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CORNER-FREE SETS VIA THE TORUS

ZACH HUNTER

Abstract. A corner is a triple of points in Z
2 of the form (x, y), (x+d, y), (x, y+d)

where d 6= 0. One can think of them as being 2D-analogues to 3-term arithmetic
progressions.

In this short note, we extend ideas of Green-Wolf from this latter setting to the
former, achieving slightly better constructions of corner-free sets.

1. Introduction

A (non-trivial) corner is a set of three points in Z2 of the form (x, y), (x+d, y), (x, y+
d) for some x, y, d ∈ Z with d 6= 0. We say A ⊂ Z

2 is corner-free if it does not contain
any non-trivial corners.

Let r∠(N) denote the cardinality of the largest corner-free subset of the grid [N ]2

(where [N ] := {1, . . . , N}). For many years, the best known lower bound for r∠(N)

came from Behrend’s construction and was of the form N22−(c+o(1))
√

log2 N for c =
2
√
2 ≈ 2.828 . . . .

Recently, improving upon work by Linial and Shraibman [4], Green constructed

corner-free sets of size N22−(c+o(1))
√

log2 N where c = 2
√

2 log2
4
3
≈ 1.822 . . . [1].

We improve the lower order terms of this bound by using torus constructions, in a
similar fashion to the work of [2].

Theorem 1. Let D,N be positive integers. There exists a corner-free subset A ⊂ [N ]2

where

|A| ≫
√
D(3/4)DN2−2/D

(here the implicit constant is independent of D).

Consequently, plugging in D =
⌊√

log2 N

log2(2/
√
3)

⌋

, we get:
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Corollary 1.1. We have

r∠(N) ≫ log
1/4
2 N

N2

22
√

2 log2
4

3

√
log2 N

.

Remark 1.2. Though the lower bound of r∠(N) stated in [1] hides lower-order terms

with a 2−o(
√
logN) factor, a careful analysis of their argument obtains

r∠(N) ≫ log
−1/4
2 N

N2

22
√

2 log2
4

3

√
log2 N

.

Thus, Theorem 1 improves things by a factor of log
1/2
2 N (which is of identical shape

to the improvement to r3(N) given by the aforementioned work [2]).

Acknowledgements. We thank Ben Green for informing us that this problem was of
interest. We also thank Matt Kwan for comments which helped improve the exposition.
Lastly we thank Fred Tyrrell for finding several typographical errors.

Some of this work was prepared at IST Austria, the author thanks them for their
hospitality.

2. Preliminaries

2.1. Standard notation. We shall use some standard asymptotic notation (O, o,≫).
Additionally, we will sometimes write a± b to denote a quantity x where a− b ≤ x ≤
a+ b.

We will write T to denote the torus, R/Z. And similarly we write TD to denote the
D-dimensional torus, RD/ZD. We define the projection π : R → T; x 7→ x+ Z, and as
an abuse of notation let π−1 denote the inverse of π restricted to [0, 1).

2.2. Specialized definitions. It will be useful to think about tori with two distinct
coordinates, so we can draw comparisons to the grid [N ]2. Thus we write G to denote
T × T equipped with two coordinate maps c1, c2 : G → R, so that for v = (a, b) ∈ G,
we have

c1(v) = π−1(a), c2(v) = π−1(b).

We now define ψ : G → R so that

ψ(θ) = c1(θ) + c2(θ).

We also write S to denote ψ−1([1/2, 3/2)) ⊂ G.

Lastly, we define φ : G → R so that

φ(θ) = c1(θ)− c2(θ),
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and furthermore extend φ to GD → RD coordinate-wise, so that φ(θ1, . . . , θD) =
(φ(θ1), . . . , φ(θD)).

3. Grid lemmas

We remind the reader to consult Section 2.2 for the definitions of G, ψ, S, φ.

We first need the following lemma.

Lemma 3.1. For any θ ∈ G, and any α, β ∈ T such that {θ+ (α, β), θ+ (β, α)} ⊂ S,
we have that ψ(θ + (α, β)) = ψ(θ + (β, α)).

Proof. First note that

π(ψ(θ + (α, β))) = π(ψ(θ)) + α + β = π(ψ(θ + (β, α))).

Thus ψ(θ + (α, β))− ψ(θ + (β, α)) ∈ Z.

Recalling the assumption that

ψ({θ + (α, β), θ + (β, α)}) ⊂ ψ(S) ⊂ [1/2, 3/2),

we see that ψ(θ + (α, β))− ψ(θ + (β, α)) ∈ (−1, 1).

Combining these two observations, ψ(θ + (α, β)) − ψ(θ + (β, α)) must equal 0, as
desired. �

We can now deduce that addition into S “behaves nicely” with respect to φ.

Lemma 3.2. Consider θ ∈ G and α ∈ T satisfying {θ + (α, 0), θ + (0, α)} ⊂ S. Then

φ(θ + (α, 0))− φ(θ) = φ(θ)− φ(θ + (0, α)).

Remark 3.3. To illustrate what Lemma 3.2 is saying, we consider an example. Taking
θ = (π(3/4), π(1/4)) ∈ G and α = π(x) for some x ∈ (1/4, 3/4), we have

φ(θ + (α, 0))− φ(θ) = (x− 1/4)− (3/4− 1/4) = x− 3/4,

φ(θ)− φ(θ + (0, α)) = (3/4− 1/4)− (3/4− 1/4− x) = x,

which aren’t equal. This is due to the fact that adding α to the first coordinate makes
us “wrap around”, but this doesn’t happen for the second coordinate.

We wish to avoid this, so that we can later make use of the geometric insight that
in RD (where things don’t wrap around), lines intersect spheres in at most two points.
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Proof. By Lemma 3.1 (with β = 0), we have that ψ(θ+ (α, 0)) = ψ(θ+ (0, α)). Hence
with ∆1 := c1(θ + (α, 0))− c1(θ + (0, α)),∆2 := c2(θ + (α, 0))− c2(θ + (0, α)), we get

0 = ψ(θ + (α, 0))− ψ(θ + (0, α))

= ∆1 +∆2

=⇒ ∆1 = −∆2.

We conclude by noting

∆1 + φ(θ) = φ(θ + (α, 0))

and

φ(θ) + ∆2 = φ(θ + (0, α))

(here we used the facts that c1(θ + (0, α)) = c1(θ) and c2(θ + (α, 0)) = c2(θ)). The
result follows from some minor rearranging. �

Inspecting the proof above, we obtain the following corollary.

Corollary 3.4. Consider θ ∈ G and α ∈ T with {θ + (α, 0), θ + (0, α)} ⊂ S. Then
φ(θ + (α, 0))− φ(θ) = φ(θ)− φ(θ + (0, α)) = ∆, where ∆ := c1(θ + (α, 0))− c1(θ).

Notably, π(∆) = α and thus ||α||T ≤ |∆|.

4. Construction

4.1. Setup and motivation. In this section, we shall prove Theorem 1. This is done
by considering a construction depending on several parameters (r, δ, θ, µ, described
below), and then optimizing them with respect to a given N,D.

For later reference, we now collect the relevant definitions of our construction. Af-
terwards, we will conclude this subsection by commenting on their meaning.

Definition. Recall the definitions of S, φ,G from Section 2.2. Given a dimension D
and r, δ > 0, we define the following subset of the D-dimensional torus grid GD,

Sr,δ;D := {θ ∈ SD : ||φ(θ)||2 ∈ [r − δ, r)}.
Then, given θ ∈ TD, µ ∈ GD, we define the function

f = fθ,µ : Z2 → G
D; (x, y) 7→ ((xθ1, yθ1) + µ1, . . . , (xθD, yθD) + µD).

Lastly we define the set A = Ar,δ;D;θ,µ := {(x, y) ∈ [N ]2 : f(x, y) ∈ Sr,δ;D}.

Theorem 1 shall be obtained by finding r, δ, θ such that A is corner-free for all choices
of µ ∈ GD, with Eµ[|A|] being sufficiently large.
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For comparison, we briefly recall the construction of 3-AP-free1 sets by Green-Wolf
[2]. Green-Wolf considered a random affine homomorphism g = gθ,µ : Z → TD;n 7→
nθ+µ (here θ, µ ∈ TD). For a 3-AP P ⊂ [N ]∩g−1(π([0, 1/2)D)), one has that π−1(g(P ))
maps to a set P̃ of three collinear points in RD (this is due to a standard “Freiman
isomorphism” argument). By fixing a thin annulus A ⊂ [0, 1/2)D, and taking n ∈ [N ]
such that π−1(g(θn)) ∈ A, we get our large 3-AP-free set.

Our construction works quite similarly. We now use the random affine homomor-
phism f : Z2 → G

D. For any corner C ⊂ [N ]2 ∩ f−1(SD), we will have that φ(f(C))
maps to a set P̃ of three colinear points in RD (this is now due to the arguments from
Section 3). So again, we will fix a thin annulus A ⊂ RD and obtain a large corner-free
set by taking the v ∈ [N ]2 ∩ f−1(SD) where φ(f(v)) ∈ A.

The only real difference is that instead of getting an “approximate homomorphism”
from TD to RD by “pulling back” π−1 and restricting to π([0, 1/2)D), we now use the
map φ : GD → R

D and restrict to SD for our approximate homomorphism. This does
better, because SD has greater volume than π([0, 1/2)D).

4.2. Proofs. We remind the reader to consult Definition 4.1 for the definition of the
objects f, A, S·,·;·.

It remains to deduce Theorem 1. We first obtain the following.

Lemma 4.1. Let x, y, |d| ∈ [N ] be such that {f(x, y), f(x+ d, y), f(x, y+ d)} ⊂ Sr,δ;D.

Then
∑D

i=1 ||dθi||2T ≤ 2rδ.

Proof. By Lemma 3.2, there exists ∆ = φ ◦ f(x+ d, y)− φ ◦ f(x, y) = φ ◦ f(x, y)− φ ◦
f(x, y + d) in R

D, and by Corollary 3.4 we have that
∑D

i=1 ||dθi||2T ≤ ||∆||22.

By parallelogram law,

2||φ ◦ f(x, y)||22 + 2||∆||22 = ||φ ◦ f(x, y) + ∆||22 + ||φ ◦ f(x, y)−∆||22,
=⇒ 2||∆||22 ≤ 4rδ.

�

Let B0 ⊂ RD be the ball around the origin with Euclidean radius
√
2rδ. Let B =

π(B0). Using Lemma 4.1, we can now get the following.

Corollary 4.2. Suppose θ ∈ GD is such that dθ 6∈ B for all d ∈ [N ].

Then there exists a choice of µ ∈ GD such that with A = Ar,δ;D;θ,µ, we have

A ⊂ [N ]2 is corner-free

1We refer to 3-term arithmetic progressions as 3-AP’s.
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|A| ≥ N2 Vol(Sr,δ;D).

Proof. We note that −dθ ∈ B if and only if dθ ∈ B, hence our assumption implies
dθ 6∈ B whenever |d| ∈ [N ]. Due to Lemma 4.1, we have that Ar,δ;D;θ,µ will be corner-
free for every choice of µ ∈ GD.

We now choose µ ∈ G
D randomly. For each (x, y) ∈ [N ]2, we see that Pµ(f(x, y) ∈

Sr,δ;D) = Vol(Sr,δ;D). It follows that

Eµ[|Ar,δ;D;θ,µ|] =
∑

(x,y)∈[N ]2

Pµ(f(x, y) ∈ Sr,δ;D) = N2Vol(Sr,δ;D).

By the probabalistic method, we conclude there is some choice of µ ∈ GD where
|Ar,δ;D;θ,µ| is at least the RHS, which gives the desired result. �

We shall conclude by choosing our parameters so Vol(Sr,δ;D) is large while Vol(B) is
(sufficiently) small, allowing us to use Corollary 4.2.

Proposition 4.3. There exists an absolute constant c∗ > 0 so that the following holds.
For each D, δ, there exists r such that Vol(Sr,δ;D) ≥ c∗δ(3/4)D.

Proof. Let m2 = Eµ∼G[||φ(µ)||22 |µ ∈ S] = 5
24
> 0.

By Hoeffding’s inequality (a standard concentration result, see [3, Theorem 2]), we
have that Pµ∼SD [|Dm2−||φ(µ)||22| > D1/2] ≤ 2 exp(−2) = 1− ǫ for some ǫ > 0. Hence,

conditioned on µ ∈ SD, we have ||φ(µ)||22 = m2D ±
√
D or equivalently ||φ(µ)||2 =

m
√
D ± K with positive probability ǫ (here K = O(1)). Chopping this error into

⌊Kδ−1⌋ intervals of length δ, ||φ(µ)||2 lands in one of these intervals with probability
≥ ǫ

2K
δ ≫ δ by pigeonhole (so we take c∗ = ǫ/2K).

The result follows as Vol(Sr,δ;D) = (3/4)DPµ∼SD(||φ(µ)||2 ∈ [r − δ, r)). �

Lastly, we note that Vol(B) ≤ Vol(B0) (the volume of the Euclidean ball in RD

with Euclidean radius
√
2rδ), and Vol(B0) ≤

(

O(1)
D
rδ
)D/2

. Furthermore, given r ≤
√
D (which we may assume WLOG as ||φ(GD)||2 is supported on [0,

√
D]), the above

simplifies to Vol(B) ≤
(

O(δ)√
D

)D/2

.

Proof of Theorem 1. We simply apply Corollary 4.2 for an appropriate choice of pa-
rameters.

In particular, we take δ = c
√
DN−2/D for some constant c > 0 and r according to

Proposition 4.3, so that Vol(Sr,δ;D) ≥ c∗δ(3/4)D. We have that N Vol(B) = O(c)D/2,
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thus for sufficiently small c (with respect to the implicit constant), we have N Vol(B) <
1. So, choosing θ ∈ TD uniformly at random, we have with positive probability θd 6∈ B
for all d ∈ [N ] by a union bound.

Thus we get a corner-free set A ⊂ [N ]2 with

|A| ≥ N2 Vol(Sr,δ;D) ≥ N2−2/D(3/4)D(cc∗
√
D) ≫ N2−2/D(3/4)D

√
D.

�
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