and U f (H).

For the second step, we observe that the total number of ordered trees of order-(k + 1) solely

depends on k. (In fact, this is exactly the k-th Catalan number [Roman 2015].) Hence summing

over all such trees only contributes to the constant in the bounds. As for the first step, the following

statement will be crucial to our proof.

Claim. Fix a positive integer s ≥ 1. For any 2 ≤ t ≤ k+ 1, given a sequence i1, · · · , it−1, the sum

of
��Bt\Dt

�� over −1 ≤ st ≤ s is smaller or equal to 2(k(2m+ 1)d + s).

To see this we will consider the following three cases:

(i) When st = −1 and su(t) = 0;

(ii) When st = −1 and su(t) ≥ 1;

(iii) When 0≤ st ≤ s.
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Firstly, if st = −1 and su(t) = 0, then we note that

Bt\Dt = Bu(t)\Du(t) ⊆ N(ih : h ∈ A(u(t)))⊆ N(ih : h ∈ A(t)) ⊆ N (s)(ih : h ∈ A(t)).

If st = −1 and su(t) ≥ 1, then by definition, Bt\Dt = Bu(t)\Du(t) has at most one element namely

iu(t). Thus, Bt\Dt ∈ N(ih : h ∈ A(t))⊆ N (s)(ih : h ∈ A(t)).

Finally if 0≤ st ≤ s, by definition, Bt\Dt ⊆ N (s)(ih : h ∈ A(t)).

To bound
∑

st≤s

��Bt\Dt

�� we remark that the sets Bt\Dt are disjoints for different values of 0≤ st ≤
s. Thus, this implies that ∑

st≤s

��Bt\Dt

�� ≤ 2
��N (s)(ih : h ∈ A(t))

��.

To further bound this, note that for any index i, the indices with distance from i at most m lie in the

d-dimensional hypercube centered at i with the sides of length 2m+ 1. Thus,
��N(ih : h ∈ A(t))

��≤
k(2m+ 1)d . By noticing that for any subset J (by definition of N (s)(·)) there is at most s elements

in N (s)(J) \ N(J) we obtain that

��N (s)(ih : h ∈ A(t))
��=
��N(ih : h ∈ A(t))

��+ s ≤ k(2m+ 1)d + s.

Next we establish (F.51).

Suppose v[ j0] is a vertex with the largest identifier among all vertices and s j0
= s. By (H.37) of

Lemma H.5, we obtain that

��EH

�
X i1

, · · · , X ik+1

��� ® α(r−k−1)/r

ℓs
M k+1,

where ℓs is the smallest integer ℓ that satisfies

k(2ℓ+ 1)d ≥ s+ k(2m+ 1)d. (H.50)

Thus, we obtain that
∑

s1:(k+1):
s j0
=s,

sh≤s, ∀h6= j0

��S(H)
�� ≤σ−(k+1)
∑

s1:(k+1):
s j0
=s,

sh≤s,∀h6= j0

∑

i1∈B1\D1

∑

i2∈B2\D2

· · ·
∑

ik+1∈Bk+1\Dk+1

��EG

�
X i1

, · · · , X ik+1

���

≤22k+3σ−(k+1)|T |
�
k(2m+ 1)d + s
�k−2
α
(r−k−1)/r

ℓs
M k+1.

Since the set {s1, · · · , sk+1 : max1≤h≤k+1 sh = s} is the union (not necessarily disjoint) of {s1, · · · , sk+1 :

s j = s, sh ≤ s ∀1≤ h≤ k+ 1} over 2≤ j ≤ k+ 1, we have

∑

s1:(k+1):
max1≤h≤k+1 sh=s

��S(H)
�� ≤

k+1∑

j0=2

∑

s1:(k+1):
s j0
=s,

sh≤s,∀h6= j0

��S(H)
��

≤22k+3kσ−(k+1)|T |
�
k(2m+ 1)d + s
�k−1
α
(r−k−1)/r

ℓs
M k+1.
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Next we take the sum over all possible |T | ≥ s ≥ 1 and obtain that

∑

s1:(k+1):

max1≤h≤k+1≥1

��S(H)
�� ≤

|T |∑

s=1

∑

s1:(k+1):
max1≤h≤k+1 sh=s

��S(H)
�� (H.51)

≤22k+3kσ−(k+1)|T |
|T |∑

s=1

�
k(2m+ 1)d + s
�k−1
α
(r−k−1)/r

ℓs
M k+1.

To further bound this it will be important to know what is the number of different possible values

of s will have the same ℓs = ℓ. To do so, we note that by definition (H.50) of ℓs any such s much

satisfy

k(2ℓs + 1)d ≥ s+ k(2m+ 1)d ≥ k(2ℓs − 1)d + 1,

which implies that for any ℓ ≥ m+ 1

��{s : ℓs = ℓ}
�� ≤ k(2ℓ+ 1)d − k(2ℓ− 1)d ≤ 2kd(2ℓ+ 1)d−1.

On the other hand, s ≤ |T | − 1 implies that

k(2ℓs − 1)d + 1 ≤ |T |+ k(2m+ 1)d + 1 ≤
�
|T |1/d + k(2m+ 1)

�d
+ 1.

Thus, we have ℓs ≤ m+ 1+ ⌊ |T |1/d
2
⌋ for any s. And we conclude that

��{s : ℓs = ℓ}
�� ≤
¨

2kd(2ℓ+ 1)d−1 if m+ 1+ ⌊ |T |1/d
2
⌋ ≥ ℓ≥ m+ 1

0 otherwise
.

Therefore, by combining this with (H.51) we obtain that

∑

s1:(k+1):

max1≤h≤k+1≥1

��S(H)
�� ≤22k+3kσ−(k+1)|T |

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

2kd(2ℓ+ 1)d−1
�
k(2ℓ+ 1)d
�k−1
α
(r−k−1)/r

ℓ
M k+1

(a)

®|T |−(k−1)/2

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓdk−1α
(r−k−1)/r

ℓ
.

where to obtain (a) we used the assumption that the asymptotic variance does not degenerate:

lim inf
|T |→∞

σ2/|T |> 0.

For any G ∈ G0(k+1), there exists at least one positive vertex. Thus, max1≤h≤k+1 sh ≥ 1. Now that
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the number of labeled rooted trees on k+ 1 vertices only depends on k, we conclude

∑

H∈G0(k+1)

��S(H)
�� =
∑

(V,E,≺):
|V |=k+1

∑

s1:(k+1):

H=(V,E,s1:(k+1))

∈G0(k+1)

��S
�
H
���

≤
∑

(V,E,≺):
|V |=k+1

∑

s1:(k+1):

max1≤h≤k+1 sh≥1

��S
�
H
���

®

∑

(V,E,≺):
|V |=k+1

|T |−(k−1)/2

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓdk−1α
(r−k−1)/r

ℓ

®|T |−(k−1)/2

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓdk−1α
(r−k−1)/r

ℓ
.

Next we prove (F.52).

Again suppose v[ j0] is a vertex with the largest identifier among all vertices and s j0
= s. In other

words, max{st : 1 ≤ t ≤ k + 1} = s = s j0
. We discuss the following two cases (i) when j0 ≤ k

(whose analysis will be further split depending on the fact that sk+1 ≥ 1 or not), and (ii) when

j0 = k+ 1.

First consider the case where j0 ≤ k. From the claim above, we know that for any 2 ≤ t ≤ k,

t 6= j0, given a sequence i1, · · · , it−1, we have that
∑

st≤s

���Bt \ Dt

��� ≤ 2(k(2m+ 1)d + s).

Suppose that sk+1 ≤ 0, then by (H.38) of Lemma H.5, we know that

��EH

�
X i1

, · · · , X ik
,∆ f (H)
��� ®| f |k−1,ωσ

−ω|Bk+1\Dk+1|ωα(r−k−ω)/r
ℓs

,

where ℓs is the smallest integer ℓ that satisfies

k(2ℓ+ 1)d ≥ s+ k(2m+ 1)d.

If sk+1 ≥ 1 then by (H.40) of Lemma H.5 we have

����
∑

1≤sk+1≤s

EH

�
X i1

, · · · , X ik
,∆ f (H)
����� ®| f |k−1,ωσ

−ωsωα
(r−k−ω)/r
ℓs

.

Thus, as we have shown that |Bk+1\Dk+1| ≤ k(2m + 1)d since Bk+1\Dk+1 ⊆ N(ih : h ∈ A(k + 1))

we obtain that
����
∑

sk+1≤s

EH

�
X i1

, · · · , X ik
,∆ f (H)
�����

≤
����
∑

sk+1=0,−1

EH

�
X i1

, · · · , X ik
,∆ f (H)
�����+
����
∑

1≤sk+1≤s

EH

�
X i1

, · · · , X ik
,∆ f (H)
�����
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®| f |k−1,ωσ
−ω(k(2m+ 1)d + s)ωα

(r−k−ω)/r
ℓs

.

Noting that bH is the same for genograms with the same (V, E,≺) and negative vertices, and that

|bH | ≤ 1 (see the remark following Corollary F.8), we have

����
∑

s1:(k+1):

∃1≤ j0≤k s.t.
s j0
=max1≤h≤k+1 sh=s

bHU f (H)

����

≤
k∑

j0=1

∑

s1:k:
s j0
=s,

s j≤s,1≤ j≤k

����
∑

sk+1≤s

bHU f (H)

����=
k∑

j0=1

∑

s1:k:
s j0
=s,

s j≤s,1≤ j≤k

|bH |
����
∑

sk+1≤s

U f (H)

����

≤σ−k

k∑

j0=1

∑

s1:k:
s j0
=s,

s j≤s,∀1≤ j≤k

∑

i1∈B1\D1

∑

i2∈B2\D2

· · ·
∑

ik∈Bk\Dk

����
∑

sk+1≤s

EH

�
X i1

, · · · , X ik
,∆ f (H)
�����

®k| f |k−1,ωσ
−(k+ω)|T |
�
k(2m+ 1)d + s
�k−2+ω

α
(r−k−ω)/r
ℓs

M k+ω.

Thus, we get that

����
∑

s1:(k+1):

∃1≤ j0≤k s.t.
s j0
=max1≤h≤k+1 sh≥1

bHU f (H)

���� ≤
|T |∑

s=1

����
∑

s1:(k+1):

∃1≤ j0≤k s.t.
s j0
=max1≤h≤k+1 sh=s

bHU f (H)

����

®k| f |k−1,ωσ
−(k+ω)|T |

|T |∑

s=1

�
k(2m+ 1)d + s
�k−2+ω

α
(r−k−ω)/r
ℓs

M k+ω

(a)

®| f |k−1,ω|T |−(k+ω−2)/2

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓd(k+ω−1)−1α
(r−k−ω)/r
ℓ

,

where once again to obtain (a) we used the fact that by assumption lim sup |T |/σ2 <∞.

We now consider the case where j0 = k + 1. To do so we first note that by (H.40) of Lemma H.5

for any ℓ ≥ 1 we have

�������

k(2ℓ+1)d

−k(2m+1)d∑

sk+1=k(2ℓ−1)d

−k(2m+1)d+1

EH

�
X i1

, · · · , X ik
,∆ f (H)
�
�������

®| f |k−1,ωσ
−ω�k(2ℓ+ 1)d − k(2ℓ− 1)d

�ω
α
(r−k−ω)/r
ℓ

®| f |k−1,ωσ
−ωℓdω−ωα(r−k−ω)/r

ℓ
.

(H.52)
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Taking the sum over ℓ and s1:k, we get

����
∑

s1:(k+1):

s j≤sk+1,∀1≤ j≤k,

sk+1≥1

bHU f (H)

����

≤
∑

s1:k:
s j≤sk+1,∀1≤ j≤k,

sk+1≥1

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

�������

k(2ℓ+1)d

−k(2m+1)d∑

sk+1=k(2ℓ−1)d

−k(2m+1)d+1

bHU f (H)

�������
(H.53)

=
∑

s1:k:
s j≤sk+1,∀1≤ j≤k,

sk+1≥1

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

|bH |

�������

k(2ℓ+1)d

−k(2m+1)d∑

sk+1=k(2ℓ−1)d

−k(2m+1)d+1

U f (H)

�������

≤
∑

s1:k:
s j≤sk+1,∀1≤ j≤k,

sk+1≥1

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

∑

i1∈B1\D1

· · ·
∑

ik∈Bk\Dk

�������

k(2ℓ+1)d

−k(2m+1)d∑

sk+1=k(2ℓ−1)d

−k(2m+1)d+1

EH

�
X i1

, · · · , X ik
,∆ f (H)
�
�������

®| f |k−1,ωσ
−(k+ω)|T |
�
k(2m+ 1)d + sk+1

�k−1
ℓdω−ωα(r−k−ω)/r

ℓ

®| f |k−1,ωσ
−(k+ω)|T |(k(2ℓ+ 1)d)k−1ℓdω−ωα(r−k−ω)/r

ℓ

®| f |k−1,ω|T |−(k+ω−2)/2

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓd(k+ω−1)−ωα(r−k−ω)/r
ℓ

.

Therefore, we conclude that

����
∑

H∈G0(k+1)

bHU f (H)

���� ≤
∑

(V,E,≺):
|V |=k+1

����
∑

s1:(k+1):

H=(V,E,s1:(k+1))

∈G0(k+1)

bHU f (H)

����≤
∑

(V,E,≺):
|V |=k+1

����
∑

s1:k+1:
max1≤h≤k+1 sh≥1

bHU f (H)

����

≤
∑

(V,E,≺):
|V |=k+1

����
∑

s1:k:
s j≤sk+1,∀1≤ j≤k

sk+1≥1

bHU f (H)

����+
∑

(V,E,≺):
|V |=k+1

����
∑

s1:(k+1):

∃ j0≤k s.t.
s j0
=max1≤h≤k+1 sh≥1

bHU f (H)

����

®

∑

(V,E,≺):
|V |=k+1

| f |k−1,ω|T |−(k+ω−2)/2

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓd(k+ω−1)−ωα(r−k−ω)/r
ℓ

®| f |k−1,ω|T |−(k+ω−2)/2

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓd(k+ω−1)−ωα(r−k−ω)/r
ℓ

.

Next we prove (F.53). If H ∈ P0(k + 1), then for any t ≤ k we know that it+1 ∈ N(i1:t). In other
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words, new indexes lie in the m-neighborhood of previous ones. By (H.35), we have
��EH

�
X i1

, · · · , X ik
,∆ f (H)
���≤ 2kσ−ω
��Bk+1\Dk+1

��ω · | f |k−1,ωM k+ω,

Taking the sums over i j ∈ B j\Dj for all 1 ≤ j ≤ k, we get

��U f (H)
��≤2kσ−ω
��Bk+1\Dk+1

��ω · | f |k−1,ωM k+ω

k∏

j=1

��B j\Dj

��

®| f |k−1,ω|T |−(k+ω−2)/2md(k+ω−1).

Therefore, we have����
∑

H∈P0(k+1)

bHU f (H)

���� ≤
∑

(V,E,≺):
|V |=k+1

����
∑

s1:(k+1):

H=(V,E,s1:(k+1))

∈P0(k+1)

bHU f (H)

���� ≤
∑

(V,E,≺):
|V |=k+1

����
∑

s1:k+1:
s j=0 or −1,

∀1≤ j≤k+1

bHU f (H)

����

≤
∑

(V,E,≺):
|V |=k+1

∑

s1:k+1:
s j=0 or −1,

∀1≤ j≤k+1

|bH |
��U f (H)
�� ≤
∑

(V,E,≺):
|V |=k+1

∑

s1:k+1:
s j=0 or −1,

∀1≤ j≤k+1

��U f (H)
��

®

∑

(V,E,≺):
|V |=k+1

| f |k−1,ω|T |−(k+ω−2)/2md(k+ω−1)

®| f |k−1,ω|T |−(k+ω−2)/2md(k+ω−1).

Finally, to prove (F.54), we follow the derivation similar to (H.53) to obtain that
����
∑

H∈P1(k+1)

bHU f (H)

����≤
∑

(V,E,≺):
|V |=k+1

����
∑

s1:(k+1):

H=(V,E,s1:(k+1))

∈P1(k+1)

bHU f (H)

���� ≤
∑

(V,E,≺):
|V |=k+1

����
∑

s1:(k+1):

s j≤0,∀1≤ j≤k,

sk+1≥1

bHU f (H)

����

=
∑

(V,E,≺):
|V |=k+1

|bH |
����
∑

s1:(k+1):

s j≤0,∀1≤ j≤k,

sk+1≥1

U f (H)

����≤
∑

(V,E,≺):
|V |=k+1

����
∑

s1:(k+1):

s j≤0,∀1≤ j≤k,

sk+1≥1

U f (H)

����

≤σ−k
∑

(V,E,≺):
|V |=k+1

∑

s1:k:
s j=0 or −1,

∀1≤ j≤k

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

�������

k(2ℓ+1)d

−k(2m+1)d∑

sk+1=k(2ℓ−1)d

−k(2m+1)d+1

EH

�
X i1

, · · · , X ik
,∆ f (H)
�
�������

≤σ−k
∑

(V,E,≺):
|V |=k+1

∑

s1:k:
s j=0 or −1,

∀1≤ j≤k

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

∑

i1∈B1\D1

· · ·
∑

ik∈Bk\Dk

�������

k(2ℓ+1)d

−k(2m+1)d∑

sk+1=k(2ℓ−1)d

−k(2m+1)d+1

EH

�
X i1

, · · · , X ik
,∆ f (H)
�
�������

(∗)
®| f |1−δ

k−2,δ
| f |δ

k−1,δ
σ−(k+δ)
∑

(V,E,≺):
|V |=k+1

∑

s1:k:
s j=0 or −1,

∀1≤ j≤k

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

∑

i1∈B1\D1

· · ·
∑

ik∈Bk\Dk

ℓdδ−δα(r−k−δ)/r
ℓ
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(∗∗)
® | f |1−δ

k−2,1
| f |δ

k−1,1
σ−(k+δ)2k−1|T |
�
k(2m+ 1)d
�k−1
ℓdδ−δα(r−k−δ)/r

ℓ

®| f |1−δ
k−2,1
| f |δ

k−1,1
|T |−(k+δ−2)/2md(k−1)

m+1+⌊ |T |
1/d

2 ⌋∑

ℓ=m+1

ℓdδ−δα(r−k−δ)/r
ℓ

.

Note that the inequality (∗) is due to (H.41). For (∗∗), we note that s j = 0 or −1 for 2 ≤ j ≤ k,

and that the number of choices for i j (2 ≤ j ≤ k) is upper-bounded by k(2m+ 1)d since i j lies in

the m-neighborhood of i1, · · · , i j−1.
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