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Abstract

We develop a framework for studying quasi-periodic maps and diffeo-

morphisms on R
n. As an application, we prove that the Euler equation is

locally well posed in a space of quasi-periodic vector fields on R
n. In par-

ticular, the equation preserves the spatial quasi-periodicity of the initial

data. Several results on the analytic dependence of solutions on the time

and the initial data are proved.

1 Introduction

Consider the Euler equation in R
n (n ≥ 2),

ß
ut + u · ∇u = −∇P, div u = 0,
u|t=0 = u0,

(1)

where u is the fluid velocity, P is the (scalar) pressure, and ∇ denotes the
gradient in the Euclidean space taken component-wise. In this paper we will
prove that the Euler equation is well posed in a class of quasi-periodic vector
fields on Rn. Quasi-periodic functions appear naturally in integrable PDE’s
where the solutions can be frequently written in terms of theta functions (see e.g.
[15, 24] and the references therein). Such solutions are quasi-periodic both in
time and spatial direction. Note that in oceanography, modulational instabilities
of periodic wave trains introduce perturbations that lead to spatially quasi-
periodic dynamics and are believed to be one of the mechanisms responsible for
the formation of rogue waves ([25, 34, 1]). Faraday wave experiment in which
a fluid layer is subject to vertical oscillations leads to quasipatterns which are
quasi-periodic functions. For example, a twelve-fold orientationally symmetric
quasipattern is produced by forcing a layer of silicone oil simultaneously at
two frequencies ([9]). Quasipatterns were found in nonlinear optical systems,
shaken convection, and in liquid crystals (see [36, 37, 3, 13, 14] and the references
therein).
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In order to define the quasi-periodic functions on Rn with n ≥ 1 we fix an
integer M ≥ n, and a linear map

Ω : Rn → R
M (2)

of rank n, rkΩ = n. Consider the standard covering map p : RM → TM where
T
M := R

M/ZM is the M -dimensional torus. Denote by Ωp the composed map
p ◦ Ω : Rn → TM and let N ≥ 1 be an integer.

Definition 1. A map f : Rn → RN is called quasi-periodic if f(x) = F
(
Ωp(x)

)

where F : TM → RN is a continuous map.

In the case when n = 1 the definition above coincides with the classical definition
of quasi-periodic functions (cf. [5, 10]). We will assume that Ω satisfies the
following non-resonance condition:

(NC) The image of the map Ωp : Rn → TM is dense in TM .

Remark 1.1. By Lemma A.2 in the Appendix the non-resonance condition
(NC) is equivalent to the injectivity of the map

Z
M → R

n, m 7→ Λm, (3)

where Λm := 2πΩT (m) and (·)T denotes the transpose of a matrix. By the
Kronecker-Weyl theorem, (NC) holds if e.g. there exists α ∈ Rn such that the
components of Ω(α) ∈ RM are linearly independent over Z, i.e., if

(
m,Ω(α)

)
=

0 implies m = 0.

Here and below (·, ·) denotes the Euclidean scalar product. By Z≥0 we will
denote the set of non-negative integer numbers.

The space QsΩ(R
n): We will concentrate our attention to the case when N = 1.

The case N > 1 will then easily follow. For any s > M
2 consider the Sobolev

space Hs(TM ) ≡ Hs(TM ,R) of maps TM → R. By the Sobolev embedding
theorem, the space Hs(TM ) is compactly embedded in the space of continuous
functions on the torus C(TM ) ≡ C(TM ,R). For a given s > M

2 and Ω : Rn →
RM , as above, define the following space of quasi-periodic functions

QsΩ(R
n) :=

{
f(x) = F

(
Ωp(x)

) ∣∣F ∈ Hs(TM )
}
. (4)

Take f ∈ QsΩ(R
n). Since s > M

2 , the function F ∈ Hs(TM ) has a uniformly
convergent Fourier series. This implies that f(x) = F (Ωp(x)) has a uniformly
convergent expansion

f(x) =
∑

m∈ZM

“Fme2πi(m,Ω(x))

=
∑

m∈ZM

“Fmei(Λm,x), Λm ≡ 2πΩT (m) ∈ R
n, (5)
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where “Fm, m ∈ ZM , are the Fourier coefficients of the function F ∈ Hs(TM ).
The uniform convergence in (5) implies that f is a uniform limit of trigonometric
polynomials, and hence by Wiener characterization (see e.g. [20, Ch. I, §7],[32,
§2]) it represents a (classical) almost-periodic function in the sense of Bohr with
Fourier exponents Λm ≡ 2πΩT (m). Hence,

QsΩ(R
n) ⊆ Cap(R

n) ⊆ Cb(R
n)

where Cap(R
n) is the space of (classical) almost-periodic functions in Rn in the

sense of Bohr and Cb(R
n) is the space of uniformly bounded continuous functions

in Rn (for more details see the short discussion at the end of the Appendix).
It follows from Remark 1.1 that the map (3) is injective. In particular, we see
from the uniform convergence of (5) that for any m ∈ Z

M ,

“Fm = lim
T→∞

1

(2T )n

∫

[−T,T ]n
f(x) e−i(Λm,x) dx, (6)

where the integration is over the cube [−T, T ]n in R
n. We define the norm in

QsΩ(R
n), s > M/2,

‖f‖s :=
( ∑

m∈ZM

|“Fm|2〈m〉2s
)1/2

, 〈m〉 :=
»

1 + |m|2 . (7)

For F ∈ Hs(TM ) consider the pull-back map Ω∗
p
(F )(x) := F

(
Ωp(x)

)
∈

QsΩ(R
n). By construction, we have

Lemma 1.1. Assume that s > M/2. Then, the map Hs(TM )
Ω∗

p

→ QsΩ(R
n),

F 7→ Ω∗
p
(F ), is a linear isomorphism.

In particular, we see that QsΩ(R
n) is a Hilbert space with a scalar product

(f, g)s :=
∑

m∈ZM

“Fm
(“Gm

)
〈m〉2s, f, g ∈ QsΩ(R

n). (8)

In addition to the scalar product (8) on QsΩ(R
n), we will also need the Hermitian

form

(f, g)0 :=
∑

m∈ZM

“Fm
(“Gm

)
, f, g ∈ QsΩ(R

n). (9)

Note that the form (9) is bounded in QsΩ(R
n), s > M/2.

In addition to the space QsΩ(R
n), s > M/2, in Section 2, we define a finer

scale of Hilbert subspaces

Ql,sΩ (Rn) ⊆ QsΩ(R
n), l ∈ Z≥0.

By definition, the space Ql,sΩ (Rn,Rn) consists of maps Rn → Rn whose compo-

nents are quasi-periodic functions in Ql,sΩ (Rn). The main properties of Ql,sΩ (Rn)
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are discussed in Section 2. In particular, it is shown that Ql,sΩ (Rn) is a Banach
algebra. In what follows we will omit the symbols Rn appearing in the notation
of the space of quasi-periodic vector fields Ql,sΩ (Rn,Rn) and write Ql,sΩ instead.

For ρ > 0 denote by BQl,s

Ω

(ρ) the open ball of radius ρ in Ql,sΩ . In Section 4 we

prove the following theorem on the solutions of the Euler equation.

Theorem 1.1. Assume that s > M/2 + 1 and l ≥ 2. Then, for any ρ > 0
there exists T > 0 such that for any divergence free u0 ∈ BQl,s

Ω

(ρ) there exists a

unique solution

u ∈ C
(
[−T, T ], Ql,sΩ

)
∩C1

(
[−T, T ], Ql−1,s

Ω

)
(10)

of the Euler equation (1) such that the pressure P(t) belongs to QsΩ(R
n) and has

mean-value zero for any t ∈ [−T, T ]. The solution depends continuously on the
initial data in the sense that the data-to-solution map

BQl,s

Ω

(ρ) → C
(
[−T, T ], Ql,sΩ

)
∩ C1

(
[−T, T ], Ql−1,s

Ω

)
, u0 7→ u,

is continuous. In addition, we have that P ∈ C
(
[−T, T ], Ql+1,s

Ω ).

Remark 1.2. Theorem 1.1 continues to hold if we add a quasi-periodic external
force F ∈ C1

(
(−∞,∞), Ql+1,s

Ω

)
such that divF = 0 or F = −∇U for some

U ∈ S′(Rn) on the right side of (1). The analytic dependence in Proposition

4.3, Section 4, continues to hold if we assume that F ∈ C1
(
(−∞,∞), Ql+1,s

Ω,•

)

where Ql+1,s
Ω,• consists of quasi-periodic functions with bounded set of Fourier

exponents (see (72)).

The solution in Theorem 1.1 is unique in the class of solutions satisfying
(10) such that the pressure P(t) belongs to QsΩ(R

n) for any t ∈ [−T, T ]. The
condition on the pressure can be replaced by another condition on the pressure
(or, on the solution itself) but cannot be avoided, as seen from the transforma-

tion ũ(t) := u(t) + ct and P̃(t, x) := P(t, x) + (c, x), c ∈ Rn, that transforms a

solution u of (1) with pressure P to a solution ũ of (1) with pressure P̃ and the
same initial data u0. The transformation above can be easily modified so that
the solution ũ will have a blow-up in finite time.

The total energy: Since a quasi-periodic vector field u ∈ Ql,sΩ ⊆ QsΩ, l ≥ 0,
s > M

2 + 1, does not decay at infinity, its total energy cannot be defined in the
usual way. Nevertheless, we can consider the (averaged) energy

E(u) :=
1

2
lim
T→∞

1

(2T )n

∫

[−T,T ]n
(u, u) dx ≥ 0 (11)

which is well-defined and, as can be easily seen from the uniform convergence
of the Fourier series, E(u) = 1

2 (u, u)0 where (cf. (9)),

(u, v)0 :=
∑

m∈ZM

(ûm, v̂m), u, v ∈ Ql,sΩ , (12)
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and ûm, v̂m ∈ Cn are the Fourier coefficients of the vector fields u, v ∈ Ql,sΩ ,
respectively (see Remark 2.1 in Section 2). A direct computation shows that
the solutions in Theorem 1.1 preserve the averaged energy (11). In fact, since

u ∈ C
(
[−T, T ], Ql,sΩ

)
∩ C1

(
[−T, T ], Ql−1,s

Ω

)
, we can differentiate (11) (and (12))

in time to conclude from the Stokes’ theorem and the fact that u is divergence
free that

.
E(u) =

( .
u, u

)
0
= lim
T→∞

1

(2T )n

∫

[−T,T ]n

(
−
(
u · ∇u, u

)
−
(
∇P, u

))
dx

= lim
T→∞

1

(2T )n

∫

[−T,T ]n

(
∇U, u

)
dx = lim

T→∞

1

(2T )n

∫

[−T,T ]n
div

(
Uu

)
dx

= lim
T→∞

1

(2T )n

∫

∂([−T,T ]n)

(u, ν)U dσ = 0, (13)

where ν is the outward unit normal to the boundary ∂([−T, T ]n) of the cube
[−T, T ]n in Rn, dσ is the surface volume form corresponding to the Eucli-
dena metric in Rn, and U := − 1

2 (u, u) − P. The limit of the flux integral
above vanishes since the integrand is uniformly bounded on R

n by the inclusion
Ql,sΩ (Rn) ⊆ Cb(R

n) and the fact that u,P ∈ Ql,sΩ (cf. Theorem 1.1).

Remark 1.3. One can use the averaged energy (11) to define a right-invariant
weak Riemannian metric on the group of volume preserving quasi-periodic dif-
feomorphisms of Rn (cf. Section 3). It can be shown that the solutions of the
Euler equations in Theorem 1 locally minimize the length of the curves corre-
sponding to this metric. In particular, we see that the Euler equation can be
derived from the variational principle applied to the averaged energy. We will
discuss the Riemannian geometry of the group of volume preserving diffeomor-
phisms in detail in a separate work.

The particle trajectories: Let us now take a divergence free quasi-periodic initial
velocity field u0 ∈ Ql,sΩ and let u ∈ C

(
(−T1, T2), Q

l,s
Ω

)
∩ C1

(
(−T1, T2), Q

l−1,s
Ω

)

be the solution of the Euler equation (1) on its maximal interval of existence
(−T1, T2), T1, T2 > 0. (The existence of such an interval follows from Theorem
1.1.) The trajectory (streamline) of a fluid particle that is positioned at x ∈
Rn for t = 0 is given by the integral curve of the (non-autonomous) ordinary
differential equation

.
ϕ(t) = u

(
t, ϕ(t)

)
, ϕ(t, x)|t=0 = x in Rn. It follows from

Lemma 4.5 in Section 4 that these integral curves are defined for any x ∈ Rn

and t ∈ (−T1, T2) so that for any given t ∈ (−T1, T2) the map ϕ(t) : Rn →
Rn, x 7→ ϕ(t, x) is a quasi-periodic diffeomorphism of Rn. The quasi-periodic
diffeomorphisms are quasi-periodic perturbations of the identity map in Rn.
They form a topological group and are studied in Section 3 (cf. Theorem 3.1
and Theorem 3.2). Proposition 4.3 in Section 4 implies the following corollary.

Corollary 1.1. The trajectories of the fluid particles are analytic curves in Rn

that depend analytically on the initial data u0 ∈ Ql,sΩ .
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The corollary extends the result in [31] from the periodic to the quasi-periodic
setting. In contrast to [28], the particle trajectories in Corollary 1.1 depend
analytically on the initial data.

Another consequence of Proposition 4.3 is that the Fourier coefficients of
the fluid velocity are analytic functions of time and the initial data. Note that
generically, the velocity field u : (−T1, T2) → Ql,sΩ is not real analytic. Moreover,
its dependence on the initial data is not even Lipschitz continuous.

Corollary 1.2. Let u ∈ C
(
(−T1, T2), Q

l,s
Ω

)
∩C1

(
(−T1, T2), Q

l−1,s
Ω

)
be the solu-

tion of the Euler equation (1) on its maximal time of existence. Then, for any
m ∈ ZM the Fourier coefficient ûm : (−T1, T2) → Cn is an analytic curve that

depends analytically on the initial data u0 ∈ Ql,sΩ .

The phase space: With any choice of the linear map Ω which satisfies the
non-resonance condition (NC) one associates a discrete lattice ΓΩ ≡

{
γ ∈

Rn
∣∣Ω(γ) ∈ ZM

}
in Rn. The rank of ΓΩ can take any integer value in {0, ..., n−

1} (cf. Lemma A.3 in the Appendix). Hence, depending on the choice of Ω,
the phase space of the fluid in Theorem 1.1 is diffeomorphic to the cylinders
T
r × R

n−r where r = rkΓΩ and T := R/Z. Informally, we can say that when
r > 0 we have r periodic and n − r purely quasi-periodic directions in Rn. If
r = 0 the phase space is diffeomorphic to Rn and does not have periodic di-
rections. This implies that for such Ω a quasi-periodic vector field u ∈ Ql,sΩ
in general position is purely quasi-periodic in the sense that it does not have
non-vanishing periods. By the uniqueness, if u0 ∈ Ql,sΩ is purely quasi-periodic,

then u(t) ∈ Ql,sΩ is purely quasi-periodic for any t in the interval of existence.

Related work&Discussion: There are many important works related to the so-
lutions of the Euler equation on Rn in various function spaces. Since we are
not able in this short section to review even a small part of these works, we will
mention only a few and will refer to the monographs [6, 21] for further refer-
ences. Local existence and uniqueness in the Sobolev space Hs(Rn), s > n

2 +1,
is proved in [16] (see also [18, 17]). Concerning spatially non-decaying solutions,
we mention [6, 28] (and the references therein) were local existence and unique-
ness is proved in the Hölder space Cγb (R

n), γ > 1. (Note that these solutions do
not depend continuously on the initial data [22].) Solutions in spaces of func-
tions that grow at infinity were constructed recently in [23]. Almost-periodic
solution of the Euler equation are considered in [33, 27]. In [33] is proved that a
unique weak solution of the 2d Euler equation in the Besov space B0

∞,1(R
2) with

almost-periodic initial data is almost-periodic for any time. In [27] is proved that
if the initial data u0 in the Besov space B1

∞,1(R
n), n ≥ 2, is almost-periodic in

the (larger) Besov space B0
∞,1(R

n), then the unique solution in B1
∞,1(R

n) ([26])
is almost-periodic in B0

∞,1(R
n) for any t in the interval of existence. The dis-

crepancy of the norms appears since the continuity on the initial data in B1
∞,1

is established with respect to the (weaker) norm in B0
∞,1(R

n). The proofs in
[33, 27] are based on the Bochner’s characterization of almost-periodic functions
and on the continuity on the initial data in various norms – an idea applied ini-
tially to the solutions of the Navier-Stokes equation in [11]. We are not aware
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of works on quasi-periodic solutions of the (full) Euler equation. As mentioned
above, quasi-periodic functions appear naturally in applications and have much
more rigid structure than the almost-periodic ones. Note that Bochner’s char-
acterization does not apply to quasi-periodic functions, and hence results on
quasi-periodic functions are not readily available. Note also that our solutions
depend continuously on the initial data with respect to the norm in Ql,sΩ . By

Lemma A.4 in the Appendix the elements of Ql,sΩ are almost-periodic in the

sense of Bochner with respect to the norm in Ql,sΩ . Finally, note that results
similar to the ones proved in this paper can be also proved in the viscose case.

Organization of the paper: In Section 2 we define the spaces of quasi-periodic
functions Ql,sΩ (Rn), l ≥ 0, s > M/2, and study their main properties. In
particular, in Lemma 2.2 and Proposition 2.1 we discuss the Fourier series of
quasi-periodic functions. In Section 3 we define the group QDl,s

Ω (Rn), l ≥ 0, s >
M
2 +1, of quasi-periodic diffeomorphisms of Rn and prove that it is a topological
group that enjoys additional regularity properties formulated in Theorem 3.2.
(Part of the results in Section 3 are contained in the first author’s PhD thesis.)
Theorem 1.1 is proved in Section 4. The main obstacle in this section is to prove
analyticity and to avoid the appearance of small denominators in the Lagrangian
representation of the Euler equation (cf. [4, 8, 35]). This is achieved by the
decomposition (102), Proposition 4.1, and a sequence of lemmas concerning the
analyticity of the non-linear maps (between spaces of quasi-periodic functions)
appearing as factors in the decomposition (102). The paper has an Appendix
where we prove several technical lemmas.

Acknowledgment: Our dear college and long time co-author Thomas Kappeler
was involved at an earlier stage of this project. His constant encouragement,
insights and influence cannot be overstated. The authors are also thankful to
Jean-Claude Saut for referring them to Gérard Iooss’ papers on quasipatterns.

2 Spaces of quasi-periodic functions

In this section we introduce and study in detail the scale of Hilbert spaces of
quasi-periodic functions Ql,sΩ (Rn), l ≥ Z≥0, s > M/2.

Any f ∈ QsΩ(R
n) ⊆ L∞(Rn) defines a tempered distribution in S′(Rn) which

we identify with f . In view of the uniform convergence, the series (5) converges
to f in S′(Rn) in distributional sense. Recall that a series

∑
j∈J fj, fj ∈ S′(Rn),

where J is a countable set of indices, converges to f ∈ S′(Rn) in S′(Rn) inde-
pendently of the order of summation (or equivalently, unconditionally) if for any
test function ϕ ∈ S(Rn) the series

∑
j∈J 〈fj, ϕ〉 converges unconditionally to

〈f, ϕ〉, i.e., for any bijection σ : J → J the series
∑

j∈J 〈fσ(j), ϕ〉 converges to
〈f, ϕ〉. We have the following characterization of the image of the embedding
QsΩ(R

n) ⊆ S′(Rn).

Lemma 2.1. Assume that s > M/2. A distribution f ∈ S′(Rn) belongs to

7



QsΩ(R
n) if and only if f can be written as a convergent in S′(Rn) series,

f(x) =
∑

m∈ZM

f̂me
i(Λm,x), Λm ≡ 2πΩT (m), (14)

such that (f̂m)m∈ZM is a sequence of complex numbers such that
∑

m∈ZM

|f̂m|2〈m〉2s <∞. (15)

If the conditions (14) and (15) above hold then (14) converges absolutely (and
uniformly) to f and, in particular, (14) converges in S′(Rn) independently of
the order of summation. Moreover,

f̂m = lim
T→∞

1

(2T )n

∫

[−T,T ]n
f(x) e−i(Λm,x) dx (16)

and for any m ∈ ZM the coefficient f̂m coincides with the Fourier coefficinent
“Fm of the periodic function F ∈ C(TM ) (see Definition 1).

Lemma 2.1 will be often applied together with Lemma A.1 in the Appendix.

Remark 2.1. Note that the expansion (14) of an element f ∈ QsΩ(R
n) such

that (15) holds is unique since the coefficients f̂m can be determined from f by

formula (16). We will refer to (14) as the Fourier series and to f̂m, m ∈ ZM ,
as the Fourier coefficients of the quasi-periodic function f ∈ QsΩ(R

n). Since the

coefficients f̂m, m ∈ ZM , satisfy (16) the terminology is consistent with the one
used in the theory of almost-periodic functions (see e.g. [20]).

Remark 2.2. It follows from the Cauchy-Schwatz inequality and representation
(14) and (15) that there exists C ≡ Cs > 0 such that for any f, g ∈ QsΩ(R

n),
|f−g|∞ ≤ C‖f−g‖s, where |·|∞ denotes the norm in L∞(Rn). In particular, we
see that the inclusions QsΩ(R

n) ⊆ Cap(R
n) and QsΩ(R

n) ⊆ L∞(Rn) are bounded.

Proof of Lemma 2.1. The proof of this Lemma is straightforward. In fact, as-
sume that f ∈ QsΩ(R

n). Then, by definition, f(x) = F (Ωp(x)) where F ∈

Hs(Tm) whit s > M
2 . In particular, inequality (15) holds with f̂m replaced

by “Fm for any m ∈ ZM . This together with the Cauchy-Schwarz inequality
implies that

∑
m∈ZM |“Fm| < ∞. Hence, the Fourier series

∑
m∈ZM

“Fme2πi(m,y)
converges uniformly and absolutely to F on the torus TM . We have f(x) =

F (Ωp(x)) =
∑

m∈ZM
“Fme2πi(m,Ω(x)) =

∑
m∈ZM

“Fmei(2πΩT (m),x) where the series
converge uniformly and absolutely. In particular, we see that the statement of
the Lemma holds with f̂m = “Fm, m ∈ Zm.

Conversely, assume that (14) converges in S′(Rn) to some f ∈ S′(Rn). As-
sume in addition that (15) holds. Then, by the Cauchy-Schwarz inequality,∑
m∈ZM |f̂m| < ∞. This implies that the series

∑
m∈ZM f̂me

i(Λm,x) converges
uniformly and absolutely to f and f ∈ Cb(R

n). Hence, we have

f(x) =
∑

m∈ZM

f̂me
i(Λm,x) =

∑

m∈ZM

f̂me
2πi(m,Ω(x)) = F (Ωp(x))

8



where F (y) :=
∑
m∈ZM f̂me

2πi(m,y) converges uniformly and (15) holds. This
implies that F ∈ Hs(TM ) and its Fourier coefficients coincide with the coeffi-

cients f̂m, m ∈ Z
m. Combining the above we conclude that f ∈ QsΩ(R

n).
Finally, note that since the series (14) converges to f absolutely the sum is

independent of the order of summation in m ∈ ZM . The uniform convergence
of (14) implies (16).

The space Ql,sΩ (Rn): For given l ∈ Z≥0 and s > M
2 we will introduce a finer

scale Ql,sΩ (Rn) of Sobolev spaces of quasi-periodic functions,

Ql,sΩ (Rn) :=
{
f ∈ QsΩ(R

n)
∣∣ ∂βxf ∈ QsΩ(R

n), |β| ≤ l
}

(17)

where β ∈ Zn≥0 is a multi-index and ∂βx ≡ ∂β1
x1

· · ·∂βn
xn

where ∂xk
denotes the dis-

tributional partial derivative in the xk variable. We define the norm in Ql,sΩ (Rn),

|f |l,s :=
( ∑

|β|≤l

‖∂βxf‖
2
s

)1/2

. (18)

Using Lemma 2.1 and Lemma A.1 one can easily prove the following

Lemma 2.2. Assume that l ∈ Z≥0 and s > M
2 . Then the following statements

hold:

(i) The space Ql,sΩ (Rn) equipped with the norm (18) is a Hilbert space.

(ii) An element f ∈ QsΩ(R
n) belongs to Ql,sΩ (Rn) if and only if its Fourier

coefficients (see Remark 2.1) satisfy

∑

m∈ZM

|f̂m|2〈Λm〉2l〈m〉2s <∞, 〈Λm〉 ≡
»
1 + |Λm|2, (19)

where |Λm| ≡
»∑n

j=1 Λ
2
m,j and

(
Λm,1, ...,Λm,n

)
are the components of

the Fourier exponent Λm ∈ Rn. Moreover, for f ∈ Ql,sΩ (Rn) we have that
’
(∂βx f)m = (iΛm)β f̂m for any multi-index β with 0 ≤ |β| ≤ l and for any
m ∈ ZM .

(iii) The norms (18) and

‖f‖l,s :=
( ∑

m∈ZM

|f̂m|2〈Λm〉2l〈m〉2s
)1/2

(20)

in Ql,sΩ (Rn) are equivalent.

Remark 2.3. By Lemma 2.2, the scalar product in Ql,sΩ (Rn) is equivalent to

(f, g)s,l :=
∑

m∈ZM

f̂m
(
ĝm

)
〈Λm〉2l〈m〉2s, f, g ∈ Ql,sΩ (Rn). (21)
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Remark 2.4. The space of quasi-periodic functions Ql,sΩ (Rn) appears as a nat-
ural generalization of the Sobolev space of functions on the torus Tn. In fact,
if M = n and Ω is the identity matrix Idn×n then Ql,sΩ (Rn) coincides with the
Sobolev space Hs+l(Tn) interpreted as a space of Zn-periodic functions in Rn.

The corollary below follows directly from (14) and Lemma 2.2 (iii).

Corollary 2.1. The set of finite linear combinations of exponents ei(Λm,x),
m ∈ ZM , is dense in Ql,sΩ (Rn).

Let us now proof Lemma 2.2.

Proof of Lemma 2.2. The proof of item (i) is straightforward. Let (fj)j≥1 be

a Cauchy sequence in Ql,sΩ (Rn). Then, in view of (18), the sequence (∂βx fj)j≥1

is a Cauchy sequence in QsΩ(R
n) for any given multi-index β, |β| ≤ l. As the

space QsΩ(R
n) is complete we conclude that there exists vβ ∈ QsΩ(R

n) such that

∂βxfj
Qs

Ω−→ vβ , j → ∞. (22)

On the other side, the continuity of the inclusion QsΩ(R
n) ⊆ L∞(Rn) (see Re-

mark 2.2) and the fact that fj
Qs

Ω−→ v0 as j → ∞ implies that fj → v0 in S′(Rn).

Hence, ∂βx fj
S′

−→ ∂βxv0 as j → ∞ for any |β| ≤ l. By comparing this with (22)
we conclude that ∂βxv0 = vβ ∈ QsΩ(R

n) for any |β| ≤ l. Hence, v0 ∈ QsΩ(R
n)

and (by (22)) fj
Qs

Ω−→ v0 as j → ∞. This completes the proof of (i).

In order to prove item (ii) take f ∈ Ql,sΩ (Rn) ⊆ QsΩ(R
n). Then, by Lemma

2.1, f(x) =
∑
m∈ZM f̂me

i(Λm,x) where the series converges to f in S′(Rn) inde-
pendently of the order of summation. This implies that for any β with |β| ≤ l,

∂βxf =
∑

m∈ZM

f̂m(iΛm)βei(Λm,x) (23)

where the series converges to ∂βxf in S′(Rn) independently of the order of sum-
mation. It then follows from Lemma A.1 that (23) is the Fourier expansion
of the quasi-periodic function ∂βxf ∈ QsΩ(R

n) (see Remark 2.1). In particular,

we see that for any multi-index β with |β| ≤ l,
÷(
∂βx f

)
m

= (iΛm)β f̂m, and by
Lemma 2.1,

∑

m∈ZM

|f̂m|
2
(
|Λm,1|

2β1 · · · |Λm,n|
2βn

)
〈m〉2s <∞, (24)

where Λm ≡ (Λm,1, ...,Λm,n). Since inequality (24) holds for any β with |β| ≤ l,
we sum up inequalities of the from (24) for different values of β to conclude that

∑

m∈ZM

|f̂m|2(1 + |Λm|1)
2l〈m〉2s <∞

where |Λm|1 ≡
∑n
j=1 |Λm,j|. The last inequality is equivalent to (19).

Item (iii) follows easily from the arguments used to prove (ii).
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Denote by Ckb (R
n), k ∈ Z≥0, the space of continuously differentiable func-

tions on Rn whose partial derivatives of order ≤ k are continuous and bounded
in Rn. Similarly, we denote by Ck(Rn), k ∈ Z≥0, the space of continuously dif-
ferentiable functions on Rn whose partial derivatives of order ≤ k are continuous
in R

n (and not necessarily bounded). We have the following

Proposition 2.1. Assume that l ∈ Z≥0 and s > M
2 . Then we have:

(i) For any multi-index β the mapping

∂βx : Q
l+|β|,s
Ω (Rn) → Ql,sΩ (Rn)

is continuous.

(ii) The space Ql,sΩ (Rn) is a Banach algebra with respect to the pointwise mul-
tiplication of functions.

(iii) If s > M
2 + k for some k ∈ Z≥0 then Ql,sΩ (Rn) ⊆ Ck+lb (Rn) and the

inclusion is continuous. More generally,

Ql,sΩ (Rn) ⊆ H
n
2
+
(
s−M

2

)
+l

loc (Rn) ∩ Ck+lb (Rn). (25)

Remark 2.5. In the definition of a Banach algebra (X, ‖ · ‖) we assume that
the ring inequality ‖fg‖ ≤ C ‖f‖‖g‖, f, g ∈ X, holds with a constant C > 0
that is not necessarily equal to one.

Proof of Proposition 2.1. Item (i) follows directly from Lemma 2.1 and Lemma
2.2 (ii). We will now prove (ii) by iduction in l ≥ 0: Assume that l = 0 and
take f, g ∈ Q0,s

Ω (Rn) ≡ QsΩ(R
n). Then, by definition f = Ω∗

p
(F ) and g = Ω∗

p
(G)

where F,G ∈ Hs(TM ). Clearly,

fg = Ω∗
p
(FG). (26)

Since for s > M
2 the space Hs(TM ) is a Banach algebra, we then conclude

that FG ∈ Hs(TM ) and hence fg ∈ QsΩ(R
n). The continuity of the pointwise

multiplication of functions in QsΩ(R
n) then follows from (26) and Lemma 1.1.

Further, assume that l ≥ 1 and Ql−1,s
Ω (Rn) is a Banach algebra. Take f, g ∈

Ql,sΩ (Rn). Then, a simple approximation argument involving Corollary 2.1, the
induction hypothesis and item (i) implies that for any 1 ≤ j ≤ n we have

∂xj
(fg) = (∂xj

f)g + f(∂xj
g) (27)

in S′(Rn). Using the induction hypothesis one more time one concludes from

(27) that ∂xj
(fg) ∈ Ql−1,s

Ω (Rn). This implies that fg ∈ Ql,sΩ (Rn). The continu-

ity of the pointwise multiplication of functions in Ql,sΩ (Rn) then follows since,
by (27) and the induction hypothesis, the map

Ql,sΩ (Rn)×Ql,sΩ (Rn) → Ql−1,s
Ω (Rn), (f, g) 7→ ∂xj

(fg),
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is continuous for any 1 ≤ j ≤ n. This completes the proof of item (ii).

Towards the proof of item (iii), we first note that the embedding Ql,sΩ (Rn) ⊆
Ckb (R

n) follows directly from the Sobolev embedding Hs(TM ) ⊆ Ck(TM ), s >
M
2 + k, since any element f ∈ Ql,sΩ (Rn) has the form f = Ω∗

p
(F ) where F ∈

Hs(TM ) ⊆ Ck(TM ). More generally, one sees from the trace theorem that for
any multi-index β ∈ Zn≥0 with |β| ≤ l one has

∂βxf ∈ QsΩ(R
n) ⊆ H

s−M−n
2

loc (Rn)

which implies that f ∈ H
n
2
+
(
s−M

2

)
+l

loc (Rn) ⊆ Ck+l(Rn). Combining this with
the fact that for any multi-index β with |β| ≤ l,

∂βx f ∈ QsΩ(R
n) ⊆ Ckb (R

n),

we conclude that f ∈ Ck+lb (Rn). Since all of the inclusions above are continuous

we conclude that the inclusion Ql,sΩ (Rn) ⊆ Ck+lb (Rn) is continuous.

Remark 2.6. In addition to the spaces Ql,sΩ (Rn), l ∈ Z≥0, s > M/2, that con-

sist of real valued functions we will also consider complex spaces Ql,sΩ,C(R
n) ≡

Ql,sΩ (Rn) ⊕ i Ql,sΩ (Rn) that consist of complex valued quasi-periodic functions.

Note that all statements proved in this section hold also for Ql,sΩ,C(R
n). In par-

ticular, Ql,sΩ,C(R
n) is a Hilbert space and a Banach algebra.

The space of quasi-periodic functions Ql,sΩ (Rn) is closely related to the fol-
lowing space of periodic functions on the torus TM . For given l ∈ Z≥0 and
s > M

2 define

H l,s
Ω (TM ) :=

{
F ∈ Hs(TM )

∣∣ ∂βΩF ∈ Hs(TM )
}

(28)

where β is a multi-index and

∂βΩ ≡ ∂β1

Ω1
· · · ∂βn

Ωn

where ∂Ωk
:=

∑M
j=1 Ω

j
k∂yj denotes the distributional derivative in the direction

of the k-th column of the matrix of Ω. In the same way as above we define the
norm in H l,s

Ω (TM ),

|F |l,s :=
( ∑

|β|≤l

‖∂βΩF‖
2
s

)1/2

. (29)

(Note that we use the same symbols for the norms in Ql,sΩ and H l,s
Ω .) One

easily sees that F ∈ H l,s
Ω (TM ) if and only if its Fourier coefficients satisfy∑

m∈ZM |“Fm|2〈Λm〉2l〈m〉2s < ∞. Note that Λm = (Λm,1, ...,Λm,n) where the

component of Λm,k (1 ≤ k ≤ n) is equal to 2π
∑M

j=1 Ω
j
kmj . We have

12



Proposition 2.2. Assume that l ∈ Z≥0 and s > M
2 .

(i) For any l ∈ Z≥0 and for any multi-index β the mapping

∂βΩ : H
l+|β|,s
Ω (TM ) → H l,s

Ω (TM )

is continuous.

(ii) The space H l,s
Ω (TM ) is a Banach algebra with respect to the pointwise

multiplication of functions.

(iii) If s > M
2 + k for some k ∈ Z≥0 then

H l,s
Ω (TM ) ⊆ Ck(TM ).

Lemma 2.3. Assume that l ∈ Z≥0 and s > M
2 . The map H l,s

Ω (TM )
Ω∗

p

→

Ql,sΩ (Rn), F 7→ Ω∗
p
(F ), is a Banach algebras isomorphism.

The proofs of these two statements are similar to the proofs of the corre-
sponding results for Ql,sΩ (Rn) and will be omitted.

3 Quasi-periodic diffeomorphisms

In this Section we define the group of quasi-periodic diffeomorphism of Rn and
study its properties. For given l ∈ Z≥0 and s > M

2 + 1 consider the space

Ql,sΩ ≡ Ql,sΩ (Rn,Rn) of quasi-periodic vector fields on Rn where for simplicity
we will often omit the symbols Rn appearing in the notation. (In order to

avoid confusion we reserve the notation Ql,sΩ (Rn) for single valued quasi-periodic
functions only.) By Proposition 2.1, the inclusion

Ql,sΩ (Rn) ⊆ C1
b (R

n) (30)

is continuous. This allows us to define the set of maps Rn → Rn,

QDl,s
Ω (Rn) :=

{
ϕ(x) = x+ f(x), f ∈ Ql,sΩ

∣∣ ∃ ε0 > 0 s.t. det
(
Id + [df ]

)
> ε0}

(31)
where Id ≡ Idn×n denotes the identity n × n-matrix and [df ] is the Jacobian
matrix of the map f : Rn → Rn. Note that by Hadamard’s theorem (see e.g.
[2, Supplement 2.5D]) and the fact that the components of the Jacobian matrix

[dxf ] belong to Cb, the set QDl,s
Ω (Rn) consists of orientation preserving C1-

diffeomorphisms of Rn. Note alsuch that in general, ε0 > 0 appearing in (31)
depends on the choice of ϕ. Since, in view of the continuity of the inclusion (30)
and the Banach algebra property of Cb(R

n), the inequality appearing in (31) is

an open condition in Ql,sΩ (Rn,Rn), we conclude that QDl,s
Ω (Rn) can be identified

with an open set in Ql,sΩ (Rn,Rn) that is coordinatized by f ∈ Ql,sΩ (Rn,Rn). By

definition, QDs
Ω(R

n) := QD0,s
Ω (Rn). We have

13



Lemma 3.1. Assume that l ∈ Z≥0 and s > M
2 + 1. Then the set QDl,s

Ω (Rn) is

a Banach manifold modeled on the space of quasi-periodic maps Ql,sΩ (Rn,Rn).

We will first prove that QDl,s
Ω (Rn) is a topological group. To this end, we

prove

Proposition 3.1. Assume that l ∈ Z≥0 and s > M
2 + 1. Then the map

Ql,sΩ (Rn)×QDl,s
Ω (Rn) → Ql,sΩ (Rn), (g, ϕ) 7→ g ◦ ϕ,

is continuous.

We start with a preparation: Take g ∈ QsΩ(R
n) and ϕ ∈ QDs

Ω(R
n). Then

for any given x ∈ Rn we have g(x) = G(Ωp(x)) and ϕ(x) = x+F (Ωp(x)) where
G ∈ Hs(TM ,R) and F ∈ Hs(TM ,Rn). This implies that for any x ∈ Rn,

(g ◦ ϕ)(x) = G
(
Ωp

(
x+ F

(
Ωp(x)

)))

= G
(
Ωp(x) + ΩpF (Ωp(x))

)

=
(
G ◦ Φ

)
(Ωp(x)) (32)

where
Φ : TM → T

M , Φ : θ 7→ θ +ΩpF (θ). (33)

Denote
Ds(TM ) :=

{
ϕ ∈ Diff1

+(T
M )

∣∣ϕ ∈ Hs(TM ,TM )
}

where Diff1
+(T

M ) is the group of orientation preserving C1-diffeomorphisms of
the torus TM and Hs(TM ,TM ) is the space of maps TM → TM of Sobolev
class s. It is known that Ds(TM ) is a topological group – see e.g. [12, Theorem
1.2],[8]. We will prove

Lemma 3.2. Assume that ϕ ∈ QDs
Ω(R

n), s > M
2 + 1, and let ϕ(x) = x +

F
(
Ωp(x)

)
where F ∈ Hs(TM ,Rn). Then, the map (33) is a diffeomorphism in

Ds(TM ) such that the diagram

TM TM

Rn Rn

Φ

Ωp

ϕ

Ωp
(34)

is commutative.

Remark 3.1. One sees from the non-resonance condition (NC) that a C1-
diffeomorphism Φ : Rn → Rn which satisfies (34) is uniquely determined by
ϕ ∈ Diff1

+(R
n).

Lemma 3.2 and formula (33) imply that the map

h : QDs
Ω(R

n) → Ds(TM ), ϕ 7→ Φ, (35)

is well-defined and continuous. In fact, see will see below that (35) is a homo-
morphism of topological groups (Proposition 3.3).
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Remark 3.2. Note that the correspondence (35) is not necessarily injective. In
fact, since ϕ is coordinatized by the quasi-periodic function f = Ω∗

p
(F ), which

by Lemma 1.1 is uniquely determined by F ∈ Hs(TM ,Rn), one sees from (33)
that the functions F and F + γ where γ ∈ ΓΩ (see (38)) lead to the same
diffeomorphism Φ ∈ Ds(Rn). The arguments in the proof of Lemma 3.2 imply
that h(ϕ) = h(ψ) if and only if for any x ∈ Rn, ϕ(x) = ψ(x) + γ for some
γ ∈ ΓΩ independent of x.

Proof of Lemma 3.2. Take ϕ ∈ QDs
Ω(R

n), s > M
2 +1 as in stated in the lemma.

Since by the Sobolev embedding F ∈ Hs(TM ,Rn) ⊆ C1(TM ,Rn) and ϕ(x) =
x + F (Ωp(x)) we conclude that for any x ∈ Rn [dxϕ] =

(
Id + [dθF ]Ω

)∣∣
θ=Ωp(x)

.

This together with (31) then implies that

det
(
Id + [dθF ]Ω

)∣∣
θ=Ωp(x)

> ε0 > 0.

Since the image of the map Ωp : Rn → TM is dense in TM and since F ⊆
C1(TM ,Rn), we conclude that for any θ ∈ TM ,

det
(
Id + [dθF ]Ω

)
≥ ε0 > 0. (36)

On the other side, for any θ ∈ TM ,

[dθΦ] = IdM×M +Ω[dθF ].

By combining this, (36), and Sylvester’s determinant identity we conclude that
for any θ ∈ T

M ,

det[dθΦ] = det
(
IdM×M +Ω[dθF ]

)
= det

(
Id + [dθF ]Ω

)
≥ ε0 > 0.

Hence, Φ : TM → TM is a local C1-diffeomorphism.
Let us now prove that Φ : TM → TM is onto. Since TM is compact we

see that the image Φ(TM ) of Φ is closed in T
M . On the other side, since

Φ : TM → TM is a local diffeomorphism we conclude that Φ(TM ) is open. The
connectedness of TM then implies that Φ(TM ) = TM . Hence, Φ : TM → TM is
a covering map.

We will now prove that the degree of this covering map Φ : TM → TM is
one. To this end, we will find p ∈ TM such that the pre-image Φ−1(p) consists
of a single point. For any x ∈ Rn we have

Φ
(
Ωp(x)

)
= Ωp(x) + ΩpF

(
Ωp(x)

)

= Ωp

(
x+ F

(
Ωp(x)

))

= Ωp

(
ϕ(x)

)
. (37)

Hence, Φ satisfies the commutative diagram (34).
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Consider the following discrete set in Rn,

ΓΩ :=
{
γ ∈ R

n
∣∣Ω(γ) ∈ Z

M
}
. (38)

The set ΓΩ is a discrete lattice in Rn whose rank r is less than or equal to n (see
e.g. [4, Lemma 3, §49]). (In view of the non-resonance condition (NC), r = n
only if n =M .) In particular,

ΓΩ :=
{
m1γ1 + ...+mrγr

∣∣m1, ...,mr ∈ Z
}

for some basis γ1, ..., γr ∈ R
n of ΓΩ. For any x ∈ R

n and for any γ ∈ ΓΩ we
have

ϕ(x + γ) = (x+ γ) + F
(
Ωp(x+ γ)

)

= x+ F
(
Ωp(x)

)
+ γ

= ϕ(x) + γ, (39)

where we used that Ω(γ) ∈ ZM and F is a function on TM . This implies that
for any γ ∈ ΓΩ we have the following commutative diagram

Rn Rn

Rn Rn

ϕ

τγ

ϕ

τγ (40)

where τγ(x) = x + γ. Since ϕ : Rn → R
n is a C1-diffeomorphism (40) implies

that for any x ∈ Rn and for any γ ∈ ΓΩ we have

ϕ−1(x+ γ) = ϕ−1(x) + γ, (41)

where ϕ−1 : Rn → Rn is the inverse of the diffeomorphism ϕ. Now, take p ∈ TM

such that p ∈ Ωp(R
n) and Φ(q1) = Φ(q2) = p. Note that the assumption

Φ(q) ∈ Ωp(R
n) for some q ∈ T

M and (33) imply Φ(q) = q + ΩpF (q) ∈ Ωp(R
n)

that gives q ∈ Ωp(R
n). Therefore, there exist q̃1 and q̃2 in Rn such that

Ω−1
p

(q1) = q̃1 + ΓΩ and Ω−1
p

(q2) = q̃2 + ΓΩ.

Then we obtain from the commutative diagram (34) and (39) that

Ωp

(
ϕ(q̃j) + ΓΩ

)
= Ωp

(
ϕ(q̃j + ΓΩ)

)
= Φ(qj) = p, j = 1, 2.

This implies that ϕ(q̃2) = ϕ(q̃1)+γ for some γ ∈ ΓΩ. Then (41) gives q̃2 = q̃1+γ
which implies that

q2 = Ωp(q̃2) = Ωp(q̃1 + γ) = Ωp(q̃1) = q1.

Hence the preimage Φ−1(p) contains only one point. This implies that the
degree of the covering map Φ : TM → TM is one. Hence, Φ : TM → TM is a
C1-diffeomorphism. Finally, since F ∈ Hs(TM ,Rn) we conclude from (33) that
Φ ∈ Hs(TM ,TM ). This completes the proof of Lemma 3.2.
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Now we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. We will prove Proposition 3.1 by induction in l ≥ 0:
First, assume that l = 0 and note that by (32), for any g ∈ QsΩ(R

n) and
ϕ ∈ QDs

Ω(R
n),

g ◦ ϕ = Ω∗
p

(
G ◦ Φ), (42)

where Φ is given by (33), g = Ω∗
p
G, ϕ = idRn + Ω∗

p
F , and G ∈ Hs(TM ,R) and

F ∈ Hs(TM ,Rn). (Here idRn denotes the identity map in Rn.) By Lemma 1.1,
the map

QsΩ(R
n) → Hs(TM ,Rn), g 7→ G,

is a linear isomorphism. In addition, Φ = h(ϕ) where h is the continuous map
(35). On the other side, by Theorem 1.2 in [12] (cf. also [8]), the composition

Hs(TM ,R)×Ds(RM ) → Hs(TM ,R), (G,Φ) → G ◦Φ,

is continuous. This together with (42) and Lemma 1.1 then imply that the
statement of Proposition 3.1 holds when l = 0.

Further, assume that l ≥ 1 and let the map

Ql−1,s
Ω (Rn)×QDl−1,s

Ω (Rn) → Ql−1,s
Ω (Rn), (g, ϕ) 7→ g ◦ ϕ, (43)

be continuous. Take g ∈ Ql,sΩ (Rn) and ϕ ∈ Ql,sΩ (Rn). Since Ql,sΩ (Rn) ⊆ C1
b (R

n)
we have that for any x ∈ Rn,

[
dx(g ◦ ϕ)

]
= [dyg]

∣∣
y=ϕ(x)

· [dxϕ]. (44)

Then (44), the induction hypotesis (43), and the Banach algebra property of

Ql−1,s
Ω (Rn) with l ≥ 1 imply that the map

Ql,sΩ (Rn)×QDl,s
Ω (Rn) → Ql−1,s

Ω (Rn)⊗Matn×n(R), (g, ϕ) 7→
[
d(g ◦ ϕ)

]
,

where Matn×n(R) denotes the space of n × n-matrices, is continuous. This,

in view of the definition (17) (and (18)) of Ql,sΩ (Rn), concludes the proof of
Proposition 3.1.

Further, we prove

Proposition 3.2. Assume that l ∈ Z≥0 and s > M
2 + 1. Then the map

QDl,s
Ω (Rn) → QDl,s

Ω (Rn), ϕ 7→ ϕ−1, (45)

is well-defined and continuous.

Proposition 3.1 and Proposition 3.2 imply

Theorem 3.1. Assume that l ∈ Z≥0 and s > M
2 + 1. Then QDl,s

Ω (Rn) is a
topological group with respect to the composition of maps.
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Proof of Theorem 3.1. By Proposition 3.1 for any ϕ, ψ ∈ QDl,s
Ω (Rn) the com-

position ψ ◦ ϕ ∈ Ql,sΩ (Rn,Rn). In view of the the definition (31) of QDl,s
Ω (Rn)

it follows that there exists ε0 > 0 such that

det
(
[d(ψ ◦ ϕ)]

)
= det

(
[dyψ]

∣∣
y=ϕ(x)

)
det

(
[dxϕ]

)
> ε0 > 0 ∀x ∈ R

n.

This shows that ψ ◦ϕ ∈ QDl,s
Ω (Rn). The continuity of the composition and the

inverse map (45) then follow from Proposition 3.1 and Proposition 3.2.

Let us also record the following

Proposition 3.3. Assume that s > M
2 + 1. Then we have:

(i) The map h : QDs
Ω(R

n) → Ds(TM ), ϕ 7→ Φ, where Φ is given by (33), is
a homomorphism of topological groups.

(ii) The kernel of this homomorphism consists of all translations τγ : Rn →
Rn, x 7→ x+ γ, where γ ∈ ΓΩ (see (38)).

Proof of Proposition 3.3. Let is first prove item (i). Take ψ, ϕ ∈ QDl,s
Ω (Rn).

By attaching to each other the two copies of the diagram (34) corresponding
respectively to ψ and ϕ we obtain the commutative diagram

TM TM TM

Rn Rn Rn

Ψ Φ

Ωp

ψ

Ωp

ϕ

Ωp
. (46)

By Theorem 3.1, ψ ◦ ϕ ∈ QDl,s
Ω (Rn). In view of the uniqueness statement in

Remark 3.1 we then conclude from (46) and Lemma 3.2 that h(ψ ◦ ϕ) = Ψ ◦Φ.
This completes the proof of item (i). Item (ii) follows from (33).

Proof of Proposition 3.2. Take ϕ, ψ ∈ QDs
Ω(R

n). Then, ϕ(x) = x+ f(x) where
f(x) = F

(
Ωp(x)

)
and ψ(x) = x + g(x) where g(x) = G

(
Ωp(x)

)
with G,F ∈

Hs(RM ,Rn). We have

(ψ ◦ ϕ)(x) = ϕ(x) + g
(
ϕ(x)

)

=
(
x+ F

(
Ωp(x)

))
+G

(
Ωp

(
x+ F

(
Ωp(x)

)))

= x+
{
F +G ◦ Φ

}(
Ωp(x)

)
. (47)

This implies that the composition ψ◦ϕ ∈ QDs
Ω(R

n) corresponds to the periodic
map F +G ◦ Φ ∈ Hs(TM ,Rn) where Φ = h(ϕ) ∈ Ds(TM ). Hence, by taking

G := −F ◦ Φ−1 (48)

we see from (47) that
ϕ−1 = idRn +Ω∗

p

(
G
)
. (49)
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Moreover, it follows from (48), Theorem 1.2 in [12], and Lemma 3.2, that G ∈
Hs(TM ,Rn). In addition, it follows easily from (49) that there exists ε0 > 0

such that det[d(ϕ−1)] > ε0 > 0. This implies that ϕ−1 ∈ QDl,s
Ω (Rn). Since

F ∈ Hs(TM ,Rn) coordinatizes the diffeomorphism ϕ ∈ QDs
Ω(R

n) (see Lemma
1.1) and since Φ ∈ Ds(TM ) where h is the continuous map (35), we conclude
from [12, Theorem 1.2 ], (48), and (49), that the map QDs

Ω(R
n) → QDs

Ω(R
n),

ϕ 7→ ϕ−1, is well-defined and continuous.
Now, assume that l ≥ 1 and that the map

QDl−1,s
Ω (Rn) → QDl−1,s

Ω (Rn), ϕ 7→ ϕ−1, (50)

is well-defined and continuous. For ϕ ∈ QDl,s
Ω (Rn) we have, in view of the

inclusion Ql,sΩ (Rn) ⊆ C1
b (R

n), that for any y ∈ Rn,

[
dy(ϕ

−1)
]
=

[
[dxϕ]|x=ϕ−1(y)

]−1
. (51)

This together with induction hypothesis (50), Proposition 3.1, the Banach al-

gebra properties of Ql−1,s
Ω (Rn), and Lemma 3.3 below, implies that the map

QDl,s
Ω (Rn) → Ql−1,s

Ω (Rn)⊗Matn×n(R), ϕ 7→
[
d(ϕ−1)

]
,

is well-defined and continuous. This completes the proof of Proposition 3.2.

The following lemma is used in the proof of Proposition 3.2.

Lemma 3.3. Assume that l ∈ Z≥0, s >
M
2 , and let f0 ∈ Ql,sΩ (Rn) be such that

|f0(x)| > ε0 > 0 for any x ∈ Rn. Then 1/f0 ∈ Ql,sΩ (Rn). Moreover, there exists

an open neighborhood U of zero in Ql,sΩ (Rn) such that the map

U → Ql,sΩ (Rn), f 7→ 1/(f0 + f),

is continuous.1

Lemma 1.1 and an induction argument in l ≥ 0 reduces the proof of Lemma 3.3
to an analogous statement with Ql,sΩ (Rn) replaced by Hs(TM ,R). The case of
the Sobolev space Hs follows from Lemma B.2 in [12].

In the remaining part of this Section we will prove that the composition
and the inverse in the topological group QDl,s

Ω (Rn) enjoy additional regularity
properties. These properties are similar to the ones of the groups Ds(Rn) and
Ds(X) where X is a smooth compact manifold without boundary (see e.g. [12,
Theorem 1.1 and Theorem 1.2]). More specifically, one has

Theorem 3.2. Assume that l ∈ Z≥0 and s > M
2 + 1. Then for any r ∈ Z≥0

the maps

Ql+r,sΩ (Rn)×QDl,s
Ω (Rn) → Ql,sΩ (Rn), (g, ϕ) 7→ g ◦ ϕ, (52)

and
QDl+r,s

Ω (Rn) → QDl,s
Ω (Rn), ϕ 7→ ϕ−1, (53)

are Cr-smooth.
1In fact, this is a real analytic map.
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We first prove

Lemma 3.4. Assume that l ∈ Z≥0 and s > M
2 + 1. For any ϕ0 ∈ QDl,s

Ω (Rn)

there exist an open neighborhood U(ϕ0) of ϕ0 in QDl,s
Ω (Rn) and a constant

C > 0 such that for any g ∈ Ql,sΩ (Rn) and for any ϕ ∈ U(ϕ0) one has

‖g ◦ ϕ‖l,s ≤ C‖g‖l,s.

Proof of Lemma 3.4. First, recall that we identify QDl,s
Ω (Rn) with an open set

in Ql,sΩ (Rn) – see (31) and Lemma 3.1. The statement of Lemma 3.4 follows

directly from Proposition 3.1. In fact, since g ◦ ϕ → 0 in Ql,sΩ (Rn) as (g, ϕ) →

(0, ϕ0) in Ql,sΩ (Rn) × QDl,s
Ω (Rn) we conclude from Proposition 3.1 that there

exist C1 > 0 and ε > 0 such that

‖g ◦ ϕ‖l,s ≤ C1

for any g ∈ Ql,sΩ (Rn) with ‖g‖l,s ≤ ε and for any ϕ ∈ U(ϕ0) ≡ idRn + B(f0)

where B(f0) is an open ball centered at f0 ≡ ϕ0−idRn in Ql,sΩ (Rn) and such that

U(ϕ0) ⊆ QDl,s
Ω (Rn). This and the linearity of the composition with respect to

the first argument then imply that

‖g ◦ ϕ‖l,s ≤

Å
C1

ε

ã
‖g‖l,s

for any g ∈ Ql,sΩ (Rn) and for any ϕ ∈ U(ϕ0). Finally, by setting C = C1/ε we
complete the proof of the Lemma.

In fact, we have also the following variant of Lemma 3.4.

Lemma 3.5. Assume that l ∈ Z≥0 and s > M
2 + 1. For any ϕ0 ∈ QDl,s

Ω (Rn)

there exist an open neighborhood U(ϕ0) of ϕ0 in QDl,s
Ω (Rn) and a constant

C > 0 such that for any g ∈ Ql+1,s
Ω (Rn) and for any ϕ ∈ U(ϕ0) one has

‖g ◦ ϕ− g ◦ ϕ0‖l,s ≤ C‖g‖l+1,s‖ϕ− ϕ0‖l,s.

Proof of Lemma 3.5. In view of the inclusion Ql,sΩ (Rn) ⊆ C1
b (R

n) we have that
for any ϕ ∈ U(ϕ0) ≡ idRn + B(f0), where B(f0) is a given open ball centered

at f0 ≡ ϕ0 − idRn in Ql,sΩ (Rn) and such that U(ϕ0) ⊆ QDl,s
Ω (Rn), and for any

x ∈ R
n,

g
(
ϕ(x)

)
− g

(
ϕ0(x)

)
=

∫ 1

0

[dyg]|y=ϕ0(x)+tδϕ(x) · δϕ(x) dt

=
(∫ 1

0

[dyg]|y=ϕ0(x)+tδϕ(x) dt
)
· δϕ(x) (54)

where δϕ := ϕ−ϕ0 ∈ Ql,sΩ (Rn). Since, g ∈ Ql+1,s
Ω (Rn) and ϕ, ϕ0 ∈ Ql,sΩ (Rn) we

conclude from Proposition 2.1 and Proposition 3.1 that the curve

[0, 1] → Ql,sΩ (Rn)⊗Matn×n(R), t 7→ [dyg]|y=ϕ0(x)+tδϕ(x),
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is continuous. This implies that that the integral in (54) has convergent Riemann

sums in Ql,sΩ (Rn) and that (54) holds in Ql,sΩ (Rn). This and the Banach algebra

property of Ql,sΩ (Rn) then imply that

‖g ◦ ϕ− g ◦ ϕ0‖l,s ≤ C1 sup
ϕ∈U(ϕ0)

∥∥[dg] ◦ ϕ
∥∥
l,s
‖δϕ‖l,s (55)

for some constants C1 > 0 that is independent of the choice of g ∈ Ql+1,s
Ω (Rn)

and ϕ ∈ U(ϕ0), and the neighborhood U(ϕ0) in QD
l,s
Ω (Rn) is chosen such that∥∥[dg] ◦ ϕ

∥∥
l,s

is bounded uniformly in U(ϕ0) (see Proposition 3.1, Lemma 3.4).

Finally, the Lemma follow from (55) and lemma 3.4.

Now, we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. For the proof of the regularity of the composition (52)
we follow the lines of the proof of [12, Proposition 2.9]. If r = 0 the statement of
Theorem 3.2 follows directly from Proposition 3.1 and Proposition 3.2. Further,
assume that r ≥ 1 and take g, δg ∈ Ql+r,sΩ (Rn), ϕ ∈ QDl,s

Ω (Rn), and δϕ ∈ Ql,sΩ
such that ϕ+δϕ ∈ U(ϕ) ≡ idRn+B(f) where B(f) is a given open ball centered

at f ≡ ϕ−idRn in Ql,sΩ and such that U(ϕ) ⊆ QDl,s
Ω (Rn). In view of the inclusion

Ql+r,sΩ (Rn) ⊆ Cl+r+1
b (Rn) ⊆ Crb (R

n) (see Proposition 2.1 (iii)) one sees from
Taylor’s formula with remainder in integral form that for any x ∈ Rn,

g
(
ϕ(x) + δϕ(x)

)
=

∑

|β|≤r

1

β!

(
∂βx g

)(
ϕ(x)

)(
δϕ(x)

)β
+R1

(
g, ϕ, δϕ

)
(x) (56)

where the remainder R1

(
g, ϕ, δϕ

)
(x) is given by

∑

|β|=r

r

β!

∫ 1

0

(1−t)r−1
((
∂βx g

)(
ϕ(x)+tδϕ(x)

)
−
(
∂βx g

)(
ϕ(x)

))
dt ·

(
δϕ(x)

)β
. (57)

Similarly, for any ϕ, δϕ, and δg as above and for any x ∈ Rn we have

δg
(
ϕ(x) + δϕ(x)

)
=

∑

|β|≤r−1

1

β!

(
∂βx δg

)(
ϕ(x)

)(
δϕ(x)

)β
+R2

(
ϕ, δg, δϕ

)
(x) (58)

where R2

(
ϕ, δg, δϕ

)
(x) is given by

∑

|β|=r

r

β!

∫ 1

0

(1− t)r−1
(
∂βx δg

)(
ϕ(x) + tδϕ(x)

)
dt ·

(
δϕ(x)

)β
. (59)

It follows from Proposition 3.1, Proposition 3.2, and the Banach algebra prop-
erty of Ql,sΩ (Rn) that the integrals in (57) and (59) have convergent Riemann

sums in Ql,sΩ (Rn) and the equalities (56) and (58) also hold in Ql,sΩ (Rn). Sum-

ming up these two equalities we see that for any g, δg ∈ Ql+r,sΩ (Rn), ϕ ∈
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QDl,s
Ω (Rn), and for any δϕ ∈ Ql,sΩ as above,

(g + δg) ◦ (ϕ+ δϕ) = g ◦ ϕ+

r∑

k=1

1

k!
Pk

(
g, ϕ

)
(δg, δϕ) +R

(
g, ϕ, δg, δϕ

)
(60)

where

1

k!
Pk

(
g, ϕ

)
(δg, δϕ) :=

∑

|β|=k

1

β!

(
∂βxg

)
◦ ϕ · (δϕ)β +

∑

|β|=k−1

1

β!

(
∂βx δg

)
◦ ϕ · (δϕ)β

and

R
(
g, ϕ, δg, δϕ

)
:= R1(g, ϕ, δϕ

)
+R2(ϕ, δϕ, δg

)

=
∑

|β|=r

ρβ(g, ϕ, δg, δϕ) · (δϕ)
β (61)

with

ρβ(g, ϕ, δg, δϕ) :=
r

β!

∫ 1

0

(1− t)r−1
((
∂βxg

)
◦
(
ϕ+ tδϕ

)
−
(
∂βx g

)
◦ ϕ(x)

)
dt

+
r

β!

∫ 1

0

(1− t)r−1
(
∂βx δg

)
◦
(
ϕ+ tδϕ

)
dt (62)

for any multi-index β ∈ Zn≥0 with |β| = r. In view of the Banach algebra

property of Ql,sΩ (Rn) for any g ∈ Ql+r,sΩ (Rn) and ϕ ∈ QDl,s
Ω (Rn),

Pk(g, ϕ) ∈ Pk
(
Ql+r,sΩ ×Ql,sΩ , Ql,sΩ

)
, 1 ≤ k ≤ r,

where Pk(X,Y ) denotes the Banach space of polynomial maps of degree k
from a normed space X to a Banach space Y supplied with the uniform norm.
Moreover, using again the Banach algebra property of Ql,sΩ (Rn), Proposition
3.1, and Lemma 3.5 one easily sees that for any 1 ≤ k ≤ r the map

Pk : Ql+r,sΩ (Rn)×QDl,s
Ω (Rn) → Pk

(
Ql+r,sΩ ×Ql,sΩ , Ql,sΩ

)

is continuous. For any ϕ ∈ QDl,s
Ω (Rn) denote by B•(f) the ball centered

at f ≡ ϕ − idRn in Ql,sΩ (Rn) of maximal radius such that U•(ϕ) ≡ idRn +

B•(f) ⊆ QDl,s
Ω (Rn). Consider the open set V of elements (g, ϕ, δg, δϕ) in

Ql+r,sΩ ×QDl,s
Ω (Rn)×Ql+r,sΩ ×Ql,sΩ ,

V :=
{
(g, δg) ∈ Ql+r,sΩ ×Ql+r,sΩ , ϕ ∈ QDl,s

Ω , δϕ ∈ Ql,sΩ

∣∣∣ϕ+ δϕ ∈ U•(ϕ)
}
.

It follows from (62) and Proposition 3.1 that for any β with |β| = r the map

ρβ : V → Ql,sΩ (Rn) is continuous. This together with (61), (62), and the Banach

algebra property of Ql,sΩ (Rn) then implies that the map

‹R : V → Pk
(
Ql+r,sΩ ×Ql,sΩ , Ql,sΩ

)
, (g, ϕ, δg, δϕ) 7→

[
w 7→ ‹R(g, ϕ, δg, δϕ;w)

]
,
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where

‹R(g, ϕ, δg, δϕ;w) :=
∑

|β|=r

ρβ(g, ϕ, δg, δϕ) · w
β , w ∈ Ql,sΩ (Rn),

is continuous. Note that

R
(
g, ϕ, δg, δϕ

)
= ‹R(g, ϕ, δg, δϕ; δϕ). (63)

Since ‹R(
g, ϕ, 0, 0; ·

)
= 0 we then conclude from (60), (63), and the converse to

Taylor’s theorem (see e.g. [2, Theorem 2.4.15]) that (52) is a Cr-map.
The regularity of the inverse map (53) now follows easily from the implicit

function theorem – see the proof of [12, Proposition 2.13]. In fact, if r = 0
then the statement follows from Proposition 3.2. Now, assume that r ≥ 1, take
ϕ0 ∈ QDl+r,s

Ω (Rn), and denote by ψ0 its inverse ψ0 = ϕ−1
0 ∈ QDl+r,s

Ω (Rn). It
follows from the regularity of (52) that

F : QDl+r,s
Ω (Rn)×QDl,s

Ω (Rn) → Ql,sΩ (Rn), (ϕ, ψ) 7→ ϕ ◦ ψ,

is Cr-smooth. The (functional) partial derivarive of F with respect to the second

argument D2F (ϕ0, ψ0) : Q
l,s
Ω (Rn) → Ql,sΩ (Rn) is

D2F (ϕ0, ψ0)(δψ) =
[
[dϕ0] ◦ ϕ

−1
0

]
· δψ.

Since r ≥ 1 it follows from the Banach algebra property of Ql,sΩ (Rn) that the
components of the Jacobian matrix [dϕ0]◦ϕ

−1
0 and it’s (matrix) inverse

[
[dϕ0]◦

ϕ−1
0

]−1
belong to Ql,sΩ (Rn) (see Lemma 3.3). This implies that

D2F (ϕ0, ψ0) : Q
l,s
Ω (Rn) → Ql,sΩ (Rn)

is an isomorphism. In addition, F (ϕ0, ψ0) = idRn . Hence, by the implicit
function theorem in Banach spaces, there exist an open neighborhood U(ϕ0) of

ϕ0 in QDl+r,s
Ω (Rn) and a Cr-map

Ψ : U(ϕ0) → Ql,sΩ (Rn), ϕ 7→ Ψ(ϕ), (64)

such that F
(
ϕ,Ψ(ϕ)

)
= idRn for any ϕ ∈ U(ϕ0). In particular we see that for

any ϕ ∈ U(ϕ0), ϕ
−1 = Ψ(ϕ). Hence, by the regularity of the map (64), the map

U(ϕ0) → QDl,s
Ω (Rn), ϕ 7→ ϕ−1 = Ψ(ϕ),

is a Cr-map. Since ϕ0 ∈ QDl+r,s
Ω (Rn) was chosen arbitrarily we conclude that

(53) is a Cr-map.

4 Proof of Theorem 1.1

Consider the Euler equation (1),
ß
ut + u · ∇u = −∇P, div u = 0,
u|t=0 = u0,

(65)
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and assume that for given l ≥ 2, s > M
2 + 1, and T > 0,

u ∈ C
(
[−T, T ], Ql,sΩ

)
∩ C1(

[
− T, T ], Ql−1,s

Ω

)
(66)

is a solution of (65). Then, by (65) and the Banach algebra property of

Ql−1,s
Ω (Rn) (Proposition 2.1 (ii)),

∇P ∈ C
(
[−T, T ], Ql−1,s

Ω

)

and, by assumption, P(t) ∈ QsΩ(R
n) and has mean-value zero for any t ∈ [−T, T ].

By applying div to the both sides of (65), we obtain that

div
(
u · ∇u

)
= −∆P . (67)

Since div u = 0 we then conclude by a direct computation that

div
(
u · ∇u

)
= tr

(
[du]2

)
+ u · ∇

(
div u

)
= tr

(
[du]2

)
(68)

where [du] is the Jacobian matrix of w and tr is the trace of an n × n-matrix.

For w ∈ Ql,sΩ with l ≥ 0, s > M/2, denote

Q(w) := tr
(
[dw]2

)
(69)

and note that Q(w) ∈ Ql−1,s
Ω (Rn) by Proposition 2.1.

Let Λm = (Λm,1, ...,Λm,n), m ∈ ZM , be the exponents appearing in the
Fourier expansion (14) of the elements ofQr,sΩ with r ≥ 0 and s > M/2. Consider
the subsets of indices

I• :=
{
m ∈ Z

M
∣∣ |Λm| ≤ 1, 1 ≤ j ≤ n

}
, (70)

I∞ := Z
M \ I•, (71)

and define the closed subspaces in Ql,sΩ ,

Qr,sΩ,• :=
{
w ∈ Qr,sΩ

∣∣ ŵm = 0 for m ∈ I∞
}
, (72)

Qr,sΩ,∞ :=
{
w ∈ Qr,sΩ

∣∣ ŵm = 0 for m ∈ I•
}
. (73)

By construction,
Qr,sΩ = Qr,sΩ,• ⊕⊥ Q

r,s
Ω,∞, (74)

where the spaces are orthogonal with respect to the scalar product (21) on Qr,sΩ .
Let

Π• : Qr,sΩ → Qr,sΩ,•, Π∞ : Qr,sΩ → Qr,sΩ,∞, (75)

be the (orthogonal) projections corresponding to the splitting (74). Clearly,
Π∞ +Π• = idQr,s

Ω
and the projections (75) commute with the differentiation in

the scale Qr,sΩ , r ≥ 0, s > M/1. Our first observation concerns the space Qr,sΩ,•.

24



Lemma 4.1. For any r, τ ∈ Z≥0 and s > M/2 we have that Qr,sΩ,• ⊆ Qr+τ,sΩ ⊆
C∞
b and the inclusions are bounded. In particular, for any r, τ ≥ 0 the map

Π• : Qr,sΩ → Qr+τ,sΩ

is well-defined and bounded.

Proof of Lemma 4.1. It is enough to consider scalar valued functions. Take
f ∈ Qr,sΩ (Rn) where r ≥ 0 and s > M/2. It then follows from Lemma 2.2 (ii)
that

f(x) =
∑

m∈I•

f̂me
i(Λm,x)

where
∑
m∈I•

|f̂m|2〈Λm〉2r〈m〉2s < ∞. This and the definition (70) of the set
I• then imply that |Λm| are bounded uniformly in m ∈ I• and hence for any
τ ≥ 0, ∑

m∈I•

|f̂m|2〈Λm〉2(r+τ)〈m〉2s <∞.

Applying Lemma 2.2 (ii) one more time we see that f ∈ Qr+τ,sΩ (Rn) and the
inclusions

Qr,sΩ,•(R
n) ⊆ Qr+τ,sΩ (Rn)

are bounded. Since this happens for any τ ≥ 0 we then conclude from Proposi-
tion 2.1 (iii) that

Qr,sΩ,•(R
n) ⊆

⋂

τ≥0

Qτ,sΩ (Rn) ⊆ C∞
b (Rn)

and the inclusions are bounded.

Remark 4.1. More generally, since f ∈ Qr,sΩ,•(R
n) ⊆ S′(Rn) is a tempered

distribution whose Fourier transform

(Ff)(ξ) = (2π)n
∑

m∈I•

f̂mδ(ξ − Λm)

has support I• inside the centered at zero closed ball of radius ≤ 1 in Cn, we
conclude from Paley-Wiener’s theorem that f extends to an entire function on
Cn such that |f(ξ)| ≤ CeIm(ξ)) (cf. e.g. [30]).

Our next observation is the following lemma.

Lemma 4.2. For any r ≥ 0 and s > M/2 the map

∆ : Qr+2,s
Ω,∞ → Qr,sΩ,∞

is a linear isomorphism.
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The lemma follows directly from the estimate 1
2 〈Λm〉 ≤ |Λm| ≤ 〈Λm〉, m ∈

I∞, and Lemma 2.2 (ii).
In view of (67) and (68) we have

−∆P = div
(
u · ∇u

)
=

(
Π∞ +Π•

)
div

(
u · ∇u

)

= Π∞ ◦Q(u) + Π• div(u · ∇u
)

= Π∞ ◦Q(u) + div ◦Π•(u · ∇u
)
.

This implies that

−∆
(
∇P

)
= Π∞ ◦ ∇ ◦Q(u) +

(
∇ ◦ div

)
◦ Π• ◦D(u), (76)

where we set
D(w) := w · ∇w

for w ∈ Ql,sΩ . Note that for any r ≥ 0 and s > M/2 the map

∇ ◦ div : Qr+2,s
Ω → Qr,sΩ

appearing in (76) is bounded and its image is contained in the image of the
Laplace operator ∆ : Qr+2,s

Ω → Qr,sΩ . In order to see this, define the linear map

∆−1 ◦ ∇ ◦ div : Qr+2,s
Ω → Qr+2,s

Ω , w 7→
(
∆−1 ◦ ∇ ◦ div

)
(w), (77)

by setting

¤�(
∆−1∂j∂kwk

)
m

:=

®
Λm,jΛm,k

|Λm|2
‘(wk)m, m ∈ ZM \ {0},

0, m = 0,
(78)

for any 1 ≤ k, j ≤ n. The map (77) is bounded since
Λm,jΛm,k

|Λm|2 ≤ 1 for any

m ∈ ZM \ {0}. By combining (76) with (78), Lemma 4.2, and the fact that

∇P ∈ Ql−1,s
Ω (Rn), we conclude that

−∇P(t) = P
(
u(t)

)
+ c(t), t ∈ [−T, T ], (79)

where c : [−T, T ] → Rn is a curve in Rn and

P(w) :=
(
∆−1◦Π∞

)
◦∇◦Q(w)+

(
∆−1◦∇◦ div

)
◦Π• ◦D(w), w ∈ Ql,sΩ . (80)

Here one uses that the kernel of ∆ : S′(Rn) → S′(Rn) consists of harmonic
polynomials on R

n (see e.g. [30, § 5.10]) and that ∇P and P(u) are quasi-
periodic, and hence uniformly bounded on Rn (cf. Proposition 2.1 (iii), Lemma
4.3 below). We have

Lemma 4.3. For any l ≥ 2 and s > M/2 the map

P : Ql,sΩ → Ql,sΩ , w 7→ P(w),

is well-defined and real analytic. Moreover, P(w) has mean-value zero for any

w ∈ Ql,sΩ .
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Proof of Lemma 4.3. Assume that l ≥ 2 and s > M/2. It follows from Proposi-
tion 2.1 (i) and the Banach algebra property of Qr,sΩ (Proposition 2.1 (ii)) that
the polynomial map (69),

Q : Ql,sΩ → Ql−1
Ω , w 7→ Q(w),

is real-analytic. This implies that the map Π∞ ◦ ∇ ◦ Q : Ql,sΩ → Ql−2
Ω,∞ is real

analytic. By combining this with Lemma 4.2 we conclude that
(
∆−1 ◦Π∞

)
◦ ∇ ◦Q : Ql,sΩ → Ql,sΩ

is well-defined and real analytic. Similar arguments involving the smoothing of
the projection operator Π• in Lemma 4.1 and the boundedness of the map (77)
imply that the map

(
∆−1 ◦ ∇ ◦ div

)
◦Π• ◦D : Ql,sΩ → Ql,sΩ

is well-defines and real analytic.
Let us now prove the second statement of the lemma. Take w ∈ Ql,sΩ .

The second summand in (80) has mean-value zero by the definition (78) of the
map (77). It follows from (69) and Lemma 4.2 that the first term in (80) is

the gradient of the quasi-periodic function ∆−1 ◦ Π∞ ◦ Q(w) ∈ Ql+1,s
Ω (Rn).

By Lemma 2.2 (ii) we then conclude that the 0’th Fourier coefficients of the
components of the first summand vanish. This completes the proof of the lemma.

On the other side, since div u = 0 the j-th component of u · ∇u can be
written as u · ∇uj =

∑n
k=1 ∂xk

(
ukuj

)
where (u1, ..., un) are the components of

the fluid velocity (66). This implies that

div
(
u · ∇u

)
=

n∑

k,j=1

∂xj
∂xk

(
ukuj

)
. (81)

By applying div to the both sides of (65) we then obtain that

−∆P =

n∑

k,j=1

∂xj
∂xk

(
ukuj

)
. (82)

Since u ∈ C
(
[−T, T ], Ql,sΩ

)
we conclude from the assumption that P ∈ QsΩ(R

n)
has mean-value zero and Proposition 2.1 that

P =

n∑

k,j=1

∆−1∂xj
∂xk

(
ukuj

)
∈ C

(
[−T, T ], Ql,sΩ

)
(83)

where ∆−1∂xj
∂xk

: Ql,sΩ (Rn) → Ql,sΩ (Rn) is a bounded linear map defined as in

(78). In particular, (83) and Lemma 2.2 imply that ∇P ∈ Ql−1,s
Ω has mean-

value zero. Since by the second part of Lemma 4.3, P(u) has mean-value zero,
we obtain from (79) that

−∇P(t) = P(u(t)), t ∈ [−T, T ], (84)
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where P(u) ∈ C
(
[−T, T ], Ql,sΩ

)
by the first part of Lemma 4.3. By combining

this with (83) we conclude that ∇P,P(u) ∈ C
(
[−T, T ], Ql,sΩ

)
, and hence

P ∈ C
(
[−T, T ], Ql+1,s

Ω

)
. (85)

Moreover, (84) implies that (66) satisfies the equation

ß
ut + u · ∇u = P(u),
u|t=0 = u0, div u0 = 0.

(86)

We have the following lemma.

Lemma 4.4. Assume that u ∈ C
(
[−T, T ], Ql,sΩ

)
∩C1

(
[−T, T ], Ql−1,s

Ω

)
for some

l ≥ 2 and s > M/2. Then, u is a solution of the Euler equation (65) such that
the pressure P(t) belongs to QsΩ(R

n) and has mean-value zero for any t ∈ [−T, T ]
if and only if u satisfies equation (86). In both (equivalent) cases, we have that

P ∈ C
(
[−T, T ], Ql+1,s

Ω

)
.

Note that in contrast to the solutions of the Euler equation (65), the solutions
of (86) are not assumed to be divergence free on their interval of existence. By
Lemma 4.4, a solution of (86) that is divergence free at t = 0 is divergence free
for any time.

Proof of Lemma 4.4. The direct implication and (85) are already proven. Now,

assume that u ∈ C
(
[−T, T ], Ql,sΩ

)
∩C1

(
[−T, T ], Ql−1,s

Ω

)
is a solution of (86). We

will first prove that div u0 = 0 implies that div u(t) = 0 for any t ∈ [−T, T ]. To
this end, we apply div to the both sides of (86) to conclude that

(
div u

).
+ div

(
u · ∇u

)
= divP(u)

Then, we use that div
(
u · ∇u

)
= Q(u) + u · ∇

(
div u

)
and

divP(u) = Π∞ ◦Q(u) + Π• div
(
u · ∇u

)

to conclude that
(
div u

).
+ Π∞

(
u · ∇

(
div u

))
= 0. This equation splits into

two relations

(
div u∞

).
+Π∞

(
u · ∇

(
div u

))
= 0 (87)

(
div u•

).
= 0 (88)

where we set u• := Π•u and u∞ := Π∞u. Since div u0 = 0 we have

div u•|t=0 = 0 and div u∞|t=0 = 0 . (89)

It follows from (88) and the first relation in (89) that div u•(t) = 0 for any
t ∈ [−T, T ]. Hence, (87) becomes

(
div u∞

).
+Π∞

(
u · ∇

(
div u∞

))
= 0. (90)
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We then multiply (90) by div u∞, integrate over the cube [−T, T ]n ⊆ Rn, take
the limit as T → ∞, and use the Stokes’ theorem as in (13) to obtain that

(
‖ div u∞‖20

).
= − lim

T→∞

1

(2T )n

∫

[−T,T ]n

(
div u∞

)3
dx ≤ C‖ div u∞‖20 (91)

where C > 0 is chosen so that C ≥ max
[−T,T ]

| div u∞|∞ ≥ 0 (cf. Remark 2.2) and

(cf. (9)),

‖f‖0 ≡
( ∑

m∈ZM

|f̂m|2
)1/2

=

Ç
lim
T→∞

1

(2T )n

∫

[−T,T ]n
f2 dx

å1/2

, f ∈ QsΩ(R
n).

By Gronwall’s inequality we then obtain that, ‖ div u∞‖0 = 0. Since ‖ · ‖0 is
norm, div u(t) = 0 for any t ∈ [−T, T ].

Since div u = 0 it then follows from (80), (69), and (81), that

P(u) = ∇ ◦∆−1
(
Π∞ ◦Q(u) + Π• div

(
u · ∇u

))
= ∇ ◦∆−1

(
div

(
u · ∇u

))

= ∇ ◦∆−1
( n∑

k,j=1

∂xj
∂xk

(
ukuj

))
= ∇

( n∑

k,j=1

∆−1∂xj
∂xk

(
ukuj

))
= ∇P

where P :=
∑n

k,j=1 ∆
−1∂xj

∂xk

(
ukuj

)
∈ C

(
[−T, T ], Ql−1,s

Ω

)
by the boundedness

of the map ∆−1∂xj
∂xk

: Ql−1,s
Ω → Ql−1,s

Ω defined as in (78). This implies that
u satisfies (86) and the pressure P(t) ∈ QsΩ(R

n) has mean-value zero for any
t ∈ [−T, T ]. This completes the proof of the lemma.

The proof of the following lemma is identical to the proof of Theorem 6.1 in
[32] (cf. also [8]) and follows from Theorem 3.2 and the embedding Qr,sΩ ⊆ C2

b

for r ≥ 1 and s > M
2 + 1 (see Proposition 2.1 (iii)) and will be omitted.

Lemma 4.5. Assume that r ≥ 1 and s > M
2 + 1. Then, for any T > 0 and

u ∈ C
(
[−T, T ], Qr,sΩ

)
there exists a unique solution ϕ ∈ C1

(
[−T, T ], QDr,s

Ω (Rn)
)

of the differential equation

ß
.

ϕ = u ◦ ϕ,
ϕ|t=0 = idRn .

(92)

We now apply Lemma 4.5 to the solution

u ∈ C
(
[−T, T ], Ql,sΩ

)
∩C1

(
[−T, T ], Ql−1,s

Ω

)
(93)

of the Euler equation (65) to obtain a 1-parameter family of quasi-periodic
diffeomorphisms

ϕ ∈ C1
(
[−T, T ], QDl,s

Ω (Rn)
)

(94)

that satisfies (92) for l ≥ 2 and s > M
2 + 1. Denote

v := u ◦ ϕ ∈ C
(
[−T, T ], Ql,sΩ

)
. (95)
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In view of (92), (93), (95), and the embedding Ql,sΩ ⊆ C2
b for l ≥ 2 and s > M

2 +1
we conclude that u, ϕ, v ∈ C1

(
[−T, T ]× Rn,Rn

)
and hence

.
v =

.
u ◦ ϕ+ [du] ◦ ϕ ·

.
ϕ (96)

pointwise. This implies that for any τ ∈ [−T, T ],

v(τ) = u0 +

∫ τ

0

(
.
u ◦ ϕ+ [du] ◦ ϕ ·

.
ϕ
)
dt (97)

pointwise. In view of Theorem 3.2 we then conclude from (93) and (94) that

the integrand in (97) belongs to C
(
[−T, T ], Ql−1,s

Ω

)
. This and (95) imply that

the integral in (97) converges in Ql−1,s
Ω , and hence,

v ∈ C
(
[−T, T ], Ql,sΩ

)
∩ C1

(
[−T, T ], Ql−1,s

Ω

)
. (98)

For ψ ∈ QDr,s
Ω (Rn), r ≥ 0, s > M

2 +1, consider the right translation of of vector
fields (or functions) on QDr,s

Ω (Rn),

Rψ : Qr,sΩ → Qr,sΩ , f 7→ Rψ(f) := f ◦ ψ. (99)

Remark 4.2. For simplicity of notation, we will use the same symbol for the
right translation Rψ : QDr,s

Ω (Rn) → QDr,s
Ω (Rn) on the group QDr,s

Ω (Rn), r ≥ 0,
s > M

2 +1. Strictly speaking, the map (99) is the linearization of this map. The
both maps are real analytic (see Remark 4.5 below).

In view of Theorem 3.2, the map (99) is a linear isomorphism of Banach
spaces with inverse R−1

ψ = Rψ−1 . It follows from (96) and (92) that

.
v =

.
u ◦ ϕ+ [du] ◦ ϕ ·

.
ϕ

=
( .
u+ u · ∇u

)
◦ ϕ

=
(
Rϕ ◦ P ◦Rϕ

)
(v) (100)

where we used that u satisfies the equation (86) (cf. Lemma 4.4). Hence,

ϕ ∈ C1
(
[−T, T ], QDl,s

Ω (Rn)
)
and v ∈ C

(
[−T, T ], Ql,sΩ

)
∩ C1

(
[−T, T ], Ql−1,s

Ω

)

satisfy the system of equations

ß .
ϕ = v,
.
v = F (v, ϕ),

(101)

where, in view of (80),

F (v, ϕ) :=
(
Rϕ ◦ P ◦Rϕ−1

)
(v)

=
(
Rϕ ◦

(
∆−1 ◦Π∞

)
◦Rϕ−1

)
◦
(
Rϕ ◦ ∇ ◦Rϕ−1

)
◦
(
Rϕ ◦Q ◦Rϕ−1

)

+
(
Rϕ ◦

(
∆−1 ◦ ∇ ◦ div

)
◦Π• ◦Rϕ−1

)
◦
(
Rϕ ◦D ◦Rϕ−1

)
. (102)
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It follows from Theorem 3.2 and Lemma 4.3 that

F : Ql,sΩ ×QDl,s
Ω (Rn) → Ql,sΩ (103)

is continuous. By the second equality in (101) we then obtain that for τ ∈
[−T, T ], v(τ) = u0+

∫ τ
0
F (v, ϕ) dt, where the integrand is a continuous function

of t, and hence,
v ∈ C1

(
[−T, T ], Ql,sΩ

)
.

In this way we proved the direct statement of the following proposition.

Proposition 4.1. Assume that l ≥ 2 and s > M
2 + 1. Then, for any T > 0

there exists a one-to-one correspondence between solutions

u ∈ C
(
[−T, T ], Ql,sΩ

)
∩C1

(
[−T, T ], Ql−1,s

Ω

)

of the Euler equation (65) such that the pressure P(t) belongs to QsΩ(R
n) and has

mean-value zero for any t ∈ [−T, T ], and solutions (v, ϕ) ∈ C1
(
[−T, T ], Ql,sΩ ×

QDl,s
Ω (Rn)

)
of the system (101) with initial data (v, ϕ)|t=0 = (u0, idRn) where

v = u ◦ ϕ.

The converse statement in Proposition 4.1 follows easily from Lemma 4.4 and
Theorem 3.2. Since the arguments are fairly standard we will omit them and
concentrate on the new aspects related to the quasi-periodicity of the solutions.

Our main task now is to prove that the dynamical system (101) has a smooth
right side.

Proposition 4.2. For l ≥ 2 and s > M
2 + 1 the map (103) is real analytic.

Theorem 1.1 will then follow from Proposition 4.1, Proposition 4.2, and the
existence theorems for solutions of ordinary differential equations in Banach
spaces.

We will prove Proposition 4.2 by showing that the conjugated factors ap-
pearing in (102) are real analytic. The proofs of the following two statements
are standard (cf. e.g. [32, Appendix A]).

Lemma 4.6. For r ≥ r0 ≥ 1 and s > M
2 + 1 the map

Qr0,sΩ (Rn)×QDr,s
Ω (Rn) → Qr0−1,s

Ω (Rn), (f, ϕ) 7→
(
Rϕ ◦ ∇ ◦Rϕ−1

)
(f),

is real analytic.

Proof of Lemma 4.6. In view of the embedding Qr0,sΩ (Rn) ⊆ C2
b (R

n), we obtain
by a direct computation involving (51) that for f ∈ Qr0,sΩ (Rn),

(
Rϕ ◦ ∇ ◦Rϕ−1

)
(f) = (∇f) · [dϕ]−1,

where (∇f) =
(
∂x1

f, ..., ∂xn
f
)
. Lemma 4.6 then follows from the Banach alge-

bra property of Qr0−1,s
Ω (Rn), the formula for the inverse of a matrix, and Lemma

3.3.
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As a direct consequence of Lemma 4.6 we obtain

Lemma 4.7. Assume that s > M
2 + 1. Then, we have

(i) For r ≥ r0 ≥ 2 the map

Qr0,sΩ (Rn)×QDr,s
Ω (Rn) → Qr0−2,s

Ω (Rn), (f, ϕ) 7→
(
Rϕ ◦∆ ◦Rϕ−1

)
(f),

is real analytic.

(ii) For r ≥ r0 ≥ 1 the maps Qr0,sΩ ×QDr,s
Ω (Rn) → Qr0−1,s

Ω (Rn),

(w,ϕ) 7→
(
Rϕ ◦D ◦Rϕ−1

)
(w) and (w,ϕ) 7→

(
Rϕ ◦Q ◦Rϕ−1

)
(w),

where D(w) ≡ w · ∇w and Q(w) ≡ tr[dw]2, are real analytic.

Lemma 4.7 follows directly from Lemma 4.6, the Banach algebra property
of Qr0−1,s

Ω , and the following easily verified identities

(
Rϕ ◦∆ ◦Rϕ−1

)
(f) =

(
Rϕ ◦ div ◦Rϕ−1

)
◦
(
Rϕ ◦ ∇ ◦Rϕ−1

)
(f),

(
Rϕ ◦ div ◦Rϕ−1

)
(w) = tr

[(
Rϕ ◦ ∇ ◦Rϕ−1

)
(w)

]
,

(
Rϕ ◦D ◦Rϕ−1

)
(w) =

[(
Rϕ ◦ ∇ ◦Rϕ−1

)
(w)

]
· w,

and (
Rϕ ◦Q ◦Rϕ−1

)
(w) = tr

[(
Rϕ ◦ ∇ ◦Rϕ−1

)
(w)

]2
,

where f ∈ Qr0+1,s
Ω (Rn), w = (w1, ..., wn)

T ∈ Qr0,sΩ , Rϕ ◦ ∇ ◦ Rϕ−1 is applied
component wise to w to obtain an n×n-matrix, and (·)T denotes the transpose
of a matrix.

The following lemma plays an important role in the proof of Theorem 1.1.

Lemma 4.8. For r ≥ r0 ≥ 0, s > M
2 + 1, and for any τ ≥ 0, the maps

QDr,s
Ω (Rn)×Qr0,sΩ (Rn) → Qr0+τ,sΩ (Rn)

QDr,s
Ω (Rn)×Qr0,sΩ (Rn) → Qr0+τ,sΩ (Rn), (ϕ, f) 7→

(
Π• ◦Rϕ−1

)
(f) (104)

and

QDr,s
Ω (Rn)×Qr0,sΩ (Rn) → Qr0,sΩ (Rn), (ϕ, f) 7→

(
Rϕ ◦Π•

)
(f) (105)

are real analytic.

Remark 4.3. Since τ ≥ 0 in Lemma 4.8 can be chosen arbitrarily large, we
conclude that the map (104) is a C∞-smoothing. This is not true for the map
(105).
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Proof of Lemma 4.8. Let r ≥ r0 ≥ 0, s > M
2 + 1, and τ ≥ 0. Consider first

the map (104). This map is well defined and continuous by Lemma 4.1 and
Theorem 3.2. Take ϕ ∈ QDr,s

Ω (Rn), f ∈ Qr0,sΩ (Rn). For a given m ∈ I• denote

by âm the m’th Fourier coefficient of
(
Π•◦Rϕ−1

)
(f) ∈ Qr0+τ,sΩ (Rn). By formula

(16) in Lemma 2.1 we have

âm = lim
T→∞

1

(2T )n

∫

[−T,T ]n
f(ϕ−1(y)) e−i(Λm,y) dy

= lim
T→∞

1

(2T )n

∫

[−T,T ]n
f(x) e−i(Λm,ϕ(x)) det[dxϕ] dx (106)

where we change the variables in the integral and then use that the integrand
in (106) is uniformly bounded on Rn and

∫

D(T )

∣∣f(x) det[dxϕ]
∣∣ dx = O

(
T n−1

)
as T → ∞

where D(T ) denotes the symmetric difference ϕ−1
(
[−T, T ]n

)
△
(
[−T, T ]n

)
. The

later follows from the fact that for T > B ≥ 0 we have the inclusion of sets in
Rn,

[
− (T −B), T −B

]n
⊆ ϕ−1

(
[−T, T ]n

)
⊆

[
− (T +B), T +B

]n
,

where B ≥ |h|∞ is a constant independent of T > B and ϕ−1 = idRn + h with
h ∈ Qr,sΩ . By Taylor’s formula for any x ∈ Rn,

e−i(Λm,ϕ(x)) = e−i(Λm,x) e−i(Λm,g(x))

= e−i(Λm,x)
∑

α

(−i)|α|

α!
Λαmg(x)

α (107)

where α ∈ Z
n
≥0 is a multi-index and we used the Taylor’s expansion of the

exponent e
∑n

j=1
xj =

∑
α
xα

α! at x = 0. Note that the series in (107) converges
absolutely in L∞(Rn). By combining this with (106) we then obtain that

(
âm

)
m∈I•

=
∑

α

(−i)|α|

α!

(
Λαm
◊�(
M gα

)
m

)
m∈I•

(108)

where we set M := f det[dϕ]. Recall that |Λm| ≤ 1 for m ∈ I•. This and (108)
imply that

∥∥(Π• ◦Rϕ−1

)
(f)

∥∥
r0+τ,s

≤ 2
r0+τ

2

∑

α

‖M gα‖s
α!

≤ 2
r0+τ

2 ‖M‖s
∑

α

(Cs‖g1‖s)
α1 ...(Cs‖gn‖s)

αn

α!

≤ 2
r0+τ

2 ‖M‖s e
Cs‖g‖s , ‖g‖s ≡ max

1≤j≤n
‖gj‖s, (109)
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where C ≡ Cs > 0 is the constant appearing in the Banach algebra inequality for
QsΩ(R

n) (see Remark 2.5). Note that the estimate (109) also holds for g ∈ Qr,sΩ,C

and f ∈ Qr0,sΩ,C(R
n) (see Remark 2.6). This implies that the series in (108)

converges absolutely on bounded sets in Qr0+τ,sΩ,C (Rn). Since the terms appearing
in the series (108) are bounded (non-homogeneous) polynomial functions of
g ∈ Qr,sΩ,C and f ∈ Qr0,sΩ,C(R

n), we conclude from Weierstrass theorem that the
map (104) is real analytic.

The (105) is treated in a similar fashion. In fact, it follows immediately from
Lemma 4.1 and Theorem 3.2 that the map is well-defined and C∞-smooth. Let
us show that the map is real analytic. Take ϕ ∈ QDr,s

Ω (Rn) and f ∈ Qr0,sΩ (Rn)
where r ≥ r0 ≥ 0 and s > M

2 + 1. Then,

(
Rϕ ◦Π•

)
(f) =

∑

m∈I•

f̂me
i(Λn,x) ei(Λm,g(x)) (110)

where g ∈ Qr,sΩ and ϕ = idRn + g. In view of (107) we obtain that for any
m ∈ I•,

ei(Λm,g(x)) =
∑

α

(−i)|α|

α!
Λαmg(x)

α. (111)

One easily sees from the Banach algebra property of Qr,sΩ,C that for any g ∈ Qr,sΩ,C

and for any m ∈ I• the series (111) converges absolutely in Qr,sΩ,C(R
n) and

∥∥ei(Λm,g)
∥∥
r,s

≤ eCs‖g‖s . (112)

(Note that this is the place where we use that |Λm| ≤ 1 for m ∈ I•.) This
implies that for any m ∈ I• the map

Qr,sΩ,C → Qr,sΩ,C(R
n), g 7→ ei(Λm,g),

is analytic. By (112) and the fact that (f̂m)m∈I• ∈ ℓ1(I•,C) for f ∈ Qr0,sΩ,C(R
n),

the series in (110) converges absolutely and uniformly on bounded sets in the
space Qr0,sΩ,C(R

n). Hence, by the Weierstrass theorem, the map (105) is real
analytic. This completes the proof of Lemma 4.8.

As an immediate corollary we obtain

Corollary 4.1. Assume that r ≥ 0 and s > M
2 +1. Then, the maps QDr,s

Ω (Rn)×
Qr,sΩ (Rn) → Qr,sΩ (Rn),

(ϕ, f) 7→
(
Rϕ ◦Π• ◦Rϕ−1

)
(f) and (ϕ, f) 7→

(
Rϕ ◦Π∞ ◦Rϕ−1

)
(f) (113)

are real analytic.

Proof of Corollary 4.1. The analyticity of the first map in (113) follows directly
from Lemma 4.8. Then, the analyticity of the second map in (113) follows from
the fact that

(
Rϕ ◦Π• ◦Rϕ−1

)
(f) +

(
Rϕ ◦Π∞ ◦Rϕ−1

)
(f) = f

for any f ∈ Qr,sΩ (Rn).
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Our next statement concerns the map

Qr,sΩ ×QDr,s
Ω (Rn) → Qr,sΩ , (w,ϕ) 7→

(
Rϕ ◦

(
∆−1 ◦ ∇ ◦ div

)
◦Π• ◦Rϕ−1

)
(w)

(114)
that appears as a factor in (102). We have

Lemma 4.9. For r ≥ 0 and s > M
2 + 1 the map (114) is real analytic.

Proof of Lemma 4.9. Take r ≥ 0 and s > M
2 + 1. For any w ∈ Qr,sΩ and

ϕ ∈ QDr,s
Ω (Rn) we have that

Rϕ◦
(
∆−1◦∇◦ div

)
◦Π•◦Rϕ−1(w) =

(
Rϕ◦Π•

)
◦
(
∆−1◦∇◦ div

)
◦
(
Π•◦Rϕ−1

)
(w).

Now, the proof of the lemma follows directly from Lemma 4.8 and the bound-
edness of the map (77).

Finally, for r ≥ 2 and s > M
2 + 1 consider the map (cf. (102)),

Qr−2,s
Ω ×QDr,s

Ω (Rn) → Qr,sΩ , (w,ϕ) 7→
(
Rϕ ◦

(
∆−1 ◦Π∞

)
◦Rϕ−1

)
(w). (115)

Note that by Lemma 4.2 and Theorem 3.2 the map (115) is well defined and
continuous. We will prove

Lemma 4.10. For r ≥ 2 and s > M
2 + 1 the map (115) is real analytic.

For the proof of this lemma we need a preparation. Assume that r ≥ 0 and
s > M

2 + 1. For a given ϕ ∈ QDr,s
Ω (Rn) consider the commutative diagram

Qr,sΩ,∞ Rϕ(Q
r,s
Ω,∞)

Qr,sΩ,∞

Cϕ

Π∞,ϕ

Π∞
(116)

where Rϕ(Q
r,s
Ω,∞) denotes the image of the subspace Qr,sΩ,∞ ⊆ Qr,sΩ with respect

to the right translation Rϕ : Qr,sΩ → Qr,sΩ ,

Π∞,ϕ := Rϕ ◦Π∞ ◦Rϕ−1 : Qr,sΩ → Rϕ(Q
r,s
Ω,∞),

and the map Cϕ is defined by the diagram. Since the right translation R :
Qr,sΩ → Qr,sΩ is an isomorphism of Banach spaces we see that Rϕ(Q

r,s
Ω,∞) is a

closed subspace in Qr,sΩ . We have

Lemma 4.11. For r ≥ 0 and s > M
2 +1 there exists an open neighborhood U of

the identity in QDr,s
Ω (Rn) such that for any ϕ ∈ U the map Cϕ : Qr,sΩ,∞ → Qr,sΩ,∞

is a linear isomorphism and

Qr,sΩ,∞ × U → Qr,sΩ,∞, (w,ϕ) 7→ C−1
ϕ (w), (117)

is real analytic.
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Proof of Lemma 4.11. The lemma follows from the inverse function theorem.
Indeed, by Corollary 4.1 the map

C : Qr,sΩ,∞ ×QDr,s
Ω (Rn) → Qr,sΩ,∞ ×QDr,s

Ω (Rn), (w,ϕ)
T
7→

(
Π∞ ◦Π∞,ϕ(w), ϕ

)
,

is real analytic. For the the differential

d(0,idRn )C : Qr,sΩ,∞ ×Qr,sΩ → Qr,sΩ,∞ ×Qr,sΩ

of C at the point (0, idRn) we have d(0,idRn)C =
(
idQr,s

Ω,∞
, idQr,s

Ω

)
. Hence, by the

inverse function theorem there exist an open neighborhood U of the identity in
QDr,s

Ω (Rn) and open neighborhoods V and W of zero in Qr,sΩ,∞ such that the
map

V × U →W × U, (w,ϕ) 7→ (Cϕ(w), ϕ),

is real analytic diffeomorphism. Since for any given ϕ ∈ U the map

Cϕ : Qr,sΩ,∞ → Qr,sΩ,∞ (118)

is a bounded linear map we then conclude from the open mapping theorem that
(118) is a linear isomorphism and that (117) is real analytic.

By combining Lemma 4.11 with the commutative diagram (116) we obtain

Corollary 4.2. Assume that r ≥ 0, s > M
2 + 1. Then, there exists and open

neighborhood U of the identity in QDr,s
Ω (Rn) such that the statement of Lemma

4.11 holds and for any ϕ ∈ U the restriction of the map

Qr,sΩ → Qr,sΩ,∞, w 7→ C−1
ϕ ◦Π∞(w), (119)

to the subspace Rϕ(Q
r,s
Ω,∞) is the inverse of the map

Π∞,ϕ ≡ Rϕ ◦Π∞ ◦Rϕ−1 : Qr,sΩ,∞ → Rϕ(Q
r,s
Ω,∞). (120)

The map
Qr,sΩ × U → Qr,sΩ,∞, (w,ϕ) 7→ C−1

ϕ ◦Π∞(w),

is real analytic.

Remark 4.4. This corollary allows us to “coordinatize” the subspace Rϕ(Q
r,s
Ω,∞)

of Qr,sΩ by the subspace Qr,sΩ,∞ via the maps (119) and (120) that depend analyt-

ically on ϕ ∈ U . Note that we cannot use the right translation Rϕ : Qr,sΩ,∞ →

Rϕ(Q
r,s
Ω,∞) and its inverse for this purpose since they do not depend smoothly

on ϕ ∈ U .

Now assume that r ≥ 2 and let U be the open neighborhood of the identity
in QDr,s

Ω (Rn) from Corollary 4.2. For ϕ ∈ U consider the commutative diagram

Rϕ(Q
r,s
Ω,∞) Rϕ(Q

r−2,s
Ω,∞ )

Qr,sΩ,∞ Qr−2,s
Ω,∞

∆ϕ

Π∞,ϕ

‹∆ϕ

Π∞,ϕ
(121)
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where
∆ϕ := Rϕ ◦∆ ◦Rϕ−1

and the map ‹∆ϕ is defined by the diagram. Note that all arrows in (121) are
linear isomorphisms by Lemma 4.2 and Corollary 4.2. It then follows from
Lemma 4.7 and Corollary 4.2 that the map ‹∆ϕ : Qr,sΩ,∞ → Qr−2,s

Ω,∞ is well defined
and the map

Qr,sΩ,∞ × U → Qr−2,s
Ω,∞ × U, (w,ϕ) 7→

(‹∆ϕ(w), ϕ
)
,

is real analytic. By shrinking the neighborhood U of the identity if necessary and
arguing as in the proof of Lemma 4.11 one concludes from the inverse function
theorem that the map

Qr−2,s
Ω,∞ × U → Qr,sΩ,∞ (w,ϕ) 7→ ‹∆−1

ϕ (w), (122)

is real analytic. We summarize this in the following

Lemma 4.12. Assume that r ≥ 2 and s > M
2 + 1. Then, there exists an open

neighborhood U of the identity in QDr,s
Ω (Rn) such that for any ϕ ∈ U the map

‹∆ϕ : Qr,sΩ,∞ → Qr−2,s
Ω,∞ is a linear isomorphism and (122) is real analytic.

We are now ready to proof Lemma 4.10.

Proof of Lemma 4.10. Assume that r ≥ 2 and s > M
2 + 1. As noted above,

the map (115) is well defined and continuous by Lemma 4.2 and Theorem 3.2.
We will first prove that (115) is analytic for ϕ in an open neighborhood of the
identity in QDr,s

Ω (Rn). To this end, consider the open neighborhood U of the
identity in QDr,s

Ω (Rn) from Corollary 4.2 and Lemma 4.12. For ϕ ∈ U consider
the map

Qr−2,s
Ω → Qr,sΩ , w 7→ Iϕ(w) := Π∞,ϕ ◦ ‹∆−1

ϕ ◦
(
C−1
ϕ ◦Π∞

)
(w) (123)

where C−1
ϕ ◦Π∞ : Qr−2,s

Ω → Qr−2,s
Ω,∞ and ‹∆ϕ : Qr,sΩ,∞ → Qr−2,s

Ω,∞ are the maps (119)
and (122) for a fixed second argument ϕ ∈ U . It follows from the commutative
diagram (121) and Corollary 4.2 that the map (123) when restricted to the
subspace Rϕ(Q

r−2,s
Ω,∞ ) of Qr−2,s

Ω is the inverse of the map ∆ϕ : Rϕ(Q
r,s
Ω,∞) →

Rϕ(Q
r−2,s
Ω,∞ ).2 Hence,

I
∣∣
Rϕ(Qr−2,s

Ω,∞
)
≡ ∆−1

ϕ .

Note that the map

Qr−2,s
Ω × U → Qr,sΩ , (w,ϕ) 7→ Iϕ(w),

is real analytic by Corollary 4.2 and Lemma 4.12, and the map

Qr−2,s
Ω × U → Qr−2,s

Ω , (w,ϕ) 7→ Π∞,ϕ(w) ≡ Rϕ ◦Π∞ ◦Rϕ−1(w),

2Recall that all arrows in diagram (121) are linear isomorphisms.
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is real analytic by Lemma 4.1. By combining this with the fact that

Rϕ ◦
(
∆−1 ◦Π∞

)
◦Rϕ−1(w) = Iϕ ◦Π∞,ϕ(w)

for any w ∈ Qr−2,s
Ω and ϕ ∈ U we conclude that the map (115) is real analytic.

This completes the proof of Lemma 4.10 for ϕ in an open neighborhood U of
the identity in QDr,s

Ω (Rn).
Let us now consider the general case. Take an arbitrary ϕ0 ∈ QDr,s

Ω (Rn) and
consider the open neighborhood V := Rϕ0

(U) of ϕ0 in ϕ0 ∈ QDr,s
Ω (Rn) where

U is the open neighborhood of the identity in QDr,s
Ω (Rn) considered above and

let S : Qr−2,s
Ω ×QDr,s

Ω (Rn) → Qr,sΩ is the map (115).

Remark 4.5. Note that for a given ϕ0 ≡ idRn + f0 ∈ QDr,s
Ω (Rn), r ≥ 0,

s > M
2 + 1, one has

Rϕ0
: QDr,s

Ω (Rn) → QDr,s
Ω (Rn), ϕ 7→ Rϕ0

(
idRn + f

)
= idRn +

(
f0 + f ◦ ϕ0

)
,

where ϕ ≡ idRn + f ∈ QDr,s
Ω (Rn). This implies that, in coordinates, the right

translation on a fixed element ϕ0 in QDr,s
Ω (Rn) is identified with the bounded

(Theorem 3.2) affine linear map f 7→ f0+f ◦ϕ0, Q
r,s
Ω → Qr,sΩ . Since (Rϕ0

)−1 =
Rϕ−1

0
we then conclude that Rϕ0

: QDr,s
Ω (Rn) → QDr,s

Ω (Rn) is a bi-analytic

diffeomorphism. The rights translation (99) of vector fields Rϕ0
: Qr,sΩ → Qr,sΩ

is a bounded linear map, and hence analytic (see Remark 4.2).

For any ψ ∈ V and w ∈ Qr−2,s
Ω we have

Rψ ◦
(
∆−1 ◦Π∞

)
◦Rψ−1(w) = Rϕ0

◦
(
Rϕ ◦

(
∆−1 ◦Π∞

)
◦Rϕ−1

)
◦Rϕ−1

0
(w).

where ϕ = ψ◦ϕ−1
0 = Rϕ−1

0
(ψ). This implies that for any ψ ∈ V and w ∈ Qr−2,s

Ω ,

S(w,ψ) = Rϕ0

(
S
∣∣
U

(
Rϕ−1

0
(w), Rϕ−1

0
(ψ)

))
, (124)

where S|U : Qr−2,s
Ω × U → Qr,sΩ is the restriction of S to Qr−2,s

Ω × U . Since the
map S|U is real analytic we then conclude from Remark 4.5 that the restriction
S|V of S to Qr−2,s

Ω ×V is real analytic. This completes the proof of the lemma.

Proof of Proposition 4.2. Proposition 4.2 now follows from (102), Lemma 4.6,
Lemma 4.7, Lemma 4.9, and Lemma 4.10.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Theorem 1.1 follow from Proposition 4.1, Proposition
4.2, and the theorems on the existence and the dependence on the initial data
of solutions of ordinary differential equations in Banach spaces (cf. [19]).
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In fact, since by Proposition 4.2 the right hand side of (92) is real analytic

on Ql,sΩ × QDl,s
Ω , we obtain from the theorem on the analytic dependence of

solutions of analytic vector fields in Banach spaces (see e.d. [7]) the following
proposition.

Proposition 4.3. Assume that l ≥ 2, s > M
2 + 1. Then for any ρ > 0 there

exists T > 0 such that for any divergence free vector field u0 ∈ BQl,s
Ω

(ρ) there

exists a unique solution (v, ϕ) ∈ C1
(
[−T, T ], Ql,sΩ × QDl,s

Ω (Rn)
)
of (101) with

initial data (v, ϕ)|t=0 = (u0, idRn). The solution depends analytically on the
initial data in the sense that the map

(−T, T )×BQl,s
Ω

(ρ) → Ql,sΩ ×QDl,s
Ω (Rn), (t, u0) 7→

(
v(t;u0), ϕ(t;u0)

)
,

is real analytic.

Since by Proposition 4.1 the solution (66) of the Euler equation (1) and

the solution (v, ϕ) ∈ C1
(
[−T, T ], Ql,sΩ ×QDl,s

Ω (Rn)
)
in Proposition 4.3 above are

related by v = u◦ϕ, we conclude that
.
ϕ = u◦ϕ, ϕ|t=0 = idRn . As a consequence

we obtain Corollary 1.1 stated in the Introduction.

Proof of Corollary 1.2. Let u ∈ C
(
(−T1, T2), Q

l,s
Ω

)
∩ C1

(
(−T1, T2), Q

l−1,s
Ω

)
be

the solution of the Euler equation (1) on its maximal time of existence. Then,
by arguing as in (106) and using that u = v ◦ ϕ−1 we obtain that for any
t ∈ (−T1, T2),

ûm(t) := lim
T→∞

1

(2T )n

∫

[−T,T ]n
v
(
t, ϕ−1(t, y)

)
e−i(Λm,y) dy

= lim
T→∞

1

(2T )n

∫

[−T,T ]n
v
(
t, x

)
e−i

(
Λm,ϕ(t,x)

)
dx

=
〈
v(t)e−i(Λm,f(t)), e−i(Λm,·)

〉
0

(125)

where ϕ(t) = idRn + f(t), f(t) ∈ Ql,sΩ and for h, g ∈ QsΩ,C(R
n),

〈g, h〉0 := lim
T→∞

1

(2T )n

∫

[−T,T ]n
g(x)h(x) dx =

∑

m∈ZM

ĝmĥ−m. (126)

Since the complex bi-linear form (126) is bounded in QsΩ,C, the corollary follows

from (125), Proposition 4.3, and the Banach algebra property in Ql,sΩ,C(R
n).

A Appendix

In this Appendix we prove several technical lemmas. The first one is used in
Section 2.
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Lemma A.1. Let (λj)j∈J be a sequence of points in Rn such that λj 6= λk for
j 6= k and J is a countable set of indices. Assume that the series

∑
j∈J âje

i(λj ,x),
âj ∈ C, converges to zero in S′(Rn) independently of the order of summation.
Then âj = 0 for any j ∈ J .

Proof of Lemma A.1. By applying the Fourier transform F : S′(Rn) → S′(Rn)
to the series

∑
j∈J âje

i(λj ,x) we see that

∑

j∈J

âjδ(ξ − λj) = 0 (127)

where the sum converges to zero in S′(Rn) independently of the order of sum-
mation and δ(ξ − λj) is the Dirac delta function at the point λj . For a given
ρ > 0 take ψ ∈ C∞

c (Rn) such that ψ(ξ) = 1 for |ξ| ≤ ρ, ψ(ξ) = 0 for |ξ| ≥ 2ρ,
and 0 ≤ ψ(ξ) ≤ 1 for ρ ≤ |ξ| ≤ 2ρ. Then, in view of (127),

∑
j∈J âjψ(λj)

converges to zero independently of the order of summation. This implies that
it converges absolutely. Since, âjψ(λj) = âj for j ∈ J≤ρ :=

{
j ∈ J

∣∣ |λj | ≤ ρ
}
,

we conclude that for any ρ > 0 there exists a real constant Cρ > 0 such that

∑

j∈J≤ρ

|âj | ≤ Cρ <∞. (128)

Denote f(ξ) :=
∑
j∈J âjδ(ξ − λj) ∈ S′(Rn) and take R > 0. Let χε ∈ C∞

c (Rn)
be such that χε(ξ) = 0 for |ξ| ≥ 2R, 0 ≤ χε(ξ) ≤ 1 for ξ ∈ Rn, and

χε → χ≤R as ε→ 0+ (129)

pointwisely, where χ≤R is the characteristic function of the closed disk
{
ξ ∈

R
n
∣∣ |ξ| ≤ R

}
. In view of (128), (129), and Lebesgue’s dominated convergence

theorem, for any ϕ ∈ S(Rn),

〈f, χεϕ〉 =
∑

j∈J≤2R

âjχε(λj)ϕ(λj) → 〈f≤R, ϕ〉 (130)

where f≤R(ξ) :=
∑

j∈J≤R
âjδ(ξ − λj). Note that in view of (128), f≤R is a

well-defined distribution in S′(Rn). Since, by (127), 〈f, χεϕ〉 = 0, we conclude
from (130) that f≤R = 0 in S′(Rn). Applying the inverse Fourier transforn to
this equality, we obtain that

∑

j∈J≤R

âje
i(λj ,x) = 0

in S′(Rn). Since, by (128), the series above converges uniformly in Rn, we can
apply formula (6) and the condition that the mapping J → Rn, j 7→ λj , is
injective, to conclude that âj = 0 for any j ∈ J≤R. Since

⋃∞
R=1 J≤R = J we

conclude the statement of the lemma.
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Recall from the Introduction that Ωp : Rn → TM denotes the composed
map Ωp ≡ p ◦ Ω where p : RM → TM is the standard covering map of the
torus. The following lemma gives a condition equivalent to the non-resonance
condition (NC).

Lemma A.2. Let Ω : Rn → RM , 1 ≤ n ≤M , be a linear map of maximal rank
n. Then, the map Ωp : Rn → T

M has a dense image in T
M if and only if the

map (3) is injective.

Proof of Lemma A.2. First, let us assume that Ωp : Rn → TM has dense image.
Assume in addition that there exist m′,m′′ ∈ ZM , m′ 6= m′′, such that Λm′ =
Λm′′ . Then, for any x ∈ R

n, ei(Λm′ ,x) = ei(Λm′′ ,x) or equivalently, ei(m
′,Ω(x)) =

ei(m
′′,Ω(x)). This implies that

Ω∗
p(F ) = 0

where F (y) := ei(m
′,y) − ei(m

′,y), y ∈ TM . Hence, F vanishes on the image of
Ωp. Since the image of Ωp is dense in T

M , we then conclude by continuity that

F (y) = 0 for any y ∈ TM . This implies that ei(m
′,y) = ei(m

′,y) for any y ∈ RM ,
that is a contradiction.

Let us now assume that the map (3) is injective. Assume in addition that
the image of Ωp is not dense in TM . Then, there exists an open ball U in TM

that is not in the image of Ωp. Take χ ∈ C∞(TM ,R), χ 6= 0, with support in U ,
and let χ̂m, m ∈ ZM , be the Fourier coefficients of χ. Clearly, the Fourier series
of χ converges absolutely, and hence, independently of the order of summation.
Since, Ω∗

p(χ) = 0, we obtain that

∑

m∈ZM

χ̂me
i(Λm,x) = 0

where the series converges absolutely. Then, we can apply e.g. Lemma A.1
to conclude that χ̂m = 0 for any m ∈ ZM . By the Parseval equality we then
conclude that χ = 0, that contradicts our assumption that χ 6= 0.

Let Ω : Rn → RM , 1 ≤ n ≤ M , be a linear map that satisfies the non-
resonance condition (NC) in the Introduction and let ΓΩ be the discrete lattice
(38) in Rn. We have the following lemma.

Lemma A.3. For any integer n ≥ 1 and for any r ∈ {0, ..., n−1} there exists an
integer M ≥ n and a linear map Ω : Rn → RM that satisfies the non-resonance
condition (NC) and such that rkΓΩ = r.

Remark A.1. Note that the quasipatterns appearing as solutions of Swift-
Hohenberg PDE model and the Bénard-Rayleigh convection (cf. [13, 14] and
the references therein) are quasi-periodic functions with Ω : R2 → R4 that are
purely quasi-periodic (see Lemma 4 in [13]).

Proof of Lemma A.3. Since the case when n = 1 is trivial we will assume that
n ≥ 2. For the simplicity of the exposition, we will first consider the case when
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r = 0. We will construct a linear map Ω : Rn → Rn+1 that satisfies (NC) and
ΓΩ = {0}. To this end, choose ω = (ω1, ..., ωn) ∈ Rn such that |ω| = 1 and the
numbers

ω1, ..., ωn, 1 are linearly independent over Z. (131)

(The proof that such ω exists can be done e.g. along the lines of the proof of
[4, Theorem 4, §24].) Now, consider the (n+ 1)× n matrix

Ω :=

Ü
1 0 ... 0
0 1 ... 0
0 0 ... 1
ω1 ω2 ... ωn

ê

. (132)

The linear map Ω : Rn → Rm+1 associated to this matrix satisfies (NC) since

Ω(ω) =
(
ω1, ..., ωn, |ω|

2
)T

and
(
ω1, ..., ωn, |ω|

2
)
where |ω|2 = 1 satisfy (131). If we assume that Ω(γ) ∈

Z
n+1 for some γ ∈ R

n then we conclude from (132) that γ = m ∈ Z
n and

(m,ω) ∈ Z. In view of (131) this is possible only if γ = m = 0. This completes
the proof of the case when r = 0. The case when r ≥ 1 follows by similar
arguments.

For a given f ∈ Ql,sΩ (Rn) consider the set in Ql,sΩ (Rn),

Sf :=
{
fc(·) ≡ f(·+ c)

∣∣ c ∈ R
n
}
.

The corollary below shows that the elements of Ql,sΩ (Rn) are almost-periodic in

the sense of Bochner with respect to the norm (20) in Ql,sΩ (Rn) (cf. e.g. [32, 20]).

Lemma A.4. For any f ∈ Ql,sΩ (Rn) the set Sf is precompact in Ql,sΩ (Rn).

The original Bochner’s argument ([20]) and Lemma A.4 imply that any f ∈

Ql,sΩ (Rn) is almost-periodic in the sense of Bohr with respect to the norm ‖·‖l,s,
i.e. for any ε > 0 there exists L ≡ Lε > 0 such that in any n-dimensional closed
cube of side L in R

n there exist T > 0 (called an ε-almost period) such that
‖fT − f‖l,s < ε. Since we will not need this statement we will omit its simple
proof. The classical almost-periodic functions in the sense of Bohr are bounded
continuous functions on Rn that are almost-periodic in the sense of Bohr with
respect to the norm in L∞(Rn) ([20, Ch. I,§1],[32, §2]).

Proof of Lemma A.4. Take f ∈ Ql,sΩ (Rn). Then, it follows from Lemma 2.1 and

Lemma 2.2 that‘(fc)m = ei(Λm,c)f̂m for any m ∈ ZM where ‖f‖l,s < ∞. This

implies that
∣∣‘(fc)m

∣∣ = |f̂m| for any m ∈ ZM and hence

Sf ⊆ Tf ⊆ Ql,sΩ (Rn) (133)

42



where Tf denotes the “infinite torus” in Ql,sΩ (Rn),

Tf :=
{
g ∈ Ql,sΩ (Rn)

∣∣ |ĝm| = |f̂m| ∀m ∈ Z
M
}
.

It follows easily from Cantor’s diagonal argument applied to a sequence (fcj )j≥1

in Ql,sΩ (Rn) where cj , j ≥ 1, are constant vectors in Rn that Tf is a compact set

in Ql,sΩ (Rn). Then, Ql,sΩ (Rn) is precompact in view of the inclusion (133).
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