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Abstract

This is the third in a series of four papers in which we consider a system of interacting Fisher-Wright
diffusions with seed-bank. Individuals carry type ♥ or ♦, live in colonies, and are subject to resampling
and migration as long as they are active. Each colony has a structured seed-bank into which individuals
can retreat to become dormant, suspending their resampling and migration until they become active again.
As geographic space labelling the colonies we consider a countable Abelian group G endowed with the
discrete topology. Our goal is to understand in what way the seed-bank enhances genetic diversity and
causes new phenomena.

In [GHO22b] we showed that the system of continuum stochastic differential equations, describing
the population in the large-colony-size limit, has a unique strong solution. We further showed that if the
system starts from an initial law that is invariant and ergodic under translations with a density of ♥ that
is equal to θ, then it converges to an equilibrium νθ whose density of ♥ also is equal to θ. Moreover, νθ
exhibits a dichotomy of coexistence (= locally multi-type equilibrium) versus clustering (= locally mono-
type equilibrium). We identified the parameter regimes for which these two phases occur, and found that
these regimes are different when the mean wake-up time of a dormant individual is finite or infinite.

The goal of the present paper is to establish the finite-systems scheme, i.e., identify how a finite
truncation of the system (both in the geographic space and in the seed-bank) behaves as both the time and
the truncation level tend to infinity, properly tuned together. Since the finite system exhibits clustering,
we focus on the regime where the infinite system exhibits coexistence, which consists of two sub-regimes.
If the wake-up time has finite mean, then the scaling time turns out to be proportional to the volume of
the truncated geographic space, and there is a single universality class for the scaling limit, namely, the
system moves through a succession of equilibria of the infinite system with a density of ♥ that evolves
according to a renormalised Fisher-Wright diffusion and ultimately gets trapped in either 0 or 1. On the
other hand, if the wake-up time has infinite mean, then the scaling time turns out to grow faster than the
volume of the truncated geographic space, and there are two universality classes depending on how fast
the truncation level of the seed-bank grows compared to the truncation level of the geographic space.
For slow growth the scaling limit is the same as when the wake-up time has finite mean, while for fast
growth the scaling limit is different, namely, the density of ♥ initially remains fixed at θ, afterwards makes
random switches between 0 and 1 on a range of different time scales, driven by individuals in deep seed-
banks that wake up, until it finally gets trapped in either 0 or 1 on the time scale where the individuals in
the deepest seed-banks wake up. Thus, the system evolves through a sequence of partial clusterings (or
partial fixations) before it reaches complete clustering (or complete fixation).
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1 Introduction
Section 1.1 outlines the goal of the paper. Section 1.2 recalls the three models introduced in [GHO22b,
Section 2]. Section 1.3 contains some key observations made in [GHO22b, Section 2] concerning the
choice of model parameters and initial laws, and the role of duality and diffusion function. Section 1.4
summarises the core results in [GHO22b, Section 3] and provides a brief outline of the remainder of the
paper. Section 2 describes our main results for the finite-system scheme. Section 3 contains preparations
and Sections 4–6 provide proofs. For background and motivation we refer the reader to [GHO22b, Section
1].

Sections 1.2–1.4 are largely copied from [GHO22b], but are needed to set the stage.

1.1 Goal
In [GHO22b] we considered a system of interacting Fisher-Wright diffusions with seed-bank. Individuals
carry type ♥ or ♦, live in colonies, and are subject to resampling and migration as long as they are active.
Each colony has a structured seed-bank into which individuals can retreat to become dormant, suspending
their resampling and migration until they become active again. As geographic space labelling the colonies
we considered a countable Abelian groupG endowed with the discrete topology. We showed that the system
of continuum stochastic differential equations, describing the population in the large-colony-size limit, has
a unique strong solution. We further showed that if the system starts from an initial law that is invariant and
ergodic under translations with a density of ♥ that is equal to θ, then the system converges to an equilibrium
νθ whose density of ♥ also is equal to θ. Moreover, νθ exhibits a dichotomy of coexistence (= locally multi-
type equilibrium) versus clustering (= locally mono-type equilibrium). We identified the parameter regimes
for which these two phases occur, and found that these regimes are qualitatively different when the mean
wake-up time of an individual is finite or infinite.

The goal of the present paper is to establish the finite-systems scheme, i.e., identify how a finite trun-
cation of the system (both in the geographic space and in the seed-bank) behaves as both the time and the
truncation level tend to infinity, properly tuned together. Since the finite system exhibits clustering, we
focus on the regime where the infinite system exhibits coexistence. To allow for a proper truncation limit,
we additionally assume that G is profinite, i.e., G is (isomorphic to) the limit of a projective system of finite
groups endowed with the discrete topology. Our main findings are the following:

• If the wake-up time has finite mean, then the scaling time is proportional to the volume of the trun-
cated geographic space and there is a single universality class for the scaling limit, namely, the system
moves through a succession of equilibria of the infinite system with a density of ♥ that evolves ac-
cording to a renormalised Fisher-Wright diffusion and ultimately gets trapped in either 0 or 1 (i.e.,
the system ultimately clusters).

• If the wake-up time has infinite mean, then the scaling time grows faster than the volume of the trun-
cated geographic space, and there are two universality classes depending on how fast the truncation
level of the seed-bank grows compared to the truncation level of the geographic space. For slow
growth the scaling limit is the same as when the wake-up time has finite mean, while for fast growth
the scaling limit is different, namely, the density of ♥ initially remains fixed at θ, afterwards makes
random switches between 0 and 1 on a range of different time scales, driven by individuals in deeper
seed-banks that wake up, until it finally gets trapped in either 0 or 1 on the time scale where the in-
dividuals in the deepest seed-banks wake up. Thus, the system evolves through a sequence of partial
clusterings (or partial fixations) before it reaches complete clustering (or complete fixation).

The finite-systems scheme underpins the relevance of systems with an infinite geographic space and an
infinite seed-bank for the description of systems with a large but finite geographic space and a large but
finite seed-bank per colony.

1.2 Migration, resampling and seed-bank: three models
In this section, which is largely copied from [GHO22b, Section 2], we restrict ourselves to recalling the
definition of the three models introduced in [GHO22b]. In [GHO22b, Appendix A] we explained how the
system of continuum stochastic differential equations that is our object of study arises as the large-colony-
size limit of a sequence of discrete individual-based systems. In what follows we will interpret properties of
the continuum system in terms of the underlying discrete systems in order to provide the proper intuition.
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We consider populations of individuals that can be of two types: ♥ and ♦. These populations are located
in a geographic space G with a group structure, namely, (G,+) is a countable Abelian group with + a group
action. We are interested in the frequencies of types in the various locations. To describe the migration we
use a migration kernel a(·, ·), which is a G × G matrix of transition rates that determines a continuous-time
random walk and satisfies:

Assumption 1.1. [Migration kernel]

(1.1) a(i, j) = a(0, j − i) ∀ i, j ∈ G,
∑
i∈G

a(0, i) < ∞, a(·, ·) is irreducible. �

In each of the three models to be described below, the population at a location consist of an active part
and a dormant part. The seed-bank at a given location is the repository of the dormant population at that
location (and for two of the models has an internal structure that regulates the wake-up time). For each
active individual that becomes dormant a randomly chosen dormant individual becomes active, i.e., the
active and the dormant population exchange individuals (see Fig. 1). This guarantees that the sizes of the
active and the dormant population stay fixed over time.

Model 1: single-layer seed-bank. For i ∈ G and t ≥ 0, let xi(t) denote the fraction of individuals in
colony i of type ♥ that are active at time t, and yi(t) the fraction of individuals in colony i of type ♥ that are
dormant at time t. These fractions evolve according to the SSDE

dxi(t) =
∑
j∈G

a(i, j) [x j(t) − xi(t)] dt +
√

dxi(t)[1 − xi(t)] dwi(t)(1.2)

+ Ke [yi(t) − xi(t)] dt,

dyi(t) = e [xi(t) − yi(t)] dt,(1.3)

where (wi(t))t≥0, i ∈ G, are independent standard Brownian motions. The first term in (1.2) describes the
migration of individuals (at rate a(i, j) from j to i), the second term in (1.2) describes the resampling of
individuals (at rate d ∈ (0,∞) for all i). The third term in (1.2) together with the term in (1.3) describe the
exchange of active and dormant individuals (at rate e ∈ (0,∞) for all i). See Fig. 1 for an illustration.

A D

exchange

resampling

migration

Ke

e

d

Figure 1: The evolution in a single colony in Model 1. Individuals are subject to migration (see Fig. 3), resampling
and exchange with the seed-bank.

The factor K ∈ (0,∞) allows for an asymmetry between the sizes of the active and the dormant popula-
tion. Indeed, because we are tracking fractions of individuals of type ♥, we have

(1.4) K =
size dormant population
size active population

,

and this ratio is the same for all colonies.
The state space of the system is

(1.5) E = [0, 1]S, S = G × {A,D},
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endowed with the product topology, where A denotes the residence of the active population and D the
repository of the dormant population. Alternatively, we may also think of two populations, one active and
one dormant, and write E = ([0, 1] × [0, 1])G. Accordingly, the configuration of the system at time t is
written as

(1.6) Z(t) =
(
zu(t)

)
u∈S

with zu(t) = xi(t) if u = (i, A) and zu(t) = yi(t) if u = (i,D), respectively,

(1.7) Z(t) =
(
zi(t)

)
i∈G

with zi(t) = (xi(t), yi(t)). Via duality, our SSDE can be understood in terms of tuples of random walks on G
with internal states A and D [GHO22b, Section 2].

A

D0

D1

Dm

exchange

resampling

K0e0

e0

K1e1

e1

Kmem

em

dmigration

Figure 2: The evolution in a single colony in Model 2. Individuals are subject to migration (see Fig. 3), resampling
and exchange with the seed-bank, as in Model 1. Additionally, when individuals become dormant they get a colour and
when they become active they loose their colour.

Model 2: multi-layer seed-bank. In order to allow for fat tails in the wake-up times of individuals and
still preserve the Markov property, we enrich the state space. Namely, we allow individuals to become
dormant with a colour that is drawn randomly from an infinite sequence of colours, labelled by N0. See
Figs. 2 and 3 for an illustration.

As before, let xi(t) denote the fraction of individuals in colony i of type ♥ that are active at time t, but
now let yi,m(t) denote the fraction of individuals in colony i of type ♥ that are dormant with colour m at time
t. Suppose that active individuals exchange with dormant individuals with colour m at rate em ∈ (0,∞).
Then the SSDE in (1.2)–(1.3) is replaced by

dxi(t) =
∑
j∈G

a(i, j) [x j(t) − xi(t)] dt +
√

dxi(t)[1 − xi(t)] dwi(t)(1.8)

+
∑

m∈N0

Kmem [yi,m(t) − xi(t)] dt,

dyi,m(t) = em [xi(t) − yi,m(t)] dt, m ∈ N0,(1.9)

where the factor Km ∈ (0,∞) captures the asymmetry between the size of the active population and the
m-dormant population, i.e., similarly as in (1.4),

(1.10) Km =
size m-dormant population

size active population
, m ∈ N0,

where Km ∈ (0,∞) is the same for all colonies. The state space is

(1.11) E = [0, 1]S, S = G × {A, (Dm)m∈N0 },
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... ...

migration

active

dormant

reproduction

D0 D1 Dm ... ...

migration

reproduction

D0 D1 Dm ... ...

reproduction

D0 D1 Dm

Figure 3: The spatial evolution in Model 2. Each colony has its own seed-bank. Resampling occurs within the active
population in each colony. Migration occurs between active populations in different colonies (top layer). Exchange
between the active and the dormant population occurs in each colony (transitions between the top layer and the bottom
layer).

endowed with the product topology, where A denotes the residence of the active population and Dm the
repository of the m-dormant population. Alternatively, we may think of infinitely many populations, one
active and all the others dormant, and write E = ([0, 1] × [0, 1]N0 )G. Accordingly, the configuration of the
system at time t is written as

(1.12) Z(t) =
(
zu(t)

)
u∈S

with zu(t) = xi(t) if u = (i, A) and zu(t) = yi,m(t) if u = (i,Dm) for some m ∈ N0, respectively,

(1.13) Z(t) =
(
zi(t)

)
i∈G

with zi(t) = (xi(t), (yi,m(t))m∈N0 ).

Model 3: multi-layer seed-bank with displaced seeds. We can extend the mechanism of Model 2 by
allowing individuals that move into a seed-bank to do so in a randomly chosen colony. This amounts to
introducing a sequence of irreducible displacement kernels am(·, ·), m ∈ N0, satisfying

(1.14) am(i, j) = am(0, j − i) ∀ i, j ∈ G, m ∈ N0, sup
m∈N0

∑
i∈G

am(0, i) < ∞,

and replacing (1.8)–(1.9) by

dxi(t) =
∑
j∈G

a(i, j) [x j(t) − xi(t)] dt +
√

dxi(t)[1 − xi(t)] dwi(t)(1.15)

+
∑
j∈G

∑
m∈N0

Kmem am( j, i) [y j,m(t) − xi(t)] dt,

dyi,m(t) =
∑
j∈G

em am(i, j) [x j(t) − yi,m(t)] dt, m ∈ N0.(1.16)

Here, the third term in (1.15) together with the term in (1.16) describe the migration of individuals and the
switch of colony of individuals during the exchange between active to dormant (at rate am(i, j) between i
and j,m). The state space and the configuration at time t are the same as in (1.11). Also (1.10) remains the
same.

Duality. As shown in [GHO22b, Section 2], the three models have a tractable dual, in which paths of
individuals (see Fig. 3) are reversed in time to become ancestral lineages of individuals (see Fig. 4). In the
dual, which plays a crucial role in the analysis, lineages evolve as independent continuous-time Markov
processes with state space

(1.17) S = G × {A,D} (Model 1), S = G × {A, (Dm)m∈N0 } (Models 2–3),
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and with transition kernel

(1.18) b(1)(·, ·) in (A.1), b(2)(·, ·) in (A.4), b(3)(·, ·) in (A.5),

and coalesce at rate d when they are at the same site in G and are both active. Unlike in the original system,
there is no exchange between active and dormant lineages in the dual, which makes the dual easier to work
with. The duality relations are mixed-moment relations linking the original process to the dual process and
vice versa. The dual is therefore called a moment dual.

For g , dgFW no tractable dual is available and we need to argue by comparison with models that have
a tractable dual.

t

Figure 4: Picture of the evolution of lineages in the spatial coalescent. The purple blocks depict the colonies, the
blue lines the active lineages, and the red dashed lines the dormant lineages. Blue lineages can migrate and become
dormant, (i.e., become red dashed lineages). Two blue lineages can coalesce when they are at the same colony. Red
dashed dormant lineages first have to become active (blue) before they can coalesce with other blue and active lineages
or migrate. Note that the dual runs backwards in time. The collection of all lineages determines the genealogy of the
system.

1.3 Observations: ρ < ∞ versus ρ = ∞

In this section, which is also largely copied from [GHO22b, Section 2], we recall a number of important
observations regarding the models introduced in Section 1.2.

Two key quantities. In Models 2 and 3 we must assume that

(1.19) χ =
∑

m∈N0

Kmem < ∞

in order for active lineages in the dual not to become dormant instantly. The advantage of having infinitely
many colours is that it allows us to have wake-up times with fat tails and at the same time preserve the
Markov property for the evolution of the system. Indeed, in Model 2 the rate for an active lineage to
become dormant is χ, the go-to-sleep time σ of an active lineage has law

(1.20) P(σ > t) = e−χt, t ≥ 0,

while the wake-up time τ of a dormant lineage has law

(1.21) P(τ > t) =
∑

m∈N0

Kmem

χ
e−emt, t ≥ 0,

where Kmem/χ is the probability that a dormant lineage has colour m (when the system is in equilibrium). It
is possible to talk about paths in the forward time direction rather than about lineages in the backward time
direction, but this requires an enrichment of the state spaces and the introduction of historical processes.
We will not elaborate on this extension.

Recall that in the continuum limit the size of the active population is scaled to 1. Note that

(1.22) E[σ] =
1
χ
, E[τ] =

ρ

χ

with

(1.23) ρ =
∑

m∈N0

Km =
size dormant population
size active population

.
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We saw in [GHO22b] that ρ < ∞ (‘finite-size seed-bank’) and ρ = ∞ (‘infinite-size seed-bank’) represent
different regimes for the long-time behaviour of the system (see Section 1.4 below). In particular, the
criterion whether coexistence or clustering prevails is different. In the present paper we will see that also
the scaling in the finite-systems scheme is different.

Initial laws. We need to specify the law µ(0) from which the initial configuration is drawn. Let P(E)
denote the set of probability measures on E. Define

(1.24)
T =

{
µ ∈ P(E) : µ is invariant under translations in G

}
,

T erg =
{
µ ∈ T : µ is ergodic under translations in G

}
,

where translation stands for group action (recall (1.7) and (1.13)). For Model 1, as well as for Models 2 and
3 with ρ < ∞, µ(0) can be any element of T erg. However, for Models 2–3 with ρ = ∞ an extra restriction is
needed, namely, we additionally require that µ(0) is colour regular:

(1.25) θ•µ(0) = lim
m→∞
Eµ(0)[y0,m] exists.

This condition gives us control over the deep seed-banks, which play a dominant role when ρ = ∞. (For
µ(0) ∈ T \ T erg (1.25) is replaced by the requirement that limm→∞ Eµ(0)[y0,m | B] exists µ(0)-a.s. with B the
translation invariant sigma-field.) Accordingly, we define

(1.26)
T • =

{
µ ∈ T : µ is colour regular

}
,

T erg,• =
{
µ ∈ T erg : µ is colour regular

}
.

Remark 1.2. Note that the set T • is not closed in the weak topology as a subset of T . To remedy this
problem, consider the set T • × [0, 1] endowed with the metric that is the sum of the metric for weak
convergence on T and the Euclidean metric on [0, 1]. Consider the subset D = {(µ, θ•µ) : µ ∈ T •}. Clearly,
D has a countable dense subset, consisting of sequences of truncated seed-banks that are extended to infinite
seed-banks by repeating the value θ•µ in the seed-bank direction. Since D is also complete and metric, it is
a Polish space in the stronger topology. �

We write µ(t) to denote the law evolved from µ(0) at time t, and further define

(1.27) I =
{
µ ∈ T : µ is invariant under the evolution

}
.

Topologies. On the set T we use the topology of weak convergence. On the set T •, however, we need a
stronger topology, which we call the topology uniform weak convergence and which is defined on the subset

(1.28) T •,∗ =
{
µ ∈ T • : lim

|m−m′ |→∞
Covµ(y0,m, y0,m′ ) = 0

}
.

In [GHO22b] we showed that

(1.29) θ̂ = lim
M→∞

x0 +
∑M

m=0 Kmy0,m

1 +
∑M

m=0 Km

exists in L2(µ) for every µ ∈ T •,∗, which is the limiting density of ♥.

Examples. Three natural examples of Abelian groups and migration kernels are:

• G = Zd the Euclidean lattice of dimension d, and

(1.30) a(·, ·) irreducible,
∑
i∈Zd

i a(0, i) = 0,
∑
i∈Zd

|i|2a(0, i) < ∞.

Transient migration corresponds to d ≥ 3 (see [Spi64, Section II.8]).

• G = Z, and

(1.31) a(·, ·) symmetric, a(0, i) ∼ Q |i|−1−q, |i| → ∞, Q ∈ (0,∞), q ∈ (0, 2).

Transient migration corresponds to q ∈ (0, 1) (see [Spi64, Section II.8]).
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• G = ΩN the hierarchical group of order N given by

(1.32) ΩN =
{
i = (ik)k∈N0 ∈ {0, . . . ,N − 1}N0 :

∑
k∈N0

ik < ∞
}
,

endowed with the hierarchical distance d(i, j) = inf{k ∈ N0 : il = jl ∀ l ≥ k}, and

(1.33) a(i, j) =
∑

k≥d(i, j)

ck−1

Nk−1

1
Nk , i, j ∈ ΩN , i , j, a(i, i) = 0, i ∈ ΩN ,

where (ck)k∈N0 are coefficients satisfying lim supk→∞
1
k log ck < log N. The latter is the kernel of

transition rates for the hierarchical random walk that, for each k ∈ N, at rate ck−1N−(k−1) chooses the
k-ball around it current location and moves to a uniformly random location in this ball. Transient
migration corresponds to

∑
k∈N0

(1/ck) < ∞ (see [DGW04], [DGW05]).

General diffusion function. In (1.2), (1.8) and (1.15) we can replace the diffusion functions dgFW, d ∈
(0,∞), with gFW(x) = x(1 − x), x ∈ [0, 1], the Fisher-Wright diffusion function, by a general diffusion
function in the class G defined by

(1.34) G =
{
g : [0, 1]→ [0,∞) : g(0) = g(1) = 0, g(x) > 0 ∀ x ∈ (0, 1), g Lipschitz

}
.

This class is appropriate because the diffusion stays confined to [0, 1], yet can go everywhere in [0,1]
([Bre68, Section 16.7]). Picking g , dgFW amounts to allowing the resampling rate to be state-dependent,
which is an important extension from a biological perspective. The resampling rate in state x equals
g(x)/x(1 − x), x ∈ (0, 1). An example is the Ohta-Kimura diffusion function g(x) = [x(1 − x)]2, x ∈ [0, 1],
for which the resampling rate is equal to the genetic diversity of the colony [OK73].

Trapping time for finite geographic space. Let

(1.35)
Model 1 : H = inf

{
t ≥ 0: (x(t), y(t)) ∈ {(0, 0)G, (1, 1)G}

}
,

Models 2–3: H = inf
{
t ≥ 0: (x(t), y(t)) ∈ {(0, 0N0 )G, (1, 1N0 )G}

}
,

be the time until trapping in one of the mono-type states. We note that if the geographic space G would be
finite and the seed-bank would be labeled by a finite set rather than N0, then

(1.36)
∫

[0,1]
dx

x(1 − x)
g(x)

< ∞ =⇒ P(H < ∞) = 1.

The integral criterion makes {0, 1} accessible for the Fisher-Wright diffusion gFW with gFW(x) = x(1 − x),
x ∈ [0, 1], but not for the Ohta-Kimura diffusion gOK with gOK(x) = (x(1 − x))2, x ∈ [0, 1] (see [Bre68,
Chapter 16, Section 7]).

1.4 Core results for the infinite system
In this section, which is largely copied from [GHO22b, Section 3], we summarise the core results for the
infinite system in order to set the stage for the results for the finite system that will be presented in Section 2.

In [GHO22b] we showed that, for each of the three models introduced in Section 1.2, the system con-
verges to a unique equilibrium νθ that depends on a single parameter θ, namely, the density of type ♥ in
the population (active or dormant) under the initial law µ(0) (see (2.29) and (2.55)–(2.58) below). This
initial law is assumed to be an element of T erg (recall (1.24)) for ρ < ∞ and an element of T erg,• (recall
(1.26)) for ρ = ∞. Moreover, we showed that νθ exhibits a dichotomy of coexistence (= locally multi-type
equilibrium) versus clustering (= locally mono-type equilibrium), and identified the parameter regimes for
which coexistence, respectively, clustering occurs.
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Regularity conditions. For ρ = ∞ we required certain regularity conditions on top of Assumption 1.1,
which we list next.

Assumption 1.3. [Regularity conditions for ρ = ∞]
(i) The migration is symmetric, i.e.,

(1.37) a(i, j) = a( j, i) ∀ i, j ∈ G,

and the time-t transition kernel satisfies

(1.38) t 7→ at(0, 0) is regularly varying at infinity.

(ii) The seed-bank coeffcients are polynomial, i.e.,

(1.39)
Km ∼ A m−α, em ∼ B m−β, m→ ∞,

A, B ∈ (0,∞), α, β ∈ R : α ≤ 1 < α + β.

Consequently,

(1.40) P(τ > t) ∼ C t−γ, t → ∞,

with γ =
α+β−1
β

and C = A
βχ

B1−γ Γ(γ), where Γ is the Gamma-function. �

Examples satisfying (1.38) can be found in [Hug95, Chapter 3]. The conditions on α, β in (1.39) guarantee
that ρ = ∞, χ < ∞.

Dichotomy. In [GHO22b, Sections 5–7] we showed that

• coexistence occurs if and only if the average total joint activity time of two lineages in the dual
without coalescence, both starting from (0, A), is finite,

where joint activity means that the two lineages are active and are at the same site. (see also Appendix A).
We further identified the parameter regime for coexistence, namely, for ρ < ∞ we found that, subject to
Assumption 1.1, coexistence occurs if and only if

(1.41) Iâ =

∫ ∞

1
ât(0, 0) dt < ∞,

while for ρ = ∞, subject to Assumptions 1.1–1.3, coexistence occurs if and only if

(1.42) Iâ,γ =

∫ ∞

1
t−(1−γ)/γât(0, 0) dt < ∞.

Here, ât(0, 0) is the probability that the migration with symmetrised kernel â(i, j) = 1
2 [a(i, j) + a( j, i)],

i, j ∈ G, starting from 0 is back at 0 at time t, and γ is the exponent in (1.40). For ρ = ∞ we showed that
the claim may fail without the symmetry assumption a(i, j) = a( j, i), i, j ∈ G. Remarkably, (1.41) depends
on the migration kernel only, while (1.42) depends on the migration kernel and on the asymptotics of the
seed-banks coefficients Km and em. The diffusion function g plays no role: either there is coexistence for all
g ∈ G or for no g ∈ G.

Clearly, (1.42) shows that there is an interesting competition between migration and seed-bank, while
a comparison of (1.41)–(1.42) shows that the seed-bank enhances genetic diversity. The criterion in (1.41)
corresponds to the symmetrised migration being transient. The criterion in (1.42) (for symmetric migration)
is less stringent and may even be met when the migration is recurrent. For instance, it holds as soon as
γ ∈ (0, 1

2 ), irrespective of the migration (because ât(0, 0) ≤ 1 for all t), while for γ ∈ [ 1
2 , 1] it holds for

certain classes of recurrent migration (see the examples below).

Examples. To illustrate (1.42) we consider three examples.

• On G = Zd, if â(·, ·) satisfies (1.30), then ât(0, 0) ∼ Ct−d/2, t → ∞, for some C ∈ (0,∞) [Spi64,
Chapter II, Section 7] and so (1.42) amounts to the requirement that

(1.43)
1 − γ
γ

+
d
2
> 1,

i.e, γ ∈ (0, 1] when d ≥ 3 (transient migration), γ ∈ (0, 1) when d = 2 (critically recurrent migration),
and γ ∈ (0, 2

3 ) when d = 1 (strongly recurrent migration).
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• On G = Z, if â(·, ·) satisfies (1.31), then ât(0, 0) � t−1/q [Hug95, Section 3.3.5], and so (1.42) amounts
to the requirement that

(1.44)
1 − γ
γ

+
1
q
> 1,

i.e., γ ∈ (0, 1] when q ∈ (0, 1) (transient migration), γ ∈ (0, 1) when q = 1 (critically recurrent
migration) and γ ∈ (0, q

2q−1 ) when q ∈ (1, 2) (strongly recurrent migration).

• On G = ΩN , if â(·, ·) satisfies (1.33) with ck = ck, then ât(0, 0) � t−1−δN [GHO22a, Section 3.2], and
so (1.42) amounts to the requirement that

(1.45)
1 − γN

γN
+ δN > 0,

i.e., γN ∈ (0, 1] when δN ∈ (0,∞) (transient migration), γN ∈ (0, 1) when δN = 0 (critically recurrent
migration), and γN ∈ (0, 1

1−δN
) when δN ∈ (−∞, 0) (strongly recurrent migration). The inequality in

(1.45) holds if and only if log N × log(Kc) > log c × log(K2e) (recall that c < N and Ke < N). When
Kc = 1, the latter condition holds for all N if and only if K > 1 and Ke2 > 1 (recall that K ≥ 1 is
needed to ensure that ρ = ∞). For N large enough it holds when Kc > 1 and fails when Kc < 1.

Remark 1.4. [Dichotomy with modulation] As shown in [GHO22b, Sections 3.2 and 6.6], it is possible to
modulate (1.40)–(1.39) by slowly varying functions. Namely, if (1.40) is replaced by P(τ > t) ∼ C φ(t) t−γ,
t → ∞, with φ slowly varying at infinity, then Iâ,γ is replaced by

(1.46) Iâ,γ,φ =

∫ ∞

1
φ̂(t)−1/γ t−(1−γ)/γât(0, 0) dt,

where φ̂(t) = φ(t) when γ ∈ (0, 1) and φ̂(t) =
∫ t

1 φ(s) s−1 ds when γ = 1. �

Remark 1.5. [Dichotomy for hierarchical seed-bank] As argued in [GHO22a, Section 2], on G = ΩN

it is natural to consider a hierarchical seed-bank, which amounts to replacing em by em/Nm in (1.8)–(1.9) ,
and to assume that, instead of (1.39),

(1.47) Km = Km, em = em, m ∈ N0, K, e ∈ (0,∞).

(To guarantee that χ < ∞ in (1.19) and ρ = ∞ in (1.23), we need Ke < N and K ≥ 1.) As shown in
[GHO22a, Section 3.2], the parameters in Remark 1.4 become

(1.48) γN =
log(N/Ke)
log(N/e)

, ϕ(t) � 1, ϕ̂(t) �

 1, K ∈ (1,∞),

log t, K = 1,

while, if ck = ck, k ∈ N0, c ∈ (0,∞), then

(1.49) at(0, 0) � t−1−δN ,

where

(1.50) δN =
log c

log(N/c)
.

(To guarantee that
∑

i∈ΩN
a(0, i) < ∞ in (1.1), we need c < N.) Note that γN = 1 for all N when K = 1,

while γN < 1 for all N when K ∈ (1,∞), but with γN → 1 as N → ∞. Further note that δN → 0 as N → ∞
for all c ∈ (0,∞). Thus, the hierarchical mean-field limit N → ∞ corresponds to a critically infinite mean
wake-up time for the seed-bank and a critically recurrent migration. �

Equilibria. In [GHO22b] we also analysed the equilibria of the infinite system, i.e., the family of extremal
invariant measures

(1.51) (νθ)θ∈[0,1]
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parametrised by the density of ♥. This family depends on all the parameters of the model, i.e., the migration
kernel, the seed-bank coefficients and the diffusion function. We showed that νθ is associated and mixing
for all θ ∈ [0, 1], and that Eνθ [x0] = θ and Eνθ [y0,m] = θ for all m ∈ N0 (so that νθ is colour regular). We
showed that for ρ < ∞ the deep seed-banks are random under νθ with a strictly positive variance, while
(subject to (1.39) and (1.25)) for ρ = ∞ the deep seed-banks are asymptotically deterministic under νθ, i.e.,
converge in law to θ in every colony.

We found that the seed-bank reduces volatility, i.e., the active components have a smaller variance than
in the model without seed-bank. We further showed that θ 7→ νθ is continuous in the weak topology for
Model 1 and for Model 2 with ρ < ∞, and is continuous in the uniform weak topology for Model 2 with
ρ = ∞.

Domains of attraction. In [GHO22b, Sections 5 and 6] we showed that the sets R(1)
θ , R(2)

θ and R(2),•
θ

defined below are the domains of attraction of νθ, θ ∈ [0, 1], in Model 1, Model 2 with ρ < ∞ and Model 2
with ρ = ∞, respectively. See [GHO22b, Definitions 5.6 and 6.5]. We recall the notation

(1.52)
Model 1 : S = G × {A,D},
Model 2 : S = G × {A, (Dm)m∈N0 },

and, for u ∈ S,

(1.53) zu =

{
xi, u = (i, A),
yi, u = (i,D), , zu =

{
xi, u = (i, A),
yi,m, u = (i,Dm).

We write b(1)
t (·, ·) and b(2)

t (·, ·) to denote the time-t transition kernels of the dual (whose transition kernel is
defined in (A.1) and (A.4)).

Definition 1.6. [Liggett conditions]
(A) Model 1: R(1)

θ is the set of measures µ ∈ T erg satisfying:

(1.54) (∗)θ

(1) ∀ u1 ∈ S :
lim
t→∞

∑
u2∈S

b(1)
t (u1, u2)Eµ[zu2 ] = θ,

(2) ∀ u1, u2 ∈ S :
lim
t→∞

∑
u3,u4∈S

b(1)
t (u1, u3) b(1)

t (u2, u4)Eµ[zu3 zu4 ] = θ2.

(B) Model 2 with ρ < ∞: R(2)
θ is the set of measures µ ∈ T erg satisfying:

(1.55) (∗)θ

(1) ∀ u1 ∈ S :
lim
t→∞

∑
u2∈S

b(2)
t (u1, u2)Eµ[zu2 ] = θ,

(2) ∀ u1, u2 ∈ S :
lim
t→∞

∑
u3,u4∈S

b(2)
t (u1, u3) b(2)

t (u2, u4)Eµ[zu3 zu4 ] = θ2.

(C) Model 2 with ρ = ∞: R(2),•
θ is the set

(1.56) R
(2),•
θ =

{
µ ∈ R(2)

θ : µ is colour regular
}
. �

The Liggett conditions are equivalent to saying that, for k = 1, 2 and u1 ∈ S,
∑

u2∈S b(k)
t (u1, u2) zu2 converges

in L2(µ) to θ as t → ∞.

Outline. Section 2 states our main theorems: a detailed description of the finite-systems scheme for
Model 1, Model 2 with ρ < ∞ and Model 2 with ρ = ∞. Section 3 contains preparatory lemmas and
observations that play a central role in the paper. Sections 4–6 are devoted to the proofs of the main
theorems. In Appendix A we show that the seed-bank reduces the volatility of the active components. In
Appendix B we recall an abstract scheme from [CG94b] that lists general conditions for the existence of a
finite-systems scheme, as well as a method from [DGV95] to check some of these conditions in concrete
settings. The proofs in Sections 4–5 rely on this abstract scheme. The proofs in Section 6 follow a separate
route. Appendix C computes the asymptotic fraction of time spent in the active state by a lineage in the
dual, which controls the various scaling regimes. In Appendix D we speculate about how in Model 2 with
ρ = ∞ and fast-growing seed-bank the crossover from partial clustering to complete clustering may take
place.
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2 Results: Finite-systems scheme
This section contains our main results for the finite-system scheme. In Section 2.1 we provide the general
setting. In Section 2.2 we focus on Model 1 (Theorems 2.6 and 2.9). In Section 2.3 we prepare for Model
2 by introducing two regimes: slow growing seed-bank and fast-growing seed-bank. In Sections 2.4–2.5
we analyse Model 2 for ρ < ∞ (Theorem 2.10), respectively, ρ = ∞ (Theorems 2.11–2.12). We will not
consider Model 3 because it behaves similarly as Model 2. In Section 2.6 we list a few open problems.

2.1 General setting
What does the dichotomy of the infinite system imply for large but finite systems, for which clustering
always prevails? In the coexistence regime this question can be analysed by establishing what is called the
finite-systems scheme [CG90], [CGS95], i.e., by identifying how a finite truncation of the system – both
in the geographic space and in the seed-bank – behaves as both the time and the truncation level tend to
infinity, properly tuned together. Our target will be to show that the finite system adopts the equilibrium of
the infinite system but with a random density of ♥ (recall (1.29)), and that the law of the latter evolves, on
the proper time scale, as a diffusion on [0, 1] with a renormalised diffusion function.

Projective system. Throughout the sequel the following assumption is in force on the geographic space:

Assumption 2.1. [Profinite geographic space] G is profinite, i.e.,

(2.1)
G is (isomorphic to) the limit of a projective system (Gn)n∈N

of finite groups endowed with the discrete toplogy.
�

Key examples are

• G = Zd and Gn = [−n, n]d ∩ Zd (mod 2n) the n-torus (viewed as a quotient group).

• G = ΩN and Gn = (ΩN)n the n-ball (viewed as a subgroup).

We restrict the G to Gn, i.e., we keep (1.2)–(1.3) and (1.8)–(1.9) but replace the migration kernel by

(2.2) an(i, j) =
∑
k∈G
k↓ j

a(i, k), i, j ∈ Gn,

where k ↓ j means that k is projected onto j.

Definition 2.2. [Mixing time] The mixing time of the truncated migration is defined as the minimal se-
quence (ψn)n∈N with limn→∞ ψn = ∞ such that

(2.3) lim
s→∞

lim sup
n→∞

sup
i∈Gn

∣∣∣∣ |Gn| an
sψn

(0, i) − 1
∣∣∣∣ = 0,

where an
t (·, ·) is the time-t transition kernel associated with (2.2). �

In words, the migration on Gn mixes on time scale ψn. Note that

(2.4) an
t (0, i) ≥ at(0, i) ∀ n ∈ N, i ∈ Gn, t ≥ 0.

Also note that, for symmetric random walk (recall (1.37)),

(2.5) an
t (0, i) ≤ an

t (0, 0), at(0, i) ≤ at(0, 0), ∀ n ∈ N, i ∈ Gn, t ≥ 0.

Assumption 2.3. [Relations between the transitions kernels]
(i) Prior to the mixing time the random walk on Gn is close to the random walk on G:

(2.6) lim
n→∞

sup
t=o(ψn)

sup
i∈Gn

an
t (0, i) − at(0, i)

at(0, i)
= 0.

(ii) Until the mixing time the random walk on Gn is comparable to the random walk on G:

(2.7) ∃C < ∞ : C−1at(0, i) ≤ an
t (0, i) ≤ Cat(0, i) ∀ i ∈ Gn ∀ 0 ≤ t ≤ ψn. �
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Remark 2.4. [Three examples of mixing time]

(1) On G = Zd, for â(·, ·) irreducible with
∑

i∈Zd i â(0, i) = 0 and
∑

i∈Zd |i|2â(0, i) < ∞, it is known that
ψn � n2 (‘diffusive mixing’; see [BR76, Corollary 22.3], [Cox89, Proposition 2.8], [CGS95, Lemma
2.1]). In particular, ψn � |Gn| when d ≥ 3, ψn � |Gn| when d = 2, and ψn � |Gn| when d = 1. The
crossover occurs at d = 2 (critically recurrent migration).

(2) On G = Z, for â(·, ·) symmetric with â(0, i) ∼ Q|i|−1−q, |i| → ∞, q ∈ (0, 2), Q ∈ (0,∞), it is known
that ψn � nδ (the proof is an exercise in Fourier analysis). In particular, ψn � |Gn| when q ∈ (0, 1),
ψn � |Gn| when q = 1, and ψn � |Gn| when q ∈ (1, 2). The crossover occurs at q = 1 (critically
recurrent migration).

(3) On G = ΩN , for the hierarchical random walk with coefficients (ck)k∈N0 , it is known that ψn �

Nn−1/cn−1 = |Gn|/Ncn−1 (the average time until the migration chooses horizon n). In particular, ψn �

|Gn| when limk→∞ ck = ∞, ψn � |Gn| when limk→∞ ck ∈ (0,∞), and ψn � |Gn| when limk→∞ ck = 0.
If ck = ck, then the crossover occur at c = 1 (critically recurrent migration). �

Remark 2.5. [Open questions] Three interesting questions in the general setting are:

(I) Is it true that ψn = o(|Gn|) for transient random walk?

(II) Is it true that âψn (0, 0) � |Gn|
−1?

(III) Do (2.6)–(2.7) hold always?

The answer is yes for the three examples in Remark 2.4, but appears not to be known in general. �

Initial laws. Note that the state spaces for the finite system are

(2.8)
En = ([0, 1] × [0, 1])Gn Model 1,
En = EMn,n = ([0, 1] × [0, 1])Mn+1)Gn Models 2–3,

when the seed-bank is truncated at colour Mn. We need to decide how to choose the initial law µn on En in
such a way that it properly links up with the initial law µ on E (recall (1.5) and (1.11)), which is assumed to
be translation invariant (= invariant under the group action; recall (1.24)). One way to go about is to let µn

be the restriction of µ to En. This works perfectly well for G = ΩN , because Gn = (ΩN)n is a subgroup of
G, but does not work for G = Zd, because µn is not translation invariant on Gn = Zd ∩ [−n, n]d (mod 2n). A
standard way out is to pick µn translation invariant such that µn converges to µ weakly as n→ ∞. A natural
way to achieve this is by picking

(2.9) µn((xn, yn)) = |Gn|
−1

∑
i∈Gn

µ(τi(xn, yn)), (xn, yn) = (xi(t), yi(t))i∈Gn ,

where τi, i ∈ Gn, is the shift on En defined by (τi(xn, yn)) j = (xn, yn)i+ j, i, j ∈ Gn. (We use the upper index n
to indicate that (xn, yn) lives on En, but suppress this index from the single components.)

Note that (2.9) reads as

(2.10) µn = µ ◦ Φn

with Φn : E → En the translation invariant restriction operator defined by Φn(x, y) = |Gn|
−1 ∑

i∈Gn
τi(xn, yn).

We will write (2.10) as µn = Φnµ by using the same symbol Φn for the restriction operator acting on T , and
put

(2.11) Tn = {Φnµ : µ ∈ T }.

Conversely, we write

(2.12) µ = µn ◦ Φ̃n

with Φ̃n : En → E the translation invariant extension operator defined by Φ̃n(xn, yn) = |Gn|
−1 ∑

i∈Gn
τ̃i(xn, yn),

where τ̃i is the periodic continuation of τi(xn, yn) from En to E in the geographic coordinate and the constant
continuation of τi(xn, yn) from {0, . . . ,Mn} to N0 in the seed-bank coordinate by the value

(2.13)
xi +

∑Mn
m=0 Kmyi,m

1 +
∑Mn

m=0 Km
.

We will write (2.12) as µ = Φ̃nµ by using the same symbol Φ̃n for the extension operator acting on Tn.



2 RESULTS: FINITE-SYSTEMS SCHEME 15

2.2 Model 1
Set-up. We denote the system restricted to En by

(2.14)
(
xn(t), yn(t)

)
t≥0.

The empirical measure of the system at time t is defined by

(2.15) En(t) =
1
|Gn|

∑
i∈Gn

δτi(xn,yn).

We consider the empirical process

(2.16)
(
En(sβn)

)
s≥0
,

where βn is a large time scale that needs to be properly chosen. We write µn(sβn) to denote the law of
(xn(sβn), yn(sβn)) when we choose µn(0) as in (2.9).

Macroscopic variable. For large n we expect that En(sβn) and µn(sβn) are controlled by a random process
on the set {νθ : θ ∈ [0, 1]} of extremal invariant measures of the infinite system that is determined by a
macroscopic variable θ̂n(sβn) of the configuration on En, whose limit as n → ∞ is a conserved quantity of
the infinite system, i.e., is itself a consistent estimator (recall (1.29)). This macroscopic variable is given by

(2.17) θ̂n(t) =
1
|Gn|

∑
i∈Gn

xi(t) + Kyi(t)
1 + K

, t ≥ 0,

which evolves as

dθ̂n(t) =
1

|Gn| (1 + K)

∑
i∈Gn

√
g
(
xi(t)

)
dwi(t),(2.18)

where the migration cancels out because of the averaging over the geographic space, and the exchange with
the seed-bank cancels out because of the averaging over the seed-bank. Thus, in particular,

(2.19)
(
θ̂n(t)

)
t≥0 is a bounded and continuous martingale

with increasing process

(2.20)
〈
θ̂n(t)

〉
t≥0

=

∫ t

0
ds

1
|Gn| (1 + K)

∑
i∈Gn

g
(
xi(s))

)
t≥0

.

Time scale. The goal is to identify βn such that (L denotes probability law, convergence is always in the
weak topology)

(2.21) lim
n→∞
L

[
En(sβn)

]
= lim

n→∞
L

[
µn(sβn)

]
= L

[
νΘ(s)

]
, s > 0,

and

(2.22) lim
n→∞
L

[(
θ̂n(sβn)

)
s>0

]
= L

[(
Θ(s)

)
s>0

]
,

where along the way we also need to identify (Θ(s))s≥0 as a Markov process on [0, 1] (via an appropriate
martingale problem or an associated SDE), and show that Θ(0) = θ and Θ(∞) ∈ {0, 1}. Accordingly, we
want to show that

(2.23) lim
n→∞
L

[
En(β̃n)

]
= lim

n→∞
L

[
µn(β̃n)

]
= νθ

for any time scale β̃n � βn, and

(2.24) lim
n→∞
L

[
En(β̃n)

]
= lim

n→∞
L

[
µn(β̃n)

]
= θ δ(1,1)G + (1 − θ) δ(0,0)G

for any time scale β̃n � βn. In the above scenario, the local configuration is controlled by the macroscopic
variable in (2.17), in the sense that it approaches the corresponding equilibrium of the infinite system locally.
The macroscopic variable itself follows an autonomous diffusion process, and conditional on θ̂n(sβn) being
close to some θ′ ∈ [0, 1] for some s > 0, the system converges in distribution to νθ′ .
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Scaling limit. In the model without seed-bank [CGS95], (Θ(s))s≥0 turned out to be the diffusion

(2.25) dΘ(s) =
√

(F g)(Θ(s) dw(s), Θ(0) = θ,

with diffusion function F g given by

(2.26) (F g)(θ) = Eνθ [g(x0)] =

∫
E

g(x0) νθ(dx), θ ∈ [0, 1],

and that if g ∈ G, then also F g ∈ G. For the special case where g = dgFW, d ∈ (0,∞), it turned out that
F g = d∗gFW with d∗ = d/(d + Ĝ(0, 0)), where Ĝ(0, 0) is the Green function at the origin of the symmetrised
migration kernel â(·, ·). In the presence of the seed-bank the role of Ĝ(0, 0) is taken over by the quantity

(2.27) B̂(0, 0) = the mean total joint activity time of two independent Markov processes
with transition kernel b(1)(·, ·) in (A.1) both starting from (0, A).

The key observation is that B̂(0, 0) < ∞ if and only if the system is in the coexistence regime. In Appendix A
we will see that F is non-trivial only in the coexistence regime, and that throughout this regime F g ∈ G
for all g ∈ G. (In the clustering regime F g ≡ 0 for all g ∈ G, because the equilibrium lives on the states
xn = yn ≡ 1 and xn = yn ≡ 0.)

Results. Abbreviate

(2.28) κ = (1 + K)2.

Recall (1.24). For µ ∈ T erg, define

(2.29) θµ = Eµ

[ x0 + Ky0

1 + K

]
and, for θ ∈ [0, 1],

(2.30) T
erg
θ =

{
µ ∈ T erg : θµ = θ

}
.

Theorem 2.6. [Finite-systems scheme: Model 1] Suppose that Assumptions 1.1, 2.1 and 2.3 are in force.
Suppose that µ(0) ∈ T erg

θ , and that µn(0) is given by (2.9). Then, in the coexistence regime, the following
are true:

(a) (Convergence on macroscopic time scale) For every s > 0, (2.21)–(2.24) hold with time scale

(2.31) βn = κ|Gn|

and (Θ(s))s≥0 the diffusion on [0, 1] given by

(2.32) dΘ(s) =
√

(F g)(Θ(s)) dw(s), Θ(0) = θ,

with F g given by (recall (1.51))

(2.33) (F g)(θ) = Eνθ [g(x0)] =

∫
E

g(x0) νθ(dx, dy), θ ∈ [0, 1].

(b) (Fisher-Wright diffusion) If g = dgFW, d ∈ (0,∞), then

(2.34) F g = d∗gFW

with d∗ = d/(1 + dB̂(0, 0)).

Thus, we find the same behaviour as in the system without seed-bank, except that the macroscopic time
scale βn runs slower by a factor κ = (1 + K)2. One factor 1 + K arises from the time that is lost in the seed-
bank, while the other factor 1 + K arises from the fact that the seed-bank brings in no volatility during the
time that is lost (see (2.20), and Section 4 for further details). Fig. 5 draws a typical realisation of (Θ(s))s≥0.

Remark 2.7. [Clustering regime not universal] Theorem 2.6 only holds in the coexistence regime, be-
cause it captures on what time scale the finite system feels the boundary and begins to cluster. To derive
an analogue of Theorem 2.6 in the clustering regime we would need to compare the different modes of
clustering, which would be more difficult (see [CG91] for systems without seed-bank on G = Z2). The
outcome would not be as universal and would depend on the degree of recurrence of the migration kernel.
�
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Figure 5: Picture of the diffusion (Θ(s))s≥0. The boundary set {0, 1} is hit in finite time when 0 and 1 are accessible,
which is the case for instance when F g is a multiple of the Fisher-Wright diffusion function. The blue curve is the path
of the diffusion.

Comments. The scaling of time by |Gn| is natural when we think of the dual. OnGn, two random walks on
average need |Gn|moves until they meet. Indeed, the coexistence regime corresponds to transient migration
(recall (1.41)), for which the mixing time is ψn = o(|Gn|) (recall Remarks 2.4 and 2.5(1)). Hence, at time
sβn = sκ|Gn| the two random walks are more or less uniformly distributed onGn, and have probability |Gn|

−1

to be at the same site. If we consider two Markov processes with transition kernel given by (A.1), then we
get similar behaviour and the slow-down factor 1/κ in (2.28) is the fraction of time that in the dual two
lineages are jointly active. This is natural because only active lineages in the dual can move and coalesce
(i.e., forward in time only active individuals can move and exchange genetic information).

The reason why F g appears in (2.32) is that, given the value of the macroscopic variable θ̂n, the |Gn|

constituent components equilibrate on a time scale that is fast with respect to the time scale βn on which θ̂n

fluctuates. Consequently, the volatility of θ̂n is close to the expectation of the volatility of the constituent
components in the quasi-equilibrium νθ̂n , as expressed by (2.33) (see Fig. 6).

We may think of F as a renormalisation map acting on the class G of diffusion functions defined in
(1.34). According to (2.33), F is a non-linear integral transform, with the non-linearity arising from the
fact that νθ depends on g (apart from e,K). In general no explicit formula is available for F . However, the
result in (2.34) says that if g is a multiple of the Fisher-Wright diffusion, then so is F g, in which case {0, 1}
is accessible at both ends.

r r r r r r
r
. . .

1 2 |Gn| − 1 |Gn|

macroscopic variable

Figure 6: Pictorial representation of the averaging procedure behind the renormalisation map. The volatility
of the empirical average of the |Gn| components converges as n → ∞ to the average of the volatility of the
single components with respect to their limiting equilibrium distribution.

Remark 2.8. [Hierarchical mean-field limit] In [GHO22a] we consider the case where the geographic
space G is the hierarchical group ΩN . In the so-called hierarchical mean-field limit N → ∞ we are able
to analyse F in detail. Without seed-bank the mean-field finite-systems scheme on ΩN was established in
[DG93], [DGV95]. �

Trapping time. Because (Θ(s))s≥0 is a bounded martingale, lims→∞ Θ(s) exists P-a.s. Since F g ∈ G, the
limit lies in {0, 1}. Let

(2.35) T = inf{s ≥ 0: Θ(s) ∈ {0, 1}}.
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If {0, 1} is accessible at both ends, i.e.,

(2.36)
∫

[0,1]
dx

x(1 − x)
(F g)(x)

< ∞,

then P(T < ∞) = 1 (see Fig. 5). We will show that the hitting time of the traps in the finite system

(2.37) Hn = inf
{
t ≥ 0: (xn(t), yn(t)) ∈ {(0, 0)Gn , (1, 1)Gn }

}
(compare with (1.35)) satisfies the following.

Theorem 2.9. [Scaling of hitting time: Model 1] Under the conditions in Theorem 2.6, for all diffusion
functions g ∈ G satisfying (2.36),

(2.38) lim
n→∞
L[Hn/βn] = L[T].

Note that Theorem 2.9 does not follow directly from the path convergence in (2.22). The relation in (2.38)
implies that at time t = [1+o(1)]Tβn the finite system clusters. If, on the other hand, {0, 1} is not accessible
at both ends, then T = ∞ and the finite system only approximately clusters on time scale βn.

2.3 Model 2: Scaling
Truncation. In Model 2 the seed-bank is truncated from N0 to {0, . . . ,Mn} with

(2.39) lim
n→∞

Mn = ∞.

Different choices for Mn make sense in biological applications, since they capture how many seeds can
accumulate in a single colony. The truncated state space is En = EMn,n = ([0, 1] × [0, 1]Mn+1)Gn , the
truncated system

(2.40)
(
xMn,n(t), yMn,n(t)

)
=

(
xi(t), (yi,m(t))0≤m≤Mn

)
i∈Gn

evolves as

dxi(t) =
∑
j∈Gn

an(i, j) [x j(t) − xi(t)] dt +
√

g(xi(t)) dwi(t)(2.41)

+

Mn∑
m=0

Kmem [yi,m(t) − xi(t)] dt,

dyi,m(t) = em [xi(t) − yi,m(t)] dt, 0 ≤ m ≤ Mn,(2.42)

where an(i, j) is defined in (2.2).

Truncated macroscopic variable. The analogue of (2.17) is the macroscopic variable

(2.43) θ̂Mn,n(t) =
1
|Gn|

∑
i∈Gn

xi(t) +
∑Mn

m=0 Kmyi,m(t)

1 +
∑Mn

m=0 Km
,

the analogue of (2.15) is the empirical measure

(2.44) EMn,n(t) =
1
|Gn|

∑
i∈Gn

δτi(xMn ,n(t),yMn ,n(t)),

and we write µMn,n(t) to denote the law of the truncated system at time t.
In order to understand the behaviour of the macroscopic variable θ̂Mn,n(t) defined in (2.43), we must

keep track of the variance of the average of the active components, and look for a time scale in which this
variance remains positive in the limit as n→ ∞. By (2.41) and (2.42), we find that θ̂M,n(t) evolves according
to the SDE

dθ̂Mn,n(t) =
1

|Gn| (1 +
∑Mn

m=0 Km)

∑
i∈Gn

√
g
(
xi(t)

)
dwi(t),(2.45)
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where the migration cancels out because of the averaging over the geographic space, and the exchange with
the seed-bank cancels out because of the averaging over the seed-bank. Thus, in particular,

(2.46)
(
θ̂Mn,n(t)

)
t≥0 is a bounded and continuous martingale

with increasing process

(2.47)
〈
θ̂Mn,n(t)

〉
t≥0

=

∫ t

0
ds

1

|Gn| (1 +
∑Mn

m=0 Km)

∑
i∈Gn

g
(
xi(s))

)
t≥0

.

Time scale. To identify the proper time scale, we speed up time. Using the scaling properties W(a2t) �
aW(t) and

√
a W(t) +

√
b W′(t) �

√
a + b W′′(t), and putting

(2.48) βn = κMn |Gn|, κMn =

1 +

Mn∑
m=0

Km


2

,

we see that (2.45) becomes

(2.49) dθ̂Mn,n(sβn) =

√
1
|Gn|

∑
i∈Gn

g
(
xi(sβn)

)
dwi(s).

Thus, important quantities for the evolution of (2.43) are the active macroscopic variable

(2.50) θ̂Mn,n
x (t) =

1
|Gn|

∑
i∈Gn

xi(t)

and the active empirical measure

(2.51) EMn,n
x (t) =

1
|Gn|

∑
i∈Gn

δτi(xMn ,n).

Recall (2.25)–(2.26). We might expect that again

(2.52) lim
n→∞
L

[(
θ̂Mn,n(sβn)

)
s≥0

]
= L [(Θ(s))s≥0]

and

(2.53) lim
n→∞

1
|Gn|

∑
i∈Gn

g
(
xi(sβn)

)
= (F g)

(
Θ(s)

)
.

Moreover, we might expect that again

(2.54) lim
n→∞
L

[(
µMn,n(sβn)

)
s≥0

]
= L[(νΘ(s))s≥0],

i.e., at time sβn the law of the finite system converges as n → ∞ to a random mixture of equilibria for the
infinite system, selected through the random variable Θ(s).

We will see in Sections 2.4–2.5 that the above heuristics is correct for ρ < ∞, and also for ρ = ∞ when
the growth of Mn is slow, but fails for ρ = ∞ when the growth of Mn is fast.

2.4 Model 2: ρ < ∞
Results. For ρ < ∞ the behaviour is qualitatively similar to what we saw in Model 1. Let µ(0) ∈ T erg.
For µ ∈ T erg, define

(2.55) θµ = Eµ

[
x0 +

∑
m∈N0

Km y0,m

1 + ρ

]
and, for θ ∈ [0, 1],

(2.56) T
erg
θ =

{
µ ∈ T erg : θµ = θ

}
.
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Theorem 2.10. [Finite-systems scheme: Model 2 with ρ < ∞] Suppose that Assumptions 1.1, 2.1 and 2.3
are in force. Suppose that µ(0) ∈ T erg

θ , and that µn(0) is given by (2.9). Put

(2.57) βn = κ|Gn|, κ = (1 + ρ)2.

Then, in the coexistence regime, for any Mn satisfying (2.39), the same formulas as in (2.21)–(2.24) and
(2.32)–(2.33) apply, with (0, 0)G and (1, 1)G replaced by (0, 0N0 )G and (1, 1N0 )G in (2.24).

Comments. Theorem 2.10 shows that for ρ < ∞ the behaviour is similar as in Theorem 2.6. The macro-
scopic time scale βn runs slower by a factor κ = (1 + ρ)2, with one factor 1 + ρ coming from the time that
is lost in the seed-bank and the other factor 1 + ρ coming from the fact that the seed-bank brings in no
volatility during the time that is lost (again see Section 4 for further details). The scaling of time by |Gn|

is again natural, because for ρ < ∞ the coexistence regime again corresponds to transient migration (recall
(1.41)), for which the mixing time of the migration is o(|Gn|) (recall Remarks 2.4–2.5). The slow-down
factor 1/κ in (2.28) is again the fraction of time the two lineages are jointly active.

Trapping time. Theorem 2.9 carries over verbatim.

2.5 Model 2: ρ = ∞

For ρ = ∞, the situation is much more delicate. It turns out that there are two regimes, which we define in
Section 2.5.1 and refer to as slow growing seed-bank and fast growing seed-bank. Here, slow and fast refer
to the time scale on which two active lineages in the dual coalesce, which depends on |Gn| and on γ, the
exponent of the tail of the wake-up time defined in (1.40). We identify the finite-systems scheme in these
regimes in Sections 2.5.2, respectively, 2.5.3, and find that they exhibit completely different behaviour. For
slow growing seed-bank there is a gradual approach towards complete clustering as for ρ < ∞, while
for fast growing seed-bank there is a bursty approach towards complete clustering, with random switches
between partially clustered states, driven by dormant lineages that gradually wake up on time scales that
exceed the time scale on which two active lineages in the dual coalesce.

For µ ∈ T erg,• (recall (1.24)), define

(2.58) θµ = lim
M→∞

Eµ

 x0 +
∑M

m=0 Km y0,m

1 +
∑M

m=0 Km

 .
and, for θ ∈ [0, 1],

(2.59) T
erg,•
θ =

{
µ ∈ T erg,• : θµ = θ

}
.

The limit in (2.58) exists because µ(0) is colour regular (recall (1.25)).

2.5.1 Two growth regimes

Recall (1.40)–(1.39). We introduce two time scales:

(2.60) β∗n = M β
n , β∗∗n =


|Gn|

1/(2γ−1), γ ∈ ( 1
2 , 1],

e|Gn |, γ = 1
2 ,

∞, γ ∈ (0, 1
2 ).

The interpretation of these time scales is as follows (recall (1.17)–(1.18)):

• β∗n is the time scale on which a single dormant lineage in the dual starting from the deepest seed-bank
(colour Mn) becomes active.

• β∗∗n is the time scale on which two active lineages in the dual coalesce (on the active layer Gn).

Note that β∗n only depends on the size of the seed-bank, while β∗∗n only depends on the size of the geographic
space and the exponent of the tail of the wake-up time.
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The two regimes of interest are

(2.61)
(I) β∗n � β∗∗n (‘slow growth’),

(II) β∗∗n � β∗n (‘fast growth’).

(For the critical value γ = 1
2 , the two regimes are actually log β∗n � log β∗∗n , respectively, log β∗∗n � log β∗n.

Note that for γ ∈ (0, 1
2 ) only regime (I) is possible.) In regime (I) the system behaves as if ρ < ∞ (see

Section 5). In regime (II) the system essentially behaves like a hybrid system in which the geographic
space is truncated but the seed-bank is not (see Section 6). In the crossover regime

(2.62) β∗n � β
∗∗
n ,

which we will not consider, the behaviour is more involved.
We will see that the two regimes exhibit different behaviour. In other words, the limits |Gn| → ∞ and

Mn → ∞ cannot be interchanged. Note that both in regime (I) and regime (II) the time scale κMn |Gn| falls
between the time scales β∗n and β∗∗n .

2.5.2 Slow growing seed-bank

Results. In regime (I) the behaviour is similar as for ρ < ∞ except for a change of time scale.

Theorem 2.11. [Finite-systems scheme: Model 2 with ρ = ∞ in regime (I)] Suppose that Assump-
tions 1.1, 1.3, 2.1 and 2.3 are in force. Suppose that µ(0) ∈ T erg,•

θ , and that µn(0) is given by (2.9). Put

(2.63) βn = κMn |Gn|.

Then, in the coexistence regime, the same formulas as in (2.21)–(2.24) and (2.32)–(2.33) apply.

Comments. Theorem 2.11 shows that for ρ = ∞ the macroscopic time scale βn needs to be speeded up
in order to see fluctuations of the macroscopic variable. The fraction of time that two lineages in the dual
are jointly active scales like 1/κMn . Hence the time scale must be multiplied by κMn , but otherwise the
behaviour in regime (I) is similar as for ρ < ∞. Note that κMn ∼ [A/(1 − α)]2M2(1−α)

n for α ∈ (−∞, 1) and
κMn ∼ [A log Mn]2 for α = 1 (recall (1.39)).

Trapping time. Theorem 2.9 again carries over verbatim.

2.5.3 Fast growing seed-bank

Results. In regime (II) the behaviour is different than in regime (I), both in terms of time scale and scaling
limit. In the following we analyse what happens on time scale β̄n in three different ranges:

(2.64)
(1) 1 � β̄n � β∗∗n ,
(2) β∗∗n � β̄n � β∗n,
(3) β̄n � β∗n.

In order to state our result, we need to fix a depth Ln until which the seed-bank is being monitored. The
proper choice turns out to be any Ln satisfying

(2.65) 1 � Ln � β̄
1/β
n ,

where β > 0 is the exponent in (1.39).
Recall from (1.5) that S = G × {A, (Dm)m∈N0 }. Abbreviate Sn = Gn × {A, (Dm)0≤m≤Mn } and SLn

n =

Gn×{A, (Dm)0≤m≤Ln }, 0 ≤ Ln ≤ Mn. Given a sequence of laws (µn)n∈N in P([0, 1]S) and a law µ ∈ P([0, 1]S),
we say that limLn

n→∞ µn = µ when

(2.66) lim
n→∞

sup
An⊂[0,1]S

Ln
n

measurable

∣∣∣∣∣∣
∫

An

f dµn −

∫
An

f dµ

∣∣∣∣∣∣ = 0 ∀ f ∈ Cb([0, 1]S;R),

which we refer to as weak convergence to depths (Ln)n∈N0 .
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Theorem 2.12. [Finite-systems scheme: Model 2 with ρ = ∞ in regime (II)] Suppose that Assump-
tions 1.1, 1.3, 2.1 and 2.3 are in force, and that ψn = o((β∗∗n )γ). Suppose that µ(0) ∈ T erg,•

θ , and that µn(0) is
given by (2.9). Then, in the coexistence regime, for the three ranges in (2.64):

(1) Equilibrium: (2.23) holds with βn replaced by β̄n and limn→∞ replaced by limLn
n→∞.

(2) Partial clustering:

(2.67)
limn→∞L

[(
θ̂Mn,n(β̄n), θ̂Mn,n

x (β̄n)
)]

= δθ ⊗ δῩ,

limLn
n→∞L

[(
EMn,n(β̄n)

]
= limLn

n→∞L
[(
µMn,n(β̄n)

]
= Ῡ δ(1,1N0 )G + [1 − Ῡ] δ(0,0N0 )G ,

where Ῡ ∈ {0, 1} is a random variable with law

(2.68) L[Ῡ] = θ δ1 + (1 − θ) δ0.

Moreover, for any two time scales β∗∗n � β̄n � β̃n � β∗n, Ῡ and Υ̃ are independent.

(3) Complete clustering: (2.24) holds with βn replaced by β̄n and limn→∞ replaced by limMn
n→∞.

Comments. The behaviour in regime (II) is strikingly different from that in regime (I).

(1) Before time scale β∗∗n local convergence to equilibrium occurs, as in the infinite system, up to seed-
bank depth Ln = o(β̄1/β

n ).

(1-2) On time scale β∗∗n , partial clustering sets in that is global in the geographic space but local in the
seed-bank up to depth Ln = o((β∗∗n )1/β), i.e., the active population and the seed-banks up to depth Ln

gradually move towards one of the clustered states in which they are either all 1 or all 0. (The latter
corresponds to the geographic space partitioning into two parts, where all the active individuals and
all the dormant individuals in the seed-banks up to depth Ln stem from a single ancestor.) There is
no movement yet towards the equilibria of the finite system, i.e., towards the completely clustered
states, because the deeper seed-banks have not yet made themselves felt.

(2) After time scale β∗∗n but before time scale β∗n, deeper seed-banks come into play, and partial clustering
occurs up to depth Ln = o((β̄n)1/β). Since the initial mean is θ, and the mean is preserved under the
evolution, the value that is taken in the partial clustering is the random variable Ῡ ∈ {0, 1} with mean
θ, i.e., Ῡ = 0 with probability θ and Ῡ = 1 with probability 1 − θ. The deeper seed-banks make
the active population and the seed-banks up to depth Ln undergo random switches between the two
partially clustered states: on a larger time scale β̃n the density is equal to a freshly sampled random
variable Υ̃ ∈ {0, 1} with mean θ, i.e., the deeper seed-banks overrule the shallower seed-banks.

(2-3) Only when time scale β∗n is reached do the deepest seed-banks come into play, partial clustering
occurs up to depth Ln = o((β∗n)1/β), with (β∗n)1/β = Mn, after which complete clustering sets in that is
global in the geographic space and in the seed-bank, i.e., the active population and all the seed-banks
gradually move towards one of the clustered states in which they are either all 1 or all 0, and complete
clustering occurs up to depth Ln = Mn. (The latter corresponds to the geographic space partitioning
into two parts in which all the individuals, both active and dormant, stem from a single ancestor.)

(3) After time scale β∗n complete fixation has been achieved.

Note that in regime (II) the time scale κMn |Gn| of regime (I) is no longer relevant. In fact, the role of βn is
taken over by β∗n, the time scale at which complete clustering sets in. The fact that the macroscopic variable
tends to 0 or 1 on time scale β∗n and not on time scale κMn |Gn| is due to the partial clustering, which makes
the right-hand side of (2.45) small.

It remains open to identify what exactly happens in the crossover regimes β̄n � β∗∗n and β̄n � β∗n.
We expect that on time scale β∗∗n the macroscopic variable associated with the active population and the
seed-banks up to depth Ln = o((β∗∗n )1/β) move towards partial fixation according to a jump process, i.e., it
follows a piecewise constant path that ends in 0 or 1. We expect that on time scale β∗n the macroscopic
variable associated with the full population, i.e., the active population and all the seed-banks up to depth
Mn, moves towards fixation according to a jump process in the same manner, modulo a constant multiple
of time. In both instances the behaviour is different from the diffusion in Fig. 5 with diffusion function
F g. Nonetheless, we expect that this diffusion still plays a role in the background. See Appendix D for
speculations.
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Explanation. In regime (II) we may pretend that the active and dormant time lapses of a lineage in the
dual behave in the same way as when Mn ≡ ∞. Indeed, if τn denotes the wake-up time of a lineage in the
dual for the finite system after it has become dormant, then (compare with (1.21))

(2.69) P(τn > t) =
1
χ

Mn∑
m=0

Kmem e−emt, t ≥ 0.

Inserting (1.39), approximating the sum by an integral and passing to the new variable x = emt, we find that

(2.70) P(τn > t) ∼
A
βχ

B1−γt−γ
∫ Bt

Bt/β∗n
dx xγ−1e−x, t → ∞.

Thus, we see that the asymptotics found for the infinite system in (1.40) prevails in regime (II) because
β̄n/β

∗
n ↓ 0 as n→ ∞.

On Gn, the mean total joint activity time up to time T for two lineages in the dual without coalescence,
starting anywhere in Gn and being both active, equals the hazard

(2.71) Hn(T ) �
∫ T

1
t−2(1−γ) |Gn|

−1 dt, T → ∞.

Indeed, by (2.70), the probability for each lineage to be active at time t falls off like t−(1−γ), while the
probability for the two lineages to be at the same site is |Gn|

−1, provided these lineages are well mixed on
Gn at times of order T . From (2.71) we see that

(2.72) Hn(T ) � |Gn|
−1 ×


T 2γ−1, γ ∈ ( 1

2 , 1],

log T, γ = 1
2 ,

C, γ ∈ (0, 1
2 ),

T → ∞,

and so Hn(T ) starts to diverge on time scale β∗∗n (recall (2.60)). Up to time T , each lineage takes � T γ

migration steps, and so we require that ψn = o((β∗∗n )γ) to get proper mixing on time scale β∗∗n , which explains
the assumption on ψn in Theorem 2.12. This assumption is met for all three examples in Remark 2.4 when
γ ∈ ( 1

2 , 1]. For the first example we have |Gn| = nd and ψn � n2, and so we require that 2 < dγ/(2γ − 1),
which is precisely the condition for coexistence in (1.43). For the second example we have |Gn| = n and
ψn � nδ, and so we require that δ < γ/(2γ − 1), which is precisely the condition for coexistence in (1.44).
For the third example we have |Gn| = Nn and ψn � (N/c)n−1, and so we require that N/c < NγN/(2γN−1),
which is precisely the condition for coexistence in (1.45). The assumption is trivially met for γ ∈ (0, 1

2 )
(recall (2.60)) and γ = 1

2 (recall Remark 2.5)(1)).

Remark 2.13. [Crossover for the hazard] The integral in (1.42) arises as the mean total joint activity time
on G

(2.73) Iâ,γ �

∫ ∞

1
t−2(1−γ) âtγ (0, 0) dt.

In the coexistence regime we have Iâ,γ < ∞, while Hn(T ) in (2.71) starts to diverges on scale T = β∗∗n .
The reason why this is possible is related to the observation made in Remark 2.5(2), namely, because
|Gn|

−1 � âψn (0, 0) and ψn = o(T γ), we have |Gn|
−1 � âT γ (0, 0). �

2.6 Open problems
We close by listing a few open problems.

(A) How can we refine Theorem 2.12? In particular, what happens at times of order β∗∗n and β∗n? On the
shorter time scale β∗∗n the system undergoes clustering in the geographic space but not in the seed-
bank, while on the longer time scale β∗n the system undergoes clustering in the seed-bank (and hence
complete clustering). In Section 6 we will argue that in regime (II), unlike in regime (I), clustering in
the geographic space is not diffusive, but rather proceeds in random bursts, i.e., on time scale β∗∗n the
active macroscopic variable follows a random jump process that lives on (0, 1) and ends at 0 or 1.
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(B) What is the analogue of Theorem 2.9 in regime (II)? We expect the trapping time to be of order β∗n,
but not to be controlled by a diffusion because of the random bursts.

(C) What happens in the crossover regime in (2.62)? We expect diffusive scaling of the macroscopic
variable, but driven by a diffusion function different from F g.

3 Preparation: Preservation and convergence
The strategy of the proof of the theorems stated in Section 2 is to make the following simple ideas rig-
orous, where for notational convenience we focus on Model 1. Let S = (S (t))t≥0 denote the semigroup
associated with the Markov process Z = (Z(t))t≥0 on G defined in (1.7), and let S n,Zn be their finite-system
counterparts on Gn. Suppose that we have identified the time scale βn on which the estimator process
θ̂n = (θ̂n(sβn))s>0 is tight in D((0,∞), [0, 1]). Then, by the Markov property of Zn, we can write

(3.1) L[Zn(sβn)] =

∫
[0,1]
P
(
θ̂n(sβn − Ln) ∈ dθ′

)
µn
θ′S

n(Ln), s > 0,

where Ln is chosen such that limn→∞ Ln = ∞ and limn→∞ Ln/βn = 0, and µn
θ′ = L[Zn(sβn − Ln) | θ̂n = θ′]

(regular version of the conditional probability). From the tightness assumption on θ̂n we know that the law
in (3.1) barely changes during the time interval [sβn − Ln, sβn]. Suppose that, along some subsequence, θ̂n

converges to some limit process Θ = (Θ(s))s>0 in D((0,∞), [0, 1]). Then we should have that

(3.2) µn
θ′S

n(Ln) ≈ µn,↑
θ′ (Ln) =⇒ νθ′ , n→ ∞,

where ↑ denotes the extension to a law on G instead of Gn. Combining (3.1)–(3.2), we get

(3.3) L[Zn(sβn)] =⇒

∫
[0,1]
P
(
Θ(s) ∈ dθ′

)
νθ′ , n→ ∞, s > 0.

At the same time, we should be able to identify Θ by taking the increasing process of θ̂n (recall (2.20)),

(3.4) 〈θ̂n(s)〉 =
1

1 + K

∫ s

0
du

1
|Gn|

∑
i∈Gn

g
(
xi(uβn)

)
, s > 0,

to conclude that, by the law of large numbers, the volatility function of Θ is given by

(3.5) θ 7→
1

1 + K
Eνθ [g(x0(·))].

The question is how to transform the heuristic argument in (3.1)–(3.5) into a rigorous argument (one
of the difficulties being that limits are being exchanged at several places). It was shown in [CG94b] that,
subject to a collection of assumptions listed as (A1)–(A10) in Appendix A, the above steps can indeed be
made rigorous. Our task will therefore be to verify these assumptions. In the present section we collect
some properties that are needed to complete this task. These properties concern approximations of the
infinite system by finite systems on time scales of order 1, ergodic theorems for the infinite system, and
regularity properties of the equilibria for the infinite system as a function of underlying paramaters. The
verification of the assumptions is carried out in Sections 4 and 5 for ρ < ∞ and ρ = ∞, respectively.

Before we proceed we need the following important observations concerning the set of initial laws. In
Section 3.1 we introduce a class of initial laws Rθ parametrised by the density θ ∈ [0, 1], for which the
system decorrelates in space over time intervals of length o(βn), where βn is the macroscopic time scale,
which must be properly chosen (see Appendix B, part III). In fact, the proper choices are:

(3.6) βn =


κ|Gn| Model 1 κ = (1 + K)2,
κ|Gn| Model 2 with ρ < ∞ κ = (1 + ρ)2,

κMn |Gn| Model 2 with ρ = ∞, regime (I) κMn = (1 +
∑Mn

m=0 Km)2,
β∗n Model 2 with ρ = ∞, regime (II).

The initial laws chosen for Model 1 and Model 2 all fall in Rθ. In Section 3.2 we show that the evolved
law of the system stays inside the class Rθ over time intervals of length o(βn). In Section 3.3 we show that
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the macroscopic variable converges to θ over time intervals of length o(βn). In Section 3.4 we use this fact
to show that on time scale βn the law of the system conditional on the macroscopic variable being θ′ falls
in the class Rθ′ . We will see in Sections 4–5 that the latter is the key to the proof that the finite system
locally converges to an equilibrium of the infinite system, parametrised by the instantaneous value of the
macroscopic variable.

In Sections 3.2–3.4 we exclude Model 2 with ρ = ∞ in regime (II). In Section 3.5 we show that the
results do carry over to this case as well, but only for time intervals of length o(β∗∗n ) rather than o(βn).

Throughout this section, b(1),n(·, ·) and b(2),n(·, ·) denote the Markov process transition kernels defined in
(A.1) and (A.4) in Appendix A, which describe the motion of the lineages of the individuals in the spatial
population with seed-bank. Depending on the model under consideration, we write

(3.7) Rθ =


R

(1)
θ , Model 1,

R
(2)
θ , Model 2 with ρ < ∞,

R
(2),•
θ , Model 2 with ρ = ∞.

3.1 Classes of initial laws
For each model a specific class of initial laws on G and their restrictions to Gn defined by (2.9) play an
important role. The following are adaptations of Definition 1.6, where we write Sn = Gn × {A,D} in Model
1 and Sn = Gn × {A, (Dm)0≤m≤Mn } in Model 2, and we recall the definition of zu in (1.53).

Definition 3.1. [Model 1: Class of initial laws] For θ ∈ [0, 1], let

(3.8) R
(1)
θ =

{
µ ∈ T erg : (∗)θ holds

}
,

with (∗)θ the requirement that, for every sequence of times (tn)n∈N satisfying limn→∞ tn = ∞ and limn→∞

tn/βn = 0,

(3.9) (∗)θ

(1) ∀ u1 ∈ Sn :
lim
n→∞

∑
u2∈Sn

b(1),n
tn (u1, u2)EΦnµ[zu2 ] = θ,

(2) ∀ u1, u2 ∈ Sn :
lim
n→∞

∑
u3,u4∈Sn

b(1),n
tn (u1, u3) b(1),n

tn (u2, u4)EΦnµ[zu3 zu4 ] = θ2,

where Φnµ is the restriction of µ defined in (2.9)–(2.10), b(1),n
tn (·, ·) is the time-tn transition kernel of the

Markov process b(1)(·, ·) in (A.1) restricted to Gn.

Definition 3.2. [Model 2: Class of initial laws] For θ ∈ [0, 1], let

(3.10)
ρ < ∞ : R

(2)
θ = {µ ∈ T erg : (∗)θ holds} ,

ρ = ∞ : R
(2),•
θ = {µ ∈ T erg : (∗)θ holds and µ is colour regular} ,

where in (∗)θ in (3.9) b(1),n
tn (·, ·) is replaced by b(2),n

tn (·, ·), the time-tn transition kernel of the Markov process
b(2)(·, ·) in (A.4) restricted to Sn.

The two properties in (∗)θ in (3.9), which we refer to as Liggett conditions (see [GHO22b, Remark 2.15]),
say that over time intervals of length o(βn) the following are true: (1) the average of the component seen at
time tn by the Markov process with transition kernel b(1),n(·, ·) and b(2),n(·, ·) converges to the initial density θ
defined in (2.55); (2) the covariance of the components seen at time tn by two independent Markov processes
with transition kernel b(1),n(·, ·) and b(2),n(·, ·) converges to zero. Consequently, the component seen by such
a Markov process converges to θ in L2.

The following lemma shows that all laws in R(1)
θ , R(2)

θ and R(2),•
θ are invariant and ergodic under transla-

tions, have density θ, and are colour regular (recall (2.30), (2.56) and (2.59)).

Lemma 3.3. [Ergodicity] (a) For every θ ∈ [0, 1], R(1)
θ ⊂ T

erg
θ .

(b) For every θ ∈ [0, 1], R(2)
θ ⊂ T

erg
θ , respectively, R(2),•

θ ⊂ T
erg,•
θ .
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Proof. The claim will be immediate from the proof of Lemma 3.4 below. For the finite-systems scheme,
we will work with T • = ∪θ∈[0,1]T

•
θ as the set of initial laws (recall (1.25)–(1.26)) and use that θ•µ =

limm→∞ Eµ[y0,m] = θ for µ ∈ T •θ . �

Note that (recall (1.24) and (1.26))

(3.11) T erg = ∪θ∈[0,1]T
erg
θ , T erg,• = ∪θ∈[0,1]T

erg,•
θ .

3.2 Preservation of the classes
The classes introduced in Definitions 3.1–3.2 are preserved over time intervals of length o(βn). In the
following lemmas Rθ stands for either R(1)

θ , R(2)
θ and R(2),•

θ . Recall the restriction operator Φn defined in
(2.10).

Lemma 3.4. [Preservation properties] For any θ ∈ [0, 1] and any sequence of times (tn)n∈N satisfying
limn→∞ tn = ∞ and limn→∞ tn/βn = 0, the following holds for, respectively, Model 1, Model 2 with ρ < ∞,
and Model 2 with ρ = ∞ in regime (I):

(a) If µ(0) = µ ∈ Rθ, then µ(tn) ∈ Rθ.

(b) If µ(0) = µ ∈ Rθ, then ν ∈ Rθ for any weak limit point ν of (Φnµ(tn))n∈N.

Proof. (a) The claim is obvious after we replace tn by 2tn in (∗)θ.

(b) The proof proceeds in 3 Steps, each based on a lemma. Before we start we note that the macroscopic
variable θ̂n in Model 1 (defined in (2.17)) satisfies

(3.12) EΦnµ(tn)[θ̂n] = EΦnµ[θ̂n] = θ,

because (θ̂n(t))t≥0 is a martingale under the law Φnµ (recall (2.46)). Therefore, also for any weak limit point
ν of (Φnµ(tn))n∈N,

(3.13) EΦnν(tn)[θ̂n] = EΦnν[θ̂
n] = θ.

The same observation applies to the macroscopic variable θ̂Mn,n in Model 2 (defined in (2.43)).

Step 1. The following lemma says that under the law Φnν all components have mean θ. Via (3.13) this
implies that property (∗)θ(1) holds and that ν is colour regular.

Lemma 3.5. [Constant means] Let µ(0) = µ ∈ Rθ. Let (tn)n∈N satisfy limn→∞ tn = ∞ and limn→∞ tn/βn = 0.
Let ν be any weak limit point of (Φnµ(tn))n∈N. Then EΦnν[z(i,Ri)] = θ for all n ∈ N, all i ∈ Gn, and all
Ri ∈ {A,D} or {A, (Dm)0≤m≤Mn }.

Proof. Since ν is a weak limit point of (Φnµ(tn))n∈N, there exists (tnk )k∈N satisfying limk→∞ tnk = ∞ and
limk→∞ tnk/βnk = 0 such that ν = limk→∞Φnkµ(tnk ). Hence, for Model 1, for all u1 ∈ Sn,

(3.14) Eν[zu1 ] = lim
k→∞
EΦnkµ(tnk )[zu1 ] = lim

k→∞

∑
u2∈Snk

b(1),n
tnk

(
u1, u2

)
EΦnkµ

[zu2 ] = θ,

where the last equality holds because µ ∈ R(1)
θ . The same holds for Model 2 with b(1),n

tnk
(·, ·) replaced by

b(2),n
tnk

(·, ·). Since Eν[zu1 ] = θ, it follows that EΦnν[zu1 ] = θ for all n ∈ N (use (2.9) and the fact that ν is
invariant under translations). �

Step 2. To settle property (∗)θ(2), we follow the covariance computations for the infinite system carried
out in [GHO22b, Sections 5–6]. Together with property (∗)θ(1), the following settles property (∗)θ(2).

Lemma 3.6. [Decaying correlations]
Let µ(0) = µ ∈ Rθ. Let (tn)n∈N satisfy limn→∞ tn = ∞ and limn→∞ tn/βn = 0. Let ν be any weak limit point of
(Φnµ(tn))n∈N. Then

(3.15) lim
|i− j|→∞

lim
n→∞

∣∣∣∣CovΦnν(z(i,Ri), z( j,R j))
∣∣∣∣ = 0 uniformly in Ri,R j.
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Proof. For Model 1, we use Itô’s formula for the first and second moment to write (see [GHO22b, Lemma
5.1])

(3.16)

CovΦnµ(tn)(zu1 , zu2 ) =

∫ tn

0
ds

∑
k∈Gn

b(1),n
tn−s

(
u1, (k, A)

)
b(1),n

tn−s
(
u2, (k, A)

)
EΦnµ[g(xk(s))]

+
∑

u3,u4∈Sn

b(1),n
tn (u1, u3) b(1),n

tn (u2, u4) CovΦnµ(zu3 , zu4 ).

The same expression holds for Model 2, with b(1),n replaced by b(2),n (see [GHO22b, Lemma 6.1]). In what
follows we focus on Model 2. Model 1 has no truncation of the seed-bank: Mn = 0 for all n ∈ N.

1. The second term in (3.16) tends to zero as n → ∞ by (3.9), because ν ∈ R(2)
θ by Lemma 3.4(b). To

estimate the first term, which we abbreviate by

(3.17) Itn (u1, u2) =

∫ tn

0
ds

∑
k∈Gn

b(2),n
tn−s (u1, (k, A)) b(2),n

tn−s (u2, (k, A))EΦnµ[g(xk(s))],

we proceed as follows (in which we no longer need that ν ∈ R(2)
θ ). Let τ↑ denote the first time the two

Markov processes are jointly active, which is a random variable whose law depends on u1, u2. Because the
building up of joint activity time can only start after time τ∗, we have

(3.18) Itn (u1, u2
)
≤ Itn

(
(I, A), (J, A)

)
where I, J ∈ Gn are the random locations of the two Markov processess at time τ↑. For s ≥ 0, let E(t) and
E′(t) be the events that the respective random walks are active at time t, and let

(3.19) T (t) =

∫ t

0
ds 1E(s), T ′(t) =

∫ t

0
ds 1E′(s),

be their total activity time up to time t. Write Pn to denote the law of (E(s),E′(s))s≥0 given that the two
random walks start in the active state. Note that this process is independent of the migration of the Markov
processes. Estimate (henceforth ‖g‖ denotes the supremum norm of g)

(3.20)

Itn
(
(i, A), ( j, A)

)
≤ ‖g‖

∫ tn

0
ds

∑
k∈Gn

b(2),n
tn−s

(
(i, A), (k, A)

)
b(2),n

tn−s
(
( j, A), (k, A)

)
= ‖g‖

∫ tn

0
ds

∑
k∈Gn

En

[
an

T (s)(i, k) 1E(s) an
T ′(s)( j, k) 1E′(s)

]
= ‖g‖

∫ tn

0
ds En

[
ân

T (s)+T ′(s)(i − j, 0) 1E(s) 1E′(s)

]
.

We rewrite and split the integral in the right-hand side into three parts:

(3.21)

J1
tn = |Gn|

−1
∫ tn

0
ds En

[
1{T (s)+T ′(s)>ψn} 1E(s) 1E′(s)

]
,

J2
tn (i, j) = |Gn|

−1
∫ tn

0
ds En

[(
|Gn| ân

T (s)+T ′(s)(i − j, 0) − 1
)

1{T (s)+T ′(s)>ψn} 1E(s) 1E′(s)

]
,

J3
tn (i, j) =

∫ tn

0
ds En

[
ân

T (s)+T ′(s)(i − j, 0) 1{T (s)+T ′(s)≤ψn} 1E(s) 1E′(s)

]
,

where ψn is the mixing time defined in (2.3).

2. First we look at J3
tn (i, j). Define the event

(3.22) An =
{
until time tn neither of the two Markov processes visits a seed-bank with colour m > Mn

}
.

Since Pn(An) = 1, we have

(3.23)
En

[
ân

T (s)+T ′(s)(i − j, 0) 1{T (s)+T ′(s)≤ψn} 1E(s) 1E′(s)

]
= En

[
ân

T (s)+T ′(s)(i − j, 0) 1E(s) 1{T (s)+T ′(s)≤ψn} 1E′(s) 1An

]
.
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On the event An, the law of {E(s),E′(u)}u∈[0,tn] is the same under Pn as under P, where the former refers to
the truncated system and the latter refers to the non-trunctated system. Hence

(3.24)
En

[
ân

T (s)+T ′(s)(i − j, 0) 1{T (s)+T ′(s)≤ψn} 1E(s) 1E′(s) 1An

]
= E

[
ân

T (s)+T ′(s)(i − j, 0) 1{T (s)+T ′(s)≤ψn} 1E(s) 1E′(s) 1An

]
.

On the event {T (s) + T ′(s) ≤ ψn}, we can estimate

(3.25)
E

[
ân

T (s)+T ′(s)(i − j, 0) 1{T (s)+T ′(s)≤ψn} 1E(s) 1E′(s) 1An

]
≤ C E

[
âT (s)+T ′(s)(i − j, 0) 1{T (s)+T ′(s)≤ψn} 1E(s) 1E′(s)

]
≤ C E

[
âT (s)+T ′(s)(0, 0) 1E(s) 1E′(s)

]
,

where the first inequality uses (2.7) and the second inequality uses that ât(k, 0) ≤ ât(0, 0) for all k ∈ G and
t ≥ 0. The right-hand side integrated over s ∈ [0,∞) is the mean total joint activity time for two Markov
processes on G both starting from (0, A), which is finite if and only if the system is in the coexistence regime
(see [GHO22b, Section 2.5]). Since lim|k|→∞ ât(k, 0) = 0 uniformly in t ≥ 0, it follows from the third line
of (3.21) via (3.23)–(3.25) and dominated convergence that

(3.26) lim
|i− j|→∞

J3
tn (i, j) = 0 uniformly in (tn)n∈N.

Hence, to show that J3
tn (I, J) gives a vanishing contribution to (3.18) as |i − j| → ∞, we must show that the

latter implies that |I − J| → ∞ with Pn-probability tending to 1 as n → ∞. But this again trivially follows
from the fact that lim|k|→∞ at(0, k) = 0 uniformly in t ≥ 0.

3. Next we look at J1
tn and J2

tn (i, j). Estimate, with the help of (2.3),

(3.27) ∀ i, j ∈ Gn : |J2
tn (i, j)| ≤ C′J1

tn , C′ = sup
n∈N

sup
t≥ψn

sup
k∈Gn

∣∣∣∣ |Gn| ân
t (0, k) − 1

∣∣∣∣ < ∞.
Further estimate

(3.28) J1
tn ≤ J̃tn = |Gn|

−1
∫ tn

0
dsPn(E(s))Pn(E′(s)).

We will show that

(3.29) lim
n→∞

J̃tn = 0.

Together with (3.26)–(3.28) this will imply (3.15).

4. For the proof of (3.29) we distinguish between Model 1 and 2.

Model 1. Since Pn = P and lims→∞ P(E(s)) = lims→∞ P(E′(s)) = (1 + K)−1, the integral in (3.28) scales
like tn/κ with κ = (1 + K)2. Since tn = o(βn) and βn = κ|Gn|, we get (3.29).

Model 2. For ρ < ∞, we have limn→∞ Pn = P, and lims→∞ P(E(s)) = lims→∞ P(E′(s)) = (1 + ρ)−1, and
so the argument for Model 1 carries over. For ρ = ∞, a bit more care is needed. In particular, we need
to distinguish between regimes (I) and (II), which have different macroscopic time scales: βn = κMn |Gn|,
respectively, βn = β∗n.

As shown in Appendix C,

(3.30) Pn(E(s))Pn(E′(s)) �
{

1/κs1/β , 0 ≤ s ≤ β∗n,
1/κMn , β∗n < s ≤ tn.

where we recall from (2.60) that β∗n = M β
n and from (2.48) κM = (1 +

∑M
m=0 Km)2. Indeed, heuristically,

at time s = Mβ the active component has communicated with the first M dormant components, and so
joint activity occurs with probability 1/κM = 1/κs1/β . This holds all the way up to s = β∗n, after which the
active component has communicated with all Mn dormant components, and so joint activity occurs with
probability 1/κMn . Now, inserting (3.30) into the right-hand side of (3.28), we get

(3.31) J̃tn � J̃1
tn + J̃2

tn
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with

(3.32) J̃1
tn = |Gn|

−1
∫ β∗n

0
ds (1/κs1/β ), J̃2

tn = |Gn|
−1

∫ tn

β∗n

ds (1/κMn ).

I Regime (I). Since βn = κMn |Gn|, we have J̃2
tn ≤ tn/βn = o(1) because tn = o(βn), and so we need only

worry about J̃1
tn . Recall from (1.39) that γ =

α+β−1
β

with α ≤ 1 < α + β. Note that α = 1 implies γ = 1.

• For γ ∈ ( 1
2 , 1] and α ∈ (−∞, 1), we have J̃1

tn � |Gn|
−1(β∗n)2γ−1 = (β∗n/β

∗∗
n )2γ−1, where we use that

κM � M2(1−α) as M → ∞, γ =
α+β−1
β

, and β∗∗n = |Gn|
1/(2γ−1). Since β∗n = o(β∗∗n ), we get J̃1

tn = o(1).

• For γ = α = 1, we have J̃1
tn � |Gn|

−1(β∗n/ log β∗n) = (β∗n/βn)(κMn/ log β∗n) � β∗n/βn, where we use that
κM � log M as M → ∞ and β∗n = M β

n . Since β∗n = o(βn), we again get J̃1
tn = o(1).

• For γ = 1
2 and α ∈ (−∞, 1), we have J̃1

tn � |Gn|
−1 log β∗n. Since log β∗n = o(log β∗∗n ) = o(|Gn|), we again

get J̃1
tn = o(1).

• For γ ∈ (0, 1
2 ), we use that limn→∞ Pn = P and P(E(s)) � u−(1−γ), u → ∞, as shown in [GHO22b,

Section 6.2]. Hence, by monotone convergence, J̃tn � C′′|Gn|
−1 = o(1) with C′′ =

∫ ∞
0 ds u−2(1−γ) <

∞.

I Regime (II). This regime is excluded because it exhibits different behaviour. See Section 3.5. �

Step 3. In [GHO22b, Lemma 6.10] we showed for Model 2 with ρ = ∞ that for the system on G in
equilibrium the deep seed-banks are deterministic, i.e.,

(3.33) lim
m→∞

Varνθ (y0,m) = 0.

The following lemma says that the same holds for the scaling limit of the system on Gn.

Lemma 3.7. [Deterministic deep seed-banks: Model 2, ρ = ∞] Let µ(0) = µ ∈ Rθ. Let (tn)n∈N satisfy
limn→∞ tn = ∞ and limn→∞ tn/βn = 0. Let ν be any weak limit point of (Φnµ(tn))n∈N. Then

(3.34) lim
m→∞

lim sup
n→∞

VarΦnν(y0,m) = 0.

Proof. (The proof does in fact not use that µ ∈ Rθ.) Write (see [GHO22b, Lemma 6.1])

(3.35)

VarΦnµ(tn)(y0,m) = EΦnµ

[(
y0,m(tn) − EΦnµ[y0,m(tn)]

)2
]

=

∫ tn

0
ds

∑
k∈Gn

b(2),n
tn−s

(
(0,Rm), (k, A)

)
b(2),n

tn−s
(
(0,Rm), (k, A)

)
EΦnµ[g(xk(u))]

≤ ‖g‖
∫ tn

0
ds

∑
k∈Gn

b(2),n
tn−s

(
(0,Rm), (k, A)

)
b(2),n

tn−s
(
(0,Rm), (k, A)

)
,

where the estimate is uniform in µ. The sum under the integral is the probability that two Markov processes,
both starting from (0,Rm) and moving according to b(2),n(·, ·), at time tn − s are at the same site and both
active. Define

(3.36) τ =
{
t ≥ 0: RW(t) = RW ′(t) = (i, A) for some i ∈ Gn

}
,

i.e., the first time when the two Markov processes are jointly active at the same site. Write P(2),n
(0,Dm),(0,Dm) to

denote the joint law of the two Markov processes. Then

(3.37)

∫ tn

0
ds

∑
k∈Gn

b(2),n
tn−s

(
(0,Rm), (k, A)

)
b(2),n

tn−s
(
(0,Rm), (k, A)

)
=

∫ tn

0
ds E(2),n

(0,Dm),(0,Dm)

∑
k∈Gn

1{RW(s)=RW′(s)=k} 1E(s) 1E′(s)


= E(2),n

(0,Dm),(0,Dm)

1{τ≤tn}

∫ tn−τ

0
ds E(2),n

(0,A),(0,A)

∑
k∈Gn

1{RW(s)=RW′(s)=k} 1E(s) 1E′(s)




≤ P(2),n
(0,Dm),(0,Dm) (τ ≤ tn)

∫ tn

0
ds En

[
ân

T (s)+T ′(s)(0, 0) 1E(s) 1E′(s)

]
,
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where for the second equality we use the strong Markov property at time τ, together with the fact that on
the event {τ > tn} the product of the indicators equals 0 for all u ∈ [0, tn], and for the inequality we recall
(3.20). By (3.21), we have

(3.38)
∫ tn

0
ds En

[
ân

T (s)+T ′(s)(0, 0) 1E(s) 1E′(s)

]
= J1

tn + J2
tn (0, 0) + J3

tn (0, 0),

By (3.27)–(3.29), the first two terms tends to zero as n→ ∞. By (3.23)–(3.25),

(3.39) J3
tn (0, 0) ≤ C

∫ tn

0
ds E

[
âT (s)+T ′(s)(0, 0) 1E(s) 1E′(s)

]
,

which is finite in the coexistence regime, uniformly in (tn)n∈N. Furthermore, recall (3.22) to estimate

(3.40) P(2),n
(0,Dm),(0,Dm) (τ ≤ tn) = P(2),n

(0,Dm),(0,Dm) (τ ≤ tn,An) = P(2)
(0,Dm),(0,Dm) (τ ≤ tn,An) ≤ P(2)

(0,Dm),(0,Dm) (τ < ∞) .

Hence, to get the claim in (3.34) it suffices to show that

(3.41) lim
m→∞
P(2)

(0,Dm),(0,Dm) (τ < ∞) = 0.

But this was done in [GHO22b, Section 6.3, Step 3], the idea being that two Markov processes starting from
deep seed-banks are far apart when they are jointly awake for the first time. �

Steps 1–3 complete the proof of Lemma 3.4. �

3.3 Law of large numbers for the macroscopic variable
The following lemma will play a crucial role in Sections 4–6.

Lemma 3.8. [L2-convergence of the macroscopic variable] For any θ ∈ [0, 1], any µ(0) = µ ∈ Rθ and
any sequence of times (tn)n∈N satisfying limn→∞ tn = ∞ and limn→∞ tn/βn = 0,

(3.42) lim
n→∞
EΦnµ

[
(θ̂n(tn) − θ)2

]
= 0

in Model 1, and similarly for θ̂Mn,n in Model 2.

Proof. Recall (3.12). We again distinguish between Model 1 and 2.

Model 1. Use (2.17) to write

(3.43) EΦnµ(tn)

[
(θ̂n − θ)2

]
=

1
(1 + K)2|Gn|

2

∑
u1,u2∈Sn

K(u1) K(u2) CovΦnµ(tn)(zu1 , zu2 )

with K(u) = 1 for u = (i, A) and K(u) = K for u = (i,D). Via (3.9) and (3.18) (with ν replaced by µ) it
follows that

(3.44)

lim sup
n→∞

EΦnµ(tn)

[
(θ̂n − θ)2

]
= lim sup

n→∞

1
(1 + K)2|Gn|

2

∑
u1,u2∈Sn

K(u1) K(u2) Itn (u1, u2)

≤ lim sup
n→∞

1
|Gn|

2

∑
i, j∈Gn

Itn
(
(i, A), ( j, A)

)
.

We have

(3.45)

1
|Gn|

2

∑
i, j∈Gn

Itn
(
(i, A), ( j, A)

)
≤ ‖g‖

1
|Gn|

2

∑
i, j∈Gn

∫ tn

0
ds E

[
ân

T (s)+T ′(s)(i − j, 0) 1E(s) 1E′(s)

]
= ‖g‖

1
|Gn|

∫ tn

0
ds E

[
1E(s) 1E′(s)

]
= ‖g‖ J̃tn ,

where the inequality uses (3.20), the first equality uses that
∑

k∈Gn
ân

t (k, 0) = 1 for all t ≥ 0 and all n ∈ N,
and the second equality is (3.28). We already showed that J̃tn = o(1), and so this settles (3.42).
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Model 2. Use (2.43) to write, similarly as in (3.43),

(3.46)

EΦnµ(tn)

[
(θ̂Mn,n − θ)2

]
=

1

(1 +
∑Mn

m=0 Km)2|Gn|
2

∑
u1,u2∈Sn

K(u1) K(u2) CovΦnµ(tn)(zu1 , zu2 )

with K(s) = 1 for s = (i, A) and K(s) = Km for s = (i,Dm) (recall (2.48)). Via (3.9) and (3.16)–(3.18) (with
ν replaced by µ) it follows that, similarly as in (3.44),

(3.47)

lim sup
n→∞

EΦnµ(tn)

[
(θ̂Mn,n − θ)2

]
= lim sup

n→∞

1

(1 +
∑Mn

m=0 Km)2|Gn|
2

∑
u1,u2∈Sn

K(u1) K(u2) Itn (u1, u2)

≤ lim sup
n→∞

1
|Gn|

2

∑
i, j∈Gn

Itn
(
(i, A), ( j, A)

)
.

The rest of the argument is the same. �

3.4 Convergence at macroscopic times conditional on the macroscopic variable
Recall (1.24), (1.26), (2.9), (2.12) and (2.30), (2.56) and (2.59). We begin with the observation that, for all
θ ∈ [0, 1],

(3.48)

T
erg
θ = R

(1)
θ (Model 1),

T
erg
θ = R

(2)
θ (Model 2 with ρ < ∞),

T
erg,•
θ = R

(2),•
θ (Model 2 with ρ = ∞).

Indeed the inclusion ⊂ was shown in [GHO22b, Lemma 5.7] and [GHO22b, Lemmas 6.6. and 6.9], while
the inclusion ⊃ was shown in Lemma 3.3.

For Model 2 with ρ = ∞ we need the topology of uniform weak convergence on the set T •,∗ defined in
(1.28) (recall also Remark 1.2). We additionally define

(3.49) T
erg,�
θ =

{
µ ∈ T

erg,•
θ : lim

m→∞
Varµ(y0,m) = 0

}
,

which is a subset of T erg,•,∗.

Lemma 3.9. [Conditional convergence at macroscopic time] Fix µ(0) = µ ∈ T (Model 1, Model 2 with
ρ < ∞) and µ ∈ T • (Model 2 with ρ = ∞). Fix s > 0, and let

(3.50) µn = (Φnµ)(sβn).

Then every weak limit point ν̄ of (µn)n∈N has the representation

(3.51) ν̄ =

∫
[0,1]

Q(dθ) ν̄θ,

where

(3.52) Q =


lim
n→∞
Lµn [θ̂n] (Model 1),

lim
n→∞
Lµn [θ̂Mn,n] (Model 2),

is the associated limit law of the macroscopic variable, and

(3.53) ν̄θ =


∫
T

erg
θ

Qθ(dµ) µ (Model 1),∫
T

erg
θ

Qθ(dµ) µ (Model 2 with ρ < ∞),∫
T

erg,�
θ

Qθ(dµ) µ (Model 2 with ρ = ∞),

for some Choquet measure Qθ. Moreover, θ 7→ ν̄θ is continuous on T in the weak topology, respectively, on
T • in the uniform weak topology.
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Proof. Fix s > 0, pick any (tn)n∈N with limn→∞ tn = ∞ and limn→∞ tn/βn = 0, and put

(3.54) µ−n = (Φnµ)(sβn − tn).

Let ν̄− be any weak limit point of (µ−n )n∈N. Let Q− = limn→∞Lµ−n [θ̂n] (Model 1), respectively, Q− =

limn→∞Lµ−n [θ̂Mn,n] (Model 2) be the associated limit law of the macroscopic variable. Then

(3.55) ν̄− =

∫
[0,1]

Q−(dθ) ν̄−θ ,

where, by Choquet’s theorem,

(3.56) ν̄−θ =


∫
T

erg
θ

Q−θ (dµ) µ, (Model 1, Model 2 with ρ < ∞),∫
T

erg,•
θ

Q−θ (dµ) µ, (Model 2 with ρ = ∞),

for some Choquet measure Q−θ .
Next we evolve the dynamics over time tn to see what happens at time sβn. To that end we con-

sider the limit points ν̄θ of ((Φnν̄
−
θ )S n(tn))n∈N, where (S n(s))s≥0 is the semigroup of the dynamics on Gn ×

{A, (Dm)0≤m≤Mn }. By (3.48) and Lemmas 3.5–3.7, these limit points are in T erg
θ , respectively, T erg,�

θ . More-
over, by Lemma 3.8, θ̂n and θ̂Mn,n have the same limit points under µ−n and µn. Hence (3.55) and (3.56)
imply (3.51) and (3.53).

The continuity of θ 7→ ν̄θ uses the same coupling argument that was used in [GHO22b] for the infinite
system, and that was modified in Sections 3.1–3.2 to deal with the finite system. �

The observation made in the proof of Lemma 3.3 guarantees that

(3.57) T
erg,�
θ =

{
µ ∈ T

erg,∗
θ : lim

m→∞
y0,m = θ µ-a.s.

}
,

i.e., in Model 2 with ρ = ∞ the deep seed-banks are deterministic in equilibrium.
In Sections 4–6 we will see that Lemma 3.9 is the key to showing that, for any θ ∈ [0, 1], µ(0) = µ ∈ T

and s > 0,

(3.58) lim
n→∞
L[(Φnµ)(sβn)(· | θ̂n = θ)] = νθ(·),

i.e., ν̄θ = νθ. The proof requires the use of an abstract scheme, which is outlined in Appendix B. The latter
will allow us to identify the limit law of the macroscopic variable on time scale βn. A similar statement
holds for Model 2 conditional on θ̂Mn,n = θ, for µ(0) = µ ∈ T , respectively, µ(0) = µ ∈ T •.

3.5 Extension to fast growing seed-banks
For Model 2 with ρ = ∞ in regime (II), Lemmas 3.3–3.7 carry over provided we restrict to time intervals
of length o(β∗∗n ) rather than o(β∗n) (recall that β∗n is the macroscopic time scale for Model 2 with ρ = ∞ in
regime (II)). Indeed, recall from (3.29) that

(3.59) J̃tn = |Gn|
−1

∫ tn

0
ds (1/κs1/β ).

It suffices to check that limn→∞ J̃tn = 0 when tn = o(β∗∗n ), because this allows us to carry through the
estimates given in Part 4 of Step 2 in the proof of Lemma 3.4. For this we refer to the four bullets below
(3.32).

The reason for the restriction is that ergodicity breaks down on time scale β∗∗n . In Section 6 we will
analyse Model 2 with ρ = ∞ in regime (II). Lemmas 3.8–3.9 will not be needed there (even though they are
trivially true on times scales o(β∗∗n )).

4 Proofs: ρ < ∞
In this section we prove Theorems 2.6, 2.9 and 2.10. Section 4.1 focusses on Model 1, Section 4.2 on Model
2 with ρ < ∞.
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4.1 Model 1
The proof of Theorem 2.6 will follow from the same argument as given below for Model 2 when ρ < ∞.

To prove Theorem 2.9 note that, by using the same Brownian motions for every n ∈ N, we can realise
weak convergence of the path in (2.14) as a.s. uniform convergence on a compact space via the Skorohod
representation. Moreover, the increasing process of the macroscopic variable θ̂n in (2.43) is the increasing
process of the active macroscopic variable θ̂n

x in (2.50) divided by 1 + K, and both hit the traps 0 or 1 if
and only if their increasing process hits 0 and remains 0. Since (θ̂n(t))t≥0 is a continuous martingale, it is
a time-transformed Brownian motion, with the time transformation given by its increasing process. We
conclude from the path convergence that the increasing processes converge to the increasing process of the
F g-diffusion. The latter has a derivative that converges to zero as the macroscopic tome s tends to infinity,
and so the limit path becomes constant. For that reason we can conclude that on time scale βn the hitting
time of the traps by the path in (2.14) converges to the hitting time of the traps for the limit process, which
is the F g-diffusion.

4.2 Model 2: ρ < ∞
In this section we prove Theorem 2.10. The proof is built on an abstract scheme for deriving the finite-
systems scheme, developed in [CG94b, Section 1] and [DGV95, Section 4] for general spatial systems and
summarised in Appendix B. This abstract scheme has been applied to several classes of systems, but not
yet to systems with seed-banks.

We will see that we can use this abstract scheme by incorporating the seed-bank into the single-
component state space, namely, by considering the state space IG with I = [0, 1]× [0, 1]N0 , respectively, IGn

with I = [0, 1] × [0, 1]Mn+1 (see Remark B.1). Along the way, various ingredients need to be specified, for
which we use the lemmas derived in Section 3. In particular, we need to show that the macroscopic time
scale chosen in (2.57), namely, βMn,n = κ|Gn| with κ = (1 + ρ)2, emerges as the correct scaling time (which
is related to the verification of Assumption (A10) in Corollary B.3 in Appendix B).

We will see that the abstract scheme allows for a bootstrappig argument. Namely, we first use tightness
of the macroscopic variable process to establish that the finite system locally converges to the equilibrium of
the infinite system with a density that is given by the limiting value of the macroscopic variable. Afterwards,
we use this equilibrium to identify how to macroscopic variable process evolves on the macroscopic time
scale.

The proof is organised into 5 Steps. In Steps 1–3 we first carry out the proof for Mn ≡ M and g = dgFW,
d ∈ (0,∞). In Steps 4–5 we let Mn → ∞ and consider general g ∈ G.

Step 1: Checking the assumptions. We must check Assumptions (A1)–(A9) in Theorem B.2 and as-
sumption (A10) in Corollary B.3. We proceed item per item, after first checking that our set-up fits into the
abstract scheme.

• Set-up. Our geographic space is a countable Abelian group G endowed with the discrete topology, while
our single-component state space I = [0, 1]× [0, 1]M+1 is a Polish space equipped with the product topology
of [0, 1]. Our assumption that G is profinite yields a projective system (Gn)n∈N of finite groups endowed
with the discrete topology. Our full state spaces E, EM,n are IG, IGn

M . We can apply Theorem B.2, provided
we choose the initial law appropriately, namely, from the class R(2)

θ introduced in Section 3.1, which is the
domain of attraction of the equilibrium νθ and which, by Lemma 3.4, is preserved on time scale o(βM,n).

(A1). If g(x) = dgFW, d ∈ (0,∞), then the dual on Gn is the spatial coalescent with truncated transition
kernel an(·, ·) for the random walk on Gn. For this process it is straightforward to see that, as n → ∞,
the random walk on Gn converges to the random walk on G because an(·, ·) converges pointwise to a(·, ·).
Therefore bn(·, ·) converges to b(·, ·), and also the dual lineages converge. The seed-bank leads to different
waiting times until the next jump occurs in the dual. Therefore, as n → ∞, the spatial coalescent on Gn

converges in law to the spatial coalescent on G. Hence, by the duality relation and the fact that the moments
are convergence determining, as n → ∞ the forward process on Gn converges to the forward process on G
in the sense of marginal distributions.
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(A2). Let

(4.1)
T = set of translation invariant probability measures on IG under the group action on G,

Tn = set of translation invariant probability measures on IGn under the group action on Gn.

In our context, T is defined in (1.24), while Tn is the image of T under the projection given by (2.9).
Since the evolution mechanism is translation invariant, Tn and T are preserved under the semigroup of the
evolution, and so (A2) holds.

(A3). The Polish space J is the set [0, 1] labelling the density, and T erg
θ is the set of translation invariant

probability measures that are ergodic under translation with density θ given in (2.56). Thus, (A3) is a
consequence of [GHO22b, Theorem 3.2].

(A4). Define the statistics

(4.2) θ̂M,n =
1
|Gn|

∑
i∈Gn

xi +
∑M

m=0 Kmyi,m

1 +
∑M

m=0 Km
,

and recall the empirical measure EM,n defined in (2.16). Recall that θ̂M,n is the average w.r.t. EM,n of

(4.3)
x0 +

∑M
m=0 Kmy0,m

1 +
∑M

m=0 Km
.

We get the definition of J in (A3) from the general ergodic theorem in [Kre85, Section 6.4].

(A5). The continuity property of the statistic θ̂M,n and the ergodic behaviour of the infinite system can be
deduced with the help of L2-theory and moment calculations, given by Lemma 3.6.

(A6). For the time scale choose

(4.4) βM,n = κM |Gn|, κM =

1 +

M∑
m=0

Km

2

.

We have to show that, with zM,n = (zi,m)i∈Gn,0≤m∈M ,

(4.5) L
[(
θ̂M,n(zM,n(tβM,n)

))
t≥0

]
, n ∈ N,

is tight in the space of paths C([0,∞), [0, 1]). For that purpose we consider the increasing process on time
scale βM,n, and compute (recall (2.49))

(4.6) 〈θ̂M,n〉 =
〈
θ̂
(
zM,n(tβM,n)

)〉
t≥0

=

∫ t

0
ds

1
|Gn|

∑
i∈Gn

g
(
xi(sβM,n)

)
t≥0

.

Our task is to show that as n→ ∞ the right-hand side converges to

(4.7)
(∫ t

0
ds (F g)

(
Θ(s)

))
t≥0
,

with (Θ(u))s≥0 a non-trivial limit process that starts at θ and as u → ∞ tends to 0 or 1, in other words, the
choice of time scale βM,n in (4.4) is proper. The associated processes for finite n are continuous martingales,
namely, time-changed Brownian motions, and the increasing processes are bounded and continuous with a
bounded derivative on finite time intervals (uniformly in n). Hence the time-changed Brownian motions are
tight in C([0,∞),R), and so are the martingales. Since s 7→ Θ(s) is continuous, it follows that

(4.8) s 7→ E
[
f (Θ(s))

]
is continuous for f ∈ C([0, 1],R),

for every weak limit point arising from (4.5), where E is with respect to the law of Θ(s).
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(A7). Translation invariance of laws is preserved under weak convergence. Tightness follows from com-
pactness of the state space.

(A8). We choose to work with coupling rather than with duality, because this will be convenient and
instructive later, when we include general g. In [CGS95], assumptions (A8) and (A9) are verified for the
model without seed-bank when Tn,T are translation invariant laws, based on the construction of a coupling
of the two finite or the two infinite processes, starting from different initial points, and a coupling of the finite
and the infinite system, with the finite system starting in the translation invariant version of the restriction of
the infinite system. The coupling is done by constructing the two processes as strong solutions of an SSDE
with the same Brownian motions.

In order to prove (A8), it suffices to have a coupling and a Lyapunov function such that the distance
between the two coupled processes can be controlled by a Lyapunov function with non-increasing expec-
tation. For the model with seed-bank this coupling was constructed in [GHO22b, Section 5.3]. Hence, we
indeed have (A8).

(A9). In order to prove (A9) (i.e., to establish ergodicity), we proceed as was done for systems without
seed-bank in [CGS95, Proposition 2.4]. In particular, we define the bivariate process

(4.9) (zM,n, z)

as the strong solutions to the corresponding SSDEs in (2.41)–(2.42), respectively, (1.15)–(1.16) with the
same collection (wi(t))t≥0, i ∈ G, of standard Brownian motions, starting from initial laws in Tn,T that are
linked as in (2.9). As Lyapunov function we use the same quantity as in [GHO22b, Lemma 5.8]. Because
of (A8), it suffices to prove Lemma 4.1 below.

(A10). This assumption will be verified in Step 3.

Step 2: Coupling the finite system and the infinite system. To compare the finite and the infinite system,
we apply the coupling techniques that were developed in [GHO22b] to deal with different initial laws and
in [GHO22a] to deal with different dynamics. Abbreviate S = G× {A, (Dm)m∈N0 }, SM = G× {A, (Dm)0≤m≤M}

and SM,n = Gn × {A, (Dm)0≤m≤M}.

Lemma 4.1. [Comparison finite-infinite] Let (zM,n, z) be the bivariate process on EM,n×E defined in (4.9),
with initial laws in Tn,T linked as in (2.9). Write z = (zu)u∈S and zM,n = (zu)u∈SM,n , and denote by ΛM,n the
diagonal of SM,n × SM,n. LetVM,n be the collection of all probability measures µ̄ on EM,n × E such that

(4.10) µ̄
(
zM,n

u = zu ∀ u ∈ ΛM,n

)
= 1.

Then

(4.11) lim
n→∞

sup
µ̄∈VM,n

Eµ̄|zM,n
u (t) − zu(t)| = 0 ∀ u ∈ SM × SM , t > 0.

In particular, there exists a sequence of times (`n)n∈N, satisfying limn→∞ `n = ∞, such that

(4.12) lim
n→∞

sup
µ̄∈VM,n

Eµ̄|zM,n
u (`n) − zu(`n)| = 0 ∀ u ∈ SM × SM .

Proof. We have to estimate the Lyapunov function

(4.13) t 7→ E

|xM,n
i (t) − xi(t)| +

M∑
m=0

Km |y
M,n
i,m (t) − yi,m(t)|

 , i ∈ G,

and show that the right-hand side tends to zero as t → ∞. Using the computations on the coupling in
[GHO22b, Section 5.3], carried out for the infinite system starting from different initial configurations, we
can proceed exactly as in the proof of [CGS95, Proposition 2.4(a)], replacing the Green function Ĝ(0, 0) of
â(·, ·) appearing there by the hazard integral B̂(0, 0) defined in (A.2). The fact that the coupling is successful
follows from Lemmas 3.3–3.4. �
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Step 3: Completion of the proof for M < ∞. We verify Assumption (A10) in Corollary B.3 in Ap-
pendix B, which will complete the proof of Theorem 2.10 for the case where M < ∞. A key observation
made in [GHO22b, Section 5.1] is the fact that

(4.14) MM,n(t) = lim
n→∞

1
|Gn|

∑
i∈Gn

 xM,n
i (t) +

∑M
m=0 KmyM,n

i,m (t)

1 +
∑M

m=0 Km

 , t ≥ 0,

is a martingale that has (4.6) as increasing process. From this we want to conclude that: (i) the time-
transformed processes converge in law and hence so do the martingales themselves; (ii) the limit is the
diffusion with the claimed diffusion function.

No new ideas are needed. Lemmas 4.2–4.4 below are versions of [DGV95, Lemmas 4.8-4.10] reformu-
lated for our purposes (see also Appendix B). Their proof is a straightforward adaption of the proofs given
in [DGV95, Section 4(b)]. Both (i) and (ii) can be treated exactly as in the proofs of [DGV95, Lemmas
4.8–4.10], after we replace the martingale (Θ(s))s≥0 used there by the martingale in (4.14) adapted to the
seed-bank, and use the facts derived in [GHO22b, Section 5.3]. Recall the definition of T = T ([0, 1]G×N0 )
in (1.24) and EM,n in (2.44).

Lemma 4.2. [Tightness of the macroscopic variable] (a) The sequence

(4.15) L




∫ t

0
ds

1
|Gn|

∑
i∈Gn

g
(
xM,n

i (s βM,n)
) , θ̂n(t βM,n)


t≥0

 , n ∈ N,

is tight in C([0,∞), [0,∞) × [0, 1]).
(b) The sequence L[(θ̂M,n(t βM,n))t∈≥0], n ∈ N, is tight in C([0,∞), [0, 1]).
(c) The sequence L[(

∫ t
0 dsEM,n(sβM,n))t≥0], n ∈ N, is tight in C([0,∞),T ([0, 1]G×{0,...,M})).

Lemma 4.3. [Convergence of the macroscopic variable] Suppose that (nk)k∈N is such that

(4.16) lim
k→∞
L

[(
θ̂M,nk (t βM,nk )

)
t≥0

]
= L [(Θ(t))t≥0] .

Then

(Θ(t))t≥0 is a continuous martingale,(4.17) (
Θ(t)2 −

∫ t

0
ds (F g)(Θ(s))

)
t≥0

is a martingale.(4.18)

Lemma 4.4. [Identification of the scaling limit] The martingale problem in (4.17)–(4.18) has a unique
solution, namely, the diffusion with diffusion function F g.

Lemma 4.3 guarantees that the time scale βM,n is proper, i.e., (Θ(t))t≥0 is a non-trivial random process
that starts at θ and eventually converges to either 0 or 1.

Lemmas 4.3–4.4 imply the assumption in Corollary B.3, as proved in [DGV95, Section 4(d)] with the
help of stochastic analysis of semi-martingales. To prove (4.5), we can follow the strategy in [DGV95,
Section 4(d)] with only minor changes. To identify the time scale βM,n and verify (4.18), we start with the
following observation about the dual process. The fraction of time the two random walks are jointly active
equals κ = 1/(1 + ρ)2. Therefore the mixing property in (2.3) tells us that κ|Gn| is the average time it takes
the two random walks to meet on Gn and be jointly active. When they do, they coalesce a rate d, and so
coalescence eventually occurs on time scale βM,n = κ|Gn|.

The proof of Lemmas 4.2–4.4 follows the line of argument in [DGV95, Section 4(d)], and rests on
Lemmas 3.3–3.4 and 3.8–3.9.

Step 4: Extension to M = ∞. We show how to drop the assumption M < ∞. Since ρ < ∞, θ̂n can
be approximated uniformly by θ̂M,n as M → ∞ uniformly in n on the time scale βn, and we do not need
to change the scale other than by the constant κ = (1 + ρ)2. Therefore we have uniform convergence to
the model with M = ∞ when limn→∞ Mn = ∞. Hence the same argument as in Steps 1-3 goes through,
provided we show that the equilibrium for the model with Mn converges to the equilibrium for the model
with M = ∞. For g = dgFW, d ∈ (0,∞), this follows from duality, because all moments of the equilibria
converge.
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Indeed, denote by (ΘM(s))s≥0 the process in (2.32) for Model 2 with M seed-banks, and let νM
θ be its

equilibrium on G. We need that

(4.19) lim
M→∞

νM
θ = νθ

and

(4.20) lim
M→∞

L
[
(θ̂M(t))t>0

]
= L [(Θ(t))t>0] ,

where the latter is the (F g)-diffusion starting in θ. Clearly, (4.19) implies (4.20). Indeed, (4.19) yields
limM→∞ FMg = F g (with FM the renormalisation map for the model with M seed-banks). This in turn
yields convergence of the solution of the corresponding martingale problem (by [EK86, Lemma 5.1, Chap-
ter 4] and [JM86, Proposition 3.2.3]). It remains to show (4.19). For g = dgFW, d ∈ (0,∞), this follows
from convergence of the dual process, which implies convergence of moments.

Step 5: Extension to general g. Finally, we point out how to modify the argument for general g. Duality
entered into the proof of (A1), and also in the proof that the limiting point arising in (A6) leads to the
dynamics given by (4.18). The former arises in the standard construction of the model (see [GHO22b]).
The latter requires us to verify that, conditional on θ̂M,n, the increasing process defined in (4.6) satisfies
a law of large numbers in L2. This verification is based on the property that νθ is ergodic for every θ,
irrespectively of g ∈ G (see [GHO22b]), which follows from Lemmas 3.5–3.6. As to the other assumptions,
without duality we can work with the generator and verify these assumptions directly with the help of
Lemma 3.9. See [DGV95, Section 1]. We also need that θ 7→ νθ is continuous, a fact that was established
in [GHO22b, Section 6.3.1, Lemma 6.6] with the help of coupling.

5 Proofs: ρ = ∞ and slow growing seed-bank
In this section we prove Theorem 2.11. We follow the same line of argument as in Section 4, but with
a number of adaptations. In order to apply the abstract scheme in Appendix B, it no longer suffices to
incorporate the seed-bank via an extension of the single-component state space, as was done for ρ < ∞ in
Section 4. Instead, we need to extend the geographic space with the seed-bank space, namely, consider the
state space IS with I = [0, 1], respectively, ISn with I = [0, 1] (see Remark B.1). We will see below that,
because the active population is a negligible fraction of the total population, new arguments are needed to
control the deep seed-banks, based on the computations in Section 3. As shown in [GHO22b], the validity
of the ergodic theorem for the infinite system requires the additional assumption of colour regularity for the
initial law.

The main change is that the macroscopic variable and the active macroscopic variable (recall (2.43) and
(2.50)) evolve on different times scales, namely, κMn |Gn|, respectively, |Gn| (provided the initial law is non-
degenerate). Since the former is asymptotically larger than the latter, under certain conditions this opens up
the possibility that correlations over typical distances in Gn change via migration before the macroscopic
variable is able to move via the Brownian motions, leading to a break down of ergodicity in the geographic
space. Consequently, if we try to follow the abstract scheme as for ρ < ∞ in Section 4, then we possibly
run into problems.

Fix a sequence (Mn)n∈N such that limn→∞ Mn = ∞. We will see that, as long as Mn is in the slow growth
regime (Regime (I) in (2.61)), the proper time scale is βn = κMn |Gn|. The factor κMn = (1 +

∑Mn
m=0 Km)2,

which is the square of the size of the seed-bank, compensates for the fact that the seed-bank slows down the
evolution and reduces the volatility. The proper time scale for the macroscopic variable must be calculated
by looking at the increasing process 〈θ̂Mn,n〉 and using Itô’s formula. In particular, we must check tightness
of (θ̂Mn,n(· βn))n∈N via (4.2). Because g is bounded, the expression we obtain for the increasing process at
time sβn is bounded by ‖g‖∞s. Our goal is to prove the analogue of (4.7) and show that the limit proces
(Θ(s))s≥0 is non-trivial. For that we need to show that, on time scale βn, (Θ(s))s≥0 has non-zero fluctuations,
which gradually vanish as the boundary {0, 1} is approached or hit. The latter is possible because of the
slow growth of Mn.

To ensure that the line of argument used for ρ < ∞ and M < ∞ in Section 4 carries over to ρ = ∞

and M = ∞, we need the new setting of the abstract scheme mentioned above (extension of the geographic
space with the seed-bank space). This also requires an adaptation of the sets from which we draw the initial
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law. For ρ < ∞ these were the sets T ,T erg defined in (1.24) and T erg
θ defined in (2.30), (2.56). For ρ = ∞

these sets must be replaced by T •,T erg,• defined in (1.26) and T erg,•
θ defined (2.59). Similarly, R(2)

θ ⊂ T
erg
θ

must be replaced by R(2),•
θ ⊂ T

erg,•
θ (recall Definition 3.2).

In this setting, Assumptions (A1)–(A3) are straightforward in view of the results for the infinite system
summarised in Section 1.4 (see the paragraph on equilibria) in combination with the preservation property
stated in Lemma 3.4, which uses and extends the computations carried out in [GHO22b]. Assumptions
(A4)–(A10), however, are not straightforward. There are four tasks:

(A) To settle (A4)–(A8), the key obstacle is that the seed-banks are not translation invariant and ergodic
in the seed-bank direction. We use the results in Section 3 to gain control over the ‘deep’ seed-banks.
To verify Assumptions (A4)–(A7), for ρ = ∞ we take into account that, in order to control the long-
time behaviour of the infinite system, we must require that the initial law µ(0) ∈ T erg (recall (2.59))
is colour regular, i.e., µ(0) ∈ T erg,• (recall (1.25)). Furthermore, to verify Assumption (A8), we show
that the colour regularity is preserved over time and that the conserved quantity is continuous in the
initial state. Consequently, we have continuity of the ergodic theorem and we can apply the ergodic
theorem that is known for the infinite system.

(B) To verify Assumption (A9), we first use a coupling argument to prove uniformity of the ergodic
theorem in the initial law, over a time stretch o(βn). In other words, we show that for the slow
growing seed-bank the problem of the breaking of ergodicity mentioned above does not occur, and
the macroscopic variable depends continuously on the initial state.

(C) To complete the verification of Assumption (A9), we next check that the approximation of the infinite
system by the finite system in Lemma 4.1 still holds in modified form for the slow growing seed-
bank when ρ = ∞. For this we construct a coupling of the two systems that is successful because
of the properties established in Task (B), and use that as time proceeds the deep seed-banks become
deterministic.

(D) To verify Assumption (A10), we deal with the fact that θ̂ no longer is a continuous functional of the
empirical measure, since the active population is negligible in the limit.

We will address these items in Sections 5.1–5.4.

5.1 Task (A)
We need to verify Assumptions (A4)–(A8). In order to transfer the ergodic theorem that is known for
the infinite system to the sequence of finite systems, we use a restarting argument that requires modified
versions of Assumptions (A4) and (A8) where the initial laws are drawn from R(2),•

θ for some θ ∈ [0, 1] (see
above) rather than from T erg,•

θ , as was done in Section 4. In particular, we need the fact that all weak limit
points along sequences of times that are o(βn) satisfy the Liggett conditions (recall Definitions 3.1–3.2) and
are colour regular (recall(1.25)), as was shown in Lemma 3.4.

Once we have established (A4)–(A5), (A6) will follow from the fact that θ̂Mn,n(tβn) is a continuous-path
martingale with bounded increasing process given by (2.49). In what follows we first verify on (A4), (A7)
and then (A5), (A8).

To verify (A4) we argue as follows. For the system on Sn we determine the random variable Θ (the
macroscopic variable) corresponding to the current state as required for (A4) via the estimator θ̂Mn,n, which
determines an associated equilibrium measure for the evolution on S that is our candidate for the limit of
our sequence of scaled finite systems. In particular, (A4) requires that the estimator θ̂Mn,n defined in (4.2)
converges in probability to a number Θ as n → ∞, which for ergodic and colour regular initial laws is the
parameter Θ selecting the extremal equilibrium measure νΘ in whose domain of attraction the system is.
Assumption (A4) will follow for ρ = ∞, M = ∞ if we can establish L2-convergence of the average in (4.3)
as M → ∞, under all possible current laws of our system, i.e.,

(5.1) lim
n→∞
L[θ̂Mn,n(t)] = L[θ̂∞,∞(t)] in L2 ∀ t ≥ 0,

for some random variable θ̂∞,∞(t), playing the role of the macroscopic variable associated with the limit
law of the finite system as n→ ∞.
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As shown in [GHO22b, Section 6], subject to (2.58) we know that the infinite system is L2-ergodic and
that

(5.2) lim
M→∞

Eµ(t)

 x0 +
∑M

m=0 Km y0,m

1 +
∑M

m=0 Km

 = θ ∀ t ≥ 0,

where µ(t) is the law of the system at time t. Via Lemma 3.8 this yields Assumption (A4).
Assumption (A7) amounts to showing that colour regularity is preserved under the evolution up to times

of order βn. But this follows from Lemma 3.9 via ergodic decomposition.
To settle Assumptions (A5) and (A8), which we treat together, we actually need more, namely, the

existence of the limit in (5.2) for sequences of initial laws (µn)n∈N induced by the state of the finite system
at time tβMn,n. Therefore two complications arise:

(1) In (5.2) we need convergence in law rather than in expectation.

(2) We need that weak limit points as n→ ∞ have the property that the limit of the macroscopic variable
as M → ∞ exists, i.e., θ̂Mn,n(sβMn,n) converges in L2 (and hence in law) to a random variable Θ(s),
and conditional on Θ(s) colour regularity holds.

We want to show that, for a subsequence (nk)k∈N and for the law of the pair ((xMn,n, yMn,n), θ̂Mn,n) evaluated
at time sβMn,n, we have

(5.3) lim
k→∞
Lν

[
θ̂Mnk ,nk (tβMnk ,nk )

]
= Lν(t)[Θ(t)] for some limit law ν(t).

In fact, we want to show the sharper statement

(5.4) lim
k→∞
Lνnk

[
θ̂Mnk ,nk (tβMnk ,nk )

]
= Lν(t)[Θ(t)] ∀ (νnk ) : lim

k→∞
νnk = ν(t).

This we will get by coupling the evolution on Sn and the evolution on S, which we provide in Task (C)
via a restart argument for νnk . For the latter we use the tightness part of Assumption (A6), which gives us
convergence in law of the process θ̂M(nk),nk as k → ∞ along a subsequence (nk)k∈N. From (5.3)–(5.4) we
conclude that

(5.5) lim
n→∞

νn(t) = L
[
νΘ(t)

]
, νn(t) = L

[(
xMn,n(tβMn,n

)
, yMn,n(tβMn,n

))]
,

which gives Assumption (A5). Note that νn(s) is concentrated on configurations in S that are periodic in
space and constant (equal to the estimator) in the seed-bank beyond colour Mn, since they are lifted from
Sn to S.

To prove (5.3), recall from Section 4.2 that for ρ < ∞we used L2-theory of stationary random fields. For
ρ = ∞ this needs to be amended. We need to show that θ̂Mn,n(sβn) converges in law and in L2 to a random
variable Θ(s) as n → ∞. We also need to show that limm→∞ Eν(s)[yi,m] = θ, i.e., on the set of invariant laws
I (recall (1.24)) the property in (3.33) is valid even in the limit as n → ∞. But this was already settled
in Lemma 3.9. Since the averages take values in [0, 1], we have compactness of their laws, so that along
a further subsequence we have weak convergence of their laws. The limit point must have mean θ, which
arises from the existence as M → ∞ of the mean of the initial law (recall (2.58)), which is an immediate
consequence of first moment computations via the dual.

To prove (5.4), which is a continuity property of the limiting L2-average as a function of νnk , we use
that, by Lemma 3.7, the deep seed-banks are deterministic uniformly in n. In fact, for any sequence
of initial measures (νn)n∈N such that limn→∞ νn = ν for some ν, we also have that limn→∞ θ̂

Mn,n(sβn) =

θ(s) for some θ(s). To prove (5.5), note that every ergodic component of the state at time sβn satisfies
limn→∞ limm→∞ Eνn [y0,m] = θ(s), which fixes νθ(s), the corresponding equilibrium approached after a restart.
This is precisely the requirement in Assumption (A8), and altogether settles Assumption (A5).

5.2 Task (B)
We prove that, once we have a successful coupling as in Lemma 4.1 (which will be established in Task
(C)), we can verify Assumption (A9). Here, we need to decompose the sequence (µn)n∈N and its limit points
µ into ergodic components by using Lemma 3.9. For each of the ergodic components we can apply the
version of Lemma 4.1 adapted to ρ = ∞, to get that θ̂(µn(tn)) and µn(tn) have limit points along the same
subsequential limits. This implies that we can replace µn(tn) by µ(tn) in the limit as n→ ∞.
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5.3 Task (C)
We can define the bivariate dynamics in the same way as we did for Lemma 4.1, namely, as in (4.9) with
M = Mn for the finite system and M = ∞ for the infinite system. But the quantity in (4.13) with M replaced
by Mn is no longer well defined after we have passed to the limit n→ ∞ for the bivariate system, except for
configurations drawn for a restricted class (which we will achieve by restricting the class of initial laws).
This must be resolved through the fact that the deep seed-banks become deterministic after a long time.
Two problems come up (which for the infinite system were resolved in [GHO22b]):

(1) The Lyapunov function for the infinite system (recall (4.13)) is well defined only for certain classes
of initial laws in the limit as Mn → ∞.

(2) Instead of the monotone decreasing Lyapunov function for the infinite system, we now have a function
where the derivative also involves positive terms, arising from the migration in the infinite system,
transporting mass in and out of Gn. In addition, there is exchange with the deep seed-banks of colour
beyond Mn.

Ad (1): This observation restricts the set of initial measures in T erg
θ that we can compare via coupling,

which was already an issue in the proof of the ergodic theorem for the infinite system in [GHO22b]. Ad
(2): For fixed t the extra positive terms vanish when Mn, n→ ∞, so this puts a restriction on the growth rate
of the sequence (tn)n∈N.

Therefore the following analogue of Lemma 4.1 is needed in order to provide the successful coupling
used in Task (B). Recall from (3.57) that T erg,�

θ ⊂ T
erg
θ is the set of initial laws that are invariant and ergodic

under translations such that

(∗) ∀ i ∈ G : lim
m→∞

yi,m = θ in probability.

Lemma 5.1. [Comparison finite-infinite: ρ = ∞, Regime (I)]

(a) For every µ ∈ T erg,•
θ , and every (tn)n∈N such that limn→∞ tn = ∞ and limn→∞ tn/βn = 0, all weak limit

points of ((Φnµ)S n(tn))n∈N are in T erg,�
θ .

(b) For every µ ∈ T erg,•
θ the same properties as in Lemma 4.1 hold.

Proof. Note that (a) and (b) do not imply that the conclusions in Lemma 4.1 hold for every µ ∈ T
erg
θ ,

which we used to obtain the claim in Task (B) for finite seed-banks. We need to restrict to µ ∈ T erg,•
θ and

construct a successful coupling by showing that the limit of µ(t) as t → ∞ lies in T erg,�
θ . This is achieved

by considering two time scales, which we call (t∗n)n∈N and (t̄n)n∈N.

(a) To prove part (a), we proceed as follows.

• Choose a sequence (t∗n)n∈N such that

(i) all weak limit points of {µS (t∗n)}n∈N lie in T erg,�
θ ,

(ii) all weak limit points of {Φ̃n[(Φnµ)S n(t∗n)]}n∈N lie in T erg,�
θ ,

(iii) limn→∞ t∗n = ∞ and limn→∞ t∗n/βn = 0.

where (S (t))t≥0 and (S n(t))t≥0 are the semi-groups of the infinite, respectively, finite system, and
(Φ̃n)n∈N are the extension operators defined in (2.12) (see also the general set-up in Appendix B, in
particular, (B.7)). In our setting, Φ̃n is the periodic continuation from Gn to G in the geographic
coordinate and the constant continuation by θ̂Mn,n from {0, . . . ,Mn} to N0 in the seed-bank coordinate.

• Choose a sequence (t̄n)n∈N satisfying limn→∞ t̄n = ∞ and limn→∞ t̄n/βn = 0 such that the Markov jump
process Z on G × N0 with transition kernel b(2)(·, ·) satisfies

(∗∗) lim
n→∞
P0

(
Z leaves Gn × {0, . . . ,Mn} before time t̄n

)
= 0.

Property (i) holds for µ ∈ T erg,•
θ by the ergodic theorem for (S (t))t≥0 and properties of the equilibrium,

stated in Lemma 3.4. Property (ii) holds by Lemma 3.7. Property (iii) is imposed to limit the time scale, so
that we are in a position to carry out Task (B).
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The choice of t∗n and t̄n must achieve that, along any subsequence (nk)k∈N,

(∗ ∗ ∗) lim
k→∞
L
[
(zMn,n(t∗nk

+ t̄nk ), z(t∗nk
+ t̄nk )

]
= Γ =⇒ Γ

(
{z1, z2 ∈ Diag(E × E)}

)
= 1.

On the time interval [0, t∗n] the system converges along subsequences to a state in which we can couple
the two sequences of seed-banks at every i ∈ G because the two components (zMn,n

i , zi) agree on the tail
sigma-field even for the limit state, as follows from Lemma 3.7. On the time interval [t∗n, t̄n] we want to use
the bivariate dynamics for the finite, respectively, the infinite system with its Lyapunov function to obtain
the successful coupling. We want to combine the two to arrive at (∗ ∗ ∗). Two problems arise:

– (∗) only holds for the weak limit points in (i) and (ii), and not necessarily for finite n.

– During the time interval [0, t∗n] discrepancies between the finite and the infinite system may build up
in Gn × {A, (Dm)0≤m≤Mn }.

The second item will be dealt with in the proof of part (b).
Concerning the first item, it suffices to show that at the end of the interval [t∗n, t

∗
n + t̄n] the finite system

looks like the equilibrium measure of the infinite system in whose domain of attraction a weak limit point of
((Φnµ)S n(t∗n))n∈N lies. This property is enough because by running the system for a total time t∗n + t̄n we can
conclude that (∗ ∗ ∗) holds. To obtain said property, we have to argue that we can make the replacement at
time t∗n for any weak limit point. In particular, we have to prove that any weak limit point of ((Φnµ)S n(t∗n))n∈N

can be successfully coupled via the bivariate finite dynamics associated with L[ν̄θ• ], where θ• is the limit in
probability of the conserved quantity of the measure µ. For this we again use coupling.

For every k ∈ N, for the bivariate finite dynamics

starting in (Φkµ,Φkµ̄), with µ ∈ R(2)
θ and µ̄ a weak limit point of ((Φnµ)S n(t∗n))n∈N,

we have a Lyapunov function (recall (4.13)) that is well-defined and that is non-decreasing. We want to
show that, for the bivariate dynamics of two finite systems,

(5.6) lim
k→∞
L[(Φkµ)S k(t∗k), (Φkµ̄)S k(t∗k)] = 0

when limk→∞ t∗k = ∞. We know that for both marginals, with µ and µ̄ as marginal initial laws,

(5.7) lim
k→∞

θ̂Mk ,k(t∗k) = θ in law

when limk→∞ t∗k/βk = 0. Hence, under this condition, correlations between typical sites tend to zero as
k → ∞. This implies that a weak limit point of the bivariate dynamics, at time t∗k in the limit as k → ∞, lies
on the diagonal, and the Lyapunov function tends to zero. Indeed, the two configurations can be ordered
in the limit, because they have the same value of θ̂ and are ergodic. In particular, this also holds when we
consider times (t∗k + t̄k)k∈N. We next put this together to get (∗ ∗ ∗).

Since the finite and the infinite bivariate dynamics constructed above allow for a coupling of Φkµ̄ and
µ ∈ R(2),•

θ that is successful when run for a time t̄k with k → ∞, we use this is an ingredient to conclude that
Φkµ and νθ can be successfully coupled when the bivariate dynamics is run for a time t∗k + t̄k with k → ∞.
The latter we may view as quadrivariate dynamics: namely, take the infinite bivariate dynamics whose
components start from µ, νθ and the finite bivariate dynamics whose components start from Φkµ,Φkνθ, and
place them on the same probability space. The claim now follows by picking tk = t∗k + t̄k and letting k → ∞.

(b) To prove part (b), we need to show that also the positive terms in the derivative of the Lyapunov function
tend to zero as n→ ∞. Here there are two effects:

– The truncated migration on Gn is different from the migration on G.

– The truncated seed-bank {0, . . . ,Mn} is different from the seed-bank N0.

We need to show that both differences are negligible in the limit as n→ ∞.
The first was already dealt with for systems without seed-bank, for which we refer to [DGV95, Section

4, pp. 2319–2322]. The same reasoning carries over to systems with seed-bank because in Regime (I)
automatically limn→∞ tn/β∗∗n = 0 (recall that β∗∗n � βn is the time scale on which two active lineages in the
dual coalesce on the active layer Gn).
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For the second we need the restrictions posed in Regime (I) (recall (2.60)–(2.61)) in order to be able to
show that perturbations arising from the truncation of the seed-bank are negligible in the limit as n → ∞.
If g is a multiple of the Fisher-Wright diffusion function, then we can use duality and restrict to the event
An defined in (3.22), which is the event that a single Markov process does not visit a seed-bank with colour
> Mn until time tn. The claim now follows from the fact that limn→∞ Pn(An) = 1 when we choose tn such
that limn→∞ tn/β∗n = 0 (recall that β∗n � βn is the time scale on which a single dormant lineage in the dual
starting from the deepest seed-bank with colour Mn becomes active on Gn).

To get the claim for general g ∈ G, we need to use the coupling argument in [GHO22b, Sections 5–
6], which uses contraction via a Lyapunov function to show that the coupling is successful when t∗n has
the above properties. As is clear from Section 3, the function g plays no role in the estimates as long as
‖g‖ < ∞. �

5.4 Task (D)
To show that there is only one limit point, we can again follow the abstract scheme developed in [DGV95,
Section 4]. We work with the tightness of the process (θ̂M(nk),nk (tβM(nk),nk ))t≥0 and the fact that the weak limit
points must solve a well-posed martingale problem (see Lemmas 4.2–4.4). The latter we can obtain from
the very same argument as in Section 4 for ρ < ∞, M < ∞. There we showed that (θ̂Mn,n(tβMn,n))t≥0 is a
martingale for which we can determine the increasing process. Namely, in the formula for the increasing
process in (4.6) we can apply a law of large numbers to the empirical measure, which allows us to identify
the limiting martingale problem as before. Here, the difficulty is that the active component of the empirical
measure is negligible in the limit as n→ ∞.

To circumvent this obstacle, we look at EMn,n
Ln

, the truncated empirical measure that includes the active
component and the first Ln dormant components, with Ln ∈ N0 chosen appropriately (see Section 2.5.3). For
this quantity it suffices to obtain the increasing process and to describe the empirical measure in the weak
topology. Indeed, for every L ∈ N0 the truncated empirical measure converges to the truncated equilibrium
measure. Since the increasing process only depends on the active component, as before we get a unique
limit point and so we have full convergence as n→ ∞ (not just along subsequences).

To identify the process (Θ(t))t≥0 as the F g-diffusion, we can follow the same route as in Step 3 in
Section 4.2, without any changes. Therefore we have verified (A10).

6 Proofs: ρ = ∞ and fast growing seed-bank
In this section we prove Theorem 2.12. The line of argument is different from that in Sections 4–5, and
requires new ideas because the conditional spatial ergodicity used in Section 5 for slow growing seed-bank
fails at times of order β∗∗n . Hence the argument in Appendix B breaks down. The three time scales in
Theorem 2.12 are treated in Section 6.1–6.3, respectively. The initial law satisfies µ(0) ∈ T erg,•

θ = R
(2),•
θ for

some θ ∈ [0, 1].

6.1 Convergence to equilibrium on short time scales
In this section we prove Theorem 2.12(1).

1. Consider two independent Markov processes on Sn with transition kernel b(2),n(·, ·), both starting in the
active state at the origin. Let E(t) and E′(t) be the events that the Markov processes are active at time t, and
let T (t) =

∫ t
0 ds 1E(s) and T ′(t) =

∫ t
0 ds 1E′(s) be their total activity times up to time t. Then their total joint

activity time at time T (i.e., the total time the two Markov processes are jointly active at the same site up to
time T ) is equal in law to

(6.1) I(2),n(T ) =

∫ T

0
dt 1E(t) 1E′(t) 1

{RWn,↑
1 (T (t))=RWn,↑

2 (T ′(t))},

where (RWn,↑
1 (t))t≥0 and (RWn,↑

2 (t))t≥0 are two independent Markov processes on Gn with transition kernel
bn(·, ·). This is true because the transition rates between active and dormant do not depend on the location
in geographic space.



6 PROOFS: ρ = ∞ AND FAST GROWING SEED-BANK 43

We want to compare this quantity with the same quantity for the infinite system, given by

(6.2) I(2)(T ) =

∫ T

0
dt 1E(t) 1E′(t) 1

{RW↑1 (T (t))=RW↑2 (T ′(t))},

where (RW↑

1 (t))t≥0 and (RW↑

2 (t))t≥0 are two independent random walks onGwith transition kernel a(·, ·). We
can couple the transitions between active and dormant, provided no transition from A → Dm → A occurs
in the infinite system until time T for any m > Mn. However, as long as T = o(β∗n), the probability of this
event tends to zero as n→ ∞ (recall (3.22)). Therefore, under this coupling we have

(6.3)
0 ≤ I(2),n(T ) − I(2)(T )

= o(1) +

∫ T

0
dt 1E(t) 1E′(t)

[
1
{RWn,↑

1 (T (t))=RWn,↑
2 (T ′(t))} − 1

{RW↑1 (T (t))=RW↑2 (T ′(t))}

]
.

Put

(6.4) ∆n(T ) = Ê(0,A),(0,A)[I(2),n(T ) − I(2)(T )],

where the expectation is with respect to the law of the coupling. Then

(6.5) 0 ≤ ∆n(T ) = o(1) +

∫ T

0
dt E

1E(t) 1E′(t)

∑
i∈Gn

an
T (t)(0, i) an

T ′(t)(0, i) −
∑
i∈G

aT (t)(0, i) aT ′(t)(0, i)


 ,

where E denotes expectation with respect to the law of the process (1E(t), 1E′(t))t≥0 for the infinite system
starting from (1, 1). Since for Model 2 with ρ = ∞ we have assumed that the transition kernel is symmetric
(recall (1.37)), this gives

(6.6) 0 ≤ ∆n(T ) = o(1) +

∫ T

0
dt E

[
1E(t) 1E′(t)

[
an

T (t)+T ′(t)(0, 0) − aT (t)+T ′(t)(0, 0)
]]
.

2. Our goal is to show that the right-hand side tends to zero as n → ∞ as long as T = o(β∗∗n ). To do so we
will use that, as shown in [GHO22b, Section 6.2],

(6.7)
lim
t→∞

1
tγ

T (t) = V, lim
t→∞

1
tγ

T ′(t) = V ′ in P-probability,

lim
t→∞

t1−γ P
(
E(t)

)
= E[V], lim

t→∞
t1−γ P

(
E′(t)

)
= E[V ′],

where V = W−γ/χ, with W a stable law random variable on (0,∞) with exponent γ, satisfying E[V] < ∞,
and V ′ is an independent copy of V . We split the integral into two parts,

(6.8)
∆n
∗ =

∫ o(ψ1/γ
n )

0
dt E

[
1E(t) 1E′(t)

[
an

T (t)+T ′(t)(0, 0) − aT (t)+T ′(t)(0, 0)
]]
,

∆n
∗(T ) =

∫ T

o(ψ1/γ
n )

dt E
[
1E(t) 1E′(t)

[
an

T (t)+T ′(t)(0, 0) − aT (t)+T ′(t)(0, 0)
]]
,

and show that both parts vanish.

3. For the first integral in (6.8) we use (2.6) to estimate

(6.9) ∆n
∗ =

∫ o(ψ1/γ
n )

0
dt E

[
1E(t) 1E′(t) o

(
aT (t)+T ′(t)(0, 0)

)]
,

where we use that T (t) + T ′(t) � tγ = o(ψn) in P-probability. Combining (6.7) and (6.9), we get

(6.10) ∆n
∗ = o

∫ o(ψ1/γ
n )

0
dt (1 ∧ t−2(1−γ)) atγ (0, 0)

 ,
where we use that t 7→ at(0, 0) is regularly varying at infinity (recall (1.38)) to get rid of the factor V + V ′

and the fluctuations of T (t) + T ′(t) on scale tγ. Inserting the change of variable s = tγ, we obtain

(6.11) ∆n
∗ = o

(∫ o(ψn)

0
ds (1 ∧ s−(1−γ)/γ) as(0, 0)

)
.
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But

(6.12)
∫ ∞

0
ds (1 ∧ s−(1−γ)/γ) as(0, 0) < ∞

in the coexistence regime (recall (1.42)), and so we have shown that limn→∞ ∆n
∗ = 0.

4. For the second integral in (6.8) we use the definition of the mixing time in (2.3) in combination with
the comparison property in (2.7) to estimate C−1|Gn|

−1 ≤ an
s(0, 0) ≤ C|Gn|

−1 for o(ψn) ≤ s ≤ T and some
C < ∞. This gives

(6.13) ∆n
∗(T ) � C|Gn|

−1
∫ T γ

o(ψn)
ds (1 ∧ s−(1−γ)/γ) � |Gn|

−1

 T 2γ−1, γ ∈ ( 1
2 , 1],

log T, γ = 1
2 .

Since the latter tends to zero as long as T = o(|Gn|
1/(2γ−1)), respectively, T = eo(|Gn |) (recall (2.60) and the

remark below (2.61)), we have shown that limn→∞ supT=o(β∗∗n ) ∆n
∗(T ) = 0. Note that we need the assumption

ψn = o((β∗∗n )γ) because this guarantees that the divergence of the integral in (6.13) indeed occurs on time
scale β∗∗n and not later.

5. Combining the estimates Steps 2–4, we arrive at

(6.14) lim
n→∞

sup
T=o(β∗∗n )

[
I(2),n(T ) − I(2)(T )

]
= 0 in probability.

Hence, up to time o(β∗∗n ) the two Markov processes starting from (0, A), (0, A) see no difference in their
total joint activity time between the finite system and the infinite system. It is easy to extend this fact to
arbitrary starting points (0,R1), (0,R2) with R1,R2 ∈ {A, (Dm)0≤m≤Ln }. Indeed, we wait until the two Markov
processes are jointly active for the first time, which occurs at a finite random time (whose law depends
on Ln). At that time they start from (I, A), (J, A) with I, J ∈ Gn some random locations. This amounts to
replacing an

s(0, 0) and as(0, 0) by an
s(I, J) and as(I, J) in (6.6), (6.8) and (6.9). However, this does not affect

the estimates in Steps 2 and 3 because of the approximation in (2.6) and the bound in (2.5), respectively.

6. The estimates in Steps 2–4 can be trivially extended to k ∈ NMarkov processes, because for each of the(
k
2

)
pairs the discrepancy between the total joint activity times tends to zero in probability. In case g = dgFW,

d ∈ (0,∞), the dual is available and is obtained by letting active Markov processes at the same site coalesce
at rate d. Consequently, all the mixed moments at time β̄n have the same limit in the finite system as in the
infinite system as long as β̄n → ∞ and β̄n/β

∗∗
n → 0. Hence there is local convergence to νθ, the equilibrium

for the infinite system.

7. For g ∈ Gwe do not have a dual, and comparison duality (exploited in Section 6.2.1) does not work either
because νθ depends on g. However, as in Section 5, we can follow the abstract scheme from Appendix B, as
long as we consider times scales β̄n = o(β∗∗n ). For this we have to work with the macroscopic variable, which
on times scales β̄n = o(β∗∗n ) is the constant process equal to θ. We again have to check Assumptions (A1)–
(A10). The key tools are once again Lemmas 3.3–3.7, which hold for times scales β̄n = o(β∗∗n ), as shown in
Section 3.5. Steps 1-5 are needed to couple the finite and the infinite system and show decorrelation.

6.2 Partial clustering and switching on intermediate time scales
6.2.1 Partial clustering

In this section we prove the partial clustering part of Theorem 2.12(2). The proof works for g ∈ G and
does not need the dual because it is based on a second moment computation only. Recall (1.53) and write
u = (u1, u2) with u1 ∈ Gn and u2 ∈ {A, (Dm)0≤m≤Mn }.

Proof. The proof is an adaptation of the proof of [GHO22b, Lemma 5.5]. Pick β∗∗n � β̄n � β∗n (= βn) and
L ∈ N0.

1. To prove asymptotic partial clustering to depth Ln we must show that, for any µ ∈ T ,

(6.15) lim
n→∞

sup
u1,u2∈S

Ln
n

EΦnµ

[
zu1 (β̄n)

(
1 − zu2 (β̄n)

)]
= 0.
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Indeed, this implies that, uniformly in u1, u2 ∈ S
Ln
n ,

(6.16)
u1 = u2 : lim

n→∞
PΦnµ

(
zu1 (β̄n) ∈ [0, ε) ∪ (1 − ε, 1]

)
= 1 ∀ ε > 0,

u1 , u2 : lim
n→∞
PΦnµ

(
zu2 (β̄n) ∈ (1 − ε, 1]

∣∣∣∣ zu1 (β̄n) ∈ (1 − ε, 1]
)

= 1 ∀ ε > 0.

Like in [CG94a], we will give the proof by comparison duality. Fix ε > 0. Since g ∈ G we can choose a
c = c(ε) > 0 such that g(x) ≥ g̃(x) = c(x−ε)(1−ε− x), x ∈ [0, 1]. Note that g̃(x) < 0 for x ∈ [0, ε)∪(1−ε, 1],
so we cannot replace g by g̃ in the evolution equations. Instead we use g̃ as an auxiliary function.

2. Let (B(t))t≥0 be the Markov chain with state space {1, 2}×Sn×Sn and B(t) = (B0(t), B1(t), B2(t)), evolving
according to

(6.17)

(1, u1, u1)→ (1, u3, u3), at rate b(2),n(u1, u3),

(2, u1, u2)→


(2, u3, u2), at rate b(2),(u1, u3),
(2, u1, u4), at rate b(2),n(u2, u4),
(1, u1, u1), at rate c 1{u1

1=u1
2}

1{u2
1=u2

2=A}.

This describes two random walks, evolving independently according to the transition kernel b(2),n(·, ·), that
coalesce at rate c > 0 when they are at the same site and both active. We put B0(t) = 1 when the two random
walks have already coalesced by time t, and B0(t) = 2 otherwise. Let P(2,u1,u2) denote the law of the Markov
chain (B(t))t≥0 that starts in (2, u1, u2). Note that

(6.18)
P(2,u1,u2) (B1(t) = u3) = b(2),n

t (u1, u3),

P(2,u1,u2) (B2(t) = u4) = b(2),n
t (u2, u4).

Below we will show that, for Ln � β̄
1/β
n ,

(6.19) lim
n→∞

sup
u1,u2∈S

Ln
n

P(2,u1,u2)
(
B0(β̄n) = 2

)
= 0.

3. The evolution equations read

(6.20) dzu1 (t) =
∑

u3∈Sn

b(2),n(u1, u3) [zu3 (t) − zu1 (t)] dt +
√

g(zu1 (t)) 1{Ri=A} dwi(t), u1 = (i,Ri) ∈ Sn.

Put

(6.21) z−u = zu − ε, z+
u = zu + ε.

For t ≥ 0, define Ft : {1, 2} × Sn × Sn → R by

(6.22) Ft(1, u1, u1) = EΦnµ
[
z−u1

(t)
]
, Ft(2, u1, u2) = EΦnµ

[
z−u1

(t)z+
u2

(t)
]
.

Using Itô-calculus, we obtain from (6.20) that

(6.23)
d
dt

F1(1, u1, u1) =
∑

u3∈Sn

b(2),n(u1, u3)
[
Ft(1, u3, u3) − F1(1, u1, u1)

]
and

(6.24)

d
dt

Ft(2, u1, u2) = EΦnµ
[
g(zu1 (t))

]
1{u1

1=u1
2}

1{u2
1=u2

2=A}

+
∑

u3∈Sn

b(2),n(u1, u3)
[
Ft(2, u3, u2) − Ft(2, u1, u2)

]
+

∑
u4∈Sn

b(2),n(u2, u4)
[
Ft(2, u1, u4) − Ft(2, u1, u2)

]
.

Note that

(6.25) EΦnµ
[
g̃(zu1 (t))

]
= EΦnµ

[
cz−u1

(t)(1 − z+
u1

(t))
]

= cFt(2, u1, u1).
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4. For t ≥ 0, define Gt : {1, 2} × Sn × Sn → R by

(6.26) Gt(1, u1, u1) = 0, Gt(2, u1, u2) = EΦnµ
[(

g(zu1 (t)) − g̃(zu1 (t))
)]

1{u1
1=u1

2}
1{u2

1=u2
2A}.

Let B denote the generator of (B(t))t≥0, and let (St)t≥0 be the associated semigroup. Then, with the help of
(6.25)–(6.26), (6.23)–(6.24) can be written as

(6.27)
dFt

dt
= BFt + Gt

and hence [Lig85, Theorem I.2.15]

(6.28) Ft = StF0 +

∫ t

0
dsSt−sGs.

Since Gt ≥ 0 for all t ≥ 0, we obtain

(6.29)
Ft(2, u1, u2) ≥ (StF0)(2, u1, u2) = E(2,u1,u2) [F0(B(t))]
= E(2,u1,u2)

[
F0(B(t)) 1{B0(t)=1}

]
+ E(2,u1,u2)

[
F0(B(t)) 1{B0(t)=2}

]
.

But

(6.30)
E(2,u1,u2)

[
F0(B(t)) 1{B0(t)=1}

]
= E(2,u1,u2)

[
EΦnµ[z−B1(t)] 1{B0(t)=1}

]
= E(2,u1,u2)

[
EΦnµ[z−B1(t)]

]
− E(2,u1,u2)

[
EΦnµ[z−B1(t)] 1{B0(t)=2}

]
,

while

(6.31) E(2,u1,u2)
[
F0(B(t)) 1{B0(t)=2}

]
= E(2,u1,u2)

[
EΦnµ[z−B1(t) z+

B1(t)] 1{B0(t)=2}

]
.

Since Ft(1, u1, u1) = E(2,u1,u2)[EΦnµ[z−B1(t)]], we get

(6.32)
EΦnµ

[
z−u1

(t) (1 − z+
u2

(t))
]

= Ft(1, u1, u1) − Ft(2, u1, u2)

≤ E(2,u1,u2)

[
EΦnµ[z−B1(t)(1 − z+

B1(t))] 1{B0(t)=2}

]
≤ P(2,u1,u2)(B0(t) = 2).

Combining (6.19) and (6.32), we obtain

(6.33) lim inf
n→∞

sup
u1,u2∈S

Ln
n

EΦnµ

[
(zu1 (β̄n) − ε)(1 − ε − zu2 (β̄n))

]
= 0.

Noting that zu1 (1 − zu2 ) ≤ (zu1 − ε)(1 − ε − zu2 ) + ε(2 − ε) and letting ε ↓ 0, we get (6.15).

5. It remains to prove (6.19). Let τ1, τ2 denote the first wake-up times of two independent Markov processes
with transition kernel b(2),n(·, ·) starting in u1, u2. If u2

1 = u2
2 = A, then τ1 = τ2 = 0. Otherwise, τ1, τ2 are

positive. Since the wake-up time from the deepest seed-bank that is being monitored is of order 1/eLn � Lβn,
we have that τ1, τ2 are at most of order Lβn uniformly in u1, u2 ∈ S

Ln
n . Return to (6.1). We found in Step 1 in

Section 6.1 that the average total joint activity time of the two Markov processes up to time T in the finite
system satisfies

(6.34) Eu1,u2 [I(2),n(T )] � |Gn|
−1

∫ T

τ1∨τ2

ds [1 ∧ (s − τ1)−(1−γ)] [1 ∧ (s − τ2)−(1−γ)].

when T � ψ
1/γ
n . Assume without loss of generality that τ1 < τ2. Then

(6.35) Eu1,u2 [I(2),n(T )] = |Gn|
−1

∫ T−τ2

0
ds [1 ∧ (s + (τ2 − τ1))−(1−γ)] [1 ∧ s−(1−γ)],

Pick T = β̄n, and note that β̄n � ψ
1/γ
n by our assumption that ψn = o((β∗∗n )γ) because β̄n � β∗∗n . Since

β̄n � Lβn, we have (recall (2.60))

(6.36) Eu1,u2 [I(2),n(β̄n)] � |Gn|
−1

∫ β̄n

0
ds [1 ∧ s−2(1−γ)] � |Gn|

−1(β̄n)2γ−1 = (β̄n/β
∗∗
n )2γ−1
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for γ ∈ ( 1
2 , 1], which diverges as n → ∞. For γ = 1

2 we have E[I(2),n(β̄n) � |Gn|
−1 log β̄n = log(β̄n/β

∗∗
n ),

which again diverges as n → ∞. Thus we have proved that the average total joint activity time of the two
Markov processes on Sn diverges as n → ∞. We will complete the proof by showing that the same is true
in P-probability. This settles (6.19) because the rate of coalescence c in (6.17) is strictly positive.

6. The process (E(s))s≥0 marks the times at which the Markov process on {A, (Dm)m∈N0 } is in A. Since A
is a renewal state for this Markov process, we can think of (E(s))s≥0 as a Markov renewal process. Once
more return to (6.1). Let u1 = u2 = (0, A). Pick any φn such that ψn � φn � β̄

γ
n, which is possible

because ψn = o((β∗∗n )γ) and β̄n � β∗∗n . Put tk,n = (kφn)1/γ, k ∈ N0, and let Kn be such that tKn,n � β̄n, i.e.,
Kn � β̄

γ
n/φn � 1. By the sample-path version of (6.7), we have

(6.37)
lim
n→∞

{
L

[(
T (tk,n) − T (tk−1,n),E(tk,n)

)
1≤k≤Kn

]
− ⊗1≤k≤Kn

(
δτγk,n−τ

γ
k,n
,
[(

1 − τ̄−(1−γ)
k,n

)
δ0 + τ̄

−(1−γ)
k,n δ1

])}
= δ0N0

for some random variables τk,n, τ̄k,n satisfying τk,n � tk,n � τ̄k,n, 1 ≤ k ≤ Kn, in Pn-probability. Here we use
that

(6.38) tk,n − tk−1,n � (tk−1,n)1−γ

to ensure that during each time interval [tk−1,n, tk,n] many renewals to A take place. (The condition in (6.38)
is satisfied uniformly in k because tk,n/tk−1,n � 1 uniformly in k and φn � 1.) Moreover, by (2.3),

(6.39) lim
n→∞

{
L

[(
RWn,↑

1 (T (tk,n))
)
1≤k≤Kn

]
− U(Gn)⊗Kn

}
= δ0G×N0

with U(Gn) the uniform distribution on Gn. Here we use that (tk,n)γ − (tk−1,n)γ = φn � ψn, 1 ≤ k ≤ Kn to
ensure that during each time interval [tk−1,n, tk,n] the Markov processes mix well over Gn. It follows via the
law of large numbers that

(6.40) I(2),n(β̄n) � |Gn|
−1

∑
1≤k≤Kn

(
tk,n − tk−1,n) (tk,n)−2(1−γ) in Pn-probability.

The sum scales like the integral
∫ β̄n

0 dt [1 ∧ t−2(1−γ)] � β̄
2γ−1
n , and so I(2),n(β̄n) � Eu1,u2 [I(2),n(β̄n)] in Pn-

probability. The same argument works for u1, u2 ∈ S
Ln
n because Markov processes starting at depth ≤ Ln

become active in time o(β̄n). �

6.2.2 Switching

In this section we prove the switching part of Theorem 2.12(2).
Pick any time scale β̄n and any seed-bank depths 1 ≤ L−n < L+

n ≤ Mn satisfying

(6.41) β∗∗n � β̄n � β∗n, (L−n )β � β̄n � (L+
n )β.

We know from Section 6.2.1 that partial clustering has occurred to depth L−n at time β̄n. We show that none
of the seed-banks with colour L+

n < m ≤ Mn has changed up to time β̄n.
Consider a Markov process with transition kernel b(2),n(·, ·). Because the transitions into and out of the

seed-bank do not depend on the location of the Markov process, it suffices to look at the Markov process
projected onto E = {A, (Dm)0≤m≤Mn }. Transitions A → Dm occur at rate Kmem, transitions Dm → A occur at
rate em. We know that the total activity time up to time T is � T γ. (This is the asymptotics for the infinite
seed-bank, but as long as T � β∗n the probability that in the infinite seed-bank a jump to a colour > Mn

occurs up to time T is o(1).) The rate to jump from A to Dm for some L+
n < m ≤ Mn is (recall (1.39))

(6.42)
∑

L+
n<m≤Mn

Kmem =
∑

m>L+
n

Kmem −
∑

m>Mn

Kmem ∼
AB
γβ

[
(L+

n )−γβ − (Mn)−γβ
]
� (L+

n )−γβ.

The total rate accumulated up to time T is � T γ(L+
n )−γβ. For T = β̄n this equals (β̄n/(L+

n )β)γ, which is o(1),
and so the claim follows.

Pick µ(0) = µ ∈ R(2),•
θ . We know from the above observations that

(6.43) lim
n→∞
L
[
Φnµ(β̄n) − (1 − θ) Φnµ

0,L−n ,L
+
n (β̄n) + θΦnµ11, L−n , L

+
n (β̄n)

]
= δ(0,0N0 )G ,
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where Φnµ
0,L−n ,L

+
n (β̄n) and Φnµ

1,L−n ,L
+
n (β̄n) restricted to Gn × {(Dm)L+

n<m≤Mn } coincide with Φnµ(β̄n), but re-
stricted to Gn × {A, (Dm)0≤m≤L−n } are ‘all 0’, respectively, ‘all 1’, according to an independent draw Ῡ ∈ {0, 1}
with mean θ. Clearly, both are elements of R(2),•

θ , because the seed-banks beyond depth L+
n have not changed

and L+
n � Mn. Therefore, at any time β̃n satisfying β̄n � β̃n � β∗n, partial clustering has occurred in both, to

some depth o(β̃1/β
n ) that is larger than L−n (and possibly larger than L+

n as well), according to an independent
draw Υ̃ ∈ {0, 1} with mean θ.

6.3 Complete clustering on large time scales
In this section we prove Theorem 2.12(3). The proof again works for g ∈ G because it uses the comparison
duality exploited in Section 6.2.1. The core is the following lemma, which implies that the macroscopic
variable θ̂Mn,n(β̄n) observed at time β̄n converges to 0 or 1 in probability as n → ∞ when β̄n � β∗n. Since
t 7→ θ̂Mn,n(t) is a martingale, the convergence to 0 and 1 occurs at all times t ≥ β̄n simultaneously. From
(2.43) we see that this implies complete fixation (= complete clustering).

Lemma 6.1. For any µ ∈ T , g ∈ G and β̄n � β∗n,

(6.44) lim
n→∞
EΦnµ

[
θ̂Mn,n(β̄n)

(
1 − θ̂Mn,n(β̄n)

)]
= 0.

Proof. Write (recall (2.48))

(6.45) EΦnµ

[
θ̂Mn,n(t)

(
1 − θ̂Mn,n(t)

)]
=

1
|Gn|

2

1
κMn

∑
u1,u2∈Sn

K(u1)K(u2)EΦnµ
[
zu1 (t)

(
1 − zu2 (t)

)]
.

The comparison duality in Section 6.2.1 gave us that, for every t ≥ 0 and ε > 0 (recall (6.21)),

(6.46) EΦnµ
[
z−u1

(t)
(
1 − z+

u2
(t)

)]
≤ P(2,u1,u2)(B0(t) = 2),

where we recall the definition of the Markov process (B(t))t≥0 on state space {1, 2} × Sn × Sn with transition
rates defined in (6.17). Let pn(t) = supu1,u2∈Sn

P(2,u1,u2)(B0(t) = 2). Then

(6.47) EΦnµ

[
θ̂Mn,n(t)

(
1 − θ̂Mn,n(t)

)]
≤ [pn(t) + ε(2 − ε)]

1
|Gn|

2

1
κMn

∑
u1,u2∈Sn

K(u1)K(u2) = pn(t) + ε(2 − ε).

Letting ε ↓ 0, we see that it suffices to show that

(6.48) lim
n→∞

pn(β̄n) = 0.

But this follows from the same type of argument as in the last steps of the proof in Section 6.2.1 with Ln

replaced by Mn, where we use that Mβ
n = β∗n � β̄n. �

A Preservation of diffusion function class and reduction of volatility
In this appendix we show that the renormalisation map F for the infinite system preserves the class G of
proper diffusion functions (recall (1.34)). This is needed for the existence and uniqueness of the scaling
limit in the finite-systems scheme. We further show that F maps the Fisher-Wright diffusion function to a
smaller multiple of itself (recall (2.34)). This says that the seed-bank reduces the volatility.

We begin with Model 1, and proceed as in [CGS95]. Let

(A.1) b(1)((i,Ri), ( j,R j)
)

=


â(i, j), Ri = R j = A,
Ke, i = j,Ri = A,R j = D,
e, i = j,Ri = D,R j = A,
0, otherwise.

be the kernel for the motion of a lineage in the dual of Model 1. This describes a Markov process on G with
migration kernel â(·, ·) that becomes dormant (state D) at rate Ke (after which it stops moving) and active
(state A) at rate e (after which it starts moving again). Let

(A.2) B̂(i, j) =

∫ ∞

0
dt

∑
k∈G

b(1)
t

(
(k, A), (i, A)

)
b(1)

t
(
(k, A), ( j, A)

)
, i, j ∈ G,
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where b(1)
t (·, ·) is the time-t transition kernel of the Markov process with transition kernel b(1)(·, ·) in (A.1).

This is the mean of the total joint activity time of two copies of the Markov process starting from (i, A) and
( j, A). The coexistence regime corresponds to B̂(0, 0) < ∞ (recall Section 1.4).

The following lemma is the seed-bank analogue of [CGS95, Lemma 2.11].

Lemma A.1. [Moments and coupling] Suppose that B̂(0, 0) < ∞. Then

1. For all i, j ∈ G,

(A.3) Eνθ [xi] = θ, Eνθ [xix j] = θ2 + B̂(i, j)Eνθ [g(x0)].

2. For every θ, θ′ ∈ [0, 1] with θ < θ′ there exist a coupling Pθ,θ
′

of the random variables z = (zi)i∈G

and z′ = (z′i)i∈G such that L[z] = νθ, L[z′] = νθ′ and Pθ,θ
′

(xi ≤ x′i ∀ i ∈ G) = 1. Consequently,
Eθ,θ

′

[|xi − x′i |] = |θ − θ′| for all θ, θ′ ∈ [0, 1].

Proof. Part 1 follows from [GHO22b, Lemma 6.1] by picking the equilibrium measure as the initial mea-
sure. Part 2 follows from [GHO22b, Lemma 6.6, Section 6.3.1], where the coupling is achieved by using
the same Brownian motions. �

For Model 2, the analogue of Lemma A.1 holds with b(1)(·, ·) replaced by the kernel for the motion of a
lineage in the dual of Model 2 (for symmetric migration):

(A.4) b(2)((i,Ri), ( j,R j)
)

=


â(i, j), Ri = R j = A,
Kmem, i = j,Ri = A,R j = Dm,m ∈ N0,
em, i = j,Ri = Dm,R j = A,m ∈ N0,
0, otherwise.

and in the dual of Model 3 (for symmetric migration):

(A.5) b(3)((i,Ri), ( j,R j)) =


â(i, j), Ri = R j = A,
Kmemâm( j, i), Ri = A,R j = Dm,m ∈ N0,
emâm(i, j), Ri = Dm,R j = A,m ∈ N0.

These kernels define appropriate analogues of B̂(i, j) in (A.2).
Our main result in this appendix is the following theorem.

Theorem A.2. [Preservation and reduction: Models 1–3]

(a) If g ∈ G, then F g ∈ G.

(b) If g = dgFW, d ∈ (0,∞), then F g = d∗gFW with d∗ ∈ (0, d).

Proof. (a) We must check that F g satisfies the constraints defining the class G in (1.34).

• If θ ∈ (0, 1), then νθ puts positive mass in (0, 1). Since g(x) > 0 for all x ∈ (0, 1), it follows from
(2.33) that (F g)(θ) > 0.

• By (A.3),

(A.6) (F g)(θ) = Eνθ [g(x0)] =
1

B̂(0, 0)
Eνθ [(x0 − θ)2].

Thus, if (F g)(θ) = 0, then by translation invariance we have νθ = δθ. Since g(0) = g(1) = 0, this
implies that (F g)(0) = (F g)(1) = 0.

• For any θ, θ′ ∈ [0, 1],

(A.7)

∣∣∣(F g)(θ) − (F g)(θ′)
∣∣∣ =

∣∣∣Eθ,θ′ [g(x0) − g(x′0)]
∣∣∣ ≤ Eθ,θ′ [|g(x0) − g(x′0)|]

≤ Lip[g]Eθ,θ
′

[|x0 − x′0|] = Lip[g] |θ − θ′|,

with Lip[g] the global Lipschitz constant of g. Hence Lip[F g] ≤ Lip[g]. Since g is globally Lipschitz,
so is F g.

(b) If g = dgFW, then

(A.8) (F g)(θ) = Eνθ [g(x0)] = Eνθ [dx0(1 − x0)] = dθ − d
[
θ2 + B̂(0, 0)(F g)(θ)

]
,

where we use (A.3). Hence (F g)(θ) = d∗g with d∗ = d/(1 + dB̂(0, 0)). �
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B General conditions for the finite-systems scheme
In this appendix we recall an abstract scheme from [CG94b] that lists general conditions for the validity of
the finite-systems scheme. Together with ideas from [DGV95, Section 4], this allows us in Sections 4–5 to
prove the finite-systems scheme described in Section 2. Model 2 with ρ = ∞ in regime (II) needs a different
route, which is followed in Section 6.

Remark B.1. [Conversion of notation for abstract scheme with seed-bank] In what follows we stick to
the notation used in [CG94b]. Since the latter was written for systems without seed-bank, the reader must
everywhere insert the following objects:

• ρ < ∞:

G, Gn → G, Gn

I → [0, 1] × [0, 1] (Model 1)
→ [0, 1] × [0, 1]N0 , [0, 1] × [0, 1]Mn+1 (Model 2–3)

J → [0, 1]
E → IG

T ,T erg,I → T ,T erg,I in (1.24), (1.27)
T

erg
θ → T

erg
θ in (2.30), (2.56)

µn → µn in (2.9)
Tn → Tn in (2.11)

• ρ = ∞:

G, Gn → G × (A,D), Gn × (A,D) (Model 1)
→ G × {(A, (Dm)m∈N0 }, Gn × {(A, (Dm)0≤m≤Mn } (Model 2–3)

I → [0, 1]
J → [0, 1]
E → IG×(A,D) (Model 1)

→ IG×{(A,(Dm)m∈N0 } (Model 2–3)
T ,T erg,I → T •,T erg,•,I in (1.26), (1.27)
T

erg
θ → T

erg,•
θ ,T erg,•,∗,T

erg,�
θ in (1.28),(2.59), (3.49)

µn → µn in (2.9)
Tn → Tn in (2.11)

With these replacements, the abstract scheme applies to systems with seed-bank. For ρ < ∞ the seed-
bank can be incorporated via an extension of the single-component state space I, and no extension of the
geographic space G is needed. For ρ = ∞, however, this is not enough and the geographic space G needs to
be extended with the seed-bank space {(A, (Dm)m∈N0 }. This difference once more underpins the fact that for
ρ < ∞ the effect of the seed-bank is minor, while for ρ = ∞ it is not. In the latter case, colour regularity is
needed to control the deep seed-banks. �

General set-up. In order to be able to formulate the abstract theorem, we need to set up the framework
and introduce the relevant notation. Let G be a countable set, let I be a Polish space, and let (Z(t))t≥0 be
a Markov processes with state space IG (endowed with the product topology) i.e., Z(t) = (Zi(t))i∈G, with
associated semigroup of transition operators (S (t))t≥0. Let (Gn)n∈N be a projective systems of discrete finite
groups that increases to G, and let (Zn(t))t≥0, n ∈ N, be Markov processes with state space E ⊆ IGn and
semigroup (S n(t))t≥0, n ∈ N. For Z ∈ IG, define the element Z|Gn ∈ IGn by the restriction (Z|Gn )i = Zi, i ∈ Gn.
Suppose that there are extension operators φ̃n : IGn → IG, n ∈ N, satisfying (φ̃nZn)|Gn = Zn, and write φ̃n

also for the corresponding push forward acting on measures.
If µ is a measure on IG and µn is a measure on IGn , n ∈ N, then write limn→∞ µn = µ as limn→∞ φ̃nµn = µ.

A function f : IG → R is called tame when it is bounded, continuous and depends on only finitely many
coordinates. Write limn→∞L[µn − νn] = 0 as n→ ∞ when limn→∞[〈µn, f 〉 − 〈νn, f 〉] = 0 for all tame f .

We need four groups of assumptions.

I: The processes Zn(·), n ∈ N, are finite versions of Z(·). This first set of assumptions makes precise
the statement that Zn(·), n ∈ N, can be considered finite versions of Z(·), and identifies certain classes of
appropriate initial distributions T and Tn for Z(t) and Zn(t).
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(A1) For each Z(0) ∈ IG, with Zn(0) = Z(0)|Gn ,

(B.1) lim
n→∞
L [Zn(t)] = L [Z(t)] , ∀ t ≥ 0.

(A2) There are sets of measures T and Tn on IG, respectively, IGn , such that φ̃n(Tn) ⊂ T , and these sets are
closed under the actions of the associate semigroups, i.e., for all t ≥ 0, µn ∈ Tn implies µnS n(t) ∈ Tn

and µ ∈ T implies µS (t) ∈ T .

II: Basic ergodic properties of the infinite system. The second set of assumptions are concerned with
the equilibrium states and the ergodic properties of the infinite system. Let I denote the set of invariant
measures for Z(·), i.e., all µ ∈ T erg such that µS (t) = µ for all t ≥ 0.

(A3) There is a Polish space J and a set of probability measures {νθ : θ ∈ J} on IG such that {νθ : , θ ∈
J} ⊂ I. For θ ∈ J , let T erg

θ be the set of all µ ∈ T erg such that limt→∞ µS (t) = νθ. (Typically,
{νθ : θ ∈ J} is the set of extreme points of I ∩ T erg.)

(A4) There is a random variable Θ on IG, called the macroscopic variable, and functions θ̂m : IGn → J that
are estimators of Θ, such that for all µ ∈ T erg the following limit exists (saying that θ̂ is a consistent
estimator of θ):

(B.2) lim
n→∞

θ̂n(Z|Gn ) = Θ(Z), in law under µ.

Furthermore, if Θ(Z) = θ µ-a.s., then µ ∈ T erg
θ and, for all µ ∈ T ,

(B.3) µ =

∫
J

Γ(dθ) µθ,

where Γ is the law of Θ(Z) with respect to µ, and µθ ∈ T
erg
θ , θ ∈ J .

III: Time scale. In the third set of assumptions we impose certain regularity properties on θ̂n, and identify
a fundamental time scale βn connected with θ̂n. We write θ̄n(t) for θ̂n(Zn(t)).

(A5) Let (Tn)n∈N be any sequence tending to infinity. Suppose that L[Zn(0)] ∈ Tn, and L[Z(0)] ∈ T erg
θ for

some θ ∈ J . Suppose further that, along some subsequence (nk)k∈N,

(B.4) lim
k→∞
L

[
Znk

(
Tnk

)]
= L[Z].

Then

(B.5) lim
k→∞
L

[
θ̂nk

(
Znk (Tnk )

)]
= L [Θ(Z)] .

(A6) There is a sequence (βn)n∈N tending to infinity such that if L[Zn(0)] ∈ Tn and limn→∞L[Zn(0)] =

L[Z(0)] ∈ T erg, then

– the family of measures L[θ̂n(sβn)s≥0] on D(J , [0,∞)) is tight,

– all weak limit points (Θ(s))s≥0 have the property that s 7→ E[ f (Θ(s))] is continuous for all
bounded continuous functions f on J .

We want that βn is proper, i.e., leads to a non-trivial limit process. This has to be checked afterwards.

IV: Compactness and strengthened convergence properties. In the fourth set of assumptions we impose
compactness and require a strengthened form of (A1), as well as a strengthened Feller property for (Z(t))t≥0.

(A7) Fix T < ∞, and let (tn)n∈N satisfy 0 ≤ tn ≤ Tβn for n ∈ N. IfL[Zn(0)] ∈ T n, then the familyL(Zn(tn)),
n ∈ N, is tight and all its weak limit points belong to T .

(A8) If µ, µn ∈ T
erg are such that limn→∞ µn = µ and limn→∞ tn = ∞, then

(B.6) lim
n→∞

[µnS (tn) − µS (tn)] = 0.
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(A9) There is a sequence (Ln)n∈N tending to infinity such that if 0 ≤ tn ≤ Ln and µn ∈ Tn, then

(B.7) lim
n→∞

[µnS n(tn) − (φ̃nµn)S (tn)] = 0.

Assumptions (A8) and (A9) should be viewed as statements about uniformity of the ergodic theorem in the
initial measure and uniformity in the approximation of the infinite system by finite systems for large times.
The most difficult assumptions to check are (A6), (A8) and (A9), and (A10) below.

Results. We are now ready to state our abstract theorem.

Theorem B.2. [Abstract theorem] Suppose that Z(t),Zn(t), n ∈ N, satisfy (A1)–(A9), and that L(Z(0)) ∈
Tθ for some θ ∈ J . Let (nk)k∈N be any sequence such that

(B.8) lim
k→∞
L

[(
θ̂nk (sβnk )

)
s≥0

]
= L [(Θ(s))s≥0] in D (J , [0,∞)) .

For any s ∈ (0,∞), if T (n)→ ∞ and T (n)/βn → s as n→ ∞, then

(B.9) lim
k→∞
L

[
Znk

(
sT (nk)

)]
=

∫
J

P(Θ(s) ∈ dθ) νθ,

where P is the law of (Θ(s))s≥0.

Note that, because of (A6), sequences satisfying (B.8) exist. Suppose that we add the assumption:

(A10) The weak limit in (B.8) is unique.

Then the finite-systems scheme holds as claimed. The way we are able to check (A10) is as follows.

Corollary B.3. [Verification of (A10)] If a weak limit point of L[(θ̂nk (sβnk ))s≥0] as k → ∞ satisfies a
well-posed martingale problem, independently of (nk)k∈N, then (B.9) holds and L[(θ̂n(sβn))s≥0] converges
as n→ ∞ to the solution of this martingale problem.

Once we have checked (A1)–(A10), we will want to verify that the macroscopic time scale βn is proper,
i.e., at time sβn the finite system locally converges to νΘ(s), the equilibrium of the infinite system with density
Θ(s), where (Θ(s))s≥0 is a non-trivial random process with cadlag paths hitting the traps of the evolution as
s→ ∞, which in our models are 0 or 1.

C Fraction of time spent in the active state
In this appendix we show that, in the limit as M → ∞, the fraction of time spent in the active state until
time Mβ is � fM with

(C.1) fM =
1

1 +
∑

0≤m≤M Km
.

Because the transitions into and out of the seed-bank do not depend on the location of the Markov process,
it suffices to look at the Markov process projected onto E = {A, (Dm)N0 }. Transitions from dormant states
with colour > M occur at rate O(M−β) as M → ∞. Hence these transitions may be ignored, at the cost of a
finite correction factor, so that we only need to look at the projection onto CM = {A, (Dm)0≤m≤M}.

Let (Uk)k∈N be the discrete-time Markov chain on CM with transition probabilities 1 for Dm → A and
pm for A→ Dm with

(C.2) pm =
Kmem∑

0≤`≤M K`e`
, 0 ≤ m ≤ M.

The transition times are equal in distribution to

(C.3) A→ (Dm)0≤m≤M :
1∑

0≤m≤M Kmem
Z, Dm → A :

1
em

Z′,
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with Z,Z′ independent Exp(1) random variables. For n ∈ N, let T A
n and T D

n denote the total active time
and dormant time after n transitions out of and into A, when the Markov process starts in A. Then, in
distribution,

(C.4) T A
n =

n−1∑
k=0

1∑
0≤m≤M Kmem

Zk, T D
n =

n−1∑
k=0

1
eMk

Z′k,

where (Zk)k∈N0 , (Z
′
k)k∈N0 are sequences of independent Exp(1) random variables. Since CM is finite, by (C.2)

we have

(C.5) lim
n→∞

1
n

n−1∑
k=0

δUk =
∑

0≤m≤M

pmδm in probability.

Hence

(C.6) lim
n→∞

1
n

T A
n = µA, lim

n→∞

1
n

T D
n = µD in probability,

with

(C.7) µA =
1∑

0≤m≤M Kmem
, µD =

1∑
0≤m≤M Kmem

∑
0≤m≤M

Km.

Note that

(C.8) µD = µA
∑

0≤m≤M

Km.

Consequently,

(C.9) lim
n→∞

T A
n

T A
n + T D

n
=

1
1 +

∑
0≤m≤M Km

= fM in probability.

Hence a fraction fM of time is spent in the active state, where we note that until time Mβ many transitions
A→ Dm occur for most 0 ≤ m ≤ M, so that the law of large numbers in (C.5) applies, at the cost of a finite
correction factor.

D Speculations about clustering for fast growing seed-bank
In this appendix we speculate about how partial and complete clustering may come about in Model 2 with
ρ = ∞ in regime (II). We will argue that both on time scale β∗∗n and time scale β∗n the macroscopic variable
moves towards fixation according to a jump process, i.e., it follows a piecewise constant path that ends in
0 or 1. This is different from the diffusive clustering found in Model 1, Model 2 with ρ < ∞ and Model 2
with ρ = ∞ in regime (I) (see Fig. 5).

D.1 Partial clustering
Step 1: Hazard. Let I(t) ∈ {0, 1} be the indicator of the event that two independent Markov processes
with transition kernel b(2),n(·, ·), starting at a distance of order n, at time t occupy the same colony in Gn and
are jointly active. Let

(D.1) ζ0 = 0, η0 = 0, ζk = inf{t > ηk−1 : I(t) = 1}, ηk = inf{t > ζk : I(t) = 0}, k ∈ N,

be the successive times at which joint active occupancy is switched on and off. The successive intervals of
joint active occupancy are (∆k)k∈N with ∆k = [ζk, ηk), and so I(t) = 1 if and only if t ∈ ∪k∈N∆k. The number
of completed intervals up to time t is

(D.2) K(t) = sup{k ∈ N : ηk ≤ t}.
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We are interested in the total joint active occupancy time up to time t,

(D.3) C(t) =

K(t)∑
k=1

|∆k | + (t − ζK(t)+1) 1{ζK(t)+1<t}.

This is the total time up to time t during which the two Markov processes coalesce at rate d. For t → ∞
the boundary term is negligible (because (t − ζK(t)+1) 1{ζK(t)+1<t} ≤ |∆K(t)+1|). Therefore, the scaling of C(t) is
determined by the scaling of K(t) and the law of (|∆k |)k∈N. However, in order to find the scaling of C(t) it
is better to look at a larger time scale. Indeed, what happens is that the two Markov processes experience
bursts of joint active occupancy times until they separate and meet again. These joint activity time intervals
come in rapid succession, until the two Markov processes move far apart and loose track of each other.
After that they both need to make order |Gn| steps until they meet again. In view of this scale separation,
we divide time into two parts: the long stretches between the burst and the short stretches during the burst.

Step 2: Bursts. We begin by focussing on the long stretches. Let us discretise time and consider a renewal
process ζ = (0, ζ1, ζ1+ζ2, . . .) onN0 with i.i.d. increments such that P(ζ1 < ∞) = 1 and P(ζ1 = n) ∼ Cn−(1+γ),
n → ∞. Let ζ′ be an independent copy of ζ, and put G = ζ ∩ ζ′. Then also G is a renewal process on N0,
written G = (0,G1,G1 + G2, . . .). It was shown in [AB16, Theorems 1.3 and 1.5] that, for γ ∈ ( 1

2 , 1),

(D.4) P(G1 < ∞) = 1, P(G1 = n) ∼ C∗n−(1+γ∗), n→ ∞,

with

(D.5) γ∗ = 2γ − 1, C∗ = πC2 [
γ∗ sin(πγ∗)

] [
γ sin(πγ)

]−2
.

Returning to continuous time, we see that (D.4)–(D.5) tell us that if we ignore the time lapses during which
the two Markov processes are active (which are negligible because they have finite mean), then the time
lapses U1,U2, . . . between the successive times at which they become jointly active are i.i.d. with

(D.6) P(U1 < ∞) = 1,
P(U1 ∈ dt)

dt
∼ C∗t−(1+γ∗), t → ∞.

However, by (2.3), on average at only one out of |Gn| such times the two Markov processes occupy the same
site. Hence, the time lapses V1,V2, . . . between the successive times at which they become jointly active at
the same colony are i.i.d. with

(D.7) P(V1 ∈ dt) =
∑
k∈N

1
|Gn|

[
1 −

1
|Gn|

]k−1

P

 k∑
`=1

U` ∈ dt

 .
Putting t = s|Gn|

1/γ∗ , k = s̄|Gn| and letting n→ ∞, we obtain

(D.8) lim
n→∞

P(|Gn|
−1/γ∗V1 ∈ ds)

ds
=

∫ ∞

0
ds̄ e−s̄ lim

n→∞

P(|Gn|
−1/γ∗ ∑s̄|Gn |

`=1 U` ∈ ds)
ds

.

It follows from (D.6) that

(D.9) lim
N→∞

L

N−1/γ∗
N∑
`=1

U`

 = L[U∗]

with U∗ a positive stable law random variable with exponent γ∗. Hence, putting T n
1 = |Gn|

−1/γ∗V1 = V1/β
∗∗
n ,

we find that

(D.10) lim
n→∞

P(T n
1 ∈ ds)
ds

=

∫ ∞

0
ds̄ e−s̄ P(s̄1/γ∗U∗ ∈ ds)

ds
.

This says that T n
1 converges in distribution to a random variable T1 whose density is given by the right-hand

side of (D.10). In terms of the Laplace transform, we get

(D.11)

E[e−λT1 ] =

∫ ∞

0
ds e−λs P(T1 ∈ ds) =

∫ ∞

0
ds e−λs

∫ ∞

0
ds̄ e−s̄ P(s̄1/γ∗U∗ ∈ ds)

=

∫ ∞

0
ds̄ e−s̄ E

[
e−λs̄1/γ∗U∗

]
=

∫ ∞

0
ds̄ e−s̄ e−D(λs̄1/γ∗ )γ

∗

=

∫ ∞

0
ds̄ e−s̄ e−s̄Dλγ

∗

= (1 + Dλγ
∗

)−1, λ > 0,
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for some D ∈ (0,∞) depending on C∗.

Step 3: Short stretches. Next we turn to the short stretches. In the limit as n → ∞, the total joint active
occupancy times during the successive bursts, which we denote by W1,W2, . . ., are equal in distribution to
the total joint active occupancy time of two Markov processes on G starting from the origin. Indeed, for a
burst to end the two Markov processes must move apart and loose track of each other (as they do on G). It
is only after they meet again (as they do on Gn) and are jointly active that the next burst starts, which takes
a much longer time than the typical time of a burst. Thus, the law of W1 is the same as that of the total
joint active occupancy times we analyzed in [GHO22b, Section 6.2]. In particular, E[W1] = I with I the
integral in [GHO22b, Eq. (5.19)], which by [GHO22b, Eq. (6.25)] is finite because Iâ,γ < ∞ in the regime
of coexistence (recall (1.42)).

s
s s

s s

s

H(s)

T1 T2 T3 T4 T5

W1

W2

W3

W4

Figure 7: Accumulation of the joint activity time s 7→ H(s) of two Markov processes in the finite system on time scale
β∗∗n in the limit as n → ∞. The time lapses T1,T2, . . . are i.i.d. with law given by (D.11), the increments W1,W2, . . . are
i.i.d. with law given by the total joint activity time of two Markov processes in the infinite system.

Step 4: Towards partial clustering. In view of Steps 1–3 we expect that, for Ln = o((β∗∗n )1/β),

(D.12) lim
n→∞
L
[(
θ̂Ln,n(sβ∗∗n )

)
s>0

]
= (Θ∗(s))s>0

with

(D.13) Θ∗(s) = Θ(H(s)), s > 0,

where (Θ(s))s>0 is the diffusion on [0, 1] defined in (2.32), with diffusion function F g. Thus, partial clus-
tering is achieved via i.i.d. random jumps W1,W2, . . . occurring after i.i.d. random time lapses T1,T2, . . ..

D.2 Complete clustering
We expect the exact same behaviour as in (D.12) for (θ̂Mn,n(sβ∗n))s>0 on time scale β∗n, modulo a constant that
multiplies T1,T2, . . . and depends on the parameters controlling the deep seed-banks (recall in (1.39)). The
hazard at time s is again growing in a bursty manner, now for Markov processes that start from the deepest
seed-banks.
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