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Abstract

We formulate a uniform tail bound for empirical processes indexed by a class of func-

tions, in terms of the individual deviations of the functions rather than the worst-case

deviation in the considered class. The tail bound is established by introducing an initial

“deflation” step to the standard generic chaining argument. The resulting tail bound is

the sum of the complexity of the “deflated function class” in terms of a generalization

of Talagrand’s γ functional, and the deviation of the function instance, both of which

are formulated based on the natural seminorm induced by the corresponding Cramér

functions. Leveraging another less demanding natural seminorm, we also show similar

bounds, though with implicit dependence on the sample size, in the more general case

where finite exponential moments cannot be assumed. We also provide approximations

of the tail bounds in terms of the more prevalent Orlicz norms or their “incomplete”

versions under suitable moment conditions.

1 Introduction

Let (Xi)
n
i=1 be i.i.d. copies of a random variable X taking values in some space X , and denote

by En the expectation with respect to the empirical measure associated with the samples
(Xi)

n
i=1. A central question of the theory of empirical processes is to find tail bounds for

the empirical average En f(X) = n−1
∑n

i=1 f(Xi) that hold uniformly for all functions f
belonging to a given function class F ⊂ R

X .
Assuming that the functions in F are all zero-mean, the existing tail bounds in the

literature typically assert that with probability at least 1− e−r, for all f ∈ F we have

En f ≤ (C(F) + Sr(F))on(1) ,

where C(F) depends on some measure of “complexity” of the function class F (e.g., VC-
dimension [VC71; Vap98], Rademacher complexity [vdVW12; KP00], or Talagrand’s func-
tional [Tal14]), and Sr(F) is some notion of the “worst-case deviation” of the functions f ∈ F
at the confidence level e−r. Our goal in this paper is to establish “instance-dependent” tail
bounds in which the worst-case deviation above is replaced by the deviation of each particu-
lar function of the function class. It turns out that the instance-dependent tail bounds may
provide some improvements in terms of the complexity term as well.
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A closely related set of results are tail bounds for ratio type empirical processes. Giné,
Koltchinskii, and Wellner [GKW03] and Giné and Koltchinskii [GK06] have developed such
tail bounds for processes indexed by a class of [0, 1]–bounded functions. In particular, various
elaborate non-asymptotic tail bounds are derived in [GK06] by “slicing” the function class
to sets of functions for which the variance proxy is nearly the same, and applying to each
slice Talagrand’s concentration inequality for uniformly bounded empirical processes.

Our inspiration is a recent result of Lugosi and Mendelson [LM23] on instance-dependent
tail bounds for certain Gaussian processes. Lugosi and Mendelson [LM23] used this result
as a benchmark to motivate their main goal which is robust mean estimation with optimal
direction-dependent sub-Gaussian confidence intervals. Specifically, in the case of a Gaus-
sian processes indexed by points in some centered Euclidean ball, [LM23, Proposition 1]
derived refined tail bounds that depend on the standard deviation at any queried direction
rather than the worst-case standard deviation (i.e., largest eigenvalue of the corresponding
covariance matrix). Furthermore, the complexity of the entire class is replaced by a quantity
which, depending on the confidence level and the spectrum of the covariance matrix, can be
significantly smaller than the square root of the trace of the covariance matrix appearing in
the standard bounds.

Section 2 provides a more precise statement of the problem of interest. The instance-
dependent tail bounds under the assumption of finite exponential moments are presented in
Section 3. As a complement to this section, our calculations in Appendix B to derive more
explicit expressions in the more commonly used case of function classes in (exponential type)
Orlicz spaces, can be of independent interest. In Section Section 4 we consider three illus-
trative examples. In Section 4.1 we discuss the problem studied by [LM23] in more details,
and in Section 4.2 we use instance-dependent bounds to formulate confidence intervals for
the m-th largest mean of a general Gaussian vector. Section 5 further generalizes the results
of Section 3 to situations where the functions of interest are L1 (with respect to the law of
X), and particularly may not have finite exponential moments. As a corollary, these rather
general bounds are made more explicit, especially in terms of the sample size, for functions
with finite moments of every order which, again, do not necessarily have finite exponential
moments.

2 Preliminaries and Problem Setup

Let F denote a finite but arbitrarily large subset1 of a vector space V of centered functions
from X to R whose cumulant generating function is finite in a neighborhood of the origin.
Specifically, for every f ∈ V we have

E f(X) = 0 ,

and If = {λ ∈ R : logE eλf(X) < +∞}, the domain of the corresponding cumulant generating
function, contains 0 in its interior.

1In many situations infinite function classes can be considered as well, but a completely rigorous analysis
for the problems of interest requires the measurability issues to be addressed, e.g., as in [Pol84, Appx. C].
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For simplicity we assume that the zero function, denoted by 0, is also in F . We also
frequently use functions Tr : V → R≥0 that are defined for r ≥ 0 as

Tr(g)
def

= inf
λ≥0

r + logE eλg(X)

λ
,

with the convention that for r > 0, if logE eλg(X) = +∞, then the objective of the infimum
is also infinite and the corresponding λ is implicitly excluded. These functions determine
certain confidence intervals of interest and in fact are inverses of the rate function, a central
object in the theory of large deviations [Var84; DZ10], associated with the random variable
g(X). We emphasize that the domain of Tr(·) is not restricted to F , and as will be seen in
the sequel we also apply Tr(·) to other functions in V .

It is worth mentioning that Tr(g) is a general substitute for many prevalent measures
of “deviation” for a function g ∈ V at the confidence level e−r. For example, if g(X) has a
sub-Gaussian distribution and the corresponding sub-Gaussian parameter is proportional to
‖g‖L2

, then we have Tr(g) .
√
r‖g‖L2

.2 Another common example is of bounded functions
g(·), where using Bernstein-type bounds (see Lemma 4 in Appendix A) we can show that
Tr(g) .

√
r‖g‖L2

+ r‖g‖L∞
. More generally, as detailed in Appendix B, for exponential-type

Orlicz spaces, Tr(g) can be bounded by the corresponding Orlicz norm.
The function Tr(·) has certain properties that are important in our derivations. We have

collected these properties in the following lemma, which is proved in Appendix A to be
self-contained. It is worth mentioning that more general alternatives to Tr(·) with similar
properties can be defined easily using certain variational approximations of the corresponding
quantile functions [Pin14, Theorem 2.4]. These variational approximations are important in
concentration inequalities for sums of independent random variables (see, e.g., [Rio17] and
[Mar21]). We use the mentioned less demanding alternatives of Tr(·) in Section 5 to state a
more general, but less explicit, version of our results in Section 3.

Lemma 1 (Properties of Tr(·)). The function Tr(·) has the following properties:

(i) Tr(·) is positive homogenous in the sense that Tr(αg) = αTr(g) for any α > 0 and all
functions g ∈ V .

(ii) T0(g) = 0 for all functions g.

(iii) The mapping r 7→ Tr(g), for r > 0 and any particular function g ∈ V , is concave and
subadditive.

(iv) The even envelope of Tr(·) defined as

T r(g) = max{Tr(g), Tr(−g)} , (1)

is a seminorm.

For any fixed f ∈ V the following elementary lemma, which is essentially the well-known
Chernoff bound, expresses a tail bound for Enf in terms of Tr/n(f). The proof is provided
in the Appendix for completeness.

2Here and throughout, P . Q is used as a shorthand for the inequality P ≤ cQ for some absolute constant
c > 0.
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Lemma 2. With the definitions above, for any function f ∈ V (whose moment generating
function has 0 in the interior of its domain), with probability at least 1− e−r, we have

En f(X) ≤ Tr/n (f) .

It is natural to seek an extension of Lemma 2 that provides an upper tail bound for the
random variable of the form

Z = sup
f∈F

(
En f(X)− Tr/n (f)

)
,

which translates to a uniform bound for En f that holds for every instance of f ∈ F . It is
often more convenient to work with tail bounds expressed in terms of some seminorm of f
rather than the Tr(f) which is not subadditive. A natural choice is T r(·) defined by (1), and
consider the seminormed spaces (V , T r(·)) for r ≥ 0, where the functions of F belong to. In
this paper we focus on finding an upper tail bound for random variables of the form

Z = sup
f∈F

(
En f(X)− T r/n(f)

)
.

We emphasize that we use the term “instance-dependent tail bounds” specifically to refer to
the bounds that generalize the Chernoff bound for an individual function, to the entire class
as described above. For example, the result of the standard generic chaining arguments can
be expressed in a way that the tail bounds depend on the queried function f . However,
the resulting bounds are in terms of the optimal choice of the so-called admissible subsets
of the function class, and the term T r/n(f), even with a crude multiplicative factor, is not
guaranteed to appear in the bound.

3 Tail Bounds Assuming Finite Exponential Moments

We basically follow the generic chaining argument [Tal14] with an initial deflation of the
function class that enables us to achieve the instance-dependence we aimed for. Furthermore,
we use a “truncated chain” in our derivations similar to the approach of Dirksen [Dir15,
Theorem 3.2], with the distinction that we derive the tail bounds directly without resorting
to the polynomial moments as in [Dir15].

3.1 A Generalized γ functional

Let us define ̺r(g, h) = T r(g − h) as a distance between a pair of functions g, h ∈ V . With
notation overloading, we also denote the distance of a function g ∈ V to a set of functions
H ⊆ V by

̺r(g,H) = inf
h∈H

T r(g − h) . (2)

Similar to the truncated variant of Talagrand’s γ functionals introduced in [Dir15], for A ⊆ V ,
and ℓ ∈ Z≥0 we define

γ(A; r, ℓ, n) = inf
(Ai)i≥0

sup
a∈A

∑

ℓ≥ℓ
̺(r+(r+1)2ℓ−ℓ)/n(a,Aℓ) , (3)
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where the infimum is taken over an increasing admissible sequence (Ai)i≥0 of the subsets of
A with |Ai| ≤ 22

i
for i ≥ 1, and A0 = {0}. For n = 1, ℓ ≈ log2(r), and the approximation

T r(g) ≤ r1/α‖g‖ψα
with ‖·‖ψα

being a ψα Orlicz norm, defined below in Appendix B, the
γ functional defined in (3) effectively reduces to the Talagrand’s (truncated) γα functional.
For a set A, the Talagrand’s γα functional with respect to the suitable pseudometric ρ is
defined as

γα(A, ρ; ℓ) = inf
(Ai)i≥0

sup
a∈A

∞∑

ℓ≥ℓ
2ℓ/αρ(a,Aℓ) ,

where the infimum is again taken with respect to a sequence of admissible sets (Ai)i≥0.
The importance of these types of functionals was first revealed by Talagrand’s majorizing
measures theorem [Tal87], whose appellation is due to the following essentially equivalent
definition of γα(A, ρ) = γα(A, ρ; 0):

γα(A, ρ) = inf
µ
sup
a∈A

∫ ∞

0

(
log

1

µ ({b ∈ A : ρ(b, a) ≤ ε})

)1/α

dε ,

with the infimum taken over probability measures µ on A [Tal01]. The majorizing measures
theorem confirms a conjecture due to Fernique [Fer75] that the expectation of the supremum
of the centered Gaussian process indexed by A, is equivalent to γ2(A, ρ) up to constant
factors, with ρ being the canonical pseudometric induced by the Gaussian process.

Evaluating or even finding a good approximation for a γ functional of a general set A
can be challenging [Tal01; vHan18], and the only solution could be “guessing” an appropriate
majorizing measure or an admissible sequence of subsets [Tal01]. By pulling the supremum
into the summation in the definition of γα functional, the infimum over the admissible sets
would be achieved with each Ai being a covering set of A of cardinality 22

i
. This approxima-

tion describes the Dudley’s (entropy) integral inequality (see, e.g., [Ver18, Theorem 8.1.3],
[Dir15, equation 2.3]), i.e.,

γα(A, ρ) .α

∫ ∞

0

(logN(A, ρ, ε))1/α dε ,

where N(A, ρ, ε) is the covering number of A with respect to ρ-balls of radius ε, and .α is
the usual inequality sign up to a (positive) constant factor depending only on α. If accurate
estimates of the covering numbers of A are available, approximations of γα through Dudley’s
inequality are easy to compute. However, Dudley’s inequality may not deliver sufficiently
sharp approximations (see, e.g., [vHan18, Section 3.1]). The notable approach of van Handel
[vHan18] improves on Dudley’s inequality by replacing the entropy numbers of the entire set
A by those of certain scale-dependent “thin” subsets of A, imitating the multiscale form of γα.
These thin subsets are “smoothed projections” of A expressed by minimizers of interpolation
of the base metric and a given nonnegative functional at different scales [vHan18, Section
2.1]. The resulting approximation of γα is shown to be sharp in several nontrivial examples
where Dudley’s inequality yields rather loose approximations [vHan18, Section 3].

It is worth mentioning that the γ functional defined by (3) applies in more general settings
than the standard γα functionals thanks to the less restricted form of the dependence of
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the pseudometric ̺r(·, ·) on the “resolution scale” r. If A, the function class of interest,
is inhomogeneous in the sense that it contains functions with significantly different tail
behavior, then the standard γα functionals might overestimate the size (or complexity) of
A. As an illustrative example, suppose that for some absolute constant η > 0 we have
T r(f) ≈ ‖f‖L∞

r+η‖f‖L2

√
r for all f ∈ V , where approximation is in a multiplicative sense,

and L∞ and L2 norms are defined with respect to the law of X. This form of dependence
on the resolution scale cannot be reproduced by the γα functional or other similarly defined
quantities where the resolution scale and the distance to an admissible set are decoupled.
Measuring the distance with respect to the scale-insensitive norm ‖f‖ = c∞‖f‖L∞

+ c2‖f‖L2

for arbitrary absolute constants c2, c∞ ≥ 0, leads to a suboptimal upper bound T r(f) ≤
(c′∞r + c′2

√
r)(c∞‖f‖L∞

+ c2‖f‖L2
) with c′2, c

′
∞ > 0 being constants that may depend only

on η.

3.2 Generic Chaining with a “Deflation” Step

The following theorem is our first main result.

Theorem 1. Let A : F → F be a mapping such that

T (r+k)/n(A[f ]) ≤ T (r+k)/n(f) , for all f ∈ F ,

and

|A[F ]| ≤ ek ,

for some nonnegative integer k, where A[F ] = {A[f ] : f ∈ F} denotes the range of
A[·]. Furthermore, denote the “deflation” of F induced by A[·] by

A = {f − A[f ] : f ∈ F} .

Setting ℓ = ⌊log2(r/3)⌋ for r ≥ log(2), with probability at least 1− 2e−r, for all f ∈ F
we have

En f(X)− T (r+k)/n(f)−min
{
2T (2r+1)/n(f − A[f ]), rad(2r+1)/n(A)

}
≤ 2γ(A; r, ℓ, n) ,

(4)

where γ(A; r, ℓ, n) is defined as in (3), and rads(A) = maxa∈A T s(a) denotes the radius
of A measured by the seminorm Ts(·). The bound can further be optimized with respect
to the mapping A[·], which both k and A depend on.

Let us pause here to make a few remarks about Theorem 1. First, the effectiveness of the
deflation step becomes clear by observing that the result of the standard generic chaining
argument can be reproduced by the possibly suboptimal choice of A[f ] = 0 for all f ∈ F
in (4). The admissible sequence in a standard generic chaining argument must cover F ,
whereas in our formulation the admissible sequence must cover A, the deflated version of
F . In particular, a desirable situation occurs when we can choose A[·] with k ≪ r such that
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γ(A; r, ℓ, n) is smaller than γ(F ; r, 0, n), and T (r+k)/n(f) is close to T r/n(f). Second, the
assumption that A[F ] is finite, is not essential; as can be seen below in the proof, it suffices
to guarantee that A[f ] ≤ T r/n+on(1)(f) holds, with probability at least ≥ 1 − e−r, for all
f ∈ F . For example, in Proposition 1, this condition is shown to hold through the Gaussian
concentration inequality. Third, the right-hand side of (4) is basically an upper bound for
supa∈A En a(X) that holds with probability at least 1 − e−r. There are a few techniques to
derive such upper bounds other than the generic chaining technique that we considered (see,
e.g., [AB07] for a shortlist of the different techniques). The generic chaining has the advan-
tage that it applies under rather general conditions, and in the case of Gaussian processes
(as in the example of Section 4) yields sharp bounds. Finally, we can simply use the term
2T (2r+1)/n(f−A[f ]) instead of the “residual term” min

{
2T (2r+1)/n(f − A[f ]), rad(2r+1)/n(A)

}

on the left-hand side of (4), since T (2r+1)/n(f − A[f ]) ≤ rad(2r+1)/n(A) and we lose no more
than a factor 2 in the worst-case. The current formulation is meant to signify that if we
merely need a uniform bound for the residual error, we may simply use rad(2r+1)/n(A).

Proof of Theorem 1. As in (3), let (Aℓ)ℓ≥0 be an increasing admissible sequence of subsets
of A such that A0 = {0}. Let c > 0 denote a constant that we will specify later in the proof,
and set rℓ = r + (r + c)2ℓ−ℓ. Given A[·] and the sequence (Aℓ)ℓ≥0, we can decompose every
f ∈ F as

f = A[f ] + f −A[f ]

= A[f ] + Aℓ[f ] +
∑

ℓ≥ℓ
(Aℓ+1[f ]− Aℓ[f ]) ,

where Aℓ[f ] denotes a function in Aℓ that is closest to f−A[f ] with respect to the seminorm
T rℓ(·), i.e.,

Aℓ[f ] = argmin
a∈Aℓ

T rℓ/n(f − A[f ]− a) .

It follows from the above decomposition that

En f(X)− T (r+k)/n(f) = EnA[f ](X)− T (r+k)/n(f)+

EnAℓ[f ](X) +
∑

ℓ≥ℓ
En(Aℓ+1[f ]−Aℓ[f ])(X) . (5)

Lemma 2 and a simple union bound guarantee that, with probability at least 1−|A[F ]|e−r−k ≥
1− e−r, we have

EnA[f ](X) ≤ T (r+k)/n(A[f ]) , for all f ∈ F . (6)

Similarly, with probability at least 1− 22
ℓ
e−rℓ , we have

EnAℓ[f ](X) ≤ T rℓ/n(Aℓ[f ]) , for all f ∈ F . (7)

Furthermore, for each index ℓ ≥ ℓ there are at most |Aℓ+1| |Aℓ| ≤ 22
ℓ+1

22
ℓ ≤ 22

ℓ+2
different

functions Aℓ+1[f ] − Aℓ[f ] as f varies in F . Applying Lemma 2 and the union bound again
it follows that, with probability at least 1− 22

ℓ+2
e−rℓ , we also have

En (Aℓ+1 −Aℓ) [f ](X) ≤ T rℓ/n((Aℓ+1 − Aℓ) [f ]) for all f ∈ F . (8)
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Putting (6), (7), and (8) back in the decomposition (5), with probability at least 1 − e−r −
22

ℓ
e−rℓ −∑ℓ≥ℓ 2

2ℓ+2
e−rℓ , we have

En f(X)− T (r+k)/n(f)

≤ T (r+k)/n(A[f ])− T (r+k)/n(f) + T rℓ/n(Aℓ[f ]) +
∑

ℓ≥ℓ
T rℓ/n (Aℓ+1[f ]− Aℓ[f ])

≤ 2T rℓ/n(f −A[f ]) +
∑

ℓ≥ℓ
T rℓ/n (Aℓ+1[f ]−Aℓ[f ])

≤ 2T rℓ/n(f −A[f ]) +
∑

ℓ≥ℓ
T rℓ/n (f − A[f ]− Aℓ[f ]) + T rℓ/n (f − A[f ]−Aℓ+1[f ])

≤ 2T rℓ/n(f −A[f ]) + 2
∑

ℓ≥ℓ
T rℓ/n (f −A[f ]− Aℓ[f ]) , for all f ∈ F ,

where the second inequality follows from the assumption T (r+k)/n(A[f ]) ≤ T (r+k)/n(f) and
the fact that

T rℓ/n(Aℓ[f ]) ≤ T rℓ/n(f − A[f ]− Aℓ[f ]) + T rℓ/n(f − A[f ])

≤ 2T rℓ/n(f − A[f ]) , (9)

and the third and fourth inequalities respectively follow from part (iv) of Lemma 1 and
the fact that T r(f) inherits the monotonicity with respect to r from Tr(f). Recalling the
definition (2), on the same event we can write

En f(X)− T (r+k)/n(f)− 2T rℓ/n(f −A[f ]) ≤ 2
∑

ℓ≥ℓ
̺rℓ/n (f − A[f ],Aℓ) , for all f ∈ F

≤ 2 sup
a∈A

∑

ℓ≥ℓ
̺rℓ/n (a,Aℓ) .

Taking the infimum with respect to the admissible subsets (Ai)i≥0 on the right-hand side
yields

En f(X)− T (r+k)/n(f)− 2T rℓ/n(f − A[f ]) ≤ 2γ(A; r, ℓ, n) .

Furthermore, if instead of the inequality (9) we use

sup
f∈F

T rℓ/n(Aℓ[f ]) ≤ radrℓ/n(A) = sup
a∈A

T rℓ/n(a) ,

the corresponding terms 2T rℓ/n(f − A[f ]) in the subsequent inequalities can all be replaced
by radrℓ/n(A). Then (4) follows as the better of the two resulting bounds.

To complete the proof, it suffices to show that for c = log(2) < 1, and the prescribed
ℓ = ⌊log2(r/3)⌋, we have 22

ℓ
e−rℓ +

∑
ℓ≥ℓ 2

2ℓ+2
e−rℓ ≤ e−r. The specific choices of c and ℓ

ensures that for ℓ ≥ ℓ we have

22
ℓ+2

e−(rℓ−r) =
(
22

ℓ+2

e−r−c
)2ℓ−ℓ

8



≤ 2−(2ℓ−ℓ) .

Furthermore, we have

22
ℓ

e−(rℓ−r) ≤ 1

16
.

The desired inequality for the tail probability then follows as

22
ℓ

e−rℓ +
∑

ℓ≥ℓ
22

ℓ+2

e−rℓ =


22

ℓ

e−(rℓ−r) +
∑

ℓ≥ℓ
22

ℓ+2

e−(rℓ−r)


 e−nr

≤


 1

16
+

1

2
+
∑

ℓ>ℓ

2−2ℓ−ℓ


 e−r

<

(
9

16
+

1/4

1− 1/4

)
e−r

< e−r .

4 Examples

In this section we consider two examples to further expose the structure and utility of
instance-dependent bounds, and show that Theorem 1 provides optimal or nearly-optimal
bounds. We show that, up to constant factors, Theorem 1 reproduces the bounds provided
below in Propositions 1 and 2. Proofs of these propositions as stated are also provided in
Appendix A.

4.1 Marginals of a Gaussian Vector

We first consider the case where the function class consists of linear functionals indexed by
the centered unit Euclidean ball, i.e.,

F = {x 7→ 〈u, x〉 : u ∈ R
d , ‖u‖2 ≤ 1} ,

and the law of the underlying random variable X ∈ R
d is Normal(0,Σ). This scenario is

studied in [LM23] who established the following.3

3The original statement in [LM23] uses slightly different formulation and notation. For example, the
terms N , σ(u), and log(1/δ) in the original notation respectively correspond to n, (uTΣu)1/2, and r in
our formulation. Furthermore, [LM23] considers a scaled version of the deviation term

√
2r/n(uTΣu)1/2

and effectively analyzes the upper and lower bounds for supu : ‖u‖
2
≤1 〈u,X〉 − C

√
2r/n(uTΣu)1/2 for some

absolute constant C > 0.
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Proposition 1 (Lugosi and Mendelson [LM23, Proposition 1]). Let X ∼
Normal(0,Σ/n) be a random vector in R

d, and denote the eigenvalues of the (scaled)
covariance matrix Σ by λ1 ≥ λ2 ≥ · · · ≥ λd. Furthermore, let

Sk = sup
u∈Rd : ‖u‖2≤1

En 〈u,X〉 −
√
2r +

√
k√

n
(uTΣu)1/2 .

Then, for any nonnegative integer k ≤ d, with probability at least 1− 2e−r we havea

Sk ≤

√∑d
i=k+1 λi

n
+

√
2r

n
λk+1 . (10)

Furthermore, with k′ = ⌈6r+3(
√
2r+

√
k)2⌉, with probability at least 1−2e−r we have

Sk ≥

√∑d
i=k′+1 λi

3n
. (11)

aWe treat the summations whose lower index is larger than their upper index as empty summations
that evaluate to zero.

To understand the significance of Proposition 1 as well as the role of the integer pa-
rameter k, it is worth comparing the derived instance-dependent bound to the conventional
bounds. A standard approach to bound En 〈u,X〉 uniformly for ‖u‖2 ≤ 1 is to apply the
Gaussian concentration inequality (see, e.g., [BLM13, Theorem 5.6]) to ‖EnX‖2, which, with
probability at least 1− e−r, guarantees that

sup
u : ‖u‖2≤1

En 〈u,X〉 = ‖EnX‖2 ≤
√

tr(Σ)

n
+

√
2r

n
‖Σ‖op ,

where tr(·) and ‖·‖op, respectively, denote the trace and the operator norm of their matrix
arguments. This bound pessimistically considers the worst-case deviation for all of the
random variables En 〈u,X〉. By setting k = 0 in (10), we can reproduce this pessimistic
bound, except for an extra factor of 2 in front of the r-dependent term. A much better choice
for k in the instance-dependent tail bound can be found as follows. For ℓ = 0, 1, . . . , d, let Σℓ
denote the best rank-ℓ approximation of Σ with respect to the operator norm, and denote
the effective rank of Σ−Σℓ by dℓ = tr(Σ−Σℓ)/‖Σ− Σℓ‖op, with the convention that 0/0 = 1
at ℓ = d. Furthermore, define

k⋆ = argmin
ℓ=0,1,...,d

max

{
2r

dℓ
,
ℓ

2

}
,

and

C⋆ = max

{√
2r

dk⋆
,

√
k⋆
2r

}
.

10



Then, setting k = k⋆ and straightforward manipulations of the tail bound in (10) yields the
inequality

En 〈u,X〉 ≤ (C⋆ + 1)

(√
tr(Σ− Σk⋆)

n
+

√
2r

n
(uTΣu)1/2

)
.

Since r determines the confidence level of the tail bound, k⋆ and C⋆ only depend on this
confidence level and the spectral characteristics of Σ. A favorable situation occurs when C⋆
is a small constant, which requires both k⋆ and dk⋆ to be proportional to r.

We provide a slightly different proof of Proposition 1 that is more streamlined and makes
the constant factors reasonably small and explicit. Our proof only invokes the Gaussian
concentration inequality, whereas the original proof in [LM23] uses the Gaussian Poincaré
inequality as well.

To put this special case in the general perspective, observe that, with V being the set of
linear functionals over R

d, the function class F consists of functions f(x) = fu(x) = 〈u, x〉
with ‖u‖2 ≤ 1, and we have

Tr(f) = T r(f) =
√

2r/n
√
uTΣu =

√
2r/n‖f‖L2(X) .

4.1.1 Reproducing (10) via Theorem 1

Let Bk0 denote the centered k0-dimensional unit Euclidean ball in the span of the top k0
eigenvectors of Σ, i.e., the column space of Σk0 . Furthermore, for a suitably small ǫ > 0

let Nǫ/2 denote an ǫ/2-net of Bk0 with respect to the norm ‖u‖Σ
def

= (uTΣu)1/2. Then, for
fu(·) = 〈u, ·〉 ∈ F we may choose

A[fu] = fûǫ ,

where

ûǫ =





(
1− ǫ

2‖ũǫ/2‖Σ

)

+

ũǫ/2 if
∥∥ũǫ/2

∥∥
Σ
> ‖u‖Σ ,

ũǫ/2 otherwise ,

with

ũǫ/2 = argmin
u′∈Nǫ/2

‖u− u′‖Σ .

This construction ensures that ‖u− ûǫ‖Σ =
√

‖u‖2Σ−Σk0
+ ‖u− ûǫ‖2Σk0

≤
√
‖u‖2Σ−Σk0

+ ǫ2

and ‖ûǫ‖Σ ≤ ‖u‖Σ. With the choices made so far, we have

A = {fu − fûǫ = 〈u− ûǫ, ·〉 : ‖u‖2 ≤ 1} .

With ρ2(x, y)
def

= ‖x− y‖2 denoting the normalized Euclidean metric, we have

γ(A; r, ℓ, n) . n−1/2γ2(Vk0 + V⊥
k0,ǫ
, ρ2; ℓ)

11



≤ n−1/2γ2(Vk0 , ρ2; ℓ) + n−1/2γ2(V⊥
k0,ǫ, ρ2; ℓ) ,

where

Vk0 =
{
(Σ− Σk0)

1/2u : ‖u‖2 ≤ 1
}
,

and

V⊥
k0,ǫ =

{
Σ

1/2
k0

(u− ûǫ) : ‖u‖2 ≤ 1
}
.

By the majorizing measures theorem [Tal14, Theorem 2.4.1], with Z ∼ Normal(0, I) we have

γ2(Vk0, ρ2; ℓ) . E sup
v∈Vk0

〈v, Z〉

≤ E
∥∥(Σ− Σk0)

1/2Z
∥∥
2

≤

√√√√
d∑

i=k0+1

λi ,

and

γ2(V⊥
k0,ǫ
, ρ2; ℓ) . E sup

v∈V⊥
k0,ǫ

〈v, Z〉

≤ E sup
v∈ǫBk0

〈v, Z〉

≤
√
k0ǫ .

Furthermore, we have

rad(2r+1)/n(A) ≤
√

2r + 1

n
(
√
λk0+1 + ǫ) .

With these bounds at hand, invoking Theorem 1 with k ≥ log(|Nǫ/2|) guarantees that with
probability at least 1− 2e−r for every u in the unit ℓ2 ball we have

〈u,X〉 −
√

2(r + k)

n
‖u‖Σ .

1√
n



√√√√

d∑

i=k0+1

λi +
√
k0ǫ


+

√
r

n
(
√
λk0+1 + ǫ) (12)

By a naïve approximation we have |Nǫ/2| ≤
(
1 + 4

√
λ1/ǫ

)k0
. Therefore, we must have

ǫ ≥ 4
√
λ1/(2

−1/k0ek/k0 − 1). In particular, if k ≥ k0 log(1 + 4
√
λ1/λ2k0), then we can choose

ǫ = min{
√
λk0+1,

√∑
i>k0

λi/k0} and (12) simplifies to

〈u,X〉 −
√

2(r + k)

n
‖u‖Σ .

√∑d
i=k0+1 λi

n
+

√
r

n

√
λk0+1 ,

which, assuming that λ1/λ2k0 is a constant, is effectively (10) up to the constant factors.
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4.2 Confidence Intervals for the “Middle-Ranked” Means of Corre-

lated Gaussians

In this subsection we derive confidence intervals for the m-th largest mean of correlated
Gaussian random variables, as another example where instance-dependent tail bounds can
be applied. The proof of Proposition 2 provided in Appendix A, again relies on the Gaussian
concentration inequality, as well as a bound on the expected supremum of canonical Gaussian
processes over (symmetric) polytopes [Tal14, Proposition 2.4.16 and Theorem 2.4.18] (see
also the discussion in [vHan18, Section 3.3]). These tools allow us to express the upper and
lower bounds of the confidence interval in more explicit terms. We can basically recover
Proposition 2 through Theorem 1 as explained at the end of this subsection.

Our goal is to find an upper and lower bounds for the m-th largest entry of a parameter
vector θ ∈ R

d for m = o(d). We are only given θ̂ = θ+X, where X is a zero-mean Gaussian
random variable with covariance Σ = EXXT. We assume that Σ is known, and, without loss
of generality, it is full-rank. For any vector v we denote by v↓ the vector of the entries of v
sorted in decreasing order. Therefore, the m-th largest entry of a vector v can be expressed
as v↓m. Furthermore, for any subset S of [d]

def

= {1, . . . , d} let vS ∈ R
|S| denote the restriction

of v to the entries indexed by S. We also use the shorthand ΣS = EXSX
T

S, which is the
same as Σ restricted to the rows and columns in S. By

(
[d]
ℓ

)
, we denote the set of subsets of

[d] of size ℓ, and we write △ℓ to denote the unit simplex in R
ℓ

Perhaps the simplest approach for our problem is to use the inequality

∣∣∣θ↓m − θ̂↓m

∣∣∣ ≤
∥∥∥θ − θ̂

∥∥∥
∞

= ‖X‖∞ ,

that suggests a confidence interval centered at the plug-in estimator θ̂↓m whose width is no
less than 2‖X‖∞. The Gaussian concentration inequality then guarantees that

‖X‖∞ ≤ E ‖X‖∞ +
√
2rmax

i∈[d]
Σ

1/2
i,i ,

with probability at least 1 − e−r. Furthermore, we can bound E ‖X‖∞, viewed as the ex-
pected supremum of a canonical Gaussian process over a (symmetric) polytope, using [Tal14,
Proposition 2.4.16 and Theorem 2.4.18]. Denoting the i-th largest diagonal entry of Σ by
Σ↓
i,i, for some constant C > 0 we have

∣∣∣θ↓m − θ̂↓m

∣∣∣ ≤ Cmax
i∈[d]

√
Σ↓
i,i log(i+ 1) +

√
2r
√

Σ↓
1,1 . (13)

Using the instance-dependent uniform tail bounds, a more refined confidence interval
for θ↓m can be established as follows. At the end of this subsection we explain how this
proposition follows from Theorem 1 by modifying certain steps of the proof provided in the
Appendix A.

Proposition 2. Let θ̂ = θ + X be a noisy observation of a parameter θ ∈ R
d with

X ∼ Normal(0,Σ). Furthermore, let m = o(d) be a positive integera, r ∈ R≥0, and
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k ≤ min{r,m} be a nonnegative integer. For any nonempty set S ⊆ [d] denote by ΣS,k
the best rank-k approximation of ΣS with respect to the operator norm, and define the
vector σ = σ(S, k) such that σi =

√
(ΣS − ΣS,k)i,i for i ∈ [|S|]. Then, defining

σ∗(S, k)
def

= max
i∈[|S|]

σ↓
i

√
log(i+ 1) ,

QS,β(ϑ) = max
u∈△|S|

〈u, ϑ〉 − β‖u‖ΣS
,

which implicitly depends on ΣS, and

βr,m,k =
√
r +m+m log(d/m) + k ,

with probability at least 1− 4e−r, for some some universal constant C > 0 we have

θ↓m ≥ min
S∈( [d]

d−m+1)
QS,βr,m,k

(θ̂S)− Cσ∗(S, k)−
√
2βr,m,k‖σ(S, k)‖∞ , (14)

and

θ↓m ≤ max
S∈([d]m)

−QS,βr,m,k
(−θ̂S) + Cσ∗(S, k) +

√
2βr,m,k‖σ(S, k)‖∞ . (15)

aThe little o notation means that m/d → 0 as d → ∞

If in addition to the assumption m = o(d), we have m . r (i.e., m ≤ cr for some fixed
constant c > 0), the bounds above reproduce (13) up to an extra logarithmic factor for the

term
√

Σ↓
1,1.

We also have the following minimax lower bounds for estimating θ↓m, whose proof is
provided in Appendix A.

Proposition 3. For κ ≥ 0, let Θ = {θ ∈ R
d :
∥∥Σ−1/2θ

∥∥
2
≤ κ} be a compact domain

of parameters. With δm ≥ 0 defined as

δm = sup
θ∈Θ

θ↓m + sup
η∈Θ

η↓d−m+1 .

For any estimator g(θ̂) of θ↓m we have

sup
θ∈Θ

E(g(θ̂)− θ↓m)
2 ≥ δ2m

8emax{1, 2κ2} . (16)

Furthermore, we have

sup
θ∈Θ

P

(
|g(θ̂)− θ↓m| >

δm

3max{1,
√
2κ}

)
≥ 1

2e
.
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Because of the complicated and implicit form of the expressions in (14) and (15), it is
difficult to compare—in full generality—the width of the confidence interval provided by
Proposition 2 and the minimax lower bound of Proposition 3. We only focus on the special
case where Σ is diagonal. Furthermore, for the sake of simpler calculations we use the lower
bound

QS,β(θ̂S) ≥ max
i∈S

(
θ̂i − β

√
Σi,i

)
.

The width of the confidence interval expressed by (14) and (15), which we denote by ∆m,
can be bounded as

∆m = max
S∈([d]m) ,S′∈( [d]

d−m+1)

(
−QS,βr,m,k

(−θ̂S)−QS′,βr,m,k
(θ̂S′)

+ C(σ∗(S, k) + σ∗(S ′, k))

+
√
2βr,m,k(‖σ(S, k)‖∞ + ‖σ(S ′, k)‖∞)

)

≤ max
S∈([d]m) ,S′∈( [d]

d−m+1)

(
min

i∈S ,j∈S′
θ̂i − θ̂j + βr,m,k(

√
Σi,i +

√
Σj,j)

+ C(σ∗(S, k) + σ∗(S ′, k))

+
√
2βr,m,k(‖σ(S, k)‖∞ + ‖σ(S ′, k)‖∞)

)

≤ max
S∈([d]m) ,S′∈( [d]

d−m+1)

(
min
i∈S∩S′

2βr,m,k
√

Σi,i + C(σ∗(S, k) + σ∗(S ′, k))

+
√
2βr,m,k(‖σ(S, k)‖∞ + ‖σ(S ′, k)‖∞)

)
,

where the second inequality holds because |S ∩ S ′| = |S| + |S ′| − |S ∪ S ′| ≥ 1, and we can
choose i = j ∈ S ∩ S ′. Furthermore, we have the inequalities

max {‖σ(S, k)‖∞, ‖σ(S ′, k)‖∞} ≤
√
Σ↓

1,1 ,

and

max {σ∗(S, k), σ∗(S ′, k)} ≤ max
i∈[d]

√
Σ↓
i+k,i+k log(i+ 1) ,

using which we deduce

∆m ≤ 2C max
i∈[d−k]

√
Σ↓
i+k,i+k log(i+ 1) + (2 + 2

√
2)βr,m,k

√
Σ↓

1,1 .

With Θ defined as in Proposition 3 we have

sup
θ∈Θ

θ↓m =

(
m∑

i=1

1

Σ↓
i,i

)−1/2

κ ,
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and

sup
η∈Θ

η↓d−m+1 =

(
d−m+1∑

i=1

1

Σ↓
i,i

)−1/2

κ .

Therefore, Proposition 3 implies that any confidence interval for θ↓m with coverage probability

no less than 1− 1/(2e), should have a width equal to Cκ

(∑m
i=1

1

Σ↓
i,i

)−1/2

for some constant

Cκ ≥ 0 that may depend on κ. In particular, for any θ ∈ Θ we have

P


∆m > Cκ

(
m∑

i=1

1

Σ↓
i,i

)−1/2

 ≥ 1

2e
.

Choosing r = 1 + log(8) ≈ 3, we have also shown that

P

(
∆m > 2C max

i∈[d−k]

√
Σ↓
i+k,i+k log(i+ 1) + (2 + 2

√
2)βr,m,k

√
Σ↓

1,1

)
≤ 1

2e
.

Then, if we define

pm(Σ)
def

=

m∑

i=1

Σ↓
1,1

Σ↓
i,i

,

and

qm,k(Σ)
def

= max
i∈[d−k]

Σ↓
i+k,i+k

Σ↓
1,1

log(i+ 1) ,

then ∆m is optimal up to a factor polylog(d), if m, pm(Σ), and qm,k(Σ) are all bounded from
above as polylog(d). Specifically, if m, pm(Σ), and qm,k(Σ) are all absolute constants, then
∆m is optimal up to a constant factor.

4.2.1 Reproducing (14) and (15) via Theorem 1

Proof of (14) provided in Appendix A first expresses θ↓m in a variational form as

θ↓m = min
S∈( [d]

d−m+1)
max

u∈△d−m+1
〈u, θ̂S〉 − 〈u,XS〉 .

Then it establishes (14) by leveraging a uniform instance-dependent tail bound for 〈u,XS〉
and taking the union bound over S ∈

(
[d]

d−m+1

)
. We only need to recover (22), the instance-

dependent bound for 〈u,XS〉, using Theorem 1. Therefore, the core of the argument is
basically the same argument we used in Section 4.1.1 with some modifications.

Recalling that △ℓ denotes the unit simplex in R
ℓ, for any fixed S ∈

(
[d]

d−m+1

)
let

F =
{
fu = 〈u, ·〉 : u ∈ △d−m+1

}
.
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Furthermore, for a sufficiently small nonnegative integer k0, let △d−m+1
k0

denote the orthog-

onal projection of △d−m+1 onto the range of ΣS,k0. Taking Nǫ/2 to be an ǫ/2-net of △d−m+1
k0

with respect to the metric induced by ‖·‖ΣS
let

ũǫ/2 = argmin
u′∈Nǫ/2

‖u− u′‖ΣS
,

and

ûǫ =





(
1− ǫ

2‖ũǫ/2‖ΣS

)

+

ũǫ/2 if
∥∥ũǫ/2

∥∥
ΣS

> ‖u‖ΣS
,

ũǫ/2 otherwise .

Then, we have

A =
{
fu − fûǫ = 〈u− ûǫ, ·〉 : u ∈ △d−m+1

}
,

for which

γ(A; r, ℓ, 1) . γ2(Vk0 + V⊥
k0
, ρ2; ℓ)

≤ γ2(Vk0, ρ2; ℓ) + γ2(V⊥
k0,ǫ, ρ2; ℓ) ,

where again ρ2(x, y) = ‖x− y‖2, and

Vk0 =
{
(ΣS − ΣS,k0)

1/2 u : u ∈ △d−m+1
}
,

and

V⊥
k0,ǫ

=
{
Σ

1/2
S,k0

(u− ûǫ) : u ∈ △d−m+1
}
.

We again can invoke the majorizing measures theorem [Tal14, Theorem 2.4.1] as well as the
bound on the entrywise maximum of a Gaussian random vector [Tal14, Proposition 2.4.16];
with Z ∼ Normal(0, I) we obtain

γ2(V⊥
k0,ǫ, ρ2; ℓ) . E sup

v∈Vk0

〈v, Z〉

. σ∗(S, k0) ,

γ2(Vk0 , ρ2; ℓ) . E sup
v∈V ⊥

k0,ǫ

〈v, Z〉

≤
√
k0ǫ ,

and thereby

γ(A; r, ℓ, 1) . σ∗(S, k0) +
√
k0ǫ .
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We also have

rad2r+1(A) .
√
r sup
u∈△d−m+1

‖u− ûǫ‖ΣS

≤ √
r sup
u∈△d−m+1

(‖u‖ΣS−ΣS,k0
+ ǫ)

=
√
r (‖σ(S, k0)‖∞ + ǫ) .

Therefore, if k ≥ log(|Nǫ/2|) ≥ |A[F ]|, it follows from Theorem 1 that with probability at
least 1− 2e−r, for all u ∈ △d−m+1 we have

〈u,XS〉 −
√

2(r + k)‖u‖ΣS
. σ∗(S, k0) +

√
r‖σ(S, k0)‖∞ + (

√
r +

√
k0)ǫ .

By the approximation |Nǫ/2| ≤ (1 + 4
√

‖ΣS‖op/ǫ)k0 , it suffices to have k ≥ k0 log(1 +

4
√
‖ΣS‖op/ǫ). In particular, using the fact that ‖ΣS‖op ≤ tr(ΣS) ≤ (d−m+ 1)‖σ‖ we can

choose ǫ = min{σ∗/
√
k0 , ‖σ‖∞} and k ≥ k0 log

(
1 + 4

√
‖ΣS‖op max{√k0/σ∗, 1/‖σ‖∞}

)
.

Therefore, assuming that
√

‖ΣS‖op max{
√
k0/σ

∗, 1/‖σ‖∞} . d ,

we conclude that for k & k0 log(d), with probability at least 1− 2e−r, for all u ∈ △d−m+1 we
have

〈u,XS〉 −
√

2(r + k)‖u‖ΣS
. σ∗(S, k0) +

√
r‖σ(S, k0)‖∞ .

By union bound, with probability at least 1 − 2e−r, for all S ∈
(

[d]
d−m+1

)
and u ∈ △|S| we

have

〈u,XS〉 −
√

2(r +m+m log(d/m) + k)‖u‖ΣS
. σ∗(S, k0) +

√
r +m+m log(d/m)‖σ(S, k0)‖∞ .

Using this inequality in variational expression for θ↓m recovers (14) up to the constant factors.
The derivations for the upper bound (15) can be carried out similarly by modifying the
corresponding parts of the proof of Proposition 2.

4.2.2 An abstraction of the example

The instance-dependent bound was useful in this example thanks to the variational charac-
terization of θ↓m. More generally, if we need to estimate Y (θ) given the noisy observation

θ̂ = θ + X, where the function Y : Rd → R is the minimum over S ∈ S of convex (lower-
semicontinuous) functions yS(·), i.e.,

Y (x) = inf
S∈S

yS(x) .

Expressing yS(·) using its convex conjugate y∗S(·), we have an equivalent definition

Y (x) = inf
S∈S

sup
u

〈u, x〉 − y∗S(u) .
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Therefore,

Y (θ) = inf
S∈S

sup
u

〈u, θ̂〉 − 〈u,X〉 − y∗S(u) ,

which again is a variational formulation where the linear term 〈u,X〉 is exposed and can be
approximated using instance-dependent tail bounds.

For example, if Θ is a d1 × d2 real matrix with d2 ≥ d1, the m-th largest singular value
of Θ for m ≤ d1, denoted by σm(Θ), can be expressed as

σm(Θ) = inf
S⊆Rd1 : dim(S)=d1−m+1

sup
U∈Rd1×d2 : ‖U‖∗≤1,range(U)=S

〈U,Θ〉 ,

where the infimum is taken over d1 − m + 1-dimensional subspaces of Rd1 , and ‖U‖∗ and
range(U), respectively, denote the nuclear norm and the range (or column space) of the
matrix U .

5 Tail Bounds Without the Exponential Moments

The results of Section 3 rely on the assumption that F , the function class of interest, is a
subset of (zero-mean) functions whose exponential moment is finite in a neighborhood of
the origin. We may relax this assumption significantly by considering V to be the vector
space of zero-mean functions in L1(X). Then, using a variational approximation of quantile
functions [Pin14, Theorem 2.3] for En g(X), we can define the analog of Tr(·) as

T ♯r,n(g)
def

= inf
t∈R

t + er E ((En g(X)− t)+) , (17)

where (x)+ = max(x, 0) denotes the positive part of x ∈ R. Similarly, we can define

T
♯

r,n(g) = max
{
T ♯r,n(g), T

♯
r,n(−g)

}
,

which is a seminorm since it inherits convexity and subadditivity from the corresponding

quantile approximation [Pin14, Theorem 2.3]. Equipped with the seminorm T
♯

r,n(·), we can
define the analogs of (2) and (3) respectively as

̺♯r, n(g,H) = inf
h∈H

T
♯

r,n(g − h) ,

for any H ⊆ V , and

γ♯(A; r, ℓ, n) = inf
(Ai)i≥0

sup
a∈A

∑

ℓ≥ℓ
̺♯
(r+(r+1)2ℓ−ℓ),n

(a,Aℓ) .

where, as in (3), A ⊆ V , ℓ≥0, and the infimum is taken over an increasing admissible sequence
(Ai)i≥0 of the subsets of A. The corresponding radius of A is also denoted by

rad♯r,n(A) = max
a∈A

T
♯

r,n(a) .

Therefore, we can refine Theorem 1 to the following theorem. We omit the proof as it is

effectively the same as the proof of Theorem 1 with T r(f) replaced by T
♯

r,n(f) for every r ≥ 0
and f ∈ V that appear in the proof.
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Theorem 2. Let A : F → F be a mapping such that

T
♯

r+k,n(A[f ]) ≤ T
♯

r+k,n(f) , for all f ∈ F ,

and

|A[F ]| ≤ ek ,

for some nonnegative integer k, where A[F ] = {A[f ] : f ∈ F} denotes the range of
A[·]. Furthermore, let

A = {f − A[f ] : f ∈ F} .

Setting ℓ = ⌊log2(r/3)⌋ for r ≥ log(2), with probability at least 1− 2e−r, for all f ∈ F
we have

En f(X)− T
♯

r+k,n(f)−min
{
2T

♯

2r+1,n(f − A[f ]), rad♯2r+1,n(A)
}
≤ 2γ♯(A; r, ℓ, n) .

The bound can further be optimized with respect to the mapping A[·], which both k and
A depend on.

While Theorem 2 applies with minimal requirements thanks to the generality of the
definition (17), it does not make the dependence on the sample size (i.e., n) transparent.
To address this problem, the function class needs to be further restricted, allowing for an
approximation of Tr,n(g) that reveals the role of n. Results of this type already established in
the literature, e.g., in [LT15] and [Men16], and in a specialized form in [MP12], by introducing
a more refined “scale-sensitive” version of Talagrand’s γ functional, merely assuming that the
functions of interest have finite moments of any order. We can reproduce similar bounds
from Theorem 2 using the following lemma.

Lemma 3. Let g ∈ V be a zero-mean function with finite p-th moment for some p ≥ 2.
Then, we have

E
(
(En g(X)− t)+

)
≤
(
2

√
p

n
‖g‖ψ2,p

)p
t−p+1

p− 1
,

where4

‖g‖ψ2,p

def

= sup
q∈[1,p]

‖g‖Lq√
q

. (18)

Proof. For t > 0 we can apply Markov’s inequality and Ginè-Zinn symmetrization (see, e.g.,
[Ver18, Lemma 6.4.2]) to obtain

E ((En g(X)− t)+) =

∫ ∞

t

P (En g(X) ≥ y) dy

4The defined norm is denoted by ‖·‖(p) in [Men16]. Viewing this norm as an “incomplete” sub-Gaussian

norm, we use the more indicative notation ‖·‖ψ2,p
instead.
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≤
∫ ∞

t

‖En g(X)‖pLp

yp
dy

≤
(
2

n

)p ∥∥∥∥∥

n∑

i=1

εig(Xi)

∥∥∥∥∥

p

Lp

t−p+1

p− 1
.

where (εi)i≥1 is a sequence i.i.d. Rademacher random variables (independent of the Xis).
Furthermore, the moments of

∑n
i=1 εig(Xi), as a sum of i.i.d. symmetric random variables,

can be bounded using a result due to Latała [Lat97, Corollary 2] which yields
∥∥∥∥∥

n∑

i=1

εig(Xi)

∥∥∥∥∥
Lp

≤ sup

{
p

q

(
n

p

)1/q

‖g‖Lq
: max(2, p/n) ≤ q ≤ p

}

≤ √
pn sup

q∈[1,p]

‖g‖Lq√
q

.

Recalling the definition of ‖g‖ψ2,p
in (18), the result follows by combining the above inequal-

ities.

Using Lemma 3 we can bound T ♯r,n(g) in terms of ‖g‖ψ2,p
. In particular, evaluating the

argument of the infimum on the right-hand side of (17) at t = 2
√
p/ner/p‖g‖ψ2,p

reveals that

T ♯r,n(g) ≤
2p

p− 1

√
p

n
er/p‖g‖ψ2,p

.

If g(X) has a finite moment of order p = r ≥ 2, then the above inequality reduces to

T ♯r,n(g) ≤ 4e‖g‖ψ2,r

√
r/n .

Therefore, if we further assume that the functions of interest have finite moments of arbitrary
order, then

γ♯(A; r, ℓ, n) . inf
(Ai)i≥0

sup
a∈A

∑

ℓ≥ℓ

√
r + (r + 1)2ℓ−ℓ

n
‖a−Aℓ‖ψ

2,r+(r+1)2ℓ−ℓ
,

where we use the shorthand ‖a−Aℓ‖ψ2,r
to denote the distance between a ∈ A and the set Aℓ

with respect to ‖·‖ψ2,r
. Choosing ℓ as prescribed by Theorem 2, we have r+(r+1)2ℓ−ℓ < 2ℓ+4,

thus

γ♯(A; r, ℓ, n) .
γ♭(A; ℓ)√

n
,

where

γ♭(A; ℓ)
def

= inf
(Ai)i≥0

sup
a∈A

∑

ℓ≥ℓ
2ℓ/2‖a−Aℓ‖ψ

2,2ℓ+4
,

and we have the following corollary.
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Corollary 1. Let A : F → F be a mapping such that

‖A[f ]‖ψ2,r+k
≤ ‖f‖ψ2,r+k

, for all f ∈ F ,

and

|A[F ]| ≤ ek ,

for some nonnegative integer k, where A[F ] = {A[f ] : f ∈ F} denotes the range of A[·].
Furthermore, let

A = {f − A[f ] : f ∈ F} .

Setting ℓ = ⌊log2(r/3)⌋ for r ≥ 2, with probability at least 1− 2e−r, for all f ∈ F we have

En f(X)− 4e

√
r + k

n
‖f‖ψ2,r+k

− 4e

√
2r + 1

n
‖f −A[f ]‖ψ2,2r+1

.
γ♭(A; ℓ, n)√

n
.

A Remaining Lemmas and Proofs

Proofs of Sections 1 and 2

Proof of Lemma 1. Part (i) of the lemma follows from a straightforward change of variable.
For part (ii), we have

T0(g) = inf
λ≥0

logE eλg(X)

λ

≤ lim
λ↓0

logE eλg(X)

λ

= lim
λ↓0

E
(
g(X)eλg(X)

)

E eλg(X)

= 0 ,

where the third and fourth line respectively follow from the l’Hôpital’s rule and the assump-
tion that g(X) is zero-mean. However, by Jensen’s inequality we have E eλg(X) ≥ eλ E g(X) = 1,
which means that T0(g) ≥ 0. Therefore, we must have

T0(g) = 0 .

For part (iii) observe that Tr(g) can be equivalently expressed as

Tr(g) = inf
θ≥0

(
θr + θ logE eg(X)/θ

)

= − sup
θ≥0

(
−θr − θ logE eg(X)/θ

)
.
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Since the supremum is the convex conjugate of θ 7→ θ logE eg(X)/θ evaluated at −r, we
conclude that r 7→ Tr(g) is concave. The proved concavity together with part (ii) of the
lemma, guarantee that for all r, s ≥ 0 we have

r

r + s
Tr+s(g) =

r

r + s
Tr+s(g) +

s

r + s
T0(g)

≤ Tr(g) ,

and

s

r + s
Tr+s(g) =

s

r + s
Tr+s(g) +

r

r + s
T0(g)

≤ Ts(g) ,

which add up to

Tr+s(g) ≤ Tr(g) + Ts(g) ,

proving the subadditivity of r 7→ Tr(g).
To prove part (iv) we readily have T r(0) = 0, and

T r(αg) = max{Tr(αg), Tr(−αg)}
= |α|T r(g) ,

for every f ∈ V and nonzero real number α. Therefore, it suffices to show that T r(g) is
convex in f ∈ V . We show that Tr(·) is convex, which implies the convexity of T r(·). Let
us define κ(g) = logE eg(X) for f ∈ V , and denote by V

∗ the dual space of V , i.e., the space
of linear functionals on V that are bounded in the sup norm. It follows from the Hölder’s
inequality that κ(·) is convex. We also define the convex conjugate of κ(·) as

κ∗(w) = sup
f∈V

〈w, f〉 − κ(g) ,

for every w ∈ V
∗. It can be shown that κ(·) is also lower semi-continuous which guarantees

κ(g) = supw∈V∗ 〈w, g〉 − κ∗(w) for all g ∈ V . Our goal is to show that

Tr(g) = sup
w∈V∗ : κ∗(w)≤r

〈w, g〉 , (19)

which clearly proves the convexity of Tr(g). For r = 0 the identity (19) holds trivially as
T0(g) = 0 for all g ∈ V . Then, without loss of generality we may assume that r > 0 and
write the right-hand side of (19) as

sup
w∈V∗ : κ∗(w)≤r

〈w, g〉 = sup
w∈V∗

inf
γ≥0

〈w, g〉 − γ(κ∗(w)− r) .

Straightforward calculations show that κ∗(0) = 0 < r. Therefore, the Slater’s condition is
satisfied, and by invoking strong duality we can write

sup
w∈V∗ : κ∗(w)≤r

〈w, g〉 = sup
w∈V∗

inf
γ≥0

〈w, g〉 − γ(κ∗(w)− r)
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= inf
γ≥0

sup
w∈V∗

〈w, g〉 − γ(κ∗(w)− r)

= inf
γ≥0

γκ(γ−1g) + γr

= Tr(g) ,

where the last equation follows by the change of variable λ = 1/γ.

Proof of Lemma 2. By the standard Chernoff bound, for any T > Tr/n(f) we have

P (En f(X) > T ) ≤ inf
λ≥0

en log E eλf(X)−nλT .

It follows from the definition of Tr/n(·) that there exists λ′ ≥ 0 such that

Tr/n(f) ≤
r/n+ logE eλ

′f(X)

λ′
< T .

Therefore, we deduce

P (En f(X) > T ) ≤ elog E e
λ′f(X)−λ′T

≤ e−r .

and consequently

P (En f(X) ≤ Tr(f)) = lim
T↓Tr/n(f)

P (En f(X) ≤ T )

≥ 1− e−r .

Proofs of Section 4

Proof of Proposition 1. Let G ∼ Normal(0, I) be a standard normal random vector. Clearly,
En 〈u,X〉 = 〈 1√

n
Σ1/2u,G〉 in distribution, with Σ1/2 denoting the symmetric square root of

the covariance matrix Σ. Let Σk denote the best rank-k approximation of Σ with respect to
the operator norm, and let πkG denote the orthogonal projection of G onto the range of Σk.
We have

〈 1√
n
Σ1/2u,G〉 −

√
2r +

√
k√

n
(uTΣu)1/2

≤ 〈 1√
n
Σ1/2u,G− πkG〉+ 〈 1√

n
Σ1/2u, πkG〉 −

√
2r +

√
k√

n
(uTΣku)

1/2

≤ 1√
n

∥∥Σ1/2(G− πkG)
∥∥
2
+

√
uTΣku

n

(
‖πkG‖2 −

√
2r −

√
k
)
,

where the second line follows from the fact that uTΣku ≤ uTΣu, and the third line follows from
the Cauchy–Schwarz inequality applied to each of the inner products. Using the Gaussian
concentration inequality, with probability at least 1− e−r we have

∥∥Σ1/2(G− πkG)
∥∥
2
≤
√

tr(Σ− Σk) +
√

‖Σ− Σk‖op
√
2r ,
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and similarly, with probability at least 1− e−r,

‖πkG‖2 ≤
√
k +

√
2r .

The upper bound for Sk in (10) follows by combining the three derived inequalities and using
the identities tr(Σ− Σk) =

∑d
i=k+1 λi and ‖Σ− Σk‖op = λk+1.

To prove the lower bound for Sk, first observe that if 6r + 3(
√
2r +

√
k)2 > d then (11)

holds trivially as its right-hand side vanishes to zero. Therefore, without loss of generality
we may assume that 6r + 3(

√
2r +

√
k)2 ≤ d. We can express Sk by its dual representation

as

Sk = sup
u

inf
x
〈u,X − x〉 −

√
2r +

√
k√

n
(uTΣu)

1/2
+ ‖x‖2

= inf
x
sup
u

〈u,X − x〉 −
√
2r +

√
k√

n
(uTΣu)

1/2
+ ‖x‖2

= inf
xTΣ−1x≤(

√
2r+

√
k)2/n

‖X − x‖2 ,

where we used the strong duality on the second line, which holds by the Slater’s condition.
Using the strong duality again to simplify S2

k , we have

S2
k = inf

x
sup
β≥0

‖X − x‖22 + β

(
xTΣ−1x− (

√
2r +

√
k)2

n

)

= sup
β≥0

inf
x
‖X − x‖22 + β

(
xTΣ−1x− (

√
2r +

√
k)2

n

)

= sup
β≥0

∥∥∥
(
I −

(
I + βΣ−1

)−1
)
X
∥∥∥
2

2
+ β

(∥∥∥
(
I + βΣ−1

)−1
X
∥∥∥
2

Σ−1
− (

√
2r +

√
k)2

n

)

= sup
β≥0

XT

(
I −

(
I + βΣ−1

)−1
)
X − β(

√
2r +

√
k)2

n

dist.
= sup

β≥0

d∑

i=1

βλi
n(λi + β)

g2i −
β(
√
2r +

√
k)2

n
,

where gi’s are i.i.d. standard Gaussian random variables. With ai = βλi/(n(β + λi)) for
i ∈ [d], for any fixed β ≥ 0, using the Chernoff bound and the formula for the moment-
generating function of g2i , with probability at least 1− e−r, we have

d∑

i=1

aig
2
i ≥ sup

c≥0

−r +∑d
i=1 log(1 + 2cai)/2

c
.

Therefore, we can guarantee with the same probability that

S2
k ≥ sup

β≥0
sup
c≥0

−r +∑d
i=1 log

(
1 + 2cβλi

n(β+λi)

)
/2

c
− β(

√
2r +

√
k)2

n
.
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Recall that k′ = ⌈6r + 3(
√
2r +

√
k)2⌉. Choosing β = λk′, and c = n/(2β) we have

S2
k ≥

−r +∑d
i=1 log(1 +

λi
λk′+λi

)/2

n/(2λk′)
− (

√
2r +

√
k)2

n
λk′

≥
λk′
∑d

i=1 log(1 +
λi

λk′+λi
)

n
− 2r + (

√
2r +

√
k)2

n
λk′

≥
∑d

i=1 λk′λi/(λk′ + 2λi)

n
− 2r + (

√
2r +

√
k)2

n
λk′ ,

where we used the inequality log(1 + x) ≥ x/(x+ 1) for x ≥ 0 on the last line. Splitting the
sum into a sum over i ≤ k′, and a sum over i > k′, we have

∑

i≤k′
λk′λi/(λk′ + 2λi) ≥

k′

3
λk′ ,

and

∑

i>k′

λk′λi/(λk′ + 2λi) ≥
1

3

∑

i>k′

λi .

Therefore, we have

S2
k ≥

1

3n

d∑

i=k′+1

λi .

Proof of Proposition 2. We express θ↓m in an equivalent min-max variational form as

θ↓m = min
S∈( [d]

d−m+1)
max

u∈△d−m+1
〈u, θS〉

= min
S∈( [d]

d−m+1)
max

u∈△d−m+1
〈u, θ̂S〉 − 〈u,XS〉 . (20)

For the prescribed nonnegative integer k ≤ r, let πS and π⊥
S , respectively, denote the orthog-

onal projections onto the range and the nullspace of ΣS,k. Then, with G ∼ Normal(0, I) we
can write

〈u, πSXS〉 dist.
= 〈Σ1/2

S πSu, πSG〉
≤
∥∥∥Σ1/2

S πSu
∥∥∥
2
‖πSG‖2

= ‖u‖ΣS,k
‖πSG‖2

≤ ‖u‖ΣS
‖πSG‖2 .

By the Gaussian concentration inequality, with probability at least 1− e−r, we have

‖πSG‖2 ≤
√

2(r + k) ,
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thereby, on the same event, for all u ∈ R
d−m+1 we have

〈u, πSXS〉 ≤ ‖u‖ΣS

√
2(r + k) . (21)

Furthermore, recalling the definition of σ = σ(S, k), with probability at least 1−e−r we have

〈u, π⊥
SXS〉 ≤ ‖u‖1

∥∥π⊥
SXS

∥∥
∞

≤ ‖u‖1(E(
∥∥π⊥

SXS

∥∥
∞) +

√
2r‖σ(S, k)‖∞)

≤ ‖u‖1(Cσ∗(S, k) +
√
2r‖σ(S, k)‖∞) ,

where the second line follows from the Gaussian concentration inequality, and the third
line follows from [Tal14, Proposition 2.4.16 and the remarks after Theorem 2.4.18] for some
absolute constant C > 0. Adding the derived inequalities, with probability at least 1−2e−r,
for all u ∈ R

d−m+1, we can guarantee

〈u,XS〉 = 〈u, π⊥
SXS〉+ 〈u, πSXS〉

≤ ‖u‖1(Cσ∗(S, k) +
√
2r‖σ(S, k)‖∞) + ‖u‖ΣS

√
2(r + k) . (22)

Applying this bound in (20), for any fixed S ∈
(

[d]
d−m+1

)
, with probability at least 1 − 2e−r,

we have

max
u∈△d−m+1

〈u, θS〉 ≥ max
u∈△d−m+1

〈u, θ̂S〉 − (Cσ∗(S, k) +
√
2r‖σ(S, k)‖∞)− ‖u‖ΣS

√
2(r + k) .

To obtain a lower bound for θ↓m, we can choose S to be the indices of the d−m+1 smallest
entries of θ. But to be truly agnostic to the choice of θ, we need to invoke the union bound
and minimize the lower bound with respect to S ∈

(
[d]

d−m+1

)
, at the cost of increasing r by

m+m log(d/m) > log
(

d
m−1

)
. The resulting inequality is then

θ↓m ≥ min
S∈( [d]

d−m+1)
max

u∈△d−m+1

(
〈u, θ̂S〉 − (Cσ∗(S, k) +

√
2(r +m+m log(d/m))‖σ(S, k)‖∞)

− ‖u‖ΣS

√
2(r +m+m log(d/m) + k)

)
,

which, by identifying the expressions of βr,m,k and QS,βr,m,k
(·), is equivalent to (14). To

establish the upper bound (15), observe that θ↓m = −(−θ)↓d−m+1, which allows us to reuse the

inequalities above to derive an upper bounds for θ↓m through the lower bound for (−θ)↓d−m+1.

It is worth mentioning that for k = 0, the left-hand side of (21) vanishes, thereby we can
improve the inequality (22) to

〈u,XS〉 ≤ ‖u‖1(Cσ∗(S, 0) +
√
2r‖σ(S, 0)‖∞) .

Consequently, for k = 0 the corresponding bounds are in fact

θ↓m ≥ min
S∈( [d]

d−m+1)

(
max
i∈S

θ̂i − Cσ∗(S, 0)−
√

2(r +m+m log(d/m))‖σ(S, 0)‖∞
)
,

27



and

θ↓m ≤ max
S∈([d]m)

(
min
i∈S

θ̂i + Cσ∗(S, 0) +
√

2(r +m+m log(d/m))‖σ(S, 0)‖∞
)
.

Proof of Proposition 3. Le Cam’s two point method [PW24, Theorem 31.1] (see also [Yu97,
Lemma 1]) guarantees that

sup
θ∈Θ

E(g(θ̂)− θ↓m)
2 ≥ sup

θ,η∈Θ

1

4
(θ↓m − η↓m)

2 (1−DTV(Pθ,Pη)) ,

where DTV(·, ·) denotes the total variation distance, and Pθ = Normal(θ,Σ) and Pη =
Normal(η,Σ). The “simplified” Bretagnolle–Huber inequality [Tsy08, Equation 2.25] (see
also [Can23] for a broader context) guarantees that

DTV(Pθ,Pη) ≤ 1− 1

2
e−(θ−η)TΣ−1(θ−η)/2 , (23)

using which we obtain

sup
θ∈Θ

E(g(θ̂)− θ↓m)
2 ≥ sup

θ,η∈Θ

1

8
(θ↓m − η↓m)

2e−(θ−η)TΣ−1(θ−η)/2

= sup
θ,η∈Θ

sup
b∈[0,1]

1

8
(θ↓m − η↓m)

2be−b(θ−η)
TΣ−1(θ−η)/2

≥ 1

8emax{1, 2κ2} sup
θ,η∈Θ

(θ↓m − η↓m)
2 ,

where the second line follows from the fact that Θ is star-shaped, and the third line follows
from the inequality maxb∈[0,1] be

−bz ≥ e−1/max{1, z} for z ≥ 0. We can derive (16) from this
lower bound using the fact that

sup
θ,η∈Θ

(θ↓m − η↓m)
2 =

(
sup
θ∈Θ

θ↓m − inf
η∈Θ

η↓m

)2

=

(
sup
θ∈Θ

θ↓m + sup
η∈Θ

η↓d−m+1

)2

,

where the latter equation follows from the symmetry of the set Θ, and the fact that −η↓m =
(−η)↓d−m+1.

Furthermore, it follows from the definition of the total variation distance and (23) that
for any c ≥ 0 we have

|P(|g(θ̂)− θ↓m| > c)− P(|g(η̂)− θ↓m| > c)| ≤ 1− 1

2
e−(θ−η)TΣ−1(θ−η)/2 .

In particular, for any c ≤ |θ↓m − η↓m|/2, together with the inequality

P(|g(η̂)− θ↓m| >
1

2
|θ↓m − η↓m|) ≥ P(|g(η̂)− η↓m| <

1

2
|θ↓m − η↓m|) ,

28



which follows from the triangle inequality, we obtain

P(|g(θ̂)− θ↓m| ≥ c) + P(|g(η̂)− η↓m| ≥ c) ≥ 1

2
e−(θ−η)TΣ−1(θ−η)/2 .

Therefore, if there exists a pair θ, η ∈ Θ such that (θ−η)TΣ−1(θ−η) ≤ 2 and |θ↓m−η↓m|/2 ≥ c,
then

sup
θ∈Θ

P(|g(θ̂)− θ↓m| ≥ c) ≥ 1

2e
.

The desired result follows by setting c = supθ,η∈Θ |θ↓m − η↓m|/(3max{1,
√
2κ}) which meets

the required conditions.

Lemma 4. Let Y ∈ [−1, 1] be a zero-mean random variable. Then, we have

inf
λ≥0

r + logE eλY

λ
≤ 1

3
r +

√
2E(Y 2)r .

Proof. For all λ ∈ [−3, 3], we have

E eλY = 1 +
∞∑

m=2

E Y m

m!
λm

≤ 1 +
∞∑

m=2

EY 2

m!
|λ|m

≤ 1 +
E Y 2

2

∞∑

m=2

λ2
( |λ|

3

)m−2

≤ 1 +
E Y 2

2
· λ2

1− |λ|/3 .

Since log(1 + u) ≤ u for all u > −1, it follows that

inf
λ≥0

r + logE eλY

λ
≤ inf

λ∈[0,3]

r + E(Y 2)λ2/(2− 2λ/3)

λ

≤ 1

3
r +

√
2E(Y 2)r ,

where the second line follows by evaluating the argument of the infimum at λ = 3
√
r/(

√
r+

3
√
E(Y 2)/2).

B Bounding Tr(f) in Orlicz Spaces

The purpose of this subsection is to approximate Tr(f) for f ∈ V , in situations where V is
an Orlicz space of exponential type. Orlicz spaces are one of the important function spaces
studied in functional analysis and probability theory. These function spaces can be described
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by their corresponding Orlicz norms. For a convex increasing function ψ : [0,∞) → [0,∞)
with ψ(0) = 0 the ψ-Orlicz norm of a random variable Y is defined as

‖Y ‖ψ
def

= inf

{
u > 0: Eψ

( |Y |
u

)
≤ 1

}
.

Special cases are the usual p-norms for p ≥ 1, the sub-Gaussian norm, and the sub-
exponential norm, respectively, corresponding to ψ(t) = tp, ψ(t) = et

2 −1, and ψ(t) = et−1.
Other interesting cases are the Bernstein–Orlicz norm corresponding to

ψ(t) = e(
√
1+2Lt−1)

2
/L2 − 1 ,

for some parameter L > 0, introduced by van de Geer and Lederer [vdGL12], as well as the
Bennett–Orlicz norm corresponding to

ψ(t) = e2((1+Lt) log(1+Lt)−Lt)/L
2 − 1 ,

for some parameter L > 0, introduced by Wellner [Wel17].
To express the general bounds presented in Theorem 1 when the underlying metric of

interest imposed on F is induced by an Orlicz ψ-norm, it suffices to bound Tr(f) in terms

of ‖f‖ψ
def

= ‖f(X)‖ψ. The following simple lemma can provide such bounds.

Lemma 5. For every f ∈ V we have

Tr(f) ≤ inf
λ≥0

r + log
(
1 +

∫∞
0

2λ
(
eλt − 1

)
/ (ψ(t) + 1) dt

)

λ
‖f‖ψ . (24)

Proof. Without loss of generality we may assume f 6= 0. The inequality follows by bounding
the moment generating function of the zero-mean random variable Y = f(X)/‖f(X)‖ψ,
which has a unit ψ-Orlicz norm, as

E eλY = E
(
eλY − λY

)

≤ E
(
eλ|Y | − λ|Y |

)

= 1 +

∫ ∞

0

λP (|Y | > t)
(
eλt − 1

)
dt

≤ 1 +

∫ ∞

0

λ (Eψ(|Y |) + 1)
(
eλt − 1

)
/ (ψ(t) + 1) dt

= 1 +

∫ ∞

0

2λ
(
eλt − 1

)
/ (ψ(t) + 1) dt .

For exponential type Orlicz norms, defined below, we have the following proposition that
provides a more explicit approximation for Tr(f) in terms of ‖f‖ψ.

Proposition 4. Let ‖·‖ψ be an Orlicz norm of exponential type, meaning that

ψ(t) = eφ(t) − 1
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for a convex and increasing function φ : [0,∞) → [0,∞) with φ(0) = 0. Furthermore,
let φ∗(·) denote the convex conjugate of φ(·), i.e.,

φ∗(λ) = sup
t≥0

(λt− φ(t)) .

If for some M > 0 we have

inf
λ≥0

eφ
∗(λ) − 1

λ2
≥M

∫ ∞

0

te−φ(t)/2dt , (25)

then for every f ∈ V we have

Tr(f) ≤ max{3, 3/
√
2M}φ−1(2r/3) ‖f‖ψ . (26)

Proof. Since φ∗(·) is the convex conjugate of φ(·), for every λ, t ≥ 0 we can write

λt ≤ 1

2
φ(t) +

1

2
φ∗(2λ) .

Applying this bound to (24) of Lemma 5 we have

Tr(f) ≤ inf
λ≥0

r + log
(
1 +

∫∞
0

2λ
(
1− e−λt

)
eλt−φ(t)dt

)

λ
‖f‖ψ

≤ inf
λ≥0

r + log
(
1 + 2λ2eφ

∗(2λ)/2
∫∞
0
te−φ(t)/2dt

)

λ
‖f‖ψ ,

where we also used the inequality 1− e−λt ≤ λt. It follows from (25) that

2λ2
∫ ∞

0

te−φ(t)/2dt ≤ eφ
∗(
√

2/Mλ) − 1 .

Then, using the fact that φ∗(·) is nonnegative, we have

Tr(f) ≤ inf
λ≥0

r + φ∗(2λ)/2 + φ∗(
√

2/Mλ)

λ
‖f‖ψ .

Furthermore, because φ∗(·) is increasing, we can write

φ∗(2λ)/2 + φ∗(
√

2/Mλ) ≤ 3

2
φ∗
(
max{2,

√
2/M}λ

)
.

Therefore, we conclude that

Tr(f) ≤ inf
λ≥0

r + 3
2
φ∗
(
max{2,

√
2/M}λ

)

λ
‖f‖ψ

= max{3, 3/
√
2M}φ−1(2r/3) ‖f‖ψ .
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It is worth mentioning that the constants appearing in the proposition are not necessarily
optimal. In fact, the result may be improved for example by using the bound 1 − e−λt ≤
min{λt, 1} instead of the inequality 1− e−λt ≤ λt that is used in the current proof. We did
not pursue these refinements intending to obtain relatively simpler expressions.

Let us quantify the result of Proposition 4 when ‖·‖ψ is the sub-Gaussian Orlicz norm,

and when it is the Bernstein–Orlicz norm. In the sub-Gaussian case, we have φ(t) = t2 and
φ∗(λ) = 1(λ ≥ 0)λ2/4. It is easy to verify that (25) holds with M = 1/4. Therefore, for the
sub-Gaussian Orlicz norm, (26) reduces to

Tr(f) ≤
√
12r ‖f‖ψ .

In the case of Bernstein–Orlicz norm, φ(t) = (
√
1 + 2Lt − 1)2/L2. By the change of

variable t = ((Lu+ 1)2 − 1) /(2L) and using standard Gaussian integral formulas we can
calculate the integral on the right-hand side of (25) as

∫ ∞

0

te−(
√
1+2Lt−1)

2
/(2L2)dt =

√
π

8
L+ 1 .

Furthermore, with some straightforward calculations we can show that the convex conjugate
of φ(·) is

φ∗(λ) =





0 , λ < 0 ,
λ2

4(1−Lλ/2) , λ ∈ [0, 2/L) ,

∞ , λ > 2/L .

Therefore, for λ ≥ 0, we have

eφ
∗(λ) − 1 ≥ φ∗(λ) ≥ λ2

4
.

Consequently, (25) holds if

M =
1√

2πL+ 4
,

for which (26) reduces to

Tr(f) ≤ 3(
√
π/2L+ 2)1/2φ−1(2r/3) ‖f‖ψ

= (
√
π/2L+ 2)1/2

(
Lr +

√
6r
)
‖f‖ψ .
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