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Abstract

Pseudocycles are geometric representatives for integral homology classes on smooth manifolds
that have proved useful in particular for defining gauge-theoretic invariants. The Borel-Moore
homology is often a more natural object to work with in the case of non-compact manifolds
than the usual homology. We define weaker versions of the standard notions of pseudocycle and
pseudocycle equivalence and then describe a natural isomorphism between the set of equivalence
classes of these weaker pseudocycles and the Borel-Moore homology. We also include a direct
proof of a Poincaré Duality between the singular cohomology of an oriented manifold and its
Borel-Moore homology.
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1 Introduction

1.1 Main theorem

Constructions of some important gauge-theoretic invariants involve representing cohomology classes
on a smooth manifold X geometrically. As the submanifolds in X and embedded cobordisms
between them do not generally suffice for representing the singular homology H.(X;Z) of X,
pseudocycles have been used as a suitable replacement in the case of compact manifolds. For
example, pseudocycles are central to the constructions of Gromov-Witten invariants for compact
semi-positive symplectic manifolds in 7, Section 7.1] and [10, Section 1].

The Borel-Moore homology H(X;Z) of a topological space X, also known as the homology with
closed supports and the homology based on locally finite chains, is introduced from a sheaf-theoretic
perspective in [I]. If X is compact, HY(X;Z) is just the usual singular homology H,(X;Z). On
the other hand, a closed oriented k-submanifold M in a manifold X determines a class [M]x in
H,lf(X ;Z), even if M is not compact. If X is an oriented n-manifold, HE(X ; Z) is Poincaré dual to
the singular cohomology H™*(X;Z) with respect to their pairing with the compactly supported
cohomology H, f(X ;Z). The purpose of the present paper is to provide an analogue of pseudocycles
for the Borel-Moore homology of a non-compact manifold X and a geometric way of representing
all cohomology of X. As indicated in [2 Section 1] and [3| Section 1], classes on non-compact
manifolds can be relevant even if one is interested only in compact manifolds.

A subset Z of a manifold X is of dimension at most k, which we write as
dim Z <k,

if there exists a k-dimensional manifold Y and a smooth map h: Y — X such that ZCh(Y). If
f: M — X is a continuous map between topological spaces, the boundary of f is the subspace

Bdf= () f(M-K)cCX,
KCM cmpt
where the overline —= denotes the closure in X. If A C X is a closed compact subset disjoint

from Bd f, then f~1(A)C M is compact. A continuous map f as above is called proper if f~1(A)C M
is compact for every compact subset A C X. If Bd f =0, then f is proper. If f is proper and X
is locally compact, i.e. every point of X has an arbitrarily small precompact open neighborhood,
then Bd f=0. If f: M — X is a continuous map from a compact space to a Hausdorff one, then

f is proper.
Definition 1.1. Let X be a smooth manifold.

(a) A smooth map f: M — X is a Borel-Moore k-pseudocycle if M is an oriented k-manifold and
dimBd f<k—2.

(b) Two Borel-Moore k- pseudocycles fo: My— X and f1 M7 — X are equivalent if there exist
a smooth oriented manifold M a smooth map f M — X, and closed subsets Yy C My and
Y1 C My such that

dim Yy, dimY; < k—1, OM = (M;—Y1)U—(My—Yp),

dimBd f <k—1, flao—vo = folao—ve,  Flan—vi = filan—v;-



(c) The k-th Borel-Moore pseudocycle group is the set HS'(X) of equivalence classes of Borel-Moore
k-pseudocycles to X with the addition induced by the disjoint union.

Example 1.2. If f: M — X is a Borel-Moore k-pseudocycle and Z C X is a closed subset of
dimension at most k—2, then f|y;_s-1(z) is also a Borel-Moore k-pseudocycle (with Bd f|y;_¢-1(z)
contained in (Bd f)UZ) and

fr M=[0,xM—{1}xf7(2) — X, f(t.p)=f(p).
is a Borel-Moore pseudocycle equivalence between f and f|;,_ F1(2)-

Theorem 1.3. Let X be a smooth manifold. There exist homomorphisms of graded abelian groups
U, HY(X;2Z) — HNX) and @, HN(X) — HY(X;7Z) (1.1)

that are matural with respect to proper maps such that ®,0V,=1d and ¥,o®,=1d.

A pseudocycle is a Borel-Moore pseudocycle f as in Definition [T such that the closure f(M)
of f(M) in X is compact. Two pseudocycles fy and f; are equivalent if there exists a Borel-Moore

pseudocycle equivalence f as in Definition [LI] such that f(M ) is a compact subset of X. The
set Hi(X) of equivalence classes of k-pseudocycles to X with the addition induced by the disjoint
union is also an abelian group. The analogue of Theorem [I.3] for pseudocycles and the standard
singular homology is [13, Theorem 1.1].

Remark 1.4. Let X, fo, fi1, f, Yy € My, and Y7 C My be as in Definition [[I[(b)l Identify a
neighborhood W of M in M with [0,1)xOM. The space

M = (MU[0,1]x (MgUM;)— {1} xYp— {0} xY7)/~,  where
M 3 po ~ (1,p0) €0, 1] x (Mo—Yo), M > py ~ (0,p1)€[0,1]x (M; —Y3),

is then a smooth oriented manifold with boundary M; L(—My). We can deform F, while keeping
it fixed on OM, so that it is constant on the fibers of the projection W — 9dM. The map

~

F:M—X, f(p)=F(@p) VpeM, [(t,p)=fr(p) ¥peM,, r=0,1,

is then well-defined and smooth. It satisfies the conditions in Definition with f replaced
by f and Yy, Y7 =0. Thus, D. McDuff’s idea of attaching two collars, which is used in the proof of
[13, Theorem 1.1], leads to a more relaxed, but equivalent, formulation of pseudocycle equivalence
than the traditional one, with Yp, Y1 =0).

Remark 1.5. As with [I3] Theorem 1.1], it is sufficient for the purposes of Theorem [[3] to require
Borel-Moore pseudocycles and equivalences to be just continuous. All constructions in this paper
would go through; Lemma[2.T]would no longer be needed. On the other hand, smooth pseudocycles
are more advantageous for transversality considerations.

The constructions in this paper and in [I3] are direct and geometric; both are motivated by the
outline proposed in [6, Section 7.1]. The proof of Theorem [[.3]is conceptually similar to the proof of
[13, Theorem 1.1], but the specifics are different because the Borel-Moore homology does not behave
like the standard singular homology. Inspired by [I1], we use the chain complex S}{fU};*(X i Z) of
singular chains that are locally finite in X and lie in a subspace U C X to adjust the construction



in [I3] to the setting of Theorem [[.3l The homologies Hi%},*(X ;7)) of this complex, HY(X;7Z)
of S¥(X;7Z), and HY(X,{U};Z) of the quotient complex

SH(XAULZ) = SH(XG L) /Sy (X 2) (1.2)

form an exact triangle. Given a Borel-Moore k-pseudocycle f to X, we construct an arbitrar-
ily small neighborhood U of Bd f with H‘l{fU},*(X ; Z) vanishing for [ > k—2 and define an ele-

ment [f]x.v in HEY(X,{U};Z). Via the aforementioned exact triangle, [f]x.y corresponds to an
element [f] in HY(X;Z). It is shown in [I3] that for each k-pseudocycle f there is an arbitrarily
small neighborhood U of Bd f with H;(U;Z) vanishing for [ >k—2; a class [f]x, is then constructed
in Hp(X,U;Z). Our neighborhoods U are more carefully chosen versions of the neighborhoods U
of [13]; see the proof of Proposition Bl

Section outlines the proof of Theorem [L3] in Section Bl This outline is nearly identical to
[13, Section 1.2], with the standard homology theory replaced by an appropriate homology theory
of locally finite singular chains. However, care needs to be exercised in actually implementing
this outline as we are now dealing with infinite chains. Section Pl thoroughly reviews the relevant
background on the Borel-Moore homology in a straightforward manner readily accessible to a broad
mathematical audience and provides the necessary tools to adapt the approach of [I3]. In order to
show that the Borel-Moore pseudocycles represent all of the cohomology of an oriented manifold,
we also give a relatively simple proof of a Poincaré Duality between the singular cohomology of
such a manifold and its Borel-Moore homology. Our proof is motivated by the approach of [8|
Appendix A], which shows that the compactly supported cohomology of an oriented manifold is
dual to its standard singular homology. Throughout the remainder of this paper, a manifold will
always mean a smooth manifold.

1.2 Outline of Section 3|

An oriented k-manifold is equipped with a fundamental class [M] € H}{(X;Z); see Proposition 2121
A smooth proper map f: M — X from such a manifold determines an element

[f] = f.IM] € H{(X:Z).

A Borel-Moore k-pseudocycle f: M — X need not be a proper map. However, one can choose a
closed k-submanifold with boundary, V C M, so that f |7 is proper and f(M —V) lies in a small
neighborhood U of Bd f. This implies that f|;; determines an element

[flxw = [fly] = £V] € B (X {U}Z).

By Proposition 3], U can be chosen so that Hy(X,{U};Z) is naturally isomorphic to H,lf(X i 7).

In order to show that the image [f] of f.[V] in H{(X;Z) depends only on f, we replace the chain

complex (L2)) by a quotient complex ?f(X ,{U};Z). The latter is the direct adaptation of the

complex S,(X) of [13] from the standard singular chains to the locally finite singular chains. The

homology HE(X, {U};Z) of ?f(X, {U};Z) is naturally isomorphic to HY(X,{U};Z), but cycles

and boundaries in this chain complex can be constructed more easily; see the last paragraph of
[13} Section 2.3].



A Borel-Moore pseudocycle equivalence f: M —3 X between two Borel-Moore pseudocycles
fri M — X, r=0,1,

gives rise to a chain equivalence between the corresponding cycles in EE(X AW} Z), for a small
neighborhood W of Bd f. This implies that

olxaw = [filxaw € B (X, AW} Z) ~ HE (X, {W} Z).

By Proposition Bl W can be chosen so that Hy(X;Z) naturally injects into H{(X,{W};Z).
Thus,
[fo] = [fi] € HE(X;2)

and the homomorphism ®, is well-defined; see Section B.4] for details.

The homomorphism W, is constructed by first showing that all codimension 1 faces of the simplices
of a cycle in Ef(X ;Z) come in pairs with opposite orientations; see Lemma [34l By gluing the
k-simplices along the codimension 1 faces paired up in this way, we obtain a proper map from a
simplicial complex M’ to X. The complement of the codimension 2 simplices in M’ is a mani-
fold; the continuous map from it can be smoothed out in a standardized manner via Lemma 211
This systematic procedure produces a Borel-Moore pseudocycle from a cycle in Eg(X ;7). A chain
equivalence between two k-cycles in ?g(X ;Z), {co} and {c1}, similarly determines a Borel-Moore
pseudocycle equivalence between the pseudocycles obtained from {cy} and {c;}.

In Section B.5] we conclude by confirming that the homomorphisms ¥, and ®, are mutual inverses.
As in [I3], it is fairly straightforward to show that the map ®,oW, is the identity on HY(X;Z).
Following the approach in [13], we then show that the homomorphism ®, is injective.

We now note some basic facts concerning proper maps that will be used in the proof of Theorem [I.3]
Lemma 1.6. Let f: M — X be a continuous map.

(1) If UC X is an open neighborhood of Bd f, then f\M_fﬂ(U) i$ a proper map.

(2) If X is Hausdorff and locally compact, then

Bd fly_pC (Bdf)Uf(B) VBCM.

(3) If f is proper, BC M s closed, and either M or X is Hausdorff, then f|p is also proper.
(4) If f is proper and X is Hausdorff and locally compact, then f is a closed map.

(5) If X is Hausdorff and admits a locally finite cover {A;}icz by compact subsets, M is normal
and locally compact, and BC M is a closed subset such that f|g is proper, then there exists an
open neighborhood W C M of B so that f|y is still proper.

Proof. We give a proof of the last statement; the remaining ones are straightforward. Since the
cover {A;}icr of X is locally finite, every compact subset A C M is covered by finitely many el-
ements of this collection. It is thus sufficient to construct a neighborhood W C M of B so that



Wnf=1(A;) is compact for every i €.

The cover {f~1(A;)}iez of M is locally finite and consists of closed subsets of M. For each i€ Z,
let
T ={jeT: AinA;#0} and Bi= |Jf'(4;)c M.
JET-TI;
By the compactness of A;, the collection Z; is finite. Since {f~!(A;)}icz_z, is a locally finite
collection of closed subsets of M, B is a closed subset of M disjoint from the closed subset f~1(A;).
Let U; C M be an open neighborhood of f~1(A;) disjoint from B¢. Since

{jeI: U;NU; #@} C UIk,
ke,

the open cover {U,};c7 is locally finite.

For each i € Z, BN f~1(A;) C M is a compact subset. Let V; C M be an open neighborhood of
BN f~Y(A;) so that V;C M is compact and contained in U;. Let

W= JVicM

1€T

Since the collection {V;};ez is locally finite,

W = UVZ C M.
i€l
For any 1€Z,
WnfA) = [JVnf 1 (A) € M.
JEL;
The above finite union of compact subsets of M is compact, as needed. O

2 Borel-Moore homology

2.1 Standard simplicies

In order to set up notation for the standard simplices, their subsets, and maps between them con-
sistent with [13], we reproduce most of [I3, Section 2.1]. The present section can be skipped at
first and referred to as needed later.

For k€729, let
(k] ={0,1,2,... k}.

For a finite subset ACR*, we denote by CH(A) and CH’(A) the (closed) convex hull of A and the
open convex hull of A, respectively, i.e.

CH(A):{Ztvv:tve[O,l]; Ztvzl} and

vEA vEA
CHﬂunzz{Ejmm;%e«Ln;2:%:4}.
vEA vEA



If BCR™ is also a finite set, a map f: CH(A)— CH(B) is linear if

f(}:mw>:=§:mf@) Vi,e[0, 4 st Y t,=1.

vEA veEA veEA

Such a map is determined by its values on A.
For each p=1,...,k, let e, be the p-th coordinate vector in R*. Put eg=0€R¥. Denote by
Ak:CH(eg,el,...,ek) and IntAk:CHO(eo,el,...,ek)

the standard k-simplex and its interior. Let

- (Sa) - (g ) e
k+1 p:op E+1"7 " k41

be the barycenter of AF.
For each p=0,1,... k, let

Ak = CH({e,: g€ [k]—{p}}) and  Int AF = CH’({e,: g€ [k]—{p}})
denote the p-th face of A* and its interior. Define a linear map

B eq,  if g<p;
lg;pt AF— A]; c A* by Lip(eq) = {eq L ifg>p
q+1> =P

We also define a projection map

4=
%;f: AF—{e,} — A'; by %S(theq> =

7 Ze)

0<q<k
q#p

Put

1
b = tplir)s Yy = g (B Yo ).

0<q<k
q#p

The points by, and b%;p are the barycenters of the (k—1)-simplex Al; and of the k-simplex spanned
by bx and the vertices of A'; . Define a neighborhood of Int A'; in A* by

q=k
Uzlf = {tpbp+ theq: tp >0, t,>0 Vg #p; thzl}
0<q<k 7=0

q#p
= (Int ABYUCH? ({eg: g€ [k] - {p}} ULty ));

see Figure[ll These disjoint neighborhoods are used to construct Borel-Moore pseudocycles out of
Borel-Moore homology cycles via Lemma 211



€2

eoT A% '61 eoT'.. A% €1
Figure 1: The standard 2-simplex and some of its distinguished subsets

If p,g=0,1,...,k and p#gq, let
k — Ak k
Ay, = ASNAY

be the corresponding codimension 2 simplex. Define a projection map

r=k
1
~k . Ak k ~k _
Tt A" — CH(ep, eq) — Ap’q by 7Tp’q<7§:0 trer) = m( E tTeT>.

0<r<k
T#D,q
We define a neighborhood of Int A’;’q in A* by
r==k
Upqg = {tpﬁk;p(b;f—l;%},(q))+tqbk;q(b;c—1;b,c;}l(p))+0<§;?e“ tlp,tg 20, 8, >0Yr#p, g; E% ty=1}
<r< r=

T#Dp,q
= (Int Allf,q) UCH? ({er: relk]—{p,q}}U {Lk;p(b;ﬁ_l;%;(q)), Lk;q(b;_1§5;}1(1’))}) ;

see Figure 2l These disjoint neighborhoods are used to construct Borel-Moore pseudocycle equiv-
alences out of Borel-Moore bounding chains via Lemma 2.1

Denote by Sy the group of permutations of the set [k]. We view the set Sy as a subset of Sy by
setting 7(k+1)=k+1 for each 7 €S. For any 7€ Sy, let

7 AP 5 AF

be the linear map defined by

Figure 2: The standard 2-simplex and a distinguished neighborhood of a codimension 2 simplex



Lemma 2.1 ([I3, Lemma 2.1]). Let ke Zt, Y C A be the (k—2)-skeleton of A*, and Y € AF+1 pe
the (k—2)-skeleton of AFT1. There exist continuous functions

Ok : AF — AP and D41+ ARy ARHL
such that

(a) @i is smooth outside of Y and $pi1 is smooth outside of Y ;

(b) for all p=0,...,k and T €Sk,

Pkl =7~T£|U5, PROT = TOPL; (2.1)

(c) for all p,q=0,...,k+1 with p#q and 7€ S11,
Prrlyrer = NS#‘U,&#? Pk+10T = TOPk11,  Ph+10Uk+1p = Lkt+1;pOPk- (2.2)

2.2 Basic definitions

Let R be a commutative ring with unity 1 and X be a topological space. For k € Z=°, denote
by Hom(A¥, X) the set of singular k-simplicies on X, i.e. of continuous maps from A to X. An
singular chain on X with coefficients in R, i.e. a map

c: Hom(A, X) — R, (2.3)
can be written as a formal sum

c= Z%U , a, € R. (2.4)
o€Hom(AF,X)

We identify Hom(AF, X) with a subset of such maps by defining

1, ifr=o;

. Vo, eHom(A*, X).
0, if r#o0;

o Hom(Ak,X) — R, o(t) = {

We say that a singular k-simplex o appears in a singular chain ¢ as in (23) and Z4)) if ¢(o) =a,
is not zero.

For a singular chain ¢ as in (23] and (2.4]), define

supp(c) = U o(AF) = U o(AF c X (2.5)
oc€Hom(AF X) oc€Hom(AF, X)
c(o)#0 ac7#0

to be the support of c. If a k-simplex o appears in ¢, then o(AF) Csupp(c). For UC X, let

R.(U) = {o € Hom(AF, X): ¢(0) #0, o(AM)NU #0}

= {aeHom(Ak,X): as £0, o(AFNU £0}. (26)

A finite singular k-chain on X with coefficients in R is a map c as in (23] such that the set N (X)
is finite. The R-module of such chains is the k-th module of the usual chain complex S.(X; R)



determining the standard singular homology H,(X; R) of X.

A Borel-Moore k-chain on X is a map c as in ([2.3) such that for every x € X there exists an open
neighborhood U, C X of = so that the set X.(U,) defined by (2.6)) is finite. If X is second countable,
at most countably many simplicies appear in a Borel-Moore k-chain on X. If X is Hausdorff, the
support (Z5]) of a Borel-Moore chain ¢ is closed in X. The set S}gf(X ; R) of Borel-Moore k-chains
on X with coefficients in R is an R-module under the addition and scalar multiplication of the
values of the chains on the k-simplices. This set contains Hom(Ak, X). We call a map

h: Hom(A", X) — S¥(X; R) (2.7)
rigid if
supp(h(o)) € o(AF) ¥ oeHom(AF, X). (2.8)
Lemma 2.2. Let X be a topological space. A rigid map h as in (2.7) induces a homomorphism
h: SH(X; R) — SY(X; R),

{h(}(r) = D clo)fh(o)}(r) € R ¥ 7€Hom(AP, X), c€SJ(X;R), (2.9)
o€Hom(AF,X)

extending (2.7) such that
supp(h(c)) C supp(c) Y ce SE(X; R). (2.10)

Proof. Let c€ S¥(X;R) and 7€ Hom(AP, X). By the compactness of 7(AP) C X, there exists an
open neighborhood U, of 7(AP) in X such that the set X.(U;) is finite. By ([2.5) and (2.8),

{oeHom(AF, X): c(0){h(0)} (1) £0} C {o€Hom(AF, X): c(0) £0, 7(AP) Csupp(h(o)) }
C {JEHom(Ak,X): c(o)#0, T(AP)CJ(Ak)}
C {o€Hom(A*, X): ¢(0) £0, o(AF)NU, #£0} = R.(U,)

Thus, the sum in (2.9) is finite.

Let c€ SIf(X;Z), x € X, and U. be an open neighborhood of z in X such that the set R.(U.) is
finite. For each o € Hom(A*, X), let U, be an open neighborhood of = in X such that the set

Rp(0)(Us) = {7 €Hom(A?, X): {h(0)} () £0, T(AP)NU, #0}

is finite. The subset
U.=Un (U, CX
UENC(UC)

is also an open neighborhood of z in X. By (2.8,
N, (o) (Ue) C {7 €Hom(AP, X): 7(AP) Co(AF), T(AP)NU A0} =0 ¥ 0 €R(X) R (Ty).

Combining this with ([2.9]), we obtain

R (Ua) € URnoy W) = Ry Ux) € |Ruo) (U,

gER(X) oeR.(Ue) o€R(Ue)

10



Since the last set above is finite, we conclude that h(c) ES}f(X i R).

It is immediate that the map h in (29) is a homomorphism of R-modules and restricts to (2.7).

By (23 and (Z5),

{reHom(AP, X): {h(c)} (1) #£0} € | J{r€Hom(AP, X): {n(0)} () #0}
oeR(X)
C U {r€eHom(AP, X): 7(AP) Csupp(h(0))} C {r €Hom(AP, X): T(AP) Csupp(c)}.
o€Hom(AF, X)
o(AF)Csupp(c)

This establishes (2.10). O

In the notation of ([2.4)),

h(c) = Zaah(a)

o€Hom(AF,X)

Each h(o) is a formal sum. By the first part of the proof of Lemma [2.2] each p-simplex 7 appears
in only finitely many chains k(o). Thus, the implicit double sum above can be reduced to a single
sum as in (24]). By the second part of the proof of Lemma 22, h(c) satisfies the required local
finiteness condition.

A map
h: Hom(AF, X) — SJ(AF; R)=S,(A% R) (2.11)
induces a rigid map
h:Hom(AF, X) — S,(X;R),  h(o) =ox(h(o)), (2.12)

and thus a homomorphism
h=hy: S} (X;R) — S)(X; R).

If k€Z™, the boundary homomorphism

dx: SH(X;R) — SE (X;R), 0x Z%U = Z Z YPag (o) (2.13)

occHom(Ak,x) oscHom(ak, x)p=0
is induced by the constant map

k
h: Hom(A*, X) — Sf [ (A R),  h(0) = Opridar =D (—1) iy
p=0
By Lemma 2] the homomorphism (2I3)) is thus well-defined. We define dx on S{(X; R) to be
the zero homomorphism. It is immediate that 83( =0. The quotient

ker(Ox : SE(X; R) — S (X5 R))

HYX:R) =
k(X5 R) Im((‘)X:S}fH(X;R)—>S,1€f(X;R))

11



is the k-th Borel-Moore homology module of X with coefficients in R. If X is compact, (SY¥(X;R),dx)
is the usual singular chain complex (S, (X; R),dx) and the Borel-Moore homology modules are the
standard homology modules with coefficients in R.

For q€Z=Y, let
S9(X; R) = Homg (S4(X; R), R)

denote the usual R-module of the R-valued p-cochains on X. For each a€ S?(X; R), the map
an: Hom(APT?, X)) — Sll,f(X; R), ano = a(o?)%o,

where Po and 07 are the p-th front and ¢-th back faces, respectively, of a singular (p+¢)-simplex o,
is rigid. By Lemma [2.2] this map thus induces a homomorphism

N: Sq(X;R)®RSE+q(X;R) — S;,f(X;R), a@u — anp. (2.14)

This cap product restricts to the cap product on S9(X; R)®pgSp+q(X; R) in the standard singular
theory defined in [9), Section 66]. The homomorphism (2.14)) satisfies

dx (anp) = (—1)P(6xa)Np + an(Ox p) VaeSP(X;R), u Sll,erq(X;R), (2.15)
where 0x =0%. Thus, (ZI4]) descends to a homomorphism
N: HY(X; R)®r H), (X; R) — H)(X; R).
2.3 Basic properties
Let X be a topological space. We call a collection of maps
hi: Hom(AF, X) — S.(A%; R), kez2°, (2.16)
a pre-chain map if
k
Ik (W(0)) = Z(—l)p{Lk;p}#(h(UOLk;p)) V o eHom(A* X)), kez>°. (2.17)
p=0
A pre-chain map h determines a chain map
hy: SY(X;R) — SY(X;R), (2.18)

not necessarily preserving the grading, via (ZI2]) and Lemma A linear combination of pre-
chain maps is a pre-chain map.
Let A be a collection of maps as in (2.16]). A null-homotopy for 7 is a collection of maps
Dy: Hom(AF, X) — S,..1(A% R), kez>°,
such that
k
Oan (Dn(o) Z {Lkm}# (Dn(oouy) v oceHom (A, X), kez>". (2.19)
p=0

In such a case,
hy = OxDpu + Dpy0x: SY(X;R) — SY(X; R),

i.e. Dpy is a chain homotopy from Ay to the zero homomorphism.
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Lemma 2.3. Let X be a topological space and
hi: Hom(A*, X) — S,(A*; R), kez>", (2.20)
be a pre-chain map. If h vanishes on Hom(A, X), then there exists a null-homotopy
Dy: Hom(A*, X) — Siy1 (A% R), kez=",
for h.

Proof. We take D = 0 on Hom(A° X). Suppose k € Z* and we have constructed Dj on
Hom(A!, X) with [ <k so that it satisfies (ZI9) on Hom(A!, X) with [ <k. Let o € Hom(A*, X)
and

k
) = D (D urp s (Dn(oouy)).

p=0
For k£>2, the inductive assumption gives
k
Oar(ce) = Opr (A(0) =Y (—=1)Ptips (Oar—1 Dy(ootkp))

p=0

k k-1
= Oar (R(0)) — Z(_l)pbk;p#< OOLkp) — Z Lk—l;q#Dh(UoLk;poLk—l;q» :
p=0 q=0

The terms in the double sum cancel in pairs, while the remaining difference vanishes by (2.I7). For
k=1, (ZI7) and the vanishing of 4 and Dj on Hom(A% X) imply that

OarCo =0
in this case as well. Since Hy(AF; R) is trivial, there exists
Dpo € Sii1(AF; R) st. Oar(Dr(0)) = co .
This completes the inductive step. O

A Hausdorff topological space X’ is locally compact if for every point z € X’ there exists an open
neighborhood U, of z in X’ such that the closure U, of U, in X' is compact (if X’ is not necessarily
Hausdorff, there are various versions of this definition that are equivalent for Hausdorff spaces).

Lemma 2.4. Let f: X — X' be a proper map between topological spaces. If either X is compact
or X' is locally compact, then the map

f: S{(X5R) — (X R),
{fa(0)} (1) = ZC(U){fOO'}(T) € RV re€Hom(AP X'), (2.21)

oc€Hom (A, X)

is a well-defined homomorphism of chain complexes and

supp(f#(c)) C f(supp(c)) V ce SY(X;R). (2.22)

If g: X' — X" is another proper continuous map and either X' is compact or X" is locally
compact, then
(9of) u=gpofy: SH(X:R) — S{(X"; R). (2.23)
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Proof. If X is compact, the map (2.21]) is the composition

SE(X;R)=S.(X;R) — S.(X";R) — S¥(X";R).
The first arrow above is the pushforward homomorphism of the standard singular homology theory.
For all c€ S{(X; R) and 7€ Hom(AP, X'),

{o € Hom( (AF X): (o){ foo}(r) 7&0}:{JGHom(Ak,X):c(J)#O,T:foa}
{aeHom(Ak,X): c(0)#0, a(ARYNFHT(AP)) £0} C R (fF7H(7(AP).

If f is a proper map, then f~1(7(AP)) is a compact subset of X and thus the last set above is
finite. This implies that the sum in (2.21]) is finite.

For all c€ SY(X; R) and U C X',
Ny, 0(U) C {foo: c€Hom(AF, X), c(0)#0, f(o(AF)NT #0} = {foo: ceX.(fHD))}.

If f is a proper map and U C X’ is compact, then f~1(U) is a compact subset of X and thus the
last set above is finite. This implies that fx(c)€ S¥(X; R) if in addition X’ is locally compact.

It is immediate that the map fy in (Z2I)) is a homomorphism of R-modules intertwining x and Jx-
and that (2:23) holds. Furthermore,

{7 €Hom(AP, X"): {f4(c)}(1)#£0} C {foo: o €Hom(A, X), ¢(0)#0} VceSH(X;R).
This establishes (2.22]). O

In the notation of (2.4]),
fa@= D ag(foo).

oc€Hom (A, X)

By the second paragraph in the proof of Lemma 2.4l each p-simplex 7 in X’ appears only finitely
many times in this sum. Thus, the sum above can be reduced to a sum as in (2.4]). By the third
paragraph in the proof of Lemma 4], f.(c) satisfies the required local finiteness condition. The
corollary below is an immediate consequence of Lemma 2.4

Corollary 2.5. Let f: X — X' be a proper map between topological spaces. If either X is
compact or X' is locally compact, then the composition of the k-simplicies to X with f induces a
homomorphism

for HY(X; R) — H)(X'; R).

If g: X' — X" is another proper continuous map and either X' is compact or X" is locally
compact, then
(gof)* =gs0 fi: H}kf(X; R) — Hif(X”; R).
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2.4 Subcomplexes and quotients

For a collection A of subsets of a topological space X, let
Su(X;R) C SY(X;R)
denote the subset of chains ¢ such that

{0 €Hom(A*, X): c(0) £0} C | JHom(AF, U) VEkez?.
UeA

This subset is a chain sub-complex of S¥(X; R). We denote its homology by H}L{;*(X ;i R). Let

S¥(X; R)

SYH(X, A R) = TG R)

be the quotient complex and H. lf(X A, R) be its homology. If W C X contains every U € A, then
Slf L(X; R) is a sub-complex of S{W} (X;R). In such a case, let

sgfw} (X;R)

Sty (X AR) = =g ey

be the quotient complex and H (Wi (X ,A; R) be its homology.

By definition, S{y,  (X;R)=S¥(X;R). f UCW CX and W C X is compact, then

{ X}
Stwy (X AU} R) = 5.(W,U; R) (2.24)

is the standard relative simplicial complex for the pair (W, U). If A is a collection of subsets of X
and {Wy: U € A} is a locally finite collection of disjoint subsets of X with union W so that U C Wy,
for every U € A, then
Sty (XA R) = T[Sy (X {UY R). (2.25)
UcA

Lemma 2.6. Let X be a topological space and A be a collection of subsets of X with union W C X.
If
W= J(Intw0),
UcA

there exists a pre-chain map (2.20) such that
oy (h(0) € S (X;R) Vo eHom(AF W),  h(o)=idax YoeHom(AF,U), Ue A, (2.26)

Proof. This lemma is established in [12, Appendix I] in different terminology. For any topological
space Y, let

sdy: S«(Y;R) — Su(Y;R) and Dy: Si(Y;R) — Si11(Y;R)

be the barycentric subdivision operator and a natural chain homotopy from sdy to the identity
on S,(Y; R); see [9, Section 31]. In particular,

sdy —idg, (v;R) =0y Dy +Dy0y: Si(Y;R) — S«(Y;R). (2.27)
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By [9, Theorem 31.3],
m(o) = min{mGZZO: sd)’?aeSlf;*(X; R)} < o0 Yo eHom(AF, W).
In particular, m(c)=0if o € Slf;*(X; R) and m(ooty,q) <m(o) for all ¢=0,1,..., k. Define (2.20]) by

k m(o)—1
h(o) = Sdzlgg)idAk — Dk Z(—l)qz sd Anthsg € Sp(AF: R).

4=0  r=m(coLk,)
By (ZZ7) and the naturality of sdy and Dy, the collection of maps & with k€Z=° defined in this
way is a pre-chain map. By construction, this collection satisfies (2.26]). O
Remark 2.7. The proof of Lemma [2.6] defines a pre-chain map f as in (2.20) only on
Hom(A*, W) ¢ Hom(A*, X),

which suffices for our purposes below. We can define /(o) for ¢ in Hom(AF, X)—Hom(A*, W) by
taking m(o)=0 if o does not map any of the simplicies of A* to W and the largest value of m(c|as)

taken over the simplicies A’ C A such that o(A’) CW if such a simplex A’ exists.

Corollary 2.8. Let X be a topological space and A be a collection of subsets of X with union
wWcX. If

W= J(Intw0),
UeA

then the inclusion of SY._ (X; R) into Sl{fW} (X; R) is a chain homotopy equivalence. If in addition
WCY CX, then the homomorphzsm

Hyy, (X, A R) — Hiyy (X W) R)
induced by this inclusion is an isomorphism.

Proof. Let h be the pre-chain map of Lemma [2.6] (and Remark 2.7)). By Lemma 2.3 applied to the
pre-chain map

Hom(AF, X) — Si(A¥;R), o h(o)—idar,  keZ2O,

the homomorphism
Mt Sy (X5 R) — S (X5 R) C Siyy. (X5 R)

induced by h is a chain homotopy inverse for the inclusion of Slf .(X; R) into S}{fW} (X;R).

The second claim follows from the commutativity of the diagram

L —— HY (X)) —— H‘l{fy}

Pk P

| (X) ——= Hly ) (X, 4)
S H}fw} LX) — H‘l{fy} (X) — H‘l{fy} L(X WY — H}fw};k_l(X) — ..

HI ()

where the rows are the long exact sequences for the pairs
Sh+(X;R) C Sy (XGR) and Sy (X5 R) C Sy (X5 R)
with the coefficient ring R omitted, the first claim, and the Five Lemma. O
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For U CW C X, denote by

the inclusion homomorphism and the induced homomorphism on homology. If in addition W CY C X,
denote by

Jivy: S{Y} (X, {U}R) — S{y} (X,{W}hER) and
s H{y} (X AU R) —>H{y} (X, {W}R)
the homomorphisms induced by the inclusion U C W and the induced homomorphism on homology.
Corollary 2.9 (Mayer-Vietoris). Let X be a topological space and U,V C X be subsets such that
UUV = (IntyuyU) U (IntguyV).

Then there is a homomorphism

0: H{UUV} (X5 R) —>H}fUmV};*_1(X;R),

which is natural with respect to the homomorphisms induced by the admissible inclusions U C U’
and V. CV', so that the sequence

) (LU,UﬁV*,LV,UﬁV*)

9 1f .
L — H{Uﬂv};k(X7R

Hiry,(X; R)® H 0. (X5 R)

LUV, U —LUuV,V*

0
Hiyoyy (X5 R) == Hipayyg 1 (X5 R) —
of R-modules is exact.

Proof. For A ="U,V, let 14 : S
sequence

(A} LJX5R) — S}fUV} (X;R) denote the inclusion. The short

(tv,unv,tviunv)

of chain complexes is exact. Thus, the claim follows from the Snake Lemma and the first claim of
Corollary 2.8 with A={U, V'}. O

Corollary 2.10 (Relative Mayer-Vietoris). Let U,V C X be as in Corollary and W C X be
such that UUV CW. Then there is a homomorphism

0: H{W} (X {UUV}R) _>H{W}* (X AUNVER),

which is natural with respect to the homomorphisms induced by the admissible inclusions U CU’,
VeV, and WCW’, so that the sequence

W W
Ut.voveIV.uavs)

—>H{W}k(X7{UﬂV};R) ’ ’ H{yyy,(X AU )& H{yyy (X AV R)

W
jUUV,U*_]UUV,V

Hyy (X, {UUV}; R) 2, Hyyg (X, AUNVE R) —

of R-modules is exact.
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Proof. For A=U,V, let

denote the homomorphism induced by the inclusion ¢4 in the proof of Corollary 2291 The short
sequence

W W
) (JU,UmVJV;Umv)

0 — Sy (XAUNVER Stwss (X AUR DO Hiyyy, (X, {U}; B)

of chain complexes is then exact. Thus, the claim follows from the Snake Lemma and the second
claim of Corollary 28 with A={U,V} and Y =W. O

Corollary 2.11 (Excision). Let X be a topological space and U,W C X be subspaces such that the
closure of X —U in X is contained in Int W. Then the homomorphism

bt Hiyy (X, {UNW Y R) — HN(X,{U}; R) (2.28)
induced by the inclusion (W, UNW)— (X, U) is an isomorphism.

Proof. Let A={U,W}. The homomorphism (2.28) is induced by the composition

St (X:R St (X:R 1/ y.
Slf{W}’*( X,)R - Sl y*( XR) - Slf* (X"XRJ)R (2.29)
{UOW};*( 1) {U};*( ; R) {U};*( i R)

of homomorphisms of chain complexes. The first homomorphism above is an isomorphism. By the
assumptions, the interiors of U and W cover X. By the first claim of Corollary 2.8 and the Five
Lemma, the second homomorphism in (Z29]) thus also induces an isomorphism in homology. O

2.5 Fundamental class

For a topological space X, subsets AC BC X and W C X, and a class ,uGH?W}_*(X, {W—-B}; R),
we denote by
,U|A € Hxl{fVV},* (X7 {W_A}7 R)

the image of © under the homomorphism
H{iyyo (X, AW =B} R) — H{lyy, (X, {W - A} R) (2:30)
induced by the inclusion (W, W —B) — (W, W — A).

Let X be an m-manifold and B C X be a ball (open or closed) around a point x € X. By
Corollary 21T with W =B, (224)), and the Kunneth formula,

R, ifk=n;

Hy (X AX —{z}} R) & H{py, (X AB— {2} R) = Hy(B,B—{2}: R) = {{0}, otherwise.
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An R-orientation for X at 2 € X is a choice of generator ., € H¥(X, X —{z}; R). An R-orientation

for X is a collection (uz)zex of R-orientations for X at z so that for every z € X there exist a
neighborhood U C X of = and py € HY(X,{X ~U}; R) such that

pol, =y € Hy (X AX—{y}sR)  VyeU.

An R-oriented manifold is a pair (X, (uz)zcx) consisting of a manifold X and an orientation (p)zex
for X. By Proposition 2I(3)| below with A= X, an R-oriented n-manifold (X, (j1;)zex) carries a
fundamental class

(X]=px € HY(X,0; R)=HY(X; R).

Proposition 2.12 (Fundamental Class). Let X be an n-manifold and AC X be a closed subset.
(1) For every k>n, H(X,{X—A}; R)=0.
(2) An element pa€ HY(X,{X—A}; R) is zero if and only if

pal|, =0€ H (X AX—{2};R) VazcA

(3) If (z)wex is an R-orientation on X, there exists a unique pa€ HY (X, {X —A}; R) such that

pal, = pe € Hi(XAX—{e}sR) V€A (2.31)
Proof of Proposition [Z.14(1)[(2)} The proof is divided into four steps.

Case 1. Suppose A is compact. Let U C X be a precompact open neighborhood of A. By
Corollary 211l with W =U and (2.24),

If . ~ r7lf . _ .
HY(X {X~ A R) ~ HY, (X, {U~A:R) = H (U,U~A;R). (2.32)
The two claims in this case thus follow from [8, Lemma A.7].

Case 2. Suppose A is the union of a locally finite collection A of disjoint compact subsets of X.
Let {Up: B € A} be a locally finite collection of disjoint precompact open subsets of X so that
BcUg for every B€ A. Let U C X be the union of the subsets Ug. By Corollary 211l with W =U

and (2.25]),

~ [[H{v, (X, {Us—B}; R) ~ [[HI(X,{X-B}R). (2.33)
BeA BeA

The composition of the above isomorphism with the projection to the B-th component of the
product is the restriction homomorphism

HY (X, {X-A};R) — H!Y(X,{X-B};R). (2.34)

The two claims in this case thus follow from Case 1.
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Case 3. Suppose Aj, As C X are closed, A = A1UA,, and the two claims hold for the subsets
Ay, Ay, A1NAs of X. By Corollary 210l with W =X, U=X—-A;, and V =X — A, there is an exact
sequence

o HL (X {X - A1NAs)s R) — HY (X, {X—A};R) 235
— HI(X X - A RSHN(X, {X~As}sR) — ...

Thus, the two claims also hold for A.

Case 4. A is arbitrary. Let {4;};cz be a locally finite collection of compact subsets of X such that
A=JAi  and  ANA; =0 if [i—j|>1.
€L
By Case 2, the two claims hold for the subsets
Aota = | JA2ic1,  Acven =|J A2, and  AggaNAcven = | J AiNAip
i€Z icZ i€
of X. By Case 3, the two claims hold for A=A,34UAcven as well. O

Proof of Proposition[2.14(3). The uniqueness of 114 follows immediately from the second claim
of the proposition. The uniqueness property implies that

par = palar € HY(X,{X-A'};R) (2.36)
whenever A’ C A and an element puy € HY(X, {X — A}; R) satisfying (Z31]) exists. The existence

proof is again divided into four steps.

Case 1. Suppose A is compact. Let U C X be a precompact open neighborhood of A. The claim
in this case follows from ([2:32)) with *=n and [8, Theorem A.8§].

Case 2. Suppose A is the union of a locally finite collection A of disjoint compact subsets of X.
Let {Up: B€ A} and U C X be as in Case 2 in the proof of Proposition ZI2(1)I(2)l Since the
composition of the isomorphism (2.33]) with the projection to the B-th component of the product
is the restriction homomorphism (2.34]), the preimage p4 of the element (up)pea under this iso-
morphism satisfies (2.31]).

Case 3. Suppose A1,As C X are closed, A = AU Ay, and the claim holds for the subsets
Ay, As, ANAy of X. By the first claim of the proposition, the long exact sequence (Z35]) be-
comes

0— Hy(X,{X—-A}R) — HY(X {X-A }; R)oH) (X, {X—A}; R)
— HY(X {X-A1NA};R) — ...

By ([235]), ,UA1’A10A2 =HAINAy :NAz‘AﬂWAz’ Thus, there exists
pa€ Hy(X{X—A}R) st pala,=pa, pala,=pa,.

Since paly=pa,ls for all x € A;, pa satisfies (Z37]).
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Case 4. A is arbitrary. Let {4;}icz be as in Case 4 in the proof of Proposition 212(1)lf(2)l By
Case 2, the claim holds for the subsets

Aoga=|JAzicr  and  Agyen = | Az

i€Z i€z
By Case 3, the claims holds for A= A,qqU Acven as well. O

2.6 Poincaré Duality

For a collection A of subsets of a topological space X and a subset W C X containing every U € A,
the homomorphism (ZI4]) induces a homomorphism

n: SYW, R)®RS{W}p+q(X A;R) — S{W}p(X,.A; R).
The latter in turn induces a natural homomorphism
N HUW; R)®©rH g (X, A R) — Hihy (X, A R). (2.37)
For U,W'CcW, let
{oww},: H{W,}p(X {UnW'};R) — H{W}p(X, {U};R)
be the homomorphism induced by the inclusion (W', UnW') — (W, U). By the naturality of (2.37]),

{eww b, (alw)np) = an({eww (i) € Hiyy, (X, {U}; R)

2.38
VOéEHq(W,R), MEH{W’};]J-{-Q(X’ {UﬂW'},R) ( )

For subsets U, W of a topological space X such that the closure of X—U in X is contained in Int W
and pe HY(X,{U}; R), we denote by

plw € Hiyy. (X, {UNW} R)

the preimage of p under the excision isomorphism (2.28)). If W/ C W is another subset such that
the closure of X —U in X is contained in Int W', then

{LXW’} —{wa} {LWW’} H{W’ (X {UQW} R) —)H{W} (X, {UQW},R)

— HY(X,{U}:R) (239

and thus

{oww}, (ulwr) = plw € Hiyy(X,AAUNWYR) Vpe HI(X,{U};R). (2.40)

Let (X, (pg)zex) be an R-oriented n-manifold, AC X a closed subset, and

pa € HY (X, {X-A};R)
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the fundamental class provided by Proposition 2.12(3)l Suppose Us C X is an open neighborhood
of A that deformation retracts onto A. Thus, the restriction homomorphism

H*(Uy;R) — H*(A;R), a— alyg,

is an isomorphism. It follows that the homomorphism
PDau,: H*(A; R) — H,_, (X, {X—A}; R), (2.41)
PDa.v, (a|A) = {Lx,UA}*(om(,uMUA)) VaGHk(UA;R),

is well-defined.

If BD A is another closed subset of X and Ug C X is an open neighborhood of B that deformation
retracts onto B and contains Uy,
pa=ppla € Hy (X, {X-A};R),
{ews0a}. (palus) = palvs = (48ls)| 4 € Hipyym (X, {Us—A}; R) (2.42)

by the uniqueness part of Proposition ZI2(3)] ([2.40), and the commutativity of the diagram

"A Hlf

Hiyyy,. (X AUs =B} R) {Us}se

|

HY(X,{X-B};R)

(X,{Up—A}; R)
lz (2.43)
HY(X,{X-A}R).

A

Along with (238)), (242)) gives

{wp.vat, (aluaN(palv,)) = an(palvy) = en(uslu,)a)
= (aN(uBlus)) 4 € Hiyyym k(X {Us—A};R) YaeH*Usg;R).

Combining this with (2:39) and the commutativity of (Z43]), we conclude that the diagram

“A

H*(B; R) H*(A; R)
PDB;UBl lPDA;UA (2.44)

A

HY  (X,{X-B}R)

HY  (X,{X-A};R)
commutes.

By the commutativity of (2.44]) with A = B, the homomorphism (2.41]) does not depend on the
choice of Uy if A is a neighborhood retract, i.e. every open neighborhood W C X of A contains
an open neighborhood Ug of A that deformation retracts onto A. This is in particular the case
if AC X is a closed submanifold with corners. If A C X is a closed neighborhood retract, we
denote by

PDy4: H*(A;R) — HY_, (X, {X—A};R) (2.45)
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the homomorphism (2.41]) for any admissible neighborhood Uy of A. For A= X, this homomor-
phism is given by

PDy: H*(X;R) — H)_,(X;R),  PDx(a)=an[X].

If AC BC X are closed neighborhood retracts, the commutativity of (2.44]) implies that the diagram

H*(B; R) i H"(A; R)
pDBl lpDA (2.46)
H' (X, {X-B}R) 4 H' (X, {X-A}R)

commutes as well.

Proposition 2.13 (Poincaré Duality). Let (X, (uz)zex) be an R-oriented n-manifold. If AC X
is a closed n-submanifold with corners, the homomorphism (2.43)) is an isomorphism.

Proof. The proof is again divided into four steps.

Case 1. Suppose A is compact. Let U C X be a precompact open neighborhood of A that
deformation retracts onto A. Combining the isomorphism (2.32]) with the homotopy invariance of
the standard singular homology for (U, U—A)~ (A, 0A), we obtain

HY(X,{X—-A}R) ~ H.(A,0A4; R). (2.47)

Since p14 corresponds to the standard fundamental class [A, 0A] € H,, (A, 0A; R) under this isomor-
phism, the diagram

H*(A; R) H*(A; R) oY
l/PD(A,BA) lPD(A,BA)

H.(A,0A; R) an[A, 0A]

PDA;U\L

HI (X, {X—A}; R) —220

~
~

commutes. Since (A4,09A) is a compact topological manifold with boundary, PD(44) is an iso-

)

morphism by the compact case of [8, Exercise A.1] and the (M, A, B) = (A,0,0A) case of [4],
Theorem 3.43]. Thus, PD 4,y is an isomorphism as well.

Case 2. Suppose A is the union of a locally finite collection A of disjoint compact subsets of X so
that each B € A is an n-submanifold with corners. Let {Up: B€ A} and U C X be as in Case 2

in the proof of Proposition 2.12(1)i(2)|so that each Up deformation retracts onto B. In particular,
the restriction homomorphisms

H*(A;R) — H*(B;R) and H*(U;R) — H*(Up;R)
induce isomorphisms

H*(A;R)~ [[H*(B:R) and H*(U;R)~ [[H*(Us;R), (2.48)
BeA BeA
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respectively. Since pg corresponds to (up)pea under the isomorphism (2:33]), the diagram

2.48)

~
~

H*(A; R) [1H.(B; R)
BeA

[1PDBw
PDa.v lBEA B

2.33)

~
~

HY(X,{X—-A4};R)

[THY (X, {X-B};R)
BeA

commutes. Thus, PD 4. is an isomorphism by Case 1.

Case 3. Suppose A1, As, AijNAs C X are closed n-submanifolds with corners which satisfy the claim
and A= A{UA,. For a subspace BC X, let

H.(B)=H!X,{X-BhZR) and ¢*(B)=H*(B;R).
Let Ajo=A1NAs. For i=1,2, define

it H(A) — H(Ai), Jit Hi(Ai) — Hi(Arz),
b H(A) — (A, G A (A) — A (Arg)
to be the homology homomorphisms as in (2.30) and the usual cohomology restriction homomor-

phisms. By Mayer-Vietoris for the standard singular cohomology and Corollary with W=X,
U=X—-A, and V=X — Ay, the rows in the diagram

(e1:43)

e Y (Ary) = ok (A) 2 kA @ (As) HF(Arg) ...

|
PDA12\L PD4 PDAl@PDAz PDAlQ

Ji—Js

(¢1,02)

e Sy i1 (Arg) L A (A) e A (AN B A (Ad) e A (Arg) 2>

are exact. The second and third squares above commute by the commutativity of (2.46]). By (242
and (23], the first square commutes up to the multiplication by (—1)"~%*!. Since the homomor-
phisms PD4,,,PD4,,PDy4, are isomorphisms, the Five Lemma implies that so are the homomor-
phisms PD 4.

Case 4. A is arbitrary. Let {A;};cz be as in Case 4 in the proof of Proposition ZI2(1)li(2)| so
that all A;, A;NA; C X are compact n-submanifolds with corners. By Case 2, the claim holds for

the subsets
Aota = | JA2ic1,  Acven =|J A2, and  AggaNAcven = | J AiNAip
i€Z i€Z i€Z
of X. By Case 3, the claims holds for A= A,3qU Acven as well. O

Remark 2.14. Let AC X be a closed submanifold with corners and f: X — R a proper smooth
function. Choose a collection (a;);cz of regular values of f and its restrictions to the strata of A
so that

a; < a; Vi<j, lim a; = —o0, lim a; = cc.
i—>—00 —>00

A decomposition as in Case 4 can then be obtained by taking A; = f~1([ai_1, a2i12]).
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3 Proof of Theorem [1.3

3.1 Homology of neighborhoods of smooth maps

The next proposition is an analogue of Proposition 2.2 in [I3] for the Borel-Moore homology groups
used in this paper.

Proposition 3.1. Let h: Y — X be a smooth map between manifolds, AC X be a closed subset
so that ACh(Y), and W C X be an open neighborhood of A. There exists an open neighborhood
UCW of A such that

H}fU};l(X;R) =0 if I>dimY.

If h: Y — X is a smooth map and k is a nonnegative integer, put
Ni(h) = {yeY :rkdyh<k}.
Proposition B1] follows from Lemma [B.2] applied with k=dimY'.

For a simplicial complex K, we denote by |K| a geometric realization of K in a Euclidean space
in the sense of [9], Section 3] and by sd K the barycentric subdivision of K. The simplicies of sd K
are the sets

T:bol...boj E{bgl,...,boj} with oq,...,0;€K, 01C...Coj.

=

In a geometric realization |K|=|sd K|, b, corresponds to the barycenter of the simplex o€ K. For
1€72°, denote by K;C K the [-skeleton of K.

For a simplex o € K, let
St(o, K) = UInto" C |K|

o'eK
oCo’

be the (open) star of o in K see [9] Section 62]. Its closure in |K| is the closed star

St(o, K) = U lo’| C |K|
o'eK
oCo’

of o in K and is in particular compact.

A triangulation of a manifold X is a pair T' = (K,n) consisting of a simplicial complex and a
homeomorphism 7: |K|— X such that 9| » is smooth for every simplex o € K.

Lemma 3.2. Let h: Y — X be a smooth map and k € Z=°. For every closed subset AC X such
that ACh(Ng(h)) and an open neighborhood W C X of A, there exists an open neighborhood U CW
of A such that

Hip(X;R) =0 if 1>k (3.1)

Proof. Let n=dim X. Since the open subsets X — A, W C X cover X, there exists a triangulation
T=(K,n) of X such that the image of every simplex o € K is contained either in X —A or in W.
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By the proof of [14], Theorem 1], we can also assume that the smooth map h is transverse to 1|t »
for every o€ K. In particular,

h(Ne(h) Cn(|K|~|Kn1-k) = [ n(nto).
ceK
dimo>n—k

Since AC h(Ng(h)), it follows that

AcU= [Jnnto)= | Jn(Stlbs,sdK) c | Jn(lo) cW.

ceK ceK ceK
dimo>n—k dimo>n—k dimo>n—k
n(lo)NA#D n(lo[)NA#D n(lo[)NA#D

We show below that the open neighborhood U CW of A satisfies (BI]), adapting the proof of [13]
Lemma 2.4].

For each m€[n], let
Un=|Jn(St(bo,sd K)) c W.

ceK
dimo=m
n(o)NAZD
For mq,...,m; €[n] with m; <...<m;, let
Amy.m; = {(01,...,0]-)6sz 01C...Coj, dimoy=mq, ..., dimoj=m;, n(al)ﬂA#@}.
We note that
St(by,sd K) N St(byr,sd K) =0 if oo and cpo’,

St(bg,,sd K) N ... N St(bs,,sd K) = St(bg, . ..by,;,sd K) iforC...Coj.

Thus, every intersection Uy, N...NUy,, with m; <...<m; is a disjoint union of the open stars
n(St(bo, - - - by, 8d K)) with (o1,...,05) € Amy..m;-

Since the collection n(St(by, - .. by;,sd K)) with (01,...,05) € Ap,.m; is locally finite in X and
consists of disjoint subsets, (2.25]) gives

H~1{fUmlﬂ...ﬂUmj};*(X; R) = HH~1{f77(St(bgl...bgj sd i) (X5 R) (3.2)

(0'17~~~70'j)€.Am14.4mj

for all mq,...,m; € [n| with m; < ... < m; . Since the closure of each contractible subset
n(St(bo, - .. bg;,8d K)) in X is compact, ([2.24) gives

H};(St(balmbafde»};l(X;R) = Hy(n(St(bg, ... by, sd K); R) =0 YV I#£0, (01,...,05) € Amy..m;-
Combining this with (3.2]), we obtain
H{y, i, ja(XsR) =0 V121, (3.3)
By induction on j=1,2,..., Corollary 2.9 (Mayer-Vietoris) and ([B.3]) give
Hi,. .o, 12X R) =0 V12,

Since U =U,,_xU...UU,, this gives ([B.1]). O
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3.2 Oriented Borel-Moore homology

The construction of the oriented singular chain complex S,(X;Z) in [13, Section 2.3] readily ex-
tends to locally finite chains. Cycles are much easier to construct in the resulting quotient chain

complexes gf(X ; R) and gf(X,{U};R). By Proposition 3.3 below, the homologies ﬁf(X i R)
of gf(X;R) and Fif(X, {U};R) of gf(X,{U};R) are naturally isomorphic to HY¥(X;R) and
HY(X,{U}; R), respectively.
For k€Z2" and 7 €Sy, let

7 =Idpr — (sign7)7 € Sp(AF; R).

For a topological space X, let
Si(X;R) C Si(X;R)

be the R-submodule generated by the chains 04(7) € Si(X; R) with o € Hom(A*, X) and 7 € &.
In the notation (24]), define

S/lf(X;R) = { Z Z%TJ# (X R): aU7T€R}.

o€Hom(AF, X) TESK
In the perspective of ([2.3), S{(X; R) consists of the singular chains c€ S¥(X; R) such that
c‘s o €{ou(d)sp0: €S (AF;R)} VoeHom(A*, X), where Spo = {ooT: TE€Sk}.
If in addition U C X, let
Stn(X; R) = Sy (X RINSI(X; R).

By [13, Lemma 2.6], 07 € Sy_1(A¥) for all 7€S), and k€Z=°. Thus, S™(X; R) is a subcomplex of
(S¥(X; R),0x) and Sflf]}_ (X; R) is a subcomplex of (S{U} (X;R),0x). Let

Slf(X R) —If S}{fU} (X5 R) c 3"
§“(X-R)

SAXAURR) = ==
Sins (X5 R)

We denote the image of a Borel-Moore singular chain c€ S¥(X; R) in ?}f(X ; R) by {c}, the induced
boundary operator on Eg(X : R) by Ox, and the homologies of the above three chain complexes by
HE(X ;i R), H{{fU};*(X ; R), and HE(X ,{U}; R), respectively. The quotient projection maps on the
chain complexes induce homomorphisms

—If
H/(X;R) — H,(X;R), {U} (X R) — Hyy . (XiR),

3.4
HY (X, {U}R) — b (X, {U};R). 34

If h: X — Y is a proper continuous map between topological spaces and f(U)CW CY, the
induced homomorphism
hy: SY(X;R) — S.(Y;R)
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takes 5%15};*(X ; R) into S?{V};*(Y; R). Thus, hy induces homomorphisms

he HYX;R) — Hy(Y;R),  he: Hipyu(X; R) — Hiyy. (Y3 R),
he: Y (X, {U};R) — H- (Y, {W}; R).
Proposition 3.3. For any topological space X, the homomorphisms (3.4) are isomorphisms.

Proof. The natural transformation of functors Dy : S, — Siy1 provided by [I3] Lemma 2.7]
satisfies

Dx (Si(X;R)) C Spy1(X;R) and OxDx

= {(-1)*"'1d + Dx0x}| (3.5)

SL(XGR) S,.(X;R)

Define
h: Hom(A", X) — S0 (AR R),  K(0) = Dak (idax).

By the naturality of Dx (or [13] (2.11)]),

Dx =hy: Sp(X;R) — Sp+1(X; R).
By Lemma 22l Dy thus extends to a homomorphism

Dx=hy: S} (X;R) — S, (X5 R),
which is natural with respect to proper continuous maps. By (B.3]),

Dx (S (X;R)) C Spt (X;R) and aXDX|SQf(X;R) = {(—1)k+11d—|—DX8X}|S;€H(X;R). (3.6)

Thus, all homology groups of the chain complex (S7(X; R), dx/| sni(x;R)) vanish. Combining this
with the homology long exact sequence for the exact sequence of chain complexes

0 — SM(X;R) — S¥(X;R) — S (X;R) — 0,
we conclude that the first homomorphism in ([84]) is an isomorphism.

Since DX(S‘I{fU};k(X; R)cSE

{U}ik+1 (X§ R)7

Dx (S{{y(X; R) C S{yu1(X;R) and 0xDx = {(-1)"™1d + Dx0x}

Sty (XGR) Sty (XiB)’

Along with the second statement in (B.6) and the homology long exact sequence for the exact
sequence of chain complexes

0— Sf{l(f]},*(X7R) — S}[fU},*(XﬂR) — g{{fU};*(AXV;R) — 0,

this implies that the second homomorphism in (34]) is an isomorphism. The claim for the third
homomorphism in (4] follows from the homology long exact sequence for the exact sequence of
chain complexes

—lIf —If —If

the claims for the first two homomorphisms, and the Five Lemma. O
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If X is a manifold, the operator Dx of [13, Lemma 2.7] sends smooth maps into linear combinations
of smooth maps. Thus, the above constructions go through for the chain complexes based on ele-
ments in C*°(A¥, X) instead of Hom(AF, X). The two chain complexes define the same homology
groups of X by Whitney Approximation Theorem [5, Theorem 6.21]. In Sections B.3H3.5] all chain
complexes and homology groups are based on smooth maps.

From now on, we restrict the coefficient ring R to Z. We call a tuple (0;);ez of elements of Hom(AF, X)
locally finite if for every x € X there exists an open neighborhood U, C X so that the set

R(ps)iez (Uz) = {i€T: 0i(AF)NU, #0}

is finite. For any such collection,
c=) o€ Si(X;2). (3.7)
i€l

If k€ Z™", every element of Eg(X ;Z) can be represented by a chain as in ([3.7) for some locally
finite tuple (0;);cz of elements of Hom (A, X).

For ¢ in (37)), let
Be = {(i,p): i€Z, pelk]}.

Lemmas B.4] and 3.5 below will be used to glue the summands in chains ¢ as in (3.7)) that represent

cycles and bounding chains in gf(X ;Z) into smooth maps from manifolds. The two lemmas are
the direct extensions of Lemmas 2.10 and 2.11 in [13] to the Borel-Moore chains. They hold for
the same reasons because the local finiteness conditions implies that each boundary simplex o;ot.,
with (i, p) € B. appears only finitely many times in dxc.

Lemma 3.4. If k€Z" and the chain (3.7) determines a cycle in gg(X;Z), there exist a subset
D.C B.x B, disjoint from the diagonal and a map

T:De — Sp—1, (i1, 21), (i2,2)) = T3y p1),(i2,p2)»

with the following properties:

(i) if (i1,p1), (i2,p2)) € D¢, then ((iz, p2), (i1,p1)) € De;

(ii) the projection D.— B, on either coordinate is a bijection;

(iii) for all ((i1,p1), (i2, p2)) €D,

-1 — ) ) —
T(il,Pl),(iz,pz) - T(i27p2)7(i17171)7 04y OLk?PloT(il,pl),(lz,pg) - O-ZzoLk;pz, (38)

and SIGN (i) p1),(i2,p2) = —(—1)PrtP2, (3.9)

Lemma 3.5. Suppose k > 1, (00.i)icz, and (o1.i)icz, are locally finite tuples of elements of
Hom(AF, X), (0i),c7 is a locally finite tuple of elements of Hom(A*1, X)), and

=Y oo, = o ¢=Y .6, 0{c={at—{c}eSyX;2). (3.10)

i€Zp 1€l ieT
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Then there exist a subset Dz C Bz x Bz disjoint from the diagonal, disjoint subsets Béo),Bél) C Bz,
and maps

T DE — Sk7 ((ilypl)v (i27p2)) — ?(il,pl),(iz,pg)y

(tryDr): I, — Bg), and Tr: Ly — Sk, 1 —> Ty, =01,

with the following properties:
(i) if (i1, p1), (i2, p2)) € Dz, then ((iz,p2), (i1,p1)) € Dg;

(ii) the projection Dz— Bz on either coordinate is a bijection onto the complement ofBéO)UBg);

(iii) for all ((i1,p1), (i2, p2)) € Dg,

~ _1 ~ ~ ~ ~
T(i1,p1),(G2,p2) — T(i2,p2),(i1,p1) Tiy Olk+13p1 O T(i1,p1), (i2,p2) = iz Olk+1ipas (3.11)
and sign 7~—(i1,1>1),(i27102) = _(_1)p1+p2; (3.12)
(iv) for all T=0,1 and i€ A,,
'a}r(i) Oll+ 15, (i) O?(Tvi) = Ory and sign :7:/(7‘71') = —(—1)T+55T(i); (313)

(v) (tr,Dr) is a bijection onto Bg) forr=0,1.

Suppose V is an oriented k-manifold with boundary and (K, 7) is a triangulation of V' that restricts
to a triangulation of OV . Let
K'oP — {UEK: dimazk‘}.

For each k-dimensional simplex o€ K, let
lo: A¥ — o C |K| C R® (3.14)

be a linear map such that the composition nol, is orientation-preserving. The fundamental class
V] Gﬁg(v, OV';Z) of M is then represented by

> {nol,} € S (V. {aV}:2).
oeKtop

The corresponding sum

Z nol, € SE(V,{0V}; 2)

ocEKtop

may not be a cycle. If f: V — X is a proper map and U C X is a subset containing f(9V), then
(V] Gﬁg(X, {U};Z) is represented by

>~ {fonels} €5, (X {U}:2):

ocKtop

by the properness of f, the collection {fonol,},cxtor is locally finite in X.
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3.3 From integral cycles to pseudocycles

In this section, we extend the constructions of [I3, Section 3.1] from finite to locally finite singular

chains and obtain the first homomorphism in (II]). We start with a cycle {c}egg(X ;Z) as in
Lemma B4 and replace each singular simplex o; by its composition with the self-map ¢ of A*
provided by Lemma 2l The functions ooy still satisfy the second equation in (B8], i.e.

044 O‘pkobk;plOT(il,pl),(ig,pg) = 03 OPkOLE:psy v ((ilapl)v (i27p2)) GDca (315)

because ¢y restricts to the identity on the boundary of AF. This allows us to glue the maps
0; 0y into a proper map F' from a k-dimensional simplicial complex M to X. Removing the
codimension 2 simplicies, we obtain a Borel-Moore pseudocycle in the proof of Lemma In the

.. . . —lf .
proof of Lemma [3.7] we use a similar procedure to turn a bounding chain {c} €S}, (X;Z) into
a Borel-Moore pseudocycle equivalence between the Borel-Moore pseudocycles determined by its
boundaries.

Lemma 3.6. Let X be a manifold and k€ Z=". Every integer locally finite singular k-chain c as
in (37) with o;€ C®°(AF; X) for all i€ T representing a cycle in ?}f(X; Z) determines an element
of H{(X).

Proof. If k=0, (0;);e7 is a discrete collection of points of X. Thus,
F:M=M=7 — X, F(i) = 04(0),

is a Borel-Moore 0-pseudocycle in X.

Suppose k>1. Let
D. C B.xB, and 7:D.—>Sk_1

be the subset and map corresponding to ¢ as in Lemma [3.4l Define

M = < |_|{z} X Ak) ~, where (3.16)
1€l
(i1, thipr (T )2 ) ~ (B2 thipo (8) Y (G1,1), (B2, p2)) €De, tE AN
Let m be the quotient map and
F:M — X, F([i,t]) = oilpe(t) VieZ, teAFtL (3.17)
This map is well-defined by (3.I5]) and continuous by the universal property of the quotient topology.

Since the maps 7(;, ;). (i»,p,) are linear automorphisms of AF=1 M’ is homeomorphic to a geometric
realization of a simplicial complex. Thus, M’ is a Hausdorff topological space, and 7 is a closed map.
By the local finiteness of (0;);cz, the set

{ieZ: F(r({i}x AF)NA#£D} =R, (A)

is finite for every compact subset AC X. Since m({i}xA*)C M’ is compact as well, it follows that
F is a proper map. Since X is second countable, 7 is countable, and thus M’ is second countable.
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With Y C A¥ denoting the (k—2)-skeleton, let M C M’ be the complement of the subset
YCE77<|_|{Z'}><Y> c M. (3.18)
i€l

Since M’ is Hausdorff, Y. C M’ is closed, and F is a proper map,
BdFly = F(Y.) = | Joi(en(V) = | o:(Y); (3.19)

1€T 1€
the last equality holds by the first equation in (21I). Since 0| Ar is smooth for all i €Z and all

simplices A’ C A*, Bd F|5; has dimension at most k—2 by ([B.19).

By the above, F'|js is a Borel-Moore k-pseudocycle, provided M is an oriented manifold and F|y,
is a smooth map. These are local statements, and (2) in the proof of [13] Lemma 3.2] applies
verbatim. O

Lemma 3.7. Let X be a manifold and k € Z=°. Suppose cy,c1 are integer locally finite singular
k-chains as in (3I0) with o,;€ C®(AF; X) for all i € I, representing cycles in gg(X;Z) and
(M], M,, F,) with r=0,1 are the triples corresponding to cy,c1 via the construction of Lemma[3.4.
Every integer locally finite singular (k+1)-chain € as in (310) with o;€ C™(AFTL: X)) for all i€l
determines a Borel-Moore pseudocycle equivalence between the pseudocycles Fo|n, and Fi|, -

Proof. If k=0, there are subsets Dgcf x 7T and ICSO),ZS) 7 and bijections

oL, —1I0, r=0,1,
such that the projections
D; —I-7" and Dy — I

on the first and second component, respectively, are bijections,
0iy (1) = 04,(0) V (i1,42) € D5, 5;7,(,')(7‘) =0,(0) VieZ,, r=0,1.

The space
M= (U{z‘}xAl)/N, where (i1, 1) ~ (i2,0) ¥ (i1,i2) € Dz,

i€l

is then an oriented one-dimensional manifold with boundary OM = M 1—Mj. Similarly to the proof
of Lemma [3.0], the map

F:M—X, F(li,f]) =5((t),

is well-defined, continuous, proper, and smooth. Since F In,. = Fry Fisa pseudocycle equivalence
between F():FO‘MO and Flel‘Ml-

Suppose k>1. Let
D:C B:xBs, BY BV cB;, 7:D:i— 8k (npr): L — BT, 7T, — S,

c ~¢
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be the subsets and maps corresponding to ¢ as in Lemmas As detailed in [13], Section 3.1],
@p41=1d on OAFTL the third equation in (Z2), the second equation in (Z.I)), and the first equation

in B.13) give
07, (i) OPk+10Pk+1 L4155, (i) OT(ryi) = Ori®Pk YV i€L,, r=0,1. (3.20)

Furthermore, ;41 = id on OAFT! the third equation in (2.2) used twice, the second equation
in (2)), and the second equation in (B.I1]) give

Tiy OPk-+10Ph+19Uk+13p1 OT(iy pi1 ), (i,p2) = Oia OPh+10Pk+1%Uk+1;p, ¥ (d1,P1), (42, p2) €Dz (3.21)

Define
M = ( |_|{z} X Ak“) ~, where
€L
(ilv Lk+1;p1 (;(ilvpl),(iz,m)(t))) ~ (i27 Lk+1;p2 (t)) v ((ilvpl)v (i2’p2)) 6'55, te A",
Let 7 be the quotient map and
F:M — X,  F(li,t]) =5(Prei(pri1(t) VieZ, te AL

This map is well-defined by (B.2I)) and is continuous by the universal property of the quotient
topology. By the same reasoning as in the proof of Lemma[3.6] M is a second countable, Hausdorff
topological space, 7 is a closed map, and F' is a proper map.

With ¥ C AP denoting the (k—1)-skeleton, let M C M’ be the complement of the subset
Y = %( |_|{z'}><17) c M.
1€T
Since M’ is Hausdorff, YzC M is closed, and Fisa proper map,
Bd Flg; = F(Yz) = |5 (Brr (e (V) = [ 5:(Y). (3.22)
i€ ieZ

Since &;|mg o/ is smooth for all i € Z and all simplices A’ C AF+1 Bd F| 77 has dimension at most

k—1 by [B3.22]).

For r=0,1, let ¥, C M, denote the union of the images of the open (k—1)-simplicies of A* under
the quotient map 7 in the proof of Lemma (this is also the intersection of M, with the union
of the images of the closed (k—1)-simplicies of A* under 7). The maps

b Mo=Y, — M, o ([0t]) = [56), kg (Fri(8)] Vi€, tent AF,
are well-defined embeddings with disjoint images. By (3.:20) and (317,
Fou = Fly _y, .
Thus, F | 77 1s a Borel-Moore pseudocycle equivalence between the Borel-Moore k-pseudocycles

Folar, and Fi|ar,, provided M is an oriented manifold, F |37 is a smooth map, ¢9,¢1 are smooth
embeddings, and .
oM = Ll(Ml—Yl)) LJ—L()(M()—Y()).

These are straightforward local statements, which are established as in (3) in the proof of [I3]
Lemma 3.3]. O
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3.4 From pseudocycles to integral cycles

We next adapt the constructions of [13], Section 3.2] from pseudocycles to Borel-Moore pseudocycles
and obtain the second homomorphism in (I.I]). As indicated in Section [[.2] we first define a homol-
ogy class [f]x., of a pseudocycle f relative to a nice neighborhood U provided by Proposition B.1]
and then pull it back to the absolute Borel-Moore homology of the target.

Lemma 3.8. Let X be a manifold and k € ZZ°. Every Borel-Moore k-pseudocycle f: M —s X
determines an element of H(X;7Z).

Proof. By Proposition B] there exists an open neighborhood U C X of Bd f such that
Hyna(X;2) =0  Vi>k-2
Thus, f|y— s-1(v) is a proper map and the homomorphism
H(X;2) — Hy (X, {U}2) (3.23)

induced by inclusion is an isomorphism. Let V' C M be an open neighborhood of M — f~1(U) so
that fl;- is still proper and V is a manifold with boundary. This manifold inherits an orientation
from M and thus defines a homology class

V] € HL(V, {0V} 2).

Put

Fxw = (7)) € BYx y:2) S22 B (x o), (3.24)
where
fo HE(V AV Z) — Hy(X,{U}Z) (3.25)

is the homology homomorphism induced by the proper map f|-.

Suppose V' C X is an open neighborhood of V so that f |V' is also proper and V' is a manifold

with boundary. Choose a triangulation of V' extending some triangulation of (GV)U((?V/); such a
triangulation exists by [0, Section 16]. Since f(V'—V)CU, the classes

£ (7)), £o(V)) € FL (X, {U}; Z)

are represented by cycles that differ by singular simplices lying in U; see the last paragraph of
Section It follows that

— — —f
£ (V) = £(V]) € Hy (X, {U}; 2).
Thus, the homology class [f]x.r is independent of the choice of V.

Suppose U’ C U is an another open neighborhood of Bd f. By the previous paragraph, we can
choose V for U and V' for U’ to be the same. Since the isomorphism (B.23]) is the composition of
the isomorphisms

H,\(X;Z) — Hy(X AU} Z) — Ty (X AU} Z)
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induced by inclusions and the homomorphism (3.29]) is the composition
H(VAOVEZ) — H (XU} Z) — H (X {U)Z),

the homology classes in ﬁg(X ; Z) corresponding to [f]x.y and [f]x,u are the same. Thus, the ho-

mology class [f] in Fg(X ; Z) corresponding to [f]x.r under the isomorphism (B.23)) is independent
of the choice of U as well. O

Lemma 3.9. Let X be a manifold and k€ Z=°. If Borel-Moore k-pseudocycles fo: My— X and
fi1: My — X are equivalent, then

[fo] = [f1] € HY(X:Z).

Proof. Let f: M — X be a Borel-Moore pseudocycle equivalence between fy and fi as in Defi-
nition [LT(b)l By Remark .4, we can assume that Yp, Y1 ={). By Proposition B.I] there exists an
open neighborhood U C X of Bd f such that

Hipy(X:2)=0  Vi>k-1.
Thus, ﬂﬁ_ 1 is a proper map and the homomorphism
Hy(X;Z) — H(X,{U}:Z) (3.26)
induced by inclusion is injective.
For r=0,1, let U, c U, be an open neighborhood of Bd f, C Bd fsuch that
Hiyyu(X;2) =0 V1>k-2. (3.27)

Let V. C M, be a choice of an open subset for (f,,U;) as in the proof of Lemma 3.8l Since the
restriction of f to the closed subset

B = (M—ﬁr)UV(]UV1 C ]\7

is proper, Lemma [L.G(5)| implies that there exists a neighborhood W C M of B so that ﬂW
is still proper and W is a manifold with boundary and corners (with the corners contained in
OM —V o —V1). We note that

FOW =VouWi) = F((W -W)U(WN(MoUM;)—VoUV;i) € UUU,UU; = U. (3.28)
For r=0,1, let
i HE(X,{U 1 2) — HE(X,{U};Z)  and
vigont HE (Ve {0V} Z2) — HY (W, {OW = VUV Z)

be the homomorphisms induced by inclusions.

35



Choose a triangulation T= (.r? ,1) of W that restricts to triangulations of Vo, 9V, V1,9V 1 and OW.
Let
Ktop — {UEK: dimazk—i—l}.

For r=0,1, put
K, ={0ceK:n(o)CV,}, K = {0€K,: dimo=k}.
For each o€ K% and o€ K, let
lo: AMY o C |K| and lo: AF — 6 C |K,|,

respectively, be as in (3.14)). By our assumptions,

82{770[0} + Z Z{nol } € S{aW Vouvl}k(M; Z).

UEKtop r:(] 1 O_eKtop

Along with (3.:28)), this gives
0> {fonole} = > {fionols} — Y {foonols} € 5(x,{U}; 7). (3.29)
oEKtoP ceKioP o€KP

For r=0,1, let [f,]x., € HX(X,{U,};Z) be as in the proof of Lemma 3.8 and

[fr]x;(} = LX;T*([fr]X;Ur) € Hllcf(Xv ﬁQ Z)'
Since the diagram

{Fl=}

HYV,, {0V} Z) H{ (X {U,};Z)

Lv;T*l \LLX;T*

HI (W, {0W —VouVi };Z) — o jif(x, {0);7)
commutes, _
fTXU {f|W} (LXT‘* ])) Gka(X,U;Z).

By the last paragraph of Section [3:2] the first term and the second term on the right-hand side
of [.29) represent [f1] v and [fo] 7, respectively. Thus,
e ([fol ) = exix ([Alxn ) € HE (X, U3 Z).
Since the diagram
af(x:z) — 2 () 2)

{ex;14} T
LX 1% f* ~
HI (X, {th};2) HI(X,{U};2)

of homomorphisms induced by inclusions commutes and the diagonal homomorphism is injective,
the classes [fo], [f1] GH}f(X;Z) corresponding to [fo]x,v, and [fi]x,u, are the same. O
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3.5 Isomorphisms of homology theories

In order to establish that the homomorphisms of Theorem [[.3]as constructed in Section [B.3]and [3.4]
are isomorphisms and mutual inverses, we first show that

®,0V,=id: HY(X;2) — HY(X;7).
We then show that the homomorphism @, is injective.

Lemma 3.10. Let X be a manifold and k € Z=°. Suppose c is an integer locally finite singular
k-chain ¢ as in (3.7) with o; € C®°(AF; X) for all i € T representing a cycle in gg(X;Z) and
(M', M, F) is the triple corresponding to ¢ via the construction of Lemma [Z.6. The homology
class [F|pr] obtained via the construction of LemmalZ8 then satisfies

[Flm] = [d € HY(X;Z). (3.30)

Proof. For k=0, the claim clearly holds on the chain level. Thus, suppose k> 1. Since the self-map
¢y, of Lemma 2.1] restricts to the identity on AF,

(pk—idk = 8Ak3k S Sk(Ak, Z) (331)
for some sy, € Sp41(A*; Z). Define

h: Hom(A*, X) — S,(AF;Z), h(o) = ok,
h: Hom(A*, X) — 841 (AF; Z), h(o)

Sk -
By Lemma and ([B31I)), the homomorphisms
hy: SEX;Z) — SE(X;Z)  and  hy: SEH(X;Z) — SE(X;Z)
induced via (2.9) and (Z12]) are well-defined and satisfy
hiy(d) —d =0x (71#(0/)) € Si(X;7) v e SH(X; 7).

In particular,

Zaiogpk - Zai = hy(c)—ce OSEH(X;Z). (3.32)

€L 1€T

Let m be the quotient map of the proof of Lemma and U C X be a neighborhood of Bd F|y,
as in the proof of Lemma 3.8 Choose a manifold with boundary V' C M containing M — F~1(U)
as in the latter proof so that (V,0V) admits a triangulation T'= (K, n) with each k-simplex of T
contained in 7({i} x A*) for some i €Z. Let

K'tor — {a: dimazk‘}.
For each o€ K'*P choose a linear map
lo: A¥ — o C |K]| (3.33)
so that the map nol, : A¥ — M is orientation-preserving. For each i€Z, let

K;={oeK:n(o)cn({i} x AR}, K® = {oc€K;: dimo=Fk}.
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Let T, = (R’,, 7;) be a triangulation of a subset of A¥ that along with K; gives a triangulation of A¥.
Put
K{® ={oeK;: dimo=k}.

By definition of T and F,
ni(o) C FTHU), {oiopr}(ni(o) cU ¥ ce K iel. (3.34)

Furthermore, by (3.32)

{e} =D Hoiop} =D > foiopronolst + Y > {rioproiiols} € Sp(X;2); (3.35)

(1SVA 1€ s ftop 1€L ;e top
3 3

the second equality above holds because subdivisions of cycles do not change the homology class. By
the proof of Lemma[3.8] the first sum on the right-hand side of (3.35]) represents the image [F'|ar]x.r

of [F|p] under the isomorphism (3:23]). By ([B3.34]), the second sum lies in gl{fU}; :(X;Z). Since the

sum of these two sums represents a cycle in ?}f(X ), it must represent [F'|p/] in ?}f(X ;Z). This

gives (B.30]). O

Lemma 3.11. Let X be a manifold and k € Z2°. Suppose f: M — X is a Borel-Moore k-
pseudocycle such that the homology class [f] provided by Lemma vanishes. Then [ represents
the zero element of H{(X).

Proof. The case k=0 is straightforward and very similar to the k=0 case of the proof of Lemma[3.7]
Thus, we assume that k>1. By Example [.2], we can also assume that f~'(Bd f)=0

By the first countability of the topology of X and PropositionB.I] there exists a sequence {U, },.cz+
of open neighborhoods of Bd f in X such that

U, DUppy VreZt, (U, =Bdf, and HJ (X;Z)=0 VI>k-2 (3.36)
r=1

By the first condition above, the closed subset M — f~(U,) C M is contained in the open subset
M—f=1(U,41). Thus, we can choose submanifolds with boundary V., C M as in the proof of
Lemma [3.8 so that

M—fYU)cV,cV,c M—fYU,;1) VreZ'.

By the second condition in (3.36]),

Uvio M- (T0) =M—f'(Bdf) =
r=1 r=1
i.e. the open collection {V, },cz+ covers M.

Choose a triangulation T'= (K, n) of M that extends triangulations of all V. (which are pairwise
disjoint). Let

KtoP = {JEK: dimo*:k‘}, B, = {(a,p): o€ K", sz,l,...,kz}.
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For each 0 € K*P let I, be as in (3.33). Put
fo = fonoly: AF — X ¥V oeK'™P and (3.37)
D, = {((Ulvpl)v (0’2,]92)) €B,xBy: (01,p1) # (02, p2), lol(A’Sl):l@(A’;JCIKI}-
For each (o1, p1), (02,p2)) €Dy, define
Torpi(o2p2) € Sk=1 DY oy Olkip OT (o1 p1) (02.p2) = Lo Olhsps-
Since M is an oriented manifold,
D, C B, xB, and 7: Dy — S

satisfy (i)-(iii) of Lemma 34l with the subscript c=7 and the maps o replaced by f,. Furthermore,
the geometric realization |K| of K is the topological space ([B.16) with (Z,c)=(n, K*P) and

fonom|ywnr = fo V o€ K™P,

where 7 is the quotient map as in the proof of Lemma

For each r€Z™, let
K® ={oeK'?:n(0)CV,}, By, ={(0,p)€By:0€KP}, Dyy=DyN(ByyxByy).

By the construction of [f] in the proof of Lemma and by the last paragraph of Section [3.2]
there exists a Borel-Moore singular chain

cr = me € S}fUT};k(X;Z)
€L,

such that "
> {fo} +{e} €5(X;2) (3.38)

JEKﬁOp

is a cycle representing [f]. Similarly to Lemma [3.4] there exist a symmetric subset
D, C (B, UB.,)x (By,-UB.,)
disjoint from the diagonal and a map
7Dy — S
such that
(i) Dy, CD, and 7|p,,, =T|D, ..
(ii) the projection map D, — By, UB,, on either coordinate is a bijection;

(ili) for all ((i1,p1), (i2, p2)) € Dy,

-1 — . . ) — )
Tri(inp) (isps) = Trilizp2) ipr)s  Jriin Olhkipy OT(inp ) (i2,p2) = Jriio Olhipas

and SIGN Tr: (i1 p1), (i2p2) = —(=1)Prtr2,

where f., = f, for all o€ K;°P.
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Since every Borel-Moore singular chain ([8.38)) is a cycle,

S {fo} Hat —{ea} e EI{fUrfl};k(X; Z)

€K P — K

is a cycle as well. By the third condition in (3.36), this cycle is a boundary. Since [f] =0 by
assumption, this conclusion also holds for r=1 with Uy=X, K(t]Op:(Z), and ¢y=0. Let

~ ra —lf
&= fri € S,y (X Z) (3.39)
i€z,

be a Borel-Moore singular chain such that

ST{f) Hed — ey = x{@ ) € Sy, ya(X:2).

cEKP K,
Summing this equation with r replaced by r’ from 1 to r, we obtain

Z {fo} +{cr} = 0x i{’c},} eSN(X;Z) VreZ'. (3.40)

ceEKLP r'=1

Similarly to Lemma B0 (3.40) implies that there exist a subset
_ _ T
Bl cB.=| |B:,,
r’'=1
a symmetric subset ﬁn Cgr X gr disjoint from the diagonal, and maps

T 'ZST — S, ((i17p1)7 (i27p2)) — ?TQ((i17P1)7(i27p2))’
(i, Dr): KIPUZ, — Bf, and 7: KPPUT, — S, i — T,
such that

(1) 57"—1 Cﬁ?‘) ;r|5T71 :5:7“—1, and (Zraﬁra;r”K;iPl = (Zr—lyﬁr—ly?r—lﬂK;CiPl if 7'22;

(ii) the projection D, —» B, on either coordinate is a bijection onto the complement of gf ;

(iii) for all (i1, p1), (ia, p2)) € DN (Bz, X Bz,,) with ri, 2 €[r],

Crl

~_1 ~

TG )s(iapa)) = Trillizp2),ip0)r Trasin Ok lipy OTrs((i1 1), (i2,p2) = frasio Olh+1ipa

. " (3.41)
and SN T ((31,p1), (i p2)) = —(— 1P P25
iv) for all o€ K;P— K,
(iv) t
ﬁ?TT(U)OLk+1§5r(U)O7A:(T,o) = fcr and Sign ;(T,i) = —(—1)57(0)7 (342)
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(v) (Zy,Pr) is a bijection onto B

Put
M = < | | U{r}x{z’}xAk“) ~,  where
r=lie7,
(r1 15 ety (T 1), G2 2)) (D)) ~ (72582, 12 (2)
¥ (i1, p1), (i2, p2)) Gﬁrﬂ(Ba.IXBa.z), ri, 79,7 €LT, te AF,
Let 7 be the quotient map. Define

f: M — X, f([r,z’,t]) = ﬁ;i(cpkﬂ(t)) V te ARFL iei}, reZr,

where @11 is the self-map of AR provided by Lemma Il Since 4 restricts to the identity
on OAF*1 the map f is well-defined by the second condition in (3:41I) and continuous by the
universal property of the quotient topology. Similarly to the proof of Lemma [3.6] the restriction
of f to

%( U{r}x{i}xAk“) c M

i€,

is proper for every r€Z*. By (3.39), ﬁ/;i(AkH) C U, for all v >r. Thus,

Bdfc (U, =Bdf. (3.43)

r=1

Let M C M’ be the complement of the subset
%( U U{r}x{z}x?) c M,
r=04eZ,
where Y € AF+1 is the (k—1)-skeleton as before. By Lemma and (3:43),
Bd f|7 € (Bd f) U U U Fri(ersa (V) = (Bd f) U U Jfri(¥) (3.44)
r=1;c7, r=1;eT,

Since ﬁ;ihm A 18 smooth for all ieir, reZ*, and all simplices A’ c AF+1 Bd ﬂ 77 has dimension
at most k—1 by (B.44]).

Let Yy C M denote the image of the (k—1)-skeleton of |K| under . The map

Ly M—Yf — M
vy (s @) = [7,%:(0), tht15, (o) (T ()] V o€ KP— K%, reZt, telnt A
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is a well-defined embedding. By the first condition in (3.42]) and (3.37),
forp = fla—y, -

Thus, ﬂ a7 18 a Borel-Moore pseudocycle equivalence between the Borel-Moore k-pseudocycles f

and (), provided M is an oriented manifold, F |1\7 is a smooth map, ¢ is a smooth embedding, and
8M = Lf(M—Yf).

These are again straightforward local statements, which are established as in (3) in the proof of
[13, Lemma 3.3]. O
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