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INTERIOR REGULARITY FOR STRONG SOLUTIONS TO A CLASS

OF FULLY NONLINEAR ELLIPTIC EQUATIONS

JONAH A. J. DUNCAN

Abstract. We obtain local pointwise second derivative estimates for W 2,p-strong
solutions to a class of fully nonlinear elliptic equations on Euclidean domains,
motivated by problems in conformal geometry.

1. Introduction

Let Ω ⊂ R
n (n ≥ 2) be a domain. For a positive function u : Ω → R, denote by Au

the symmetric matrix-valued function

Au = ∇2u− |∇u|2
2u

I,

where I is the n× n identity matrix, and denote by λ(Au(x)) ∈ R
n the eigenvalues of

the matrix Au(x). In this paper, we obtain local pointwise second derivative estimates
for positive solutions u ∈ W 2,p

loc (Ω) ∩ C
0,1
loc (Ω) to equations of the form

f(λ(Au(x))) = ψ(x, u(x)) > 0, λ(Au(x)) ∈ Γ for a.e. x ∈ Ω, (1.1)

where f and Γ are assumed to satisfy the following standard properties1:

Γ ⊂ R
n is an open, convex, connected symmetric cone with vertex at 0, (1.2)

Γ+
n = {λ ∈ R

n : λi > 0 ∀ 1 ≤ i ≤ n} ⊆ Γ ⊆ Γ+
1 = {λ ∈ R

n : λ1 + · · ·+ λn > 0}, (1.3)

f ∈ C∞(Γ) ∩ C0(Γ) is concave, 1-homogeneous and symmetric in the λi, (1.4)

f > 0 in Γ, f = 0 on ∂Γ, fλi
> 0 in Γ for 1 ≤ i ≤ n. (1.5)

By a classical result of Calderón & Zygmund [4], functions u ∈ W 2,p
loc (Ω) for p > n/2

are pointwise twice differentiable a.e. in Ω, and so for such functions the equation (1.1)
is well-defined.
The motivation behind (1.1) comes from conformal geometry: if n ≥ 3 and gij =

u−2δij is a metric conformal to the Euclidean metric on Ω, then Ag ··= u−1Au is the
(0, 2)-Schouten tensor of g, which arises in the Ricci decomposition of the Riemann
curvature tensor and is given by the formula

Ag =
1

n− 2

(
Ricg −

Rg

2(n− 1)
g

)
. (1.6)

1We note that, given Γ satisfying (1.2) and (1.3), there exists a defining function f satisfying (1.4)
and (1.5) – see [22, Appendix A].
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Here, Ricg and Rg denote the Ricci tensor and scalar curvature of the metric g, respec-
tively. In the Euclidean setting, the quantity Au plays a central role in the characteri-
sation of conformally invariant operators on R

n in dimensions n ≥ 3 (see [18]), and in
the characterisation of Möbius-invariant operators in R

2 (see [20]).

Of particular interest is (1.1) in the case (f,Γ) = (σ
1/k
k ,Γ+

k ) for 1 ≤ k ≤ n, where

σk(λ1, . . . , λn) ··=
∑

1≤i1<···<ik≤n

λi1 · · ·λik

is the k’th elementary symmetric polynomial and

Γ+
k = {λ = (λ1, . . . , λn) ∈ R

n : σj(λ) > 0 for all 1 ≤ j ≤ k}.
When k = 1 and ψ(x, z) = z−1, (1.1) is the Yamabe equation in the case of positive
scalar curvature on Euclidean domains. For k ≥ 2, (1.1) is fully nonlinear and encom-
passes the so-called σk-Yamabe equation (where ψ(x, z) = z−1) on Euclidean domains,
whose study on Riemannian manifolds was initiated by Viaclovsky in [27]. Note that,
for general f satisfying (1.5), (1.1) is an elliptic equation, although non-uniformly ellip-
tic a priori. Fully nonlinear elliptic equations involving the eigenvalues of the Hessian
were first considered in [2].
Important in the study of (1.1) are local first and second derivative estimates on

solutions. Such a priori estimates (depending on C0 bounds) have been established for
the σk-Yamabe equation and other equations of the form (1.1) on general Riemannian
manifolds by Chen [7], Guan & Wang [14], Jin, Li & Li [16], Li & Li [18], Li [19] and
Wang [30], for example (see also the work of Viaclovsky [28] for global estimates). On
the other hand, the regularity theory for fully nonlinear Yamabe-type equations is less
well-developed; for a partial list of works addressing related regularity problems, see
[6,8, 9, 12, 13, 21, 23].
In joint work with Nguyen in [8], we studied the regularity of W 2,p

loc (Ω) solutions to

(1.1) in the case (f,Γ) = (σ
1/k
k ,Γ+

k ), assuming 2 ≤ k ≤ n and p > kn/2. The purpose
of this paper is to both weaken the regularity assumptions in [8] and extend the scope
of the regularity theory to more general operators f . In addition to (1.4) and (1.5),
we introduce one more condition on (f,Γ), which is related to the lower bound on the
Sobolev exponent p that we will impose on our solution u ∈ W 2,p

loc (Ω) ∩ C0,1
loc (Ω). As

we will see, this condition is satisfied by the σk operators, their quotients and other
important examples.
To formulate this condition, we fix (f,Γ) satisfying (1.2)–(1.5), and for a symmetric

matrix A, we denote by F (A) the matrix with entries

F (A)ij =
∂

∂Aij
f(λ(A)).

Note that by (1.5), F (A) is positive definite if λ(A) ∈ Γ. Our condition is then as
follows: there exist constants C > 0 and γ ≥ 0 (depending only on (f,Γ)) such that

[tr(F (A))]n

det(F (A))
≤ C

(
tr(A)

f(λ(A))

)γ

for all A with λ(A) ∈ Γ. (1.7)
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Before stating our main result, we give some examples of (f,Γ) satisfying (1.7) for some
C > 0 and γ ≥ 0:

Example 1.1. When (f,Γ) = ((σk/σl)
1/(k−l),Γ+

k ) for some 0 ≤ l < k ≤ n and k ≥ 2
(with the convention that σ0 = 1), (1.7) is satisfied with γ = (k− 1)max{k− l, 2} (see

[24, Proposition 4.2] for a proof of this fact). In particular, when (f,Γ) = (σ
1/k
k ,Γ+

k )
for 2 ≤ k ≤ n, (1.7) is satisfied with γ = k(k − 1).

Example 1.2. If, in addition to (1.2) and (1.3), the cone Γ satisfies (1, 0, . . . , 0) ∈ Γ,
then (1.7) is satisfied with γ = 0. This follows immediately from [22, Proposition

A.1], which asserts the existence of a constant ν ∈ (0, 1) such that

∂f

∂λi
(λ) ≥ ν

n∑

j=1

∂f

∂λj
(λ) for all i = 1, . . . , n and λ ∈ Γ,

and the fact that ∂f
∂λi

are precisely the eigenvalues of F .

Our main result in this paper is as follows:

Theorem 1.3. Let Ω be a domain in R
n (n ≥ 2) and let ψ = ψ(x, z) ∈ C1,1

loc (Ω × R)
be a positive function. Suppose that (f,Γ) satisfies (1.2)–(1.5) and assume there exist
constants C > 0 and γ ≥ 0 such that (1.7) holds. Then any positive solution u ∈
W 2,p

loc (Ω) ∩ C
0,1
loc (Ω) to (1.1) with

{
p = n if γ < n

p > γ if γ ≥ n

belongs to C1,1
loc (Ω). Moreover, for any concentric balls BR ⊂ B3R ⋐ Ω there exists a

constant C depending only on n, p, R, ψ, f,Γ and an upper bound for ‖ lnu‖C0,1(B3R) +
‖∇2u‖Lp(B3R) such that

‖∇2u‖L∞(BR) ≤ C. (1.8)

Remark 1.4. Once the estimate (1.8) is established, (1.1) becomes uniformly elliptic,
and C2,α

loc (Ω) regularity follows from the concavity assumption in (1.4) and the regularity

theory of Evans-Krylov [10, 17] (see also [3]). Schauder estimates then yield C3,α
loc (Ω)

regularity for u, which can be bootstrapped in the usual way if one assumes additional
regularity on ψ.

Remark 1.5. In light of Morrey’s embedding theorem, the C0,1
loc (Ω) assumption on u

in Theorem 1.3 is superfluous when γ ≥ n.

Remark 1.6. We refer the reader to [8, Appendix A] for an example (motivated
by previous work of Chang, Gursky & Yang [5]) in which the existence of a W 2,p-
strong solution to a fully nonlinear Yamabe-type equation is obtained, and for which
our regularity theory in Theorem 1.3 (more precisely, Corollary 1.7) is applicable.

As mentioned above, in [8, Theorem 1.1] we proved the C1,1
loc (Ω) regularity of pos-

itive solutions u ∈ W 2,p
loc (Ω) to (1.1) for (f,Γ) = (σ

1/k
k ,Γ+

k ), assuming 2 ≤ k ≤ n and
p > kn/2. In light of this result, Example 1.1 and Theorem 1.3, we therefore have:
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Corollary 1.7. Let Ω be a domain in R
n (n ≥ 2), let ψ = ψ(x, z) ∈ C1,1

loc (Ω × R) be

a positive function and suppose (f,Γ) = (σ
1/k
k ,Γ+

k ) for some 2 ≤ k ≤ n. Then any

positive solution u ∈ W 2,p
loc (Ω) ∩ C

0,1
loc (Ω) to (1.1) with

{
p = n if k(k − 1) < n

p > min
(
k(k − 1), kn

2

)
if k(k − 1) ≥ n

belongs to C1,1
loc (Ω).

Remark 1.8. It is easy to check that Theorem 1.3 yields an improvement on the lower
bound for p assumed in [8, Theorem 1] when k < n

2
+ 1. It would be interesting

to determine the sharp lower bounds on p for which one can obtain C1,1
loc (Ω) regularity

when (f,Γ) = (σ
1/k
k ,Γ+

k ).

Theorem 1.3 also encompasses examples that were not addressed in [8] (see below
for a more detailed discussion on the differences between [8] and the present work).
The first of these are the σk-quotient equations – by Example 1.1 and Theorem 1.3, we
immediately obtain:

Corollary 1.9. Let Ω be a domain in R
n (n ≥ 2), let ψ = ψ(x, z) ∈ C1,1

loc (Ω × R) be
a positive function and suppose (f,Γ) = ((σk/σl)

1/(k−l),Γ+
k ) for some 1 ≤ l < k ≤ n.

Then any positive solution u ∈ W 2,p
loc (Ω) ∩ C

0,1
loc (Ω) to (1.1) with

{
p = n if (k − 1)max{k − l, 2} < n

p > (k − 1)max{k − l, 2} if (k − 1)max{k − l, 2} ≥ n

belongs to C1,1
loc (Ω).

We also have the following consequence of Example 1.2 and Theorem 1.3:

Corollary 1.10. Let Ω be a domain in R
n (n ≥ 2), let ψ = ψ(x, z) ∈ C1,1

loc (Ω × R) be
a positive function and suppose (f,Γ) satisfies (1.2)–(1.5) and (1, 0, . . . , 0) ∈ Γ. Then
any positive solution u ∈ W 2,n

loc (Ω) ∩ C
0,1
loc (Ω) to (1.1) belongs to C1,1

loc (Ω).

As shown in [9, Appendix A], if Γ satisfies (1.2) and (1.3), then (1, 0, . . . , 0) ∈ Γ if

and only if Γ = (Γ̃)τ for some τ ∈ (0, 1) and some Γ̃ satisfying (1.2) and (1.3), where

(Γ̃)τ = {λ ∈ R
n : τλ + (1 − τ)σ1(λ)e ∈ Γ̃} and e = (1, . . . , 1). For −∞ < t < 1, define

the trace-modified Schouten tensor

At
g =

1

n− 2

(
Ricg −

tRg

2(n− 1)
g

)

(this quantity was introduced independently by Li & Li in [18] and Gursky & Viaclovsky
in [15]). Then At

g = τ−1[τAg + (1 − τ)σ1(g
−1Ag)g] for τ = (1 + 1−t

n−2
)−1 ∈ (0, 1), and

hence Corollary 1.10 encompasses the so-called trace-modified σk-Yamabe equation on
Euclidean domains; in terms of the conformal factor u, this corresponds to considering

(1.1) with ψ(x, z) = z−1, (f,Γ) = (σ
1/k
k ,Γ+

k ) and Au replaced by

At
u = ∇2u+

1− t

n− 2
∆u I − 2n− tn− 2

n− 2

|∇u|2
2u

I.
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For the remainder of the introduction, we briefly compare the methods of the present
paper and those of [8, Theorem 1.1]. Our arguments in [8] used the divergence
structure of the σk-Yamabe equation on Euclidean domains, and consisted of an in-
tegrability improvement argument followed by Moser iteration. Similar methods were
previously utilised by Urbas [25,26] in proving C1,1

loc (Ω) regularity of W 2,p
loc (Ω) solutions

to k-Hessian equations. On the other hand, our proof of Theorem 1.3 does not rely
on any divergence structure, and instead involves an application of the Alexandrov-
Bakelman-Pucci (ABP) estimate, as inspired by the work of Bao et. al. [1] on quotient
Hessian equations (see also [24]).

We point out that, although − |∇u|2
2u

I is a lower order term in the definition of Au,
its presence leads to terms in our estimates which are formally of third order and must
be dealt with carefully. In [8], these terms were dealt with via a delicate cancellation
phenomenon, which used the aforementioned divergence structure of the σk-Yamabe
equation on Euclidean domains. In the proof of Theorem 1.3, we estimate the third
order terms more directly by instead appealing to properties of the concave envelope of
a suitable function (involving second order difference quotients of our solution u) and
a discrete Bochner-type formula (which we previously derived in [8]). The details will
be provided in Section 2.

Acknowledgements: The author would like to thank Luc Nguyen for helpful discus-
sions regarding this work. Part of this work was carried out whilst the author was
supported by EPSRC grant number EP/L015811/1.

2. Proof of Theorem 1.3

In this section we prove Theorem 1.3. In fact we prove a slightly more general
statement. To this end, let H ∈ C1,1

loc (Ω × R) be a real -valued function, assumed

to be positive or identically zero, and let J ∈ C1,1
loc (Ω × R; Symn(R)) be a symmetric

matrix-valued function. Then define

AH,J [u] = ∇2u−H [u]|∇u|2I + J [u],

where H [u](x) = H(x, u(x)) ∈ R and J [u](x) = J(x, u(x)) ∈ Symn(R). Suppose also
that ψ1 ∈ C1,1

loc (Ω× R) is positive and ψ2 ∈ C1,1
loc (Ω×R) is either positive or identically

zero, and denote ψi[u](x) = ψi(x, u(x)) ∈ R for i = 1, 2. Consider the equation

f
(
λ(AH,J [u])

)
= ψ1[u] + ψ2[u]|∇u|2 > 0, λ(AH,J [u]) ∈ Γ a.e. in Ω. (2.1)

We prove:

Theorem 1.3′. Let Ω be a domain in R
n (n ≥ 2) and let H, J, ψ1 and ψ2 be as above.

Suppose that (f,Γ) satisfies (1.2)–(1.5) and assume there exist constants C > 0 and
γ ≥ 0 such that (1.7) holds. Then any solution u ∈ W 2,p

loc (Ω) ∩ C
0,1
loc (Ω) to (1.1) with

{
p = n if γ < n

p > γ if γ ≥ n

belongs to C1,1
loc (Ω). Moreover, for any concentric balls BR ⊂ B3R ⋐ Ω there ex-

ists a constant C depending only on n, p, R, ψ1, ψ2, H, J, f,Γ and an upper bound for
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‖u‖C0,1(B3R) + ‖∇2u‖Lp(B3R) such that

‖∇2u‖L∞(BR) ≤ C.

Remark 2.1. Theorem 1.3 is a special case of Theorem 1.3′ with H [u] = 1
2u
, J ≡ 0

and ψ2 ≡ 0.

Remark 2.2. In the aforementioned works [1, 24–26], Hessian equations of the form
(σk/σl)

1/(k−l)(λ(∇2u(x))) = ψ(x) > 0 are considered (with l = 0 in [25, 26]). As far
as the author is aware, Theorem 1.3′ is new even when H ≡ 0, J ≡ 0 and (f,Γ) =

(σ
1/k
k ,Γ+

k ), since we allow the RHS in (2.1) to also depend on u and ∇u.
To give one example covered by Theorem 1.3′ but not Theorem 1.3, we note that

equation (2.1) encompasses the following equation of Monge-Ampère type on the round
sphere (Sn, g0):

det1/n
(
g−1
0

(
∇2

g0
u−

|∇g0u|2g0
2u

g0 +
u

2
g0

))
=

|∇g0u|2g0 + u2

2u
ϕ,

where ϕ = ϕ(x) > 0 is given and one looks for a positive solution u. This equation has
been studied previously in the context of geometric optics – see for instance equation
(1.11) in [29], therein taking the distribution density f to be constant.

2.1. Notation and outline of the proof.

We now give a brief outline of the proof of Theorem 1.3′, which will establish notation
and highlight the main steps. We start by fixing a solution u ∈ W 2,p

loc (Ω) ∩ C
0,1
loc (Ω) to

(2.1). For a fixed unit vector ξ ∈ R
n and small h ∈ R\{0}, we define the first order

difference quotient ∇h
ξu(x) ··= h−1(u(x + hξ) − u(x)) and the second order difference

quotient

∆h
ξξu ··= ∇h

ξ (∇−h
ξ u(x)) =

u(x+ hξ)− 2u(x) + u(x− hξ)

h2
.

To prove Theorem 1.3′, it suffices to obtain (for sufficiently small h) an upper bound
for ∆h

ξξu on BR which is independent of h. Indeed, this implies an upper bound for ∆u

on BR, the assumption λ(AH,J [u]) ∈ Γ ⊆ Γ+
1 implies a lower bound for ∆u, and the full

Hessian bound then follows from writing ∇i∇ju = 1
2
(2∇ξ∇ξu − ∇i∇iu − ∇j∇ju) for

ξ = 1√
2
(ei + ej), where ∇ξ is the directional derivative in the direction ξ and {ei}1≤i≤n

is the standard basis on R
n. Our upper bound for ∆h

ξξu on BR will depend on the Lp

norm of ∆u on B3R.
To this end, define on B2R (which we assume to be centred at the origin) the function

v = η∆h
ξξu, where

η(x) =

(
1− |x|2

4R2

)β

(2.2)

and β > 2 is a constant to be determined later. Recall that the linearised operator

F ij ··=
∂

∂Aij

f(λ(AH,J [u]))
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is positive definite a.e. in Ω by the ellipticity assumption in (1.5). The first main step of
our proof is to obtain an upper bound for −F ij∇i∇jv (which is formally of fourth order
in the derivatives of u) in terms of tr(F )|∇(∆hu)| (which is formally of third order),
tr(F )|∆hu| (which is formally of second order) and lower order terms. More precisely,
we will prove in Section 2.2 the following lemma:

Lemma 2.3. Let Ω, f,Γ, H, J, ψ1 and ψ2 be as in the statement of Theorem 1.3′ (with
(f,Γ) not necessarily satisfying (1.7)). Then for any ball B2R ⋐ Ω and any solution
u ∈ W 2,p

loc (Ω) ∩ C
0,1
loc (Ω) to (2.1) with p > n/2, it holds that

−F ij∇i∇jv ≤ C tr(F )
(
η
(
|∇(∆h

ξξu)|+ |∆h
ξξu|+ 1

)
+ |∇η||∇(∆h

ξξu)|+ |∇2η||∆h
ξξu|

)

+ Cη
(
|∇(∆h

ξξu)|+ |∆h
ξξu|+ 1

)
(2.3)

a.e. in B2R, where C is a constant depending only on n,R,H, J, ψ1, ψ2 and an upper
bound for ‖u‖C0,1(B2R).

Lemma 2.3 is the main new ingredient in the proof of Theorem 1.3′; once the estimate
(2.3) is established, the proof of Theorem 1.3′ then proceeds similarly to that of [1], but
with some extra terms. We summarise this argument now (the details will be given in
Section 2.3). The main point is that on the upper contact set of v in B2R, defined by

Γ+
v (B2R) = {x ∈ B2R : v(z) ≤ v(x)+ν ·(z−x) for all z ∈ B2R, for some ν ∈ R

n}, (2.4)
one can bound |∇(∆h

ξξu)| from above in terms of |∆h
ξξu|. More precisely, we have:

Lemma 2.4 ([1]). Almost everywhere on Γ+
v (B2R), it holds that

η|∇(∆h
ξξu)| ≤ (1 + β)R−1η−

1

β v. (2.5)

After substituting (2.5) into (2.3), dividing through by (detF ij)1/n, applying (1.7)
and carrying out some simple calculations, we will obtain the estimate

0 ≤ −F ij∇i∇jv

(detF ij)1/n
≤ C

(
v

Rη
1

β

+ v + η +
v

R2η
2

β

)
(∆u+ C)γ/n a.e. on Γ+

v (B2R).

An application of the ABP estimate and some further calculations then yields an upper
bound for v on B2R, and hence an upper bound for ∆h

ξξu on BR, as required. For later
reference, we recall the ABP estimate as follows:

Theorem 2.5 (see e.g. [11, Chapter 9]). Suppose aij is measurable and positive
definite a.e. on a smooth bounded domain Σ ⊂ R

n. Then there exists a constant C =
C(n) such that for any ϕ ∈ W 2,n

loc (Σ) ∩ C0(Σ) with ϕ ≡ 0 on ∂Σ, one has

sup
Σ
ϕ ≤ Cd

(∫

Γ+
v (Σ)

(−aij∇i∇jϕ)
n

det(aij)
dx

)1/n

,

where d is the diameter of Σ.

Throughout the rest of the paper, we use summation convention over indices appear-
ing as both a subscript and superscript. We may also suppress the phrase ‘a.e.’ for
pointwise calculations involving second derivatives.
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2.2. Proof of Lemma 2.3.

In this section we prove Lemma 2.3 – as remarked above, this is the main new
ingredient in the proof of Theorem 1.3.

Proof of Lemma 2.3. By concavity of f , we have

f
(
λ(AH,J [u](x± hξ))

)
− f

(
λ(AH,J [u](x))

)

≤ F ij(x)
(
AH,J [u](x± hξ)− AH,J [u](x)

)
ij

(2.6)

a.e. in B2R. Summing the two inequalities in (2.6) and dividing through by h2, we
therefore obtain

∆h
ξξf(λ(AH,J [u]))(x) ≤ F ij(x)∆h

ξξ

(
∇2u−H [u]|∇u|2I + J [u]

)
ij
(x). (2.7)

Substituting the equation (2.1) into the LHS of (2.7), and commuting difference quo-
tients with derivatives on the RHS of (2.7), we see that

∆h
ξξψ[u] ≤ F ij∇i∇j∆

h
ξξu− tr(F )∆h

ξξ

(
H [u]|∇u|2

)
+ F ij∆h

ξξ(J [u])ij, (2.8)

where ψ[u](x) ··= ψ1[u](x) + ψ2[u](x)|∇u(x)|2. It then follows that

F ij∇i∇jv = F ij

(
η∇i∇j∆

h
ξξu+ 2∇iη∇j∆

h
ξξu+ (∆h

ξξu)∇i∇jη

)

(2.8)

≥ η tr(F )∆h
ξξ

(
H [u]|∇u|2

)
+ η∆h

ξξψ[u]− ηF ij∆h
ξξ(J [u])ij

+ 2F ij∇iη∇j∆
h
ξξu+∆h

ξξuF
ij∇i∇jη. (2.9)

To obtain the desired estimate (2.3) from (2.9), it suffices to prove the following esti-
mates:

Estimate 1: ∆h
ξξ(H [u]|∇u|2) ≥ −C|∇(∆h

ξξu)| − C|∆h
ξξu| − C, (2.10)

Estimate 2: ∆h
ξξψ[u] ≥ −C|∇(∆h

ξξu)| − C|∆h
ξξu| − C, (2.11)

Estimate 3: ∆h
ξξ(J [u])ij ≥ −C|∆h

ξξu| − C. (2.12)

Proof of Estimate 1: If H is identically zero then the estimate is trivial, so suppose
H > 0. For a function w, define wh

ξ by wh
ξ (x) = w(x + hξ). We use the following

discrete Bochner-type formula, which we previously derived in [8, Lemma 4.16]:

∆h
ξξ

(
H [u]|∇u|2

)
= 2H [u]∇iu∇i∆

h
ξξu+ (H [u])−h

ξ

∣∣∇∇−h
ξ u

∣∣2 + (H [u])hξ
∣∣∇∇h

ξu
∣∣2

+∇−h
ξ ∇iu∇iu∇−h

ξ H [u] +∇h
ξ∇iu∇iu∇h

ξH [u]

+∇h
ξ

(
∇iu(∇iu)−h

ξ ∇−h
ξ H [u]

)
. (2.13)
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By applying the product rule for difference quotients twice, we further compute the
bottom line of (2.13) as follows:

∇h
ξ

(
∇iu(∇iu)−h

ξ ∇−h
ξ H [u]

)
= ∇iu∇h

ξH [u]∇h
ξ∇iu+∇iu∇h

ξ

(
(∇iu)−h

ξ ∇−h
ξ H [u]

)

= ∇iu∇h
ξH [u]∇h

ξ∇iu+ |∇u|2∆h
ξξH [u]

+∇iu∇−h
ξ H [u]∇−h

ξ ∇iu. (2.14)

It follows after substituting (2.14) into (2.13) that

∆h
ξξ(H [u]|∇u|2) ≥ 2H [u]∇iu∇i∆

h
ξξu+ (H [u])−h

ξ

∣∣∇∇−h
ξ u

∣∣2 + (H [u])hξ
∣∣∇∇h

ξu
∣∣2

− 2|∇∇−h
ξ u||∇u||∇−h

ξ H [u]| − 2|∇∇h
ξu||∇u||∇h

ξH [u]|
+ |∇u|2∆h

ξξH [u]. (2.15)

Now, since H = H(x, z) > 0 and u is continuous, H [u] is bounded uniformly away from
zero on any compact subset of Ω, and in particular (H [u])±h

ξ ≥ C0 > 0 in B2R for some
constant C0 independent of h. Moreover, since we assume ∇u ∈ L∞

loc(Ω), there exists a
constant C1 independent of h such that

−2|∇∇−h
ξ u||∇u||∇−h

ξ H [u]|−2|∇∇h
ξu||∇u||∇h

ξH [u]|

≥ −C0

2
|∇∇−h

ξ u|2 − C0

2
|∇∇h

ξu|2 − C1 (2.16)

a.e. in B2R. Substituting (2.16) into (2.15) and dropping the positive terms involving
|∇∇±h

ξ u|2, we obtain the estimate

∆h
ξξ(H [u]|∇u|2) ≥ 2H [u]∇iu∇i∆

h
ξξu+ |∇u|2∆h

ξξH [u]− C

≥ −C|∇(∆h
ξξu)|+ |∇u|2∆h

ξξH [u]− C. (2.17)

To obtain (2.10) from (2.17), it remains to show that ∆h
ξξH [u] ≥ −C|∆h

ξξu| − C.
The argument is similar to that given in our proof of [8, Lemma 4.10]. First, by the
C1,1 regularity of H on B2R (which implies that H = H(x, z) is semi-convex in the
z-variable), we can assert the existence of a constant C2 such that

H(x, u1) ≥ H(x, u2) +
∂H

∂z
(x, u2)(u1 − u2)− C2|u1 − u2|2

for all (x, ui) ∈ B2R × [−M,M ], where M is an upper bound for ‖u‖C0,1(B2R). Denoting
x± = x± hξ, we therefore have

H(x+, u(x+))−H(x+, u(x)) ≥ ∂H

∂z
(x+, u(x))

(
u(x+)− u(x)

)
− C2|u(x+)− u(x)|2

≥ ∂H

∂z
(x, u(x))

(
u(x+)− u(x)

)
− C2|u(x+)− u(x)|2

− Ch|u(x+)− u(x)|

≥ ∂H

∂z
(x, u(x))

(
u(x+)− u(x)

)
− Ch2, (2.18)
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where we have used
∣∣∣∣
∂H

∂z
(x, u(x))− ∂H

∂z
(x+, u(x))

∣∣∣∣ ≤ ‖H‖C1,1|x+ − x| = h‖H‖C1,1 = Ch

to obtain the second inequality in (2.18), and the fact that u ∈ C0,1
loc (Ω) to obtain the

last inequality in (2.18). Similarly,

H(x−, u(x−))−H(x−, u(x)) ≥ ∂H

∂z
(x, u(x))

(
u(x−)− u(x)

)
− Ch2, (2.19)

and combining (2.18) and (2.19) we therefore obtain

∆h
ξξH [u](x) ≥ ∂H

∂z
(x, u(x))∆h

ξξu(x) +
H(x+, u(x))− 2H(x, u(x)) +H(x−, u(x))

h2
− C.

(2.20)

Now, by Lipschitz regularity of H , for all z ∈ [−M,M ] we also have

H(x+, z)− 2H(x,z) +H(x−, z)

= h

∫ 1

0

(
∇ξH(x+ thξ, z)−∇ξH(x− thξ, z)

)
dt ≤ Ch2, (2.21)

where ∇ξH is the directional derivative of H in the direction ξ. Taking z = u(x)
in (2.21) and substituting this back into (2.20), we obtain the estimate ∆h

ξξH [u] ≥
−C|∆h

ξξu| − C, and thus (2.10) is established.

Proof of Estimate 2: The proof that ∆h
ξξ(ψ2[u]|∇u|2) ≥ −C|∇(∆h

ξξu)| −C|∆h
ξξu| −C is

exactly the same as the proof of Estimate 1. The proof that ∆h
ξξψ1[u] ≥ −C|∆h

ξξu| −C

is exactly the same as the estimate given for ∆h
ξξH [u] above.

Proof of Estimate 3: The proof that ∆h
ξξ(J [u])ij ≥ −C|∆h

ξξu| − C is exactly the same

as the estimate given for ∆h
ξξH [u] above.

With these estimates established, the proof of Lemma 2.3 is therefore complete. �

2.3. Proof of Theorem 1.3′.

In this section we complete the proof of Theorem 1.3′ (and hence Theorem 1.3).
In our estimates, we will repeatedly use the following bounds on the derivatives of η,
defined in (2.2):

|∇η| ≤ C

R
η1−

1

β and |∇2η| ≤ C

R2
η1−

2

β , (2.22)

where C = C(n, β).
As outlined in Section 2.1, the two key lemmas in the proof of Theorem 1.3′ are

Lemma 2.3 (proved in the previous section) and Lemma 2.4, which was established in
[1]. For the convenience of the reader, we give the proof of Lemma 2.4 here.
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Proof of Lemma 2.4. First observe that since u ∈ C0,1(Ω), ∇v(x) exists for a.e. x ∈
B2R. For such x ∈ Γ+

v (B2R) satisfying ∇v(x) 6= 0, let z ∈ ∂B2R be such that

z − x

|z − x| = − ∇v(x)
|∇v(x)| .

Since v = 0 on ∂B2R and |z − x| ≥ |z| − |x| = 2R − |x| ≥ Rη
1

β (the last inequality
following from the definition of η), we thus have for such x ∈ Γ+

v (B2R) that

v(x) ≥ v(z)−∇v(x)·(z−x) = −∇v(x)·(z−x) = |z−x||∇v(x)| ≥ Rη
1

β |∇v(x)|. (2.23)

It follows that at such points x ∈ Γ+
v (B2R), we have the estimate

η|∇(∆h
ξξu)| = |∇v − (∆h

ξξu)∇η| ≤ |∇v|+∆h
ξξu|∇η|

(2.22),(2.23)

≤ v

Rη
1

β

+
v

η

β

R
η1−

1

β =
(1 + β)v

Rη
1

β

. (2.24)

Finally, for points x ∈ Γ+
v (B2R) such that ∇v(x) exists but is zero, it is clear that (2.24)

still holds. �

Proof of Theorem 1.3′. Our starting point is the estimate (2.3) obtained in Lemma 2.3,
which implies (by (2.22))

−F ij∇i∇jv ≤ C tr(F )

(
η
(
|∇(∆h

ξξu)|+ |∆h
ξξu|+ 1

)
+
η1−

1

β

R
|∇(∆h

ξξu)|+
η1−

2

β

R2
|∆h

ξξu|
)

+ Cη
(
|∇(∆h

ξξu)|+ |∆h
ξξu|+ 1

)
. (2.25)

Next, we substitute the estimate (2.5) of Lemma 2.4 into the RHS of (2.25). Using
the fact that ∇i∇jv is negative semi-definite a.e. in Γ+

v (B2R), and that F ij is positive
definite, we obtain a.e. in Γ+

v (B2R) the estimate

0 ≤ −F ij∇i∇jv

(2.5)

≤ C tr(F )

(
(1 + β)v

Rη
1

β

+ v + η +
(1 + β)v

R2η
2

β

+
v

R2η
2

β

)
+ C

(
(1 + β)v

Rη
1

β

+ v + η

)

≤ C tr(F )

(
v

Rη
1

β

+ v + η +
v

R2η
2

β

)
+ C

(
v

Rη
1

β

+ v + η

)
. (2.26)

It then follows from (2.26), (1.7) and the fact that

tr(AH,J [u]) = tr
(
∇2u−H [u]|∇u|2I + J [u]

)
≤ ∆u+ C
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that a.e. in Γ+
v (B2R), we have

0 ≤ −F ij∇i∇jv

(detF ij)1/n
≤ C tr(F )

(detF ij)1/n

(
v

Rη
1

β

+ v + η +
v

R2η
2

β

)
+

C

(detF ij)1/n

(
v

Rη
1

β

+ v + η

)

≤ C

(
tr(AH,J [u])

f(λ(AH,J [u]))

)γ/n(
v

Rη
1

β

+ v + η +
v

R2η
2

β

)

+ C

(
tr(AH,J [u])

f(λ(AH,J [u]))

)γ/n
1

tr(F )

(
v

Rη
1

β

+ v + η

)

≤ C

(
v

Rη
1

β

+ v + η +
v

R2η
2

β

)
(∆u+ C)γ/n, (2.27)

where to reach the last line we have used the equation (2.1) and the fact that ψ[u]
and tr(F (A)) =

∑
i fλi

(λ(A)) = f(λ(A)) +
∑

i fλi
(λ(A))(1− λi) ≥ f(1, . . . , 1) are both

bounded away from zero.
With (2.27) established, we are now in a position to apply the ABP estimate as

stated in Theorem 2.5, which yields

sup
B2R

v ≤ CR

(∫

Γ+
v (B2R)

(−F ij∇i∇jv)
n

det(F ij)
dx

)1/n

≤ C

(∫

Γ+
v (B2R)

(η−
1

β v)n(∆u+ C)γ
)1/n

+ CR

(∫

Γ+
v (B2R)

vn(∆u+ C)γ
)1/n

+ CR

(∫

Γ+
v (B2R)

ηn(∆u+ C)γ
)1/n

+ CR−1

(∫

Γ+
v (B2R)

(η−
2

β v)n(∆u+ C)γ
)1/n

.

(2.28)

We estimate each of the four integrals on the RHS of (2.28) in turn, starting with the

last one. Writing η−
2

β v = v1−
2

β (∆h
ξξu)

2

β , and noting that 1 − 2
β
> 0 (since β > 2), we

see
(∫

Γ+
v (B2R)

(η−
2

β v)n(∆u+ C)γ
)1/n

≤ (sup
B2R

v)1−
2

β

(∫

B2R

|∆h
ξξu|

2n
β (∆u+ C)γ

)1/n

, (2.29)

where we have assumed supB2R
v ≥ 0 (otherwise we are done). We estimate the remain-

ing three terms on the RHS of (2.28) so as to put them on equal footing with (2.29).

For the first term, note η−
1

β v = v1−
2

β (
√
η|∆h

ξξu|)
2

β ≤ v1−
2

β |∆h
ξξu|

2

β , so

(∫

Γ+
v (B2R)

(η−
1

β v)n(∆u+ C)γ
)1/n

≤ (sup
B2R

v)1−
2

β

(∫

B2R

|∆h
ξξu|

2n
β (∆u+ C)γ

)1/n

.

Similarly, for the second term, v = v1−
2

β (η|∆h
ξξu|)

2

β ≤ v1−
2

β |∆h
ξξu|

2

β , so

(∫

Γ+
v (B2R)

vn(∆u+ C)γ
)1/n

≤ (sup
B2R

v)1−
2

β

(∫

B2R

|∆h
ξξu|

2n
β (∆u+ C)γ

)1/n

,
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and for the third term on the RHS of (2.28) it is easy to see that
(∫

Γ+
v (B2R)

ηn(∆u+ C)γ
)1/n

≤
(∫

B2R

(∆u+ C)γ
)1/n

≤ C.

Substituting the previous four estimates into (2.28) and using the fact that R is
bounded, we therefore obtain

sup
B2R

v ≤ CR−1(sup
B2R

v)1−
2

β

(∫

B2R

|∆h
ξξu|

2n
β (∆u+ C)γ

)1/n

+ CR−1. (2.30)

We now choose β = 2n
p−γ

, where p is as in the statement of Theorem 1.3′, so that 2n
β
=

p− γ. After applying Hölder’s inequality to the integral on the RHS of (2.30), dividing

through by (supB2R
v)1−

2

β , and using the inequality ‖∆h
ξξu‖Ls(B2R) ≤ C(n)‖∆u‖Ls(B3R)

for any s ≥ 1 (see e.g. [11, Lemma 7.23]), we obtain the estimate

(sup
B2R

v)2/β ≤ CR−1‖∆u+ C‖p/nLp(B3R) +
CR−1

(supB2R
v)1−

2

β

. (2.31)

If supB2R
v ≤ 1 then we are done. Supposing otherwise, (2.31) then implies

(sup
B2R

v)2/β ≤ CR−1
(
1 + ‖∆u+ C‖p/nLp(B3R)

)
,

and we therefore arrive at the estimate

sup
BR

∆h
ξξu ≤ CR−β/2

(
1 + ‖∆u+ C‖p/nLp(B3R)

)β/2
. (2.32)

As explained at the start of Section 2.1, the full Hessian bound for u follows from (2.32),
and this completes the proof of Theorem 1.3′. �
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