
An Unregularlized Third-Order Newton Method

Olha Silina and Jeffrey Zhang∗

Abstract

In this paper, we propose a third-order Newton’s method which in each iteration solves a semidef-
inite program as a subproblem. Our approach is based on moving to the local minimum of the
third-order Taylor expansion at each iteration, rather than that of the second order. We show
that this scheme has local cubic convergence. We then provide numerical experiments compar-
ing this scheme to some standard algorithms, and propose a version of Levenberg-Marquardt
regularization for our algorithm.
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1 Introduction

Newton’s method is perhaps one of the most fundamental algorithms in numerical optimization.
The premise is simple: one considers a current iterate of a function, approximates the function
by its second-order Taylor expansion around that iterate, and uses the global minimum of that
approximation as the next iterate. A very well-known theorem states that under certain assump-
tions, namely strong convexity of the objective function and the closeness of the current iterate to
the global minimum, this algorithm enjoys quadratic convergence, and thus is one of the building
blocks of other algorithms such as interior point methods. These assumptions can be restrictive,
and Newton’s method can fail for a variety of reasons in a number of ways whenever these conditions
are not met. The literature on improving Newton’s method is vast, often combining approaches
such as Levenberg-Marquardt regularization [7, 8], trust regions [14, 9, 4], damping [13], and cubic
regularization [12].

A less-explored class of variations involves the use of higher-order information, utilizing better
approximations of the function to a further distance from the current iterate. Improvements to
Newton’s method of this nature are by comparison to other means relatively new and sparse. The
few works we have been able to find [3, 5, 11] follow essentially the same framework, which is to
combine higher order approximations with regularization terms. One takes the p-th order Taylor
expansion, and adds a term ∥ · ∥p+1 multiplied by a sufficiently large scalar. For the case of p = 3,
this is a ∥ · ∥4 term. The key observation is that with a sufficiently large regularization term, this
function is convex. Of course, the iterates are then based on the minimum of each of these now
convex functions, which while being high-degree polynomials, are amenable to convex optimization
techniques.

Our approach in this paper uses the third-order derivatives, but without a regularization term
(i.e., the standard third-order Taylor expansion). Since we are working with a cubic polynomial,
instead of moving to the global minimum of this Taylor expansion, we now move to a local minimum
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(as of course, these are odd degree polynomials). The recent result which enables this is that
the local minimum of a cubic polynomial can be found by semidefinite programming (SDP) [2].
Moreover, such an SDP can be written with only the coefficients of the cubic polynomial, in
particular not including Lipschitz constants required for the regularization term. We believe that
this grants us a major advantage over other third-order methods in terms of implementability, as
we do not need specialized algorithms to solve the subproblems generated, i.e. ones for minimizing
high-degree polynomials. However, the convergence result we show in this paper is in line with
that of the quadratic Newton’s algorithm. While the convergence rate is cubic, this is only a local
result, and does not carry global guarantees.

Organization and Contributions

We review preliminaries on local minima, cubic polynomials, and Taylor expansions in Section 2. In
Section 3, we present our main result, which is that the unregularized third-order Newton’s method
has cubic convergence (Theorem 3.2). We present some numerical results in Section 4, and explore
a version of Levenberg-Marquardt regularization in Section 5. We provide final commentary and
directions for future work in Section 6.

2 Preliminaries and Notation

Throughout this paper, we will be working primarily with cubic polynomials. For an n-variate
cubic polynomial p, we will write it with the convention

p(x) =
1

6

n∑
i=1

xTxiHix+
1

2
xTQx+ bTx+ c, (1)

where b is an n × 1 vector containing the linear coefficients of p, Q is a symmetric n × n matrix

whose i, j-th entry is ∂2p
∂xi∂xj

, and each Hi for i ∈ {1, . . . , n} is an n× n matrix whose j, k-th entry

is ∂3p
∂xi∂xj∂xk

. In such notation, the gradient of the polynomial can be written as

▽p(x) =
1

2

n∑
i=1

xiHix+Qx+ b, (2)

and its Hessian is

▽2p(x) =
n∑

i=1

xiHi +Q. (3)

Note that by convention, Q is symmetric and the matrices Hi satisfy

(Hi)jk = (Hj)ik = (Hk)ij . (4)

Using this, it is not difficult to show (see, e.g., [2][Lemma 4.1]) that for two n× 1 vectors x and y,
we have

n∑
i=1

xiHiy =
n∑

i=1

yiHix =

x
TH1y
...

xTHny

 . (5)

A point x is a (strict) local minimum of a function f if there exists an ϵ > 0 for which f(x) ≤ f(y)
(resp. f(x) < f(y)) whenever ∥y − x∥ < ϵ. For a continuously differentiable function, it is well-
known that any such point x must satisfy the first-order optimality condition that the gradient
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▽f(x) is zero, and also the second-order optimality condition that ▽f(x) = 0 and the Hessian
▽2f(x) is positive semidefinite (psd), i.e. has nonnegative eigenvalues. Furthermore, if a point
x ∈ Rn is a (strict) local minimum of a function f : Rn → R, then for any direction d ∈ Rn (with
d ̸= 0), the restriction of f in the direction d —i.e. the univariate function q(α) := p(x+ αd)—has
a (strict) local minimum at α = 0.

One can observe that a univariate cubic polynomial has either no local minima, exactly one
local minimum (which is strict), or infinitely many non-strict local minima in the case that the
polynomial is constant. A cubic polynomial p(x) := ax3 + bx2 + cx+ d has a local minimum if and
only if b2 − 3ac ≥ 0. If it exists, the local minimum is located at

x =
−b+

√
b2 − 3ac

3a
= − c

b+
√
b2 − 3ac

,

and this can be deduced by finding the roots of the derivative. The inflection point is located at
x = − b

3a , and the distance from the inflection point to the local minimum (and maximum), if they

exist, is |
√
b2−3ac
3a |.

Multivariate cubic polynomials also have either no local minima, exactly one strict local mini-
mum, or have infinitely many non-strict local minima. This can be argued by observing that the
restriction of a multivariate cubic polynomial is a univariate cubic polynomial, and that a (strict)
local minimum of a function is also a (strict) local minimum along the restriction to any line. A
local minimum of a cubic polynomial is strict if and only if the Hessian at that point is positive
definite [2, Theorem 3.1, Corollary 3.4]. If it exists, it can be found by solving an SDP. An SDP is
an optimization problem of the form:

min
X∈Sn×n

Tr(CX)

subject to Tr(AiX) = bi, i = 1, . . . ,m

X ⪰ 0,

where Tr denotes the trace of a matrix, i.e., the sum of the diagonal entries, Sn×n denotes the
set of n × n symmetric matrices, A ⪰ B denotes that a matrix A − B is positive semidefinite,
and C,Ai, i = 1, . . . , n are matrix data, and bi are scalar data. It is well-known that semidefinite
programs can be solved to arbitrary accuracy in polynomial time [15]. For a cubic polynomial
written in the form (1), the SDP that finds a local minimum can be given by

inf
X∈Sn×n,x∈Rn,y∈R

1

2
Tr(QX) + bTx+

y

2

subject to
1

2
Tr(HiX) + eTi Qx+ bi = 0, ∀i = 1, . . . , n,[ ∑n

i=1 xiHi +Q
∑n

i=1Tr(HiX)ei +Qx
(
∑n

i=1Tr(HiX)ei +Qx)T y

]
⪰ 0,[

X x
xT 1

]
⪰ 0,

(6)

where ei denotes the vector of zeros except the i-th entry, which is a one [2, Algorithm 2]. It can
be shown that the objective value of this SDP is always nonnegative, and is zero if and only if the
cubic polynomial has a second-order point.

A norm is a function defined on a vector space X satisfying

1. ∥x∥ ≥ 0,∀x ∈ X , with ∥x∥ = 0 if and only if x = 0 (positive definiteness),
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2. ∥αx∥ = |α|∥x∥,∀α ∈ R, x ∈ X (linearity),

3. ∥x+ y∥ ≤ ∥x∥+ ∥y∥,∀x, y ∈ X (triangle inequality).

A norm by extension obeys the “reverse triangle inequality”, i.e. that ∥x − y∥ ≥ ∥x∥ − ∥y∥. The
norms we use in this paper are standard symmetric p-linear norms. For vectors and matrices
respectively, these are

∥x∥ = max
∥y∥≤1

xT y and ∥A∥ = max
∥x∥,∥y∥≤1

xTAy,

which reduce to the Euclidean norm and largest eigenvalue in absolute value. These norms are
submultiplicative, that is, for vectors x, y ∈ Rn and matrices A,B ∈ Rn×n, we have ∥xT y∥ ≤
∥x∥∥y∥, ∥Ax∥ ≤ ∥A∥∥x∥, and ∥AB∥ ≤ ∥A∥∥B∥. Finally, for a symmetric n × n × n tensor H
expressed as a set of matrices {H1, . . . ,Hn} ⊂ Rn×n satisfying (4), its norm is

∥H∥ = max
∥x∥,∥y∥,∥z∥≤1

n∑
i=1

xT yiHiz. (7)

By the Fundamental Theorem of Calculus, for a continuously differentiable function F : Rn →
Rm with Jacobian J , we have

F (y) = F (x) +

∫ 1

0
J(x+ τ(y − x))(y − x)dτ.

Integrals also obey the following inequality:

∥
∫ y

x
F (τ)dτ∥ ≤

∫ y

x
∥F (τ)∥dτ.

A function f : R → R is Lipschitz continuous if there exists a constant L such that for any
x, y ∈ R, ∥f(x)− f(y)∥ ≤ L∥x− y∥. A function f : Rn → R is called strongly convex if there exists
a constant m > 0 such that ▽2f(x) ⪰ mI, ∀x ∈ Rn, where I denotes the identity matrix. For a
given function f and a point x̄, we denote by Φf,x̄ the third-order Taylor expansion of f around x̄,
i.e. the function

n∑
i=1

(x− x̄)T (x− x̄)i▽
3
i p(x̄)(x− x̄) +

1

2
(x− x̄)T▽2p(x̄)(x− x̄) + (x− x̄)T▽p(x̄).

3 Convergence Rate of the Unregularized Third-Order Newton’s
Method

Following the basic premise for the classical quadratic Newton’s method, consider the following
algorithm for minimizing a function:

Algorithm 1 Unregularized Third-Order Newton’s Method

1: Input: A function f , threshold ϵ > 0
2: Initialize a point x0, k = 0
3: While ∥▽f(xk)∥ > ϵ
4: Let xk+1 be the local minimum of Φf,xk

5: Set k = k + 1
6: Output: xk
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Note that Step 4 of Algorithm 1 is solving an SDP. Our goal in this section is to prove a result that
is an analogue to the well-known result for the quadratic Newton’s Method, that is, if the function
we are minimizing is strongly convex and we initialize close enough to a local minimum, then this
algorithm converges cubically.

An astute reader will observe that unlike for quadratic polynomials, the Hessian being positive
definite at the current iterate is not sufficient for a well-defined next iterate. Thus, as a first step,
we must show that this algorithm is well-defined, at least if the current iterate is sufficiently close
to a local minimum.

Theorem 3.1. Suppose that a strongly convex function f has a strict local minimum x̄. Then there
exists R > 0 such that for all x satisfying ∥x− x̄∥ < R, Φf,x has a strict local minimum.

Proof. Our strategy for this theorem is to, given an x sufficiently close to x̄,

1. show that the restriction of Φf,x along any direction has a strict local minimum, then

2. argue that among all such local minima, there is one with a smallest value, and

3. that point is the local minimum of Φf,x.

Given a point x ∈ Rn and a direction d ∈ Rn (where without loss of generality we take ∥d∥ = 1),
we define the following three functions:

a(x, d) =
1

6

n∑
i=1

dTdi▽
3
i f(x)d,

b(x, d) =
1

2
dT▽2f(x)d,

c(x, d) = ▽f(x)Td.

Note that Cx,d(α) := a(x, d)α3 + b(x, d)α2 + c(x, d)α+ f(x) exactly gives the restriction of Φf,x to
the line x+ αd.

Since x̄ is a local minimum, c(x̄, d) = 0 for all d, and since f is strongly convex, for some
scalar m, b(x̄) ≥ m

2 for all d. Now recall that a cubic polynomial ax3 + bx2 + cx has a strict
local minimum if and only if b3 − 3ac > 0. As a(x, d), b(x, d), and c(x, d) are all continuous in
both x and d, there exist a scalar ϵ > 0 and a radius R such that b(x, d)2 − 3a(x, d)c(x, d) > ϵ

and

√
b(x,d)2−3a(x,d)c(x,d)

3a(x,d) > ϵ whenever ∥x− x̄∥ < R. As a consequence, Cx,d has a local minimum

whenever ∥x− x̄∥ < R.
Now fix a point x satisfying ∥x − x̄∥ < R. We can define the function α∗(d) (for d ̸= 0)

as α∗(d) := − c(x,d)

b(x,d)+
√

b(x,d)2−3a(x,d)c(x,d)
, which is the strict local minimum of Cx,d. We can then

further define the function
ϕ∗(d) := Cx,d(α

∗(d)),

which is the value of the local minimum of Cx,d. Observe that since b(x, d)2 − 3a(x, d)c(x, d) ≥ 0
by assumption, ϕ∗ is a continuous function in d. As ∥d∥ = 1 is a compact set, we can apply the
Weierstrass theorem to guarantee the existence of a global minimum of ϕ∗, as well as a minimizer
d∗ of ϕ∗, which is the direction d along which the local minimum of Cx,d has the smallest value.

We now argue that x + α∗(d∗)d∗ is a local minimum of Φf,x. Suppose otherwise for the sake
of contradiction. Then there exists a sequence of points yi, i = 1, 2, . . . such that yi → α∗(d∗)d∗
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and Φf,x(x+ yi) < Φf,x(x+ α∗(d∗)d∗). Note that we can use yi to define sequences zi :=
yi

∥yi∥ and

αi = ∥yi∥, so that yi = αizi. Clearly since yi → α∗(d∗)d∗, it must be that zi → d∗ and αi → α∗.
Now let i be sufficiently large so that |ai − a∗| < ϵ/2. We argue first that

Φf,x(x+ αizi) > Φf,x(x+ α∗(zi)zi) = ϕ∗(zi).

This is because the distance between the inflection point and local minimum of Cx,zi is given by√
b(x,zi)2−3a(x,zi)c(x,zi)

3a(x,zi)
(which is by assumption at least ϵ), and all points α satisfying Cx,zi(α) <

Cx,zi(α
∗(zi)) have to be at least as far away from the local minimum as inflection point is. Now

recall by the definition of d∗ that ϕ∗(zi) > ϕ∗(d∗). We thus have

Φf,x(x+ αizi) > Φf,x(x+ α∗(zi)zi) = ϕ∗(zi) > ϕ∗(d∗) = Φf,x(x+ α∗(d∗)d∗),

which is a contradiction.

We now move onto our main result.

Theorem 3.2. Suppose that a function f is strongly convex with parameter m and has a Lipschitz
continuous third derivative with parameter L. Suppose further that it has a strict global minimum
x∗. Then there exist scalars C and D > 0 such that if ∥x0 − x∗∥ < D, the iterates of Algorithm 1
satisfy

∥xk+1 − x∗∥ ≤ C∥xk − x∗∥3.

Proof. Let xk be the current iterate of Algorithm 1, and suppose that D is such that D2 < m
L

and xk+1 is well-defined by Theorem 3.1. Further let {H1(x), . . . ,Hn(x)} be the tensor of third
derivatives of f at x, Q(x) be the Hessian ▽2f(x), and b(x) be the gradient ▽f(x). Then xk+1

satisfies

1

2

n∑
i=1

(xk+1 − xk)iHi(x
k)(xk+1 − xk) +Q(xk)(xk+1 − xk) + b(xk) = 0, (8)

and
▽2Φf,xk(xk+1) ≻ 0. (9)

We will further need that b(x∗) = 0 and Q(x∗) ≻ 0, which follow from that x∗ is the local minimum
of f .

We can write

0 =
1

2

n∑
i=1

(xk+1 − xk)iHi(x
k)(xk+1 − xk) +Q(xk)(xk+1 − xk) + b(xk)

=
1

2

n∑
i=1

(x∗ − xk)iHi(x
k)(x∗ − xk) +Q(xk)(x∗ − xk) + b(xk) (10)

+
1

2

n∑
i=1

(x∗ − xk)iHi(x
k)(xk+1 − x∗) +

1

2
Q(xk)(xk+1 − x∗) (11)

+
1

2

n∑
i=1

(xk+1 − xk)iHi(x
k)(xk+1 − x∗) +

1

2
Q(xk)(xk+1 − x∗) (12)
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In what follows, we bound each of the quantities (10), (11), and (12).

Observe that (10) is ▽Φf,xk(x∗), and also recall that ▽f(x∗) = 0. We can thus bound the
quantity in (10):

0 =▽f(x∗)

=
1

2

n∑
i=1

(x∗ − xk)iHi(x
k)(x∗ − xk) +Q(xk)(x∗ − xk) + b(xk)

+

∫ 1

0

∫ 1

0

n∑
i=1

(
Hi(x

k + τγ(x∗ − xk))−Hi(x
k)
)
(x∗ − xk)i(x

∗ − xk)τdτdγ.

The norm of the integral in the second line, and therefore the norm of (10), is upper bounded
by L

6 ∥x
∗ − xk∥3. To see this, note that by (5) the summation can be rewritten as

dτ,γ :=

(x
∗ − xk)TGτ,γ

1 (x∗ − xk)
...

(x∗ − xk)TGτ,γ
n (x∗ − xk)

 ,

where we define Gτ,γ
i := Hi(x

k + τγ(x∗ − xk)) − Hi(x
k) for i ∈ {1, . . . , n}. Letting Gτ,γ :=

{Gτ,γ
1 , . . . , Gτ,γ

n }, we have by definition,

∥dτ,γ∥ = max
∥u∥≤1

uTdτ,γ

=∥x∗ − xk∥2 max
∥u∥≤1

n∑
i=1

ui
(x∗ − xk)

∥x∗ − xk∥

T

Gτ,γ
i

(x∗ − xk)

∥x∗ − xk∥

≤∥x∗ − xk∥2 max
∥u∥,∥v∥,∥w∥≤1

n∑
i=1

ui(v
TGτ,γ

i w)

=∥x∗ − xk∥2∥Gτ,γ∥
≤τγL∥x∗ − xk∥3,

where the last line follows from the Lipschitz continuity of the third derivative. Hence,

∥
∫ 1

0

∫ 1

0
dτ,γτdτdγ∥ ≤

∫ 1

0

∫ 1

0
τ2γL∥x∗ − xk∥3dγdτ ≤ L

6
∥x∗ − xk∥3. (13)

Now observe that (11) is equal to 1
2▽

2Φf,xk(x∗)(xk+1 − xk). We also have

▽2f(x∗) = ▽2Φf,xk(x∗) +

∫ 1

0

n∑
i=1

(x∗ − xk)i

(
Hi(x

k + τ(x∗ − xk))−Hi(x
k)
)
dτ.

Since ∥x∗ − xk∥2 ≤ m
L ,

∥
∫ 1

0

n∑
i=1

(x∗ − xk)i

(
Hi(x

k + τ(x∗ − xk))−Hi(x
k)
)
dτ∥ ≤ m

2
.
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To see why this is, again let Gτ
i := Hi(x

k + τ(x∗ − xk)) − Hi(x
k) for i ∈ {1, . . . , n} and Gτ :=

{Gτ
1 , . . . , G

τ
n}, and observe that

∥
n∑

i=1

(x∗ − xk)iG
τ
i ∥ = max

∥u∥,∥v∥≤1
vT (

n∑
i=1

(x∗ − xk)iG
τ
i )u

=∥x∗ − xk∥ max
∥u∥,∥v∥≤1

n∑
i=1

vT
(x∗ − xk)i
∥x∗ − xk∥

Gτ
i u

≤∥x∗ − xk∥ max
∥u∥,∥v∥,∥w∥≤1

n∑
i=1

vTwiG
τ
i u

=∥x∗ − xk∥∥Gτ∥
≤τL∥x∗ − xk∥2,

where the last line follows from the Lipschitz continuity of the third derivative. Hence,

∥
∫ 1

0

n∑
i=1

(x∗ − xk)iG
τ
i dτ∥ ≤

∫ 1

0
τL∥x∗ − xk∥2dτ ≤ L

2
∥x∗ − xk∥2 ≤ m

2
.

We then get

∥
n∑

i=1

(x∗ − xk)iHi(x
k) +Q(xk)∥ =∥▽2f(x∗)−

∫ 1

0

n∑
i=1

(x∗ − xk)i

(
Hi(x

k + τ(x∗ − xk))−Hi(x
k)
)
dτ∥

≥∥▽2f(x∗)∥ − ∥
∫ 1

0

n∑
i=1

(x∗ − xk)i

(
Hi(x

k + τ(x∗ − xk))−Hi(x
k)
)
dτ∥

≥m− m

2
=

m

2
.

Note in particular that
∑n

i=1(x
∗ − xk)iHi(x

k) +Q(xk) is a positive definite matrix whose smallest
eigenvalue is at least m

2 .
Finally, observe that (12) is 1

2Φf,xk(xk+1)(xk+1 − x∗), where Φf,xk(xk+1) is a positive definite
matrix. Putting everything together, we have have −(10) = (11) + (12), which yields

xk+1 − x∗ =−

(
1

2
(

n∑
i=1

(x∗ − xk)iHi(x
k) +Q(xk)) +

1

2
(

n∑
i=1

(xk+1 − xk)iHi(x
k) +Q(xk))

)−1

×

(
1

2

n∑
i=1

(x∗ − xk)iHi(x
k)(x∗ − xk) +Q(xk)(x∗ − xk) + b(xk)

)
.

The first factor of the right hand side is the inverse of a positive definite matrix whose minimum
eigenvalue is at least m

4 , and thus is a matrix whose norm is at most 4
m . The second factor is a

vector with norm at most L
2 ∥x

∗ − xk∥3 (from (13)). Hence we find

∥xk+1 − x∗∥ ≤ L

6m
∥xk − x∗∥3

as desired.
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We end this section by establishing that whenever the third-order Taylor approximation has a
strict local minimum, (6) is strictly feasible. Here, to be strictly feasible means there exists (X,x, y)
such that the equality constraints are satisfied and the positive semidefiniteness constraint holds
with strict positive definiteness. While this condition is not necessary for (6) to have a solution, it
is nonetheless a relevant computational consideration for interior point methods.

Theorem 3.3. If the cubic polynomial associated with (6) has a strict local minimum, then (6) is
strictly feasible.

Proof. Let p be the cubic polynomial associated with (6) and let x̄ be its strict local minimum.
Note that since y is otherwise unconstrained, for any matrix X and vector x satisfying ▽2p(x) ≻ 0,
there exists y large enough such that[ ∑n

i=1 xiHi +Q
∑n

i=1Tr(HiX)ei +Qx
(
∑n

i=1Tr(HiX)ei +Qx)T y

]
≻ 0.

This is because the matrix in the top-left-hand corner is in fact ▽2p(x). Hence our focus in this
proof will be on the first and third constraints. In particular, we will show that there exist a positive
definite matrix X ∈ Rn×n and a vector x ∈ Rn with ▽2p(x) ≻ 0 for which those constraints hold.

Let D ∈ Rn×n be any positive definite matrix, and let d be the vector in Rn where the i-th entry
is Tr(HiD). Furthermore, define v := 1

2(
∑n

i=1 x̄iHi +Q)−1d. Now consider scaling D by a positive
scalar α, which scales v by the same factor. When α is sufficiently small, we have ▽2p(x̄−αv) ≻ 0,
since ▽2p(x̄−αv) → ▽2p(x̄) as α → 0. Similarly, for (a potentially smaller) sufficiently small α > 0,
we have αD − α2vvT = α(D − αvvT ) ≻ 0. For the smaller of these two scalings, let ȳ := x̄ − αv.
Without loss of generality, suppose that D was such that α = 1, that is, D was chosen to be small
enough that no scaling was necessary.

We now prove our claim for X = ȳȳT + D − vvT and x = ȳ. That ▽2p(ȳ) ≻ 0 follows from
how we chose ȳ. We know that the third constraint of (6) holds with positive definiteness from the
Schur complement condition and that X − xxT = D − vvT ≻ 0. We just need to show that the
equality constraints

1

2
Tr(HiY ) + eTi Qy + bi = 0, ∀i

are satisfied. This is proven by the following chain of equalities:

1

2
Tr(HiX) + eTi Qx+ bi =

1

2
Tr(Hiȳȳ

T ) +
1

2
Tr(HiD)− 1

2
Tr(Hivv

T ) + eTi Qx+ bi

=
1

2
(x̄− v)THi(x̄− v) +

1

2
Tr(HiD)− 1

2
vTHiv + eTi Q(x̄− v) + bi

=
1

2
x̄THix̄+ eTi Qx̄+ bi − x̄THiv − eTi Qv +

1

2
Tr(HiD)

= 0−

(
n∑

i=1

(x̄iHi +Q)v

)
i

+
1

2
Tr(HiD)

= −1

2
di +

1

2
Tr(HiD)

= 0.
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4 Numerical Results

In this section, we present some numerical results comparing our unregularized third-order algo-
rithm to standard existing algorithms on some benchmark functions which appear in the litera-
ture [1]. For each function we present the following data:

1. The second and third order Newton fractals for each function (Section 4.2).

2. The path and number of iterations needed for each algorithm from different starting points
(Section 4.3).

A Newton fractal is a visual way to analyze the sensitivity of an algorithm to the initial starting
point. Each pixel represents an initial starting point for one of the Newton algorithms. If two
pixels have the same color, then the Newton algorithm converges to the same point when starting
from that point.

We would like to make some remarks concerning our experiments. For gradient descent, we
tested two versions: one with a constant step size, and one with quadratic fit. For the constant
step size, we attempted numerous different step sizes, which are presented below. For our starting
points, we chose ones for which all algorithms converged. This has an effect of skewing the results
more favorably towards the Newton methods (in particular the second-order method), as points
for which both algorithms converged tended to be close to the global minimum (see the Newton
fractals in Section 4.2).

Very frequently in our algorithm, the third-order Taylor expansion around the iterate did not
have a local minimum. Nonetheless, the SDP could sometimes still produce an iterate, i.e., the
variable x in (6). However, this was not the case when the SDP was infeasible, and when this
happened, we terminated the algorithm and reported that the initial point did not converge to the
global minimum. Approaches to handling this case will be a priority for further research, though
empirically adding a multiple of the identity matrix to the Hessian matrix alleviated this slightly.
Some experiments involving this adjustment are discussed at the end of Section 4.2.

When a function has multiple local minima (which is the case for many of our test functions),
there are initial conditions when the second-order method converges to the global minimum from a
particular starting point, while the third-order method does not. Generally speaking, it is desirable
when regions whose initial points converge to the same limit are contiguous, and do not display
“fractal” behavior. For the most part, the Newton fractals from the third-order method indicate
less fractal behavior than those arising from the second-order method, and have fewer isolated
regions that seem to converge to a particular global minimum by coincidence.

All code and data are available publicly at https://github.com/jeffreyzhang92/Third_

Order_Newton.

4.1 Test Functions

For our experiments, we chose the Bohachevsky function, the McCormick function, the Beale
function, and the Himmelblau function. All their contour plots are in Figure 1, and their function
definitions are in Table 1.
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(a) Contour plot of the Bohachevsky function. (b) Contour plot of the McCormick function.

(c) Contour plot of the Beale function. (d) Contour plot of the Himmelblau function.

Figure 1: Contour plots of our selected functions.

Function Definition Global minimum

Bohachevsky x2 + 2y2 − .3 cos(3πx)− .4 cos(4πy) + .7 (0, 0)

McCormick sin(x+ y) + (x− y)2 − 1.5x+ 2.5y + 1 None

Beale (1.5− x+ xy)2 + (2.25− x+ xy2) + (2.625− x+ xy3)2 (3, .5)

Himmelblau (x2 + y − 11)2 + (x+ y2 − 7)2 (3,2)

Table 1: Definitions of our selected functions.

The Bohachevsky function is characterized with an overall bowl shape which has a global
minimum at (0, 0). However, this function has numerous local minima at intervals of approxi-
mately .61 in the x direction and .46 in the y direction, making it very easy for optimization
algorithms to get stuck in a local minimum. The McCormick is a plate-shaped function, with
no global minimum but many local minima at intervals of approximately (π, π) of each other.
These local minima have progressively smaller objective values as x and y approach −∞. The
usual search interval of this function is −1.5 ≤ x ≤ 4,−3 ≤ y ≤ 4, over which the minimum
is (−.54719,−1.54719). The Beale function has a cross-shaped valley, with peaks in the corners
of the x, y-plane. Finally, the Himmelblau function is a bowl-shaped function, with four local
minima: (3, 2), (−2.805118, 3.131312), (−3.779310,−3.283186), and (3.584428,−1.848126). Out of
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these, (3, 2) is the global minimum.

4.2 Newton Fractals

In this section, we present the second-order and third-order Newton fractals for each of these func-
tions. One will observe that the third-order fractals display less sensitivity to the initial point, as
well as wider basins of attraction.

Figures 2 and 3 contain the Newton fractals for the Bohachevsky function.

Figure 2: The second-order Newton fractal for the Bohachevsky function. Black regions indicate
which initial points converge to the global minimum.

Figure 3: The third-order Newton fractal for the Bohachevsky function. Black regions indicate
which initial points converge to the global minimum.
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The fractals for the Bohachevsky function can overall be characterized by rectangular regions
each containing a local minimum. Relatively speaking, the global minimum has a significantly larger
basin of attraction for the third-order method than it does for the second-order method. Moreover,
the second-order method contains many more noncontiguous initial iterates that converge to the
global minimum. However, given that these points are closer to a separate local minimum, we
consider this undesirable behavior.

Figures 4 and 5 contain the Newton fractals for the McCormick function.

Figure 4: The second-order Newton fractal for the McCormick function. Black regions indicate
which initial points converge to the global minimum in this region at (−.54719,−1.54719), and
grey regions indicate which initial points converge to the other local minimum at (2.5944, 1.5944).

Figure 5: The third-order Newton fractal for the McCormick function. Black regions indicate
which initial points converge to the global minimum in this region at (−.54719,−1.54719), and
grey regions indicate which initial points converge to the other local minimum at (2.5944, 1.5944).
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The fractals for the McCormick function can be characterized by diagonal bands each contain-
ing a local minimum. Relatively speaking, the bands for the third-order method are wider, and the
fractal contain fewer isolated thinner bands throughout.

Figures 6 and 7 contain the Newton fractals for the Beale function.

Figure 6: The second-order Newton fractal for the Beale function. Black regions indicate which
initial points converge to the global minimum.

Figure 7: The third-order Newton fractal for the Beale function. Black regions indicate which
initial points converge to the global minimum.

The fractal for the second-order method demonstrates very fractal behavior, with many iterates
converging to a saddle point located at (0, 1). By comparison, the third-order fractal displays very
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stable behavior, with the basin of attraction being a contiguous region around the global minimum.

Figures 8 and 9 contain the Newton fractals for the Himmelblau function.

Figure 8: The second-order Newton fractal for the Himmelblau function. Differently colored regions
indicate which initial points converge to the same local minimum.

Figure 9: The third-order Newton fractal for the Himmelblau function. Differently colored regions
indicate which initial points converge to the same local minimum.

Both fractals demonstrate the same overall behavior. Each local minimum has a contiguous
region around it in which all points converge to it. However, both fractals have cross-shaped region
in the middle of the local minima which have points that do not converge to any local minima.
For the case of the second-order method, this cross-shaped region also contains extremely fractal
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behavior in the center. Compared to the second-order method, the cross-shaped region between
the local minima for the third-order method is narrower and does not contain this fractal center,
but the basin of attraction for each local minimum is also smaller.

4.3 Comparison Tests

Tables (2)-(5) contain the iteration count for each function for different algorithms and initial
conditions.

Method (.1, .05) (−.1, .02) (.15, 0) (0,−.05)

Second Order Newton 4 4 4 4

Third Order Newton 4 4 4 4

Quadratic Fit 15 13 4 4

Gradient Descent c = 0.05 ≥4000 ≥4000 14 ≥4000

Gradient Descent c = 0.01 39 39 41 13

Gradient Descent c = 0.015 24 24 25 4

Gradient Descent c = 0.02 17 17 17 13

Table 2: Numbers of iterations to converge to the global minimum for different algorithms and
starting points for the Bohachevsky function.

Method (0,−1) (−3, 1) (2,−3) (2,−4)

Second Order Newton 5 3 5 3

Third Order Newton 4 3 4 3

Quadratic Fit 5 9 11 4

Gradient Descent c = 0.2 29 23 29 23

Gradient Descent c = 0.25 22 18 22 18

Gradient Descent c = 0.3 17 14 17 14

Gradient Descent c = 0.35 14 17 17 17

Table 3: Numbers of iterations to converge to the global minimum for different algorithms and
starting points for the McCormick function.

Method (2.8, .2) (3, .2) (3.2, .4) (3.4, .3)

Second Order Newton 8 7 6 7

Third Order Newton 7 7 4 7

Quadratic Fit 22 207 364 250

Gradient Descent c = 0.045 ≥5000 ≥5000 ≥5000 ≥5000

Gradient Descent c = 0.035 822 762 758 762

Gradient Descent c = 0.02 1439 1321 1451 1605

Gradient Descent c = 0.01 2880 2631 2913 3230

Table 4: Numbers of iterations to converge to the global minimum for different algorithms and
starting points for the Beale function.
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Method (2, 1) (4, 1.5) (4, 3) (3, 3.5)

Second Order Newton 7 5 4 5

Third Order Newton 4 3 3 3

Quadratic Fit 16 17 18 13

Gradient Descent c = 0.02 21 24 27 27

Gradient Descent c = 0.015 27 27 24 19

Gradient Descent c = 0.025 ≥4000 ≥4000 ≥4000 ≥4000

Table 5: Numbers of iterations to converge to the global minimum for different algorithms and
starting points for the Himmelblau function.

The overall relative behavior of the different algorithms was the same for each function. The
Newton methods took the fewest iterations overall, with gradient descent with quadratic fit per-
forming comparably on some initial points. Gradient descent with fixed step size took the most
iterations overall on every function and initial point. Moreover, gradient descent with fixed step
size was extremely sensitive to the chosen step size, not converging for many other choices thereof.

5 Levenberg-Marquardt Regularization for the Third-Order Method

From running our experiments, a main drawback of Algorithm 1 was that the SDP was often
infeasible, especially when the current iterate was far from a local minimum. In this section, we
investigate a generalization of Levenberg-Marquardt regularization which alleviates this problem.

5.1 Overview

In Levenberg-Marquardt regularization for the classical Newton’s method for nonconvex functions,
a multiple of the identity matrix is added to the Hessian matrix in order to make the matrix
positive definite. With this adjusted Hessian, the quadratic approximation now is guaranteed to
have a global minimum.

A similar approach seems to be effective for the case of the third-order method. To motivate
this with an example, we investigated an adjustment made to Algorithm 1 for the Himmelblau
function. If the SDP (6) was infeasible, a multiple of the identity matrix added to the matrix Q
(see Figure 10). While the infeasibility issue was not completely resolved, one can see that all the
basins of attraction increase in size as the multiple of the identity matrix increases. The question of
interest then becomes whether there is a way to systematically decide what multiple of the identity
matrix to add. For the second-order method, this is some constant which is at least the absolute
value of the most negative eigenvalue of the Hessian matrix. For the third-order method it is not
as obvious.
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Figure 10: The third-order Newton fractal for the Himmelblau function, but with 5I (left) or 10I
(right) added to the Hessian in the case of an infeasible SDP. Differently colored regions indicate
which initial points converge to the same local minimum.

We point out that the our approach differs in a key aspect from existing algorithms. The idea
of of adding a sufficiently large and convex function to an approximation is not new, but in existing
algorithms this added function is at least on the order of the highest terms in the approximation.
This is with the goal of making the approximation globally convex, guaranteeing that it has a global
minimum and making it amenable to convex optimization techniques.

Here, the term we are adding is of lower order than that of the highest term in the approximation,
as adding a multiple of the identity matrix to the Hessian is equivalent to adding a multiple of
∥x − xk∥2 to the approximation. Such an adjustment will not make the approximation convex or
introduce a global minimum, but it can induce a local minimum. Moreover, the same semidefinite
program will find this local minimum, precluding the need for other more specialized techniques.

5.2 Choosing a scaling constant

In this section, we propose the following multiplier for the identity matrix. Let λ be the minimum
eigenvalue of ▽2f(x) and

g :=

|▽1f(x)|
...

|▽nf(x)|

 , h :=

∥▽
3
1f(x)∥
...

∥▽3
nf(x)∥

 .

Then our choice of α is

αLM :=

√
3

2
(∥g∥∥h∥+ gTh)−min{0, λ}. (14)

Proposition 5.1. For a three-times differentiable function f and any point x̄ ∈ Rn, the function
Φf,x̄ + αLM∥x− x̄∥2 has a local minimum.

Proof. Recall from the proof of Theorem 3.1 that if the function

δ(x, d) := b(x, d)2 − 3a(x, d)c(x, d) (15)

as defined in the proof is positive for all d ̸= 0, then the Taylor expansion of f around x has a local
minimum. If for some α ∈ R, ▽2f(x) is replaced by ▽2f(x) + αI, then this expression becomes

(b(x, d) + αdTd)2 − 3a(x, d)c(x, d). (16)
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Since this function is still homogeneous with respect to d, we can consider whether this function is
positive on ∥d∥ = 1. If we can find β such that a(x, d)c(x, d) ≤ β,∀∥d∥ = 1, then we can set

α =
√
3β −min{0, λ}, (17)

and satisfy (16). We point out that one natural choice of β is ∥▽3p(x)∥∥▽p(x)∥, but it is NP-hard
to compute the norm of the tensor ▽3p(x) [6]. Instead, for the rest of the proof we establish that

β =
∥g∥∥h∥+ gTh

2
(18)

is a valid choice for β. Recall that a(x, d)c(x, d) = (▽f(x)Td)(
∑n

i=1 di(d
T▽3

i f(x)d)). One can see
that

|a(x, d)c(x, d)| = |(▽f(x)Td)(
n∑

i=1

di(d
T▽3

i f(x)d))| ≤ (
n∑

i=1

|di|gi)(
n∑

i=1

|di|hi).

Note that since we are considering all ∥d∥ = 1, the final expression on the right hand side is
maximized on the nonnegative orthant, and so we can reduce that expression to (dT g)(hTd).

Now observe that (dT g)(hTd) = dT (gh
T+hgT

2 )d, where ghT + hgT is a rank-2 matrix with the
following eigenvalue-eigenvector pairs:(

gTh+ ∥g∥∥h∥, g

∥g∥
+

h

∥h∥

)
(
gTh− ∥g∥∥h∥, g

∥g∥
− h

∥h∥

)
To verify this, one can see that(

ghT + hgT )
g

∥g∥
+

h

∥h∥

)
=

g

∥g∥
hT g +

g

∥h∥
hTh+

h

∥g∥
gT g +

h

∥h∥
gTh

=

(
g

∥g∥
+

h

∥h∥

)
gTh+

∥g∥
∥g∥

∥h∥g + ∥h∥
∥h∥

∥g∥h

=(gTh+ ∥g∥∥h∥)
(

g

∥h∥
+

h

∥h∥

)
The other pair can be shown analogously. Note that because g and h have nonnegative entries by
definition, the larger of the two eigenvalues is gTh+ ∥g∥∥h∥. Hence the bound on β is established,
which concludes the proof.

5.3 A revised algorithm

Ultimately we arrive at the following algorithm:
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Algorithm 2 Unregularized Third-Order Newton’s Method with Levenberg Marquardt Regular-
ization

1: Input: A function f , threshold ϵ > 0
2: Initialize a point x0, k = 0
3: While ∥▽f(xk)∥ > ϵ
4: If Φf,xk has a local minimum:

5: Let xk+1 be the local minimum of Φf,xk

6: Set k = k + 1
7: Else
8: Let xk+1 be the local minimum of Φf,xk + αk

LM∥x− xk∥2
9: Set k = k + 1

10: Output: xk

We do point out however, that choosing α as in (14) is generally an overestimation in regards
to what is needed to make (6) feasible. We are providing a sufficient condition for (16) to hold,
which is itself only a sufficient condition for the cubic approximation to have a local minimum,
which itself is only a sufficient condition for (6) to be feasible. A worthwhile question to consider
would be whether scalings based on SDP duality or an infeasbility certificate for the initial SDP
can be derived. Having a better provable bound would be an improvement, and having an exact
bound would be ideal. If an exact bound is known, one does not have to waste computations testing
whether the SDP is feasible, and instead add the regularization term immediately. If one attempts
to use a version of this algorithm that always adds the regularization term without an exact bound,
convergence issues commonly arise close to the local minimum.

Below is the Newton fractal for the Himmelblau function when using Algorithm 2:

Figure 11: The third-order Newton fractal for the Himmelblau function with Levenberg Marquardt
regularization. Differently colored regions indicate which initial points converge to the same local
minimum.

As can be seen, when compared to the fractal in Figure 9, there is substantial improvement in
the size of the basins of attraction, and a lessening of the locality of Algorithm 1. We do observe
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however that there are still starting iterates from which the algorithm diverges, or converges to a
local minimum which is not the closest local minimum from the initial point. These are not issues
that the Levenberg Marquardt regularization seeks to address.

6 Conclusion

In this paper, we presented a third-order unregularized Newton’s method, and showed guarantees on
its performance along with some tests with optimistic results. Compared to the classical Newton’s
method, the main advantage is the wider basins of attraction along with the reduced sensitivity
to the initial point, as shown in the Newton fractals. From a time standpoint however, it is not
competitive, provided that the second-order method converges. The main bottleneck of course is
the cost of solving each intermediate SDP and the gain in iteration complexity not justifying the
increased cost. The other main weakness of our algorithm is that the SDP we solve in each step is
not always feasible. The quadratic Newton’s method on the other hand can still move to a saddle
point as long as the Hessian has full rank. As the well-definedness of the next iterate provided in
this work is local, so existence of this iterate is no longer guaranteed if the current iterate is far
from the global minimum. This is especially true when the function being minimized is nonconvex.

General work on making SDP algorithms more efficient will improve the speed of our algorithm,
but there is the potential of specific ways of working with our SDP. One change we believe is worth
exploring is limiting the number of iterations that the SDP solver uses in each iteration of our
Newton algorithm. It is unlikely that our algorithm requires a high degree of precision when
generating iterates, and that finding a point close to the local minimum of each Taylor expansion is
sufficient. Since the cubic function being minimized is only an approximation of the true function,
it may be desirable to work with a new approximation as soon as possible. Such a modification
could be considered a version of a damped Newton algorithm, and could be advantageous if our
algorithm does not need optimal, or even near optimal solutions to the underlying SDPs to produce
good iterations.

Overall, we believe that this work serves as a basis for a new class of third-order algorithms, and
there are many avenues of further research in this direction. The most natural is to borrow on the
literature on second-order Newton methods to improve our third-order method. While extending
these methods to use third information are for the most part straightforward conceptually, there is
the question of which adaptations will still result in computationally tractable subproblems. For
example, the adaptation we presented in Section 5 can be viewed as an extension of Levenberg-
Marquardt regularization, and does not require a change to the SDP. Damping can also be emulated,
by using the SDP to find a direction, and then reducing the step size. Other adaptations, such as
trust region approaches, may be less immediate, as minimizing a cubic polynomial over a sphere is
an NP-hard problem [10].
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