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ON THE POSITIVITY OF TWISTED L2-TORSION FOR 3-MANIFOLDS

JIANRU DUAN

Abstract. For any compact orientable irreducible 3-manifold N with empty or incompressible

toral boundary, the twisted L2-torsion is a non-negative function defined on the representation
variety Hom(π1(N), SL(n,C)). The paper shows that if N has infinite fundamental group, then
the L2-torsion function is strictly positive. Moreover, this torsion function is continuous when
restricted to the subvariety of upper triangular representations.

1. Introduction

Let N be a compact orientable irreducible 3-manifold with empty or incompressible toral bound-

ary. The L2-torsion of N is a numerical topological invariant of N that equals exp(Vol(N)
6π ), where

Vol(N) is the simplicial volume of N , see [Lüc02, Theorem 4.3]. The idea of twisting is to use a
linear representation of π1(N) to define more L2-torsion invariants. The first attempt is made by
Li and Zhang [LZ06b, LZ06a] in which they defined the L2-Alexander invariants for knot com-
plements, making use of the one dimensional representations of the knot group. Later Dubois,
Friedl and Lück [DFL16] introduced the L2-Alexander torsion for 3-manifolds which recovers the
L2-Alexander invariants. A recent breakthrough is made independently by Liu [Liu17] and Lück
[Lüc18] that the L2-Alexander torsion is always positive, and more interesting properties of the
L2-Alexander torsion are revealed in [Liu17] and [FL19], for example, we now know that the
L2-Alexander torsion is continuous and its limiting behavior recovers the Thurston norm of N .

Generally, let Rn(π1(N)) := Hom(π1(N), SL(n,C)) be the representation variety. One wishes to
define L2-torsion twisted by any representation ρ ∈ Rn(π1(N)), and we have this twisted L2-torsion
function abstractly defined on the representation variety of π1(N):

ρ 7−→ τ (2)(N, ρ) ∈ [0,+∞), ρ ∈ Rn(π1(N)).

A technical obstruction to defining a reasonable L2-torsion is that the corresponding L2-chain
complex must be weakly L2-acyclic and of determinant class (see definition 2.3). If either condition
is not satisfied, we define the L2-torsion to be 0 by convention.

It is natural to question the positivity and continuity of this function. The first result of this
paper is the following:

Theorem 1.1. Let N be a compact orientable irreducible 3-manifold with empty or incompressible
toral boundary. Suppose N has infinite fundamental group, then the twisted L2-torsion τ (2)(N, ρ)
is positive for any group homomorphism ρ : π1(N) → SL(n,C).

When N is a graph manifold the twisted L2-torsion function is explicitly computed in Theorem
4.1. Other cases are dealt with in Theorem 4.5 where we only need to consider fibered 3-manifolds
thanks to the virtual fibering arguments. We carefully construct a CW-structure for N as in
[DFL16] and observe that the matrices in the corresponding twisted L2-chain complex are in a
special form so that we can apply Liu’s result [Liu17, Theorem 5.1] to guarantee the positivity of
the Fuglede-Kadison determinant.

For continuity of the twisted L2-torsion function, we have the following partial result:

Theorem 1.2. Let N be a compact orientable irreducible 3-manifold with empty or incompressible
toral boundary. Suppose N has infinite fundamental group. Define Rt

n(π1(N)) to be the subvariety
1
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2 JIANRU DUAN

of Rn(π1(N)) consisting of upper triangular representations. Then the twisted L2-torsion function

ρ 7−→ τ (2)(N, ρ)

is continuous with respect to ρ ∈ Rt
n(π1(N)).

The continuity of the twisted L2-torsion function in general is open. It is mainly because the
Fuglede-Kadison determinant of an arbitrary matrix over C[π1(N)] is very difficult to compute.
However, the L2-torsion twisted by upper triangular representations are relatively simpler because
we can reduce many problems to the one-dimensional case, which is well studied under the name
of the L2-Alexander torsion (see section 5). We remark that the work of Benard and Raimbault
[BR22] based on the strong acyclicity property by Bergeron and Venkatesh [BV13] shows that
the twisted L2-torsion function is positive and real analytic near any holonomy representation
ρ0 : π1(N) → SL(2,C) of a hyperbolic 3-manifold N .

The proof relies on the continuity of L2-Alexander torsion with respect to the cohomology
classes, which is conjectured by [Lüc18, Chapter 10]. This is done by introducing the concept of
Alexander multi-twists (see section 5). One can similarly define the “multi-variable L2-Alexander
torsion” and our argument essentially shows that the multi-variable function is multiplicatively
convex (compare Theorem 5.7), generalizing [Liu17, Theorem 5.1]. This then applies to show the
continuity as desired.

The organization of this paper is as follows. In section 2, we introduce the terminology of this
paper and some algebraic facts. In section 3, we define the twisted L2-torsion for CW complexes
and state some basic properties. In section 4 we prove Theorem 1.1 in two steps: first for graph
manifold, then for hyperbolic or mixed manifold. In section 5, we begin with the L2-Alexander
torsion and then prove Theorem 1.2.

Acknowledgement. The author wishes to thank his advisor Yi Liu for guidance and many
conversations.

2. Notations and some algebraic facts

In this section we define the twisting functor and introduce L2-torsion theory. The reader can
refer to [Lüc18] where discussions are taken on in a more general setting.

2.1. Twisting CG-modules via SL(n,C) representations. Let G be a finitely generated group
and let CG be its group ring. In this paper our main objects are finitely generated free left CG-
modules with a preferred ordered basis. We will abbreviate it as based CG-modules unless otherwise
stated. A natural example of a based CG-module is CGm as a free left CG-module of rank m, with
the natural ordered basis {σ1, · · · , σm} where σi is the unit element of the ith direct summand.
Any based CG-module is canonically isomorphic to CGm for some non-negative integer m and this
identification is used throughout our paper.

We fix V throughout this paper to be an n-dimensional complex vector space with a fixed choice
of basis {ei}ni=1. Let ρ : G→ SL(n,C) be a group homomorphism, then V can be viewed as a left
CG-module via ρ, in the following way:

γ · ei =
n∑

j=1

ρ(γ−1)i,j · ej , γ ∈ G

where ρ(γ−1) ∈ SL(n,C) is a square matrix. We extend this action C-linearly so that V is a
left CG-module. In other words, left action of γ corresponds to right multiplication to the row
coordinate vector of the matrix ρ(γ−1).

We are interested in twisting a based CG-module via ρ. In literature, there are two different
ways to twist a based CG-module, namely the “diagonal twisting” and the “partial twisting”
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(compare [Lüc18]). They are naturally isomorphic. We only consider the diagonal twisting in this
paper.

Definition 2.1. Recall that CGm is a based CG-module with a natural basis {σi}, i = 1, · · · ,m.
We define (CGm ⊗C V )d to be the CG-module with diagonal CG-action, i.e.

(CGm ⊗C V )d
set
= CGm ⊗C V, g · (u⊗ v) = gu⊗ gv

for any g ∈ G, u ∈ CGm and v ∈ V , and then extend C-linearly to define a CG-module structure.

With the definition above, we can see that

(CGm ⊗C V )d =

m⊕

i=1

(CG⊗C V )d

is a based CG-module with a basis

{σ1 ⊗ e1, σ1 ⊗ e2, · · · , σ1 ⊗ en, σ2 ⊗ e1, · · · , σm ⊗ en}.

Let A be the category whose objects are finitely generated free left CG-modules with a preferred
ordered basis and whose morphisms are CG-linear homomorphisms. We consider the following
“diagonal twisting” functor

D(ρ) : A −→ A

which sends any object M to the based CG-module (M ⊗C V )d and sends any morphism f to
D(ρ)f := f ⊗C idV. The following proposition describes how matrices behave under the twisting
functor.

Proposition 2.2. Let ρ : G → SL(n,C) be any group homomorphism. Suppose that a homomor-
phism between based CG-modules

f : CGr −→ CGs

is presented by a matrix (Λi,j) over CG of size r × s, i.e., let

{σ1, · · · , σr}, {τ1, · · · , τs}

be the natural basis of CGr and CGs respectively, we have

f(σi) =

s∑

j=1

Λi,jτj , i = 1, · · · , r.

We form a new matrix Ω of size nr× ns by replacing each entry Λi,j with an n× n square matrix
Λi,j · ρ(Λi,j). Then Ω is a matrix presenting the diagonal twisting morphism D(ρ)f , under the
natural basis

{σ1 ⊗ e1, · · · , σ1 ⊗ en, σ2 ⊗ e1, · · · , σr ⊗ en},

{τ1 ⊗ e1, · · · , τ1 ⊗ en, τ2 ⊗ e1, · · · , τs ⊗ en}

of the diagonal twisting based CG-modules D(ρ)(CGr) and D(ρ)(CGs) respectively.

Proof. Let Φ = (Φi,j), i = 1, · · · , r, j = 1, · · · , s be a block matrix of size nr×ns, with each entry
Φi,j an n×n matrix, such that Φ is the matrix presenting D(ρ)f under the natural basis. We only
need to verify that Φi,j = Λi,j · ρ(Λi,j). The submatrix Φi,j can be characterized as follows. Let
πj : D(ρ)(CGr) → D(ρ)(CG) be the projection to the jth direct component which is spanned by
{(σj ⊗ e1)d, · · · , (σj ⊗ en)d}. Then the following holds:

πj ◦ D(ρ)f



(σi ⊗ e1)d

...
(σi ⊗ en)d


 = Φi,j



(τj ⊗ e1)d

...
(τj ⊗ en)d


 .
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On the other hand, for any k = 1, · · · , n, we have

πj ◦ D(ρ)f((σi ⊗ ek)d) = πj

(
s∑

l=1

(Λi,lτl ⊗ ek)d

)

= πj

(
s∑

l=1

Λi,l · (τl ⊗ Λ−1
i,l ek)d

)

= Λi,j · (τj ⊗ Λ−1
i,j ek)d

= Λi,j ·
n∑

l=1

ρ(Λi,j)k,l(τj ⊗ el)d.

This shows that Φi,j = Λi,j · ρ(Λi,j) and hence Φ = Ω. �

We now mention that the twisting functor can be naturally generalized to the category of based
CG-chain complexes. More explicitly, let C∗ be a based CG-chain complex, i.e.

C∗ = (· · · −→ Cp+1
∂p+1

−→ Cp
∂p
−→ Cp−1 −→ · · · )

is a chain of based CG-modules with CG-linear connecting morphisms {∂p} such that ∂p−1◦∂p = 0.
We can apply the functor D(ρ) to obtain a new CG-chain complex

D(ρ)C∗ = (· · · −→ D(ρ)Cp+1
D(ρ)∂p+1

−→ D(ρ)Cp
D(ρ)∂p
−→ D(ρ)Cp−1 −→ · · · )

with connecting homomorphisms {D(ρ)∂p}. If f∗ is a chain map between based CG-chain com-
plexes, the twisting chain map D(ρ)f∗ is a CG-chain map between the corresponding twisted chain
complexes. So D(ρ) generalizes to be a functor of the category of based CG-chain complexes.

2.2. L2-torsion theory. Let

l2(G) =
{∑

g∈G

cg · g
∣∣∣ cg ∈ C,

∑

g∈G

|cg|
2 <∞

}

be the Hilbert space orthonormally spanned by all elements in G. Since G is finitely generated,
l2(G) is a separable Hilbert space with isometric left and right CG-module structure. We denote
by N (G) the group von Neumann algebra of G which consists of all bounded Hilbert operators of
l2(G) that commute with the right CG-action. We will treat l2(G) as a left N (G)-module and a
right CG-module. The l2-completion of a based CG-chain complex C∗ is then a Hilbert N (G)-chain
complex defined as

l2(G)⊗CG C∗

and the l2-completions of the connecting homomorphism ∂ and chain map f are id⊗CG∂ and
id⊗CGf respectively. Note that each chain module of l2(G) ⊗CG C∗ is simply a direct sum of
l2(G):

l2(G)⊗CG Cp = l2(G) ⊗CG CGrp = l2(G)rp

where rp is the rank of Cp.
The l2-completion process converts a based CG-chain complex into a finitely generated, free

Hilbert N (G)-chain complex.

Definition 2.3. A finitely generated, free Hilbert N (G)-chain complex is called weakly acyclic if
the l2-Betti numbers are all trivial. A finitely generated, free Hilbert N (G)-chain complex is of
determinant class if all the Fuglede-Kadison determinants of the connecting homomorphisms are
positive real numbers.
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Definition 2.4. Let C∗ be a finitely generated, free Hilbert N (G)-chain complex. Suppose C∗ is
of finite length, i.e., there exists an integer N > 0 such that Cp = 0 for |p| > N . Furthermore, if
C∗ is weakly acyclic and of determinant class, we define the L2-torsion of C∗ to be the alternating
product of the Fuglede-Kadison determinants of the connecting homomorphisms:

τ (2)(C∗) =
∏

p∈Z

(detN (G) ∂p)
(−1)p .

Otherwise, we artificially set τ (2)(C∗) = 0.

We recommend [Lüc02] for the definition of the L2-Betti number and the Fuglede-Kadison
determinant. We remark that our notational convention follows [DFL15, DFL16, Liu17], and the
exponential of the torsion in [Lüc02, Lüc18] is the multiplicative inverse of our torsion.

Let A be a p× p matrix over N (G). The regular Fuglede-Kadison determinant of A is defined
to be

detrNG(A) =

{
detN (G)(A), if A is full rank of determinant class,
0, otherwise.

We will need the following two lemmas in order to do explicit calculations, the proof can be found
in [DFL15, Lemma 2.6, Lemma 3.2] combining with the basic properties of the Fuglede-Kadison
determinant (see [Lüc02, Theorem 3.14]).

Lemma 2.5. Let Zk be a free Abelian subgroup of G generated by z1, · · · , zk. Let A be a p × p
matrix over CZk. Identify CZk with the k-variable Laurent polynomial ring C[z±1 , · · · , z

±
k ]. Denote

by p(z1, · · · , zk) the ordinary determinant of A, then

detrNG(A) = Mah(p(z1, · · · , zk))

where Mah(p(z1, · · · , zk)) is the Mahler measure of the polynomial p(z1, · · · , zk).

Lemma 2.6. Let

D∗ = (0 −→ CGj
C
−→ CGk

B
−→ CGk+l−j

A
−→ CGl −→ 0)

be a complex. Let L ⊂ {1, · · · , k + l − j} be a subset of size l and J ⊂ {1, · · · , k} a subset of size
j. We write

A(J) := rows in A corresponding to J .

B(J, L) := result of deleting the columns of B corresponding to J

and deleting the rows corresponding to L.

C(J) := columns of C corresponding to L.

View A,B,C as matrices over N (G). If detrNG(A(J)) 6= 0 and detrNG(C(L)) 6= 0, then

τ (2)(l2(G) ⊗CG D∗) = detrNG(B(J, L)) · detrNG(A(J))
−1 · detrNG(C(L))

−1.

3. Twisted L2-torsion for CW complexes

Let X be a finite CW complex with fundamental group G. Denote by X̂ the universal cover of
|X | with the natural CW complex structure coming from X . Choose a lifting σ̂i for each cell σi in

the CW structure of X . The deck group G acts freely on the cellular chain complex of X̂ on the

left, which makes the C-coefficient cellular chain complex C∗(X̂) a based CG-chain complex with
basis {σ̂i}. Recall that ρ : G→ SL(n,C) is any group homomorphism.

For future convenience, we introduce the concept of admissible triple for higher dimensional
linear representations, generalizing the admissibility condition in [DFL15].
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Definition 3.1 (Admissible triple). Let γ : G→ H be a homomorphism to a countable group H.
We say that (G, ρ; γ) forms an admissible triple if ρ : G → SL(n,C) factors through γ, i.e., for
some homomorphism ψ : H → SL(n,C), the following diagram commutes:

G
γ

//

ρ
##❍

❍

❍

❍

❍

❍

❍

❍

❍

H

ψ

��

SL(n,C)

Definition 3.2. Let (G, ρ; γ) be an admissible triple. Consider l2(H) as a left Hilbert N (H)-
module, and a right CG-module induced by γ. Define the L2-chain complex of X twisted by (G, ρ; γ)
to be the following Hilbert N (H)-chain complex

C
(2)
∗ (X, ρ; γ) := l2(H)⊗CG D(ρ)C∗(X̂).

We define the L2-torsion of X twisted by (G, ρ; γ) as

τ (2)(X, ρ; γ) := τ (2)(C
(2)
∗ (X, ρ; γ)).

Proposition 3.3. The definition of τ (2)(X, ρ; γ) with respect to any admissible triple (G, ρ; γ) does
not depend on the order or orientation of the basis {σi}, nor the choice of lifting {σ̂i}. Moreover,
let ρ′ : G → SL(n,C) be conjugate to ρ, i.e., there exists a matrix T ∈ SL(n,C), such that
ρ′ = T · ρ · T−1. Then (G, ρ′; γ) is also an admissible triple and τ (2)(X, ρ; γ) = τ (2)(X, ρ′; γ).

Proof. The property of being weakly L2-acyclic does not depend on the choices in the statement.
We only need to analyze how these choices change the Fuglede-Kadison determinant of the con-
necting morphisms.

Abbreviate by C∗(X̂, ρ) := D(ρ)C∗(X̂;C) the diagonal twisting chain complex. Suppose the

based cellular chain complex of X̂ has the form

C∗(X̂) = (· · · −→ CGri+1
∂i+1

−→ CGri
∂i−→ CGri−1 −→ · · · )

where ∂i is an ri×ri−1 matrix over CG for all i, then the diagonal twisting chain complex C∗(X̂, ρ)
has the form

C∗(X̂, ρ) = (· · · −→ CGnri+1
∂ρ
i+1

−→ CGnri
∂ρ
i−→ CGnri−1 −→ · · · )

where ∂ρi = D(ρ)∂i is an nri × nri−1 matrix over CG for all i. An explicit formula for ∂ρi is
presented in Proposition 2.2. Then the L2-chain complex of X twisted by (G, ρ; γ) has the form

C
(2)
∗ (X, ρ; γ) = (· · · −→ l2(H)nri+1

γ(∂ρ
i+1

)
−→ l2(H)nri

γ(∂ρ
i
)

−→ l2(H)nri−1 −→ · · · ),

the notation γ(∂ρi ) means applying the group homomorphism γ to each monomial of any entry of
the matrix ∂ρi , resulting in a matrix over CH ⊂ N (H).

We now analyze how the choices affect the value of τ (2)(X, ρ; γ). If the basis of Ci(X) is
permuted, and the orientations are changed, then γ(∂ρi ) and γ(∂ρi+1) change by multiplying a
permutation matrix, with entries ±1.

If one choose another lifting gσ̂ instead of σ̂ for some g ∈ G, then γ(∂ρi ) and γ(∂
ρ
i+1) change by

multiplying a block matrix in the following form:



In×n

. . .

ρ(g)±1 · In×n

. . .

In×n



.
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If one replace ρ by ρ′ = T · ρ · T−1 for a matrix T ∈ SL(n,C), the corresponding connecting
homomorphism is in the following form:

γ(∂ρ
′

i ) =



T

. . .

T


 γ(∂ρi )



T−1

. . .

T−1




In all cases, the regular Fuglede-Kadison determinant of γ(∂ρi ) and γ(∂ρi+1) are unchanged by
basic properties of Fuglede-Kadison determinant, see [Lüc02, Theorem 3.14]. �

Note that the “moreover” part of the previous lemma tells us that we don’t need to worry about
the different choices of the base point when identifying the fundamental group π1(X) with G.

Lemma 3.4. Let T be a two-dimensional torus. For any admissible triple (T, ρ : π1(T ) →
SL(n,C); γ : π1(T ) → H), if im γ is infinite, then

τ (2)(T, ρ; γ) = 1.

Proof. We consider the standard CW structure for T constructed by identifying pairs of sides of a
square. Let P be the 0-cell. Let E1, E2 be the 1-cells. Let

e1 = [E1] ∈ π1(T ), e2 = [E2] ∈ π1(T ),

then π1(T ) is the free Abelian group generated by e1, e2. There is a 2-cell σ whose boundary is

the loop E1E2E
−1
1 E−1

2 . Let T̂ be the universal covering of T with the induced CW structure. It
is easy to see that the L2-chain complex of T twisted by (π1(T ), ρ; γ) is

C
(2)
∗ (T, ρ; γ) = (0 −→ l2(H)〈σ〉 ⊗C V

γ(∂ρ
2
)

−→ l2(H)〈E1, E2〉 ⊗C V
γ(∂ρ

1
)

−→ l2(H)〈P 〉 ⊗C V −→ 0)

in which

γ(∂ρ2 ) =
(
In×n − γ(e2)ρ(e2) −In×n + γ(e1)ρ(e1)

)
, γ(∂ρ1 ) =

(
γ(e1)ρ(e1)− In×n

γ(e2)ρ(e2)− In×n

)
.

We assume without loss of generality that γ(e1) has infinite order. Set p(z) := det(zρ(e1)− In×n)
as a polynomial of indeterminant z. Then by Lemma 2.5

detrNH(γ(e1)ρ(e1)− In×n) = Mah(p(z)) 6= 0.

The conclusion follows from [DFL15, Lemma 3.1] which is a formula analogous to Lemma 2.6 but
applies to shorter chain complexes. �

There is another way to define the twisted L2-torsions, following Lück [Lüc18]. Let H be a

finitely generated group. Recall that X̃ is called a finite free H-CW complex if X̃ is a regular

covering space of a finite CW complex X , with deck transformation group H acting on X̃ on the

left. Choose an H-equivariant CW structure for X̃ , and choose one representative cell for each

H-orbit, then the cellular chain complex C∗(X̃) becomes a based CH-chain complex. For any

group homomorphism φ : H → SL(n,C), we form the diagonal twisting chain complex D(φ)C∗(X̃)
(recall the definition of the twisting functor D in section 2). The φ-twisted L2-torsion of the H-CW

complex X̃ is defined to be

ρ
(2)
H (X̃, φ) := log τ (2)(l2(H)⊗CH D(φ)C∗(X̃)).

Note that ρ is a unimodular representation in our setting, this torsion does not depend on a specific

CH-basis for C∗(X̃) (compare Proposition 3.3). We point out in the following proposition that
both definitions of twisted L2-torsion are essentially the same.
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Proposition 3.5. Following the notations above. Let G be the fundamental group of X = H\X̃,
there is a natural quotient map γ : G→ H by covering space theory. It is obvious that (G,φ ◦ γ; γ)
is an admissible triple. Then we have

τ (2)(X,φ ◦ γ; γ) = exp ρ
(2)
H (X̃, φ).

Proof. Let X̂ be the universal covering space of X , with the natural CW structure coming from

X . Choose a lifting for each cell in X and then C∗(X̂) becomes a based CG-chain complex. It is
a pure algebraic fact that the two based CH-chain complexes are CH-isomorphic:

(*) D(φ)C∗(X̃) ∼= CH ⊗CG D(φ ◦ γ)C∗(X̂).

Indeed, the CH-chain complex CH ⊗CG D(φ ◦ γ)C∗(X̂) is obtained from

C∗(X̂) = (· · · −→ CGri+1
∂i+1

−→ CGri
∂i−→ CGri−1 −→ · · · )

by the following two operations:
(1) (the diagonal twist) firstly, replace every direct summand CG by its nth power CGn, replace

any entry Λi,j of the matrix ∂∗ by a block matrix Λi,jφ ◦ γ(Λi,j), as in Proposition 2.2, resulting

in a new matrix ∂φ◦γ∗ and then
(2) (tensoring with CH) replace every direct summand CG of the chain module by CH , and

apply γ to every entry of ∂φ◦γ∗ , resulting in a block matrix whose i, j-submatrix is γ(Λi,j)φ◦γ(Λi,j).

The resulting chain complex is exactly the chain complex D(φ)(CH ⊗CG C∗(X̂)) (this can be
seen by doing the above operations in the reversed order, thanks to the admissible condition).

Combining the well-known CH-isomorphism C∗(X̃) ∼= CH ⊗CG C∗(X̂) and then the isomorphism
(*) follows.

Finally, we tensor l2(H) on the left of both CH-chain complexes and the conclusion follows from
both taking L2-torsion. �

The following useful properties are obtained by translating the statements of [Lüc18, Theorem
6.7] into our terminology.

Lemma 3.6. Some basic properties of twisted-L2 torsions:
(1) G-homotopy equivalence.
Let X,Y be two finite CW complexes with fundamental group G. For any admissible triple

(G, ρ; γ), suppose there is a simple homotopy equivalence f : X → Y such that the induced homo-
morphism f∗ : G→ G preserves ker γ. Then we have

τ (2)(X, ρ; γ) = τ (2)(Y, ρ; γ).

(2) Restriction.

Let X be a finite CW complex with fundamental group G. Let X̃ be a finite regular cover of

X with the induced CW structure. Suppose π1(X̃) = G̃ ⊳G is a normal subgroup of index d. Let

ρ̃ : G̃→ SL(n,C) be the restriction of ρ : G→ SL(n,C). Then

τ (2)(X̃, ρ̃) = τ (2)(X, ρ)d.

(3) Sum formula.
Let X be a finite CW complex with fundamental group G and ρ : G→ SL(n,C) be a homomor-

phism. Let
i1 : X1 →֒ X, i2 : X2 →֒ X, i0 : X1 ∩X2 →֒ X

be subcomplex of X with X1 ∪X2 = X. Let

ρ1 = ρ|π1(X1), ρ2 = ρ|π1(X2), ρ0 = ρ|π1(X1∩X2)

be the restriction of ρ. If τ (2)(X1 ∩X2, ρ0; i0∗) 6= 0, then

τ (2)(X, ρ) = τ (2)(X1, ρ1; i1∗) · τ
(2)(X2, ρ2; i2∗)/τ

(2)(X1 ∩X2, ρ0; i0∗).
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4. Twisted L2-torsion for 3-manifolds

In the remaining of this paper, we will assume that N is a compact orientable irreducible 3-
manifold with empty or incompressible toral boundary. We denote by G the fundamental group
of N and assume G is infinite. It is well known that G is finitely generated and residually finite
(see [Hem87]). For any group homomorphism ρ : G → SL(n,C) and γ : G → H , we say (N, ρ; γ)
is an admissible triple if (G, ρ; γ) is. In this case, we define the twisted L2-torsion of (N, ρ; γ) by

τ (2)(N, ρ; γ) := τ (2)(X, ρ; γ)

where X is any CW structure for N . This definition does not depend on the choice of X , thanks to
Lemma 3.6. Indeed, if X,Y are two CW structures for N , denote by f : X → Y the corresponding
homeomorphism, then f is a simple homotopy equivalence by Chapman [Cha74, Theorem 1] and
certainly preserves ker γ. So we have τ (2)(X, ρ; γ) = τ (2)(Y, ρ; γ).

The remaining part of this section is devoted to the proof of Theorem 1.1.

4.1. Twisted L2-torsion for graph manifolds. We prove Theorem 1.1 for graph manifold N
with infinite fundamental group G.

Theorem 4.1. Suppose M is a Seifert-fibered piece of the graph manifold N . Let h ∈ π1(M) be
represented by the regular fiber of M . Let Λ be the product of all eigenvalues of ρ(h) whose modulus
is not greater than 1. Suppose the orbit space M/S1 has orbifold Euler characteristic χorb. Then

τ (2)(N, ρ) =
∏

M⊂N is a Seifert piece

Λχorb

Proof. This proof is a generalization of [BR22, Proposition 4.3]. Fix any Seifert-fibered piece M
of the JSJ-decomposition of N , then π1(M) is infinite as well. Suppose that M is isomorphic to a
model

M(g, b; q1/p1, · · · , qk/pk), k > 1, p1 · · · , pk > 0

following Hatcher [Hat07], more explicitly, take a surface of genus g with b boundary components,
namely E1, · · · , Eb, then drill out k-disjoint disks from it to form a new surface Σ with k additional
boundary circles F1, · · · , Fk. These k boundary circles correspond to k boundary tori of Σ ×
S1, namely T1, · · · , Tk, then M is obtained by a Dehn filling of slope (q1/p1, · · · , qk/pk) along
(T1, · · · , Tk) respectively. So we have

M = (Σ× S1) ∪T1
D1 ∪T2

· · · ∪Tk
Dk

in which Di is a solid torus whose meridian (0, 1)-curve is attached to the (qi, pi)-curve of Ti.
The orbit space can be viewed as a 2-dimensional orbifold, whose underlying topological space is a
surface Σg,b with k singularities of indices p1, · · · , pk respectively. The orbifold Euler characteristic
is

χorb = 2− 2g − b−
k∑

i=1

(1−
1

pi
).

More details can be found in [Sco83].
Retract Σ along the boundary circle Fk to an 1-dimensional complex X , it is a bunch of circles

with one common vertex P , and edges

A1, B1, · · · , Ag, Bg, E1, · · · , Eb, F1, · · · , Fk−1

where A1, B1, · · · , Ag, Bg come from the standard polygon representation of a closed surface Σg.
Suppose that Ai, Bi, Ei, Fi represents ai, bi, ei, fi in π1(M) respectively. Let H be the 1-cell of S1

representing h ∈ π1(M), then Σ × S1 is given the product CW structure, we collect the cells in
each dimension in the following:

{A1 ×H,B1 ×H, · · · , Ag ×H,Bg ×H,E1 ×H, · · · , Eb ×H,F1 ×H, · · · , Fk−1 ×H},
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{A1, B1, · · · , Ag, Bg, E1, · · · , Eb, F1, · · · , Fk−1, H}, {P}.

We have fpii h
qi = 1 for i = 1, · · · , k − 1 by the Dehn filling.

Denote by

κ : Σ× S1 →֒ N, ιi : Ti →֒ N, ζi : Di →֒ N, i = 1, · · · , k

the inclusion maps to the ambient manifold N . Our strategy is as follows: cut N along all JSJ-
tori and all tori {T1, · · · , Tk} that appears in each Seifert piece of the JSJ-decomposition of N as
above. By Lemma 3.4, the JSJ-tori do not contribute to the L2-torsion. Then by the sum formula
of Lemma 3.6, we have the following formula:

(1) τ (2)(N, ρ) =
∏

M⊂N is a Seifert piece

τ (2)(Σ× S1, ρ ◦ κ∗;κ∗)
∏k
i=1 τ

(2)(Di, ρ ◦ ζi∗; ζi∗)∏k
i=1 τ

(2)(Ti, ρ ◦ ιi∗; ιi∗)

It remains to calculate the terms appearing in Theorem 1.
Firstly the easiest part. Since ιi∗(π1(Ti)) has infinite order in G then the twisted L2-torsion of

the admissible triple (Ti, ρ ◦ ιi∗; ιi∗) is trivially 1 by Lemma 3.4.
We now compute τ (2)(Σ × S1, ρ ◦ κ∗;κ∗). Set π := π1(Σ × S1), the CW chain complex of the

universal cover Σ̂× S1 is

C∗(Σ̂× S1) = (0 −→ Cπ2g+b+k−1 ∂2−→ Cπ2g+b+k ∂1−→ Cπ
∂0−→ 0)

in which

∂2 =




1− h 0 · · · 0 ∗

0 1− h
...

...
...

. . . 0 ∗
0 · · · 0 1− h ∗



, ∂1 =




∗
...
∗

1− h


 .

Then the L2-chain complex of Σ× S1 twisted by (π, ρ ◦ κ∗;κ∗) is

C
(2)
∗ (Σ× S1, ρ ◦ κ∗;κ∗) = (0 −→ l2(G)2g+b+k−1 ∂ρ

2−→ l2(G)2g+b+k
∂ρ
1−→ l2(G)

∂0−→ 0)

in which

∂ρ2 =




In×n − hρ(h) 0 · · · 0 ∗

0 In×n − hρ(h)
...

...
...

. . . 0 ∗
0 · · · 0 In×n − hρ(h) ∗



, ∂ρ1 =




∗
...
∗

In×n − hρ(h)


 .

We have identified h with its image under κ∗ in π1(N) = G for notational convenience. If the mod-
ulus of all eigenvalues of ρ(h) are λ1, · · · , λn, by properties of regular Fuglede-Kadison determinant
and Lemma 2.5, 2.6, we know that

τ (2)(Σ× S1, ρ ◦ κ∗;κ∗) = detrNG(I
n×n − hρ(h))2g+b+k−2

= Mah(

n∏

r=1

(1− zλr))
2g+b+k−2

= Λ−(2g+b+k−2).

Then we compute τ (2)(Di, ρ◦ζi∗; ζi∗). It is easy to see that the generator of π1(Di) is represented
by hmifni

i , where (mi, ni) is a pair of integers such that mipi − niqi = 1. Then we have

τ (2)(Di, ρ ◦ ζi∗; ζi∗) = detrNG(I
n×n − hmifni

i · ρ(hmifni

i ))−1
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where h, fi are again viewed as elements in G. Since h and fi commute and are simultaneously

upper triangularisable, then the modulus of all eigenvalues of ρ(hmifni

i ) are λ
1/pi
1 , · · · , λ

1/pi
n . Note

that hmifni

i is an infinite order element, by Lemma 2.5 we have

detrNG(I
n×n − hmifni

i · ρ(hmifni

i )) = Mah(

n∏

r=1

(1− zλ1/pir )) = Λ−1/pi ,

and then τ (2)(Di, ρ ◦ ζi∗; ζi∗) = Λ1/pi .
Finally, combining the calculations above, we have

τ (2)(Σ× S1, ρ ◦ κ∗;κ∗)
∏k
i=1 τ

(2)(Di, ρ ◦ ζi∗; ζi∗)∏k
i=1 τ

(2)(Ti, ρ ◦ ιi∗; ιi∗)

= Λ
−(2g+b+k−2)+

∑
k
i=1

1
pi

= Λ
2−2g−b−

∑k
i=1

(1− 1
pi

)

= Λχorb .

And the conclusion follows from Theorem 1. �

4.2. Twisted L2-torsion for hyperbolic or mixed manifolds. In this part, we assume that N
is not a graph manifold, or equivalently, N contains at least one hyperbolic piece in its geometriza-
tion decomposition. Then N is either hyperbolic or so-called mixed. By Agol’s RFRS criterion for
virtual fibering [Ago08] and the virtual specialness of 3-manifolds having at least one hyperbolic
piece [AGM13, PW18], we can assume that N has a regular finite cover that fibers over circle.

For future convenience, we introduce the following notions.

Definition 4.2. Let G be a finitely generated, residually finite group. For any cohomology class
ψ ∈ H1(G;R), and any real number t > 0, there is an 1-dimensional representation

ψt : G→ C×, g 7→ tψ(g).

This representation can be used to twist CG, determining a CG-homomorphism:

κ(ψ, t) : CG→ CG, g 7→ tψ(g)g, g ∈ G

and extend C-linearly. The CG-homomorphism κ(ψ, t) is called the Alexander twist of CG associ-
ated to (ψ, t).

Definition 4.3. A positive function f : R+ → R+ is multiplicatively convex if the function

F : R → R, t 7−→ log f(et)

is a convex function. In particular, a multiplicatively convex function is continuous and everywhere
positive.

Our main technical tool is the following theorem due to Liu [Liu17, Theorem 5.1].

Theorem 4.4. Let G be a finitely generated, residually finite group. For any square matrix A
over CG and any 1-cohomology class ψ ∈ H1(G;R), the function

t 7−→ detrNG(κ(ψ, t)A), t > 0

is either constantly zero or multiplicatively convex (and in particular every where positive).

With the above preparations, we are now ready to prove Theorem 1.1 for hyperbolic or mixed
3-manifolds.

Theorem 4.5. Suppose N is a compact orientable irreducible 3-manifold with empty or incom-
pressible toral boundary. Assume that N is hyperbolic or mixed. Then τ (2)(N, ρ) > 0.
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Proof. Since twisted L2-torsion behaves multiplicatively with respect to finite covers by Lemma
3.6, we may assume without loss of generality that N itself fibers over circle.

The following procedure is analogous to [DFL16, Theorem 8.5]. Denote by Σ a fiber of N , and
f : Σ → Σ the monodromy such that N is homeomorphic to the mapping torus

Tf (N) = Σ× [−1, 1]/(x,−1) ∼ (f(x), 1).

We can assume by isotopy that f has a fixed point P . Construct a CW structure X modeled on
Σ with a single 0-cell P , k 1-cells E1, · · · , En, and a 2-cell σ. By CW approximation, there is a
cellular map g : Σ → Σ homotopic to f . Then the mapping torus Tg(Σ) is homotopy equivalence
to N , which is a simple homotopy equivalent since the Whitehead group of a fibered 3-manifold is
trivial, see [Wal78, Theorem 19.4, Theorem 19.5]. Hence by Lemma 3.6 we have

τ (2)(N, ρ) = τ (2)(Tg(Σ), ρ).

We proceed to describe a CW complex for the mapping torus Tg(Σ). Suppose π1(N) = π1(Tg(Σ)) =
G. The cells in each dimensions are

{σ × I}, {σ,E1 × I, · · · , Ek × I}, {E1, · · · , Ek, P × I}, {P}

where I = [−1, 1]. Let ei := [Ei] ∈ G, h := [P × I] ∈ G be the fundamental group elements
represented by the corresponding loops. Denote by ψ ∈ H1(G;R) the 1-cohomology class dual to
the fiber Σ, then we have

ψ(h) = 1, ψ(e1) = · · · = ψ(ek) = 0.

The CW chain complex of T̂g(Σ) has the form

C∗(T̂g(Σ)) = (0 −→ CG
∂3−→ CGk+1 ∂2−→ CGk+1 ∂1−→ CG

∂0−→ 0)

in which

∂3 = (1 − h, ∗, · · · , ∗), ∂2 =

(
∗ ∗

Ik×k − h · A ∗

)
, ∂1 =

(
∗

1− h

)

and “∗” stands for matrices of appropriate size, A is a matrix over C[kerψ] of size k×k. Denote by
Aρ the matrix A twisted by ρ, as in Proposition 2.2, then the L2-chain complex of Tg(Σ) twisted
by (G, ρ; idG) is

C
(2)
∗ (Tg(Σ), ρ) = (0 −→ l2(G)n

∂ρ
3−→ l2(G)n(k+1) ∂ρ

2−→ l2(G)n(k+1) ∂ρ
1−→ l2(G)n −→ 0)

in which

∂ρ3 = (In×n − hρ(h), ∗, · · · , ∗), ∂ρ2 =

(
∗ ∗

Ink×nk − h · ρ(h)Aρ ∗

)
, ∂ρ1 =

(
∗

In×n − hρ(h)

)
.

Consider the following two matrices

S := In×n − hρ(h), T := Ink×nk − hρ(h)Aρ

and the matrices under the Alexander twist associated to (ψ, t):

S(t) := κ(ψ, t)S = In×n − t · hρ(h), T (t) := κ(ψ, t)T = Ink×nk − t · hρ(h)Aρ.

For any real number t > 0 sufficiently small, the two matrices S(t) and T (t) are both invertible
with regular Fugelede-Kadison determinant equal to 1, see [DFL16, Proposition 8.8]. Then Liu’s
Theorem 4.4 applies to show that these two Fugelede-Kadison determinants are positive when
t = 1. It follows from Theorem 2.6 that τ (2)(N, ρ) = detrNG T (1) · det

r
NG S(1)

−2 is positive. �

Theorem 1.1 then follows from Theorem 4.1 and Theorem 4.5.
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5. Continuity of twisted L2-torsion on representation varieties

Let N be any compact orientable irreducible 3-manifold with empty or incompressible toral
boundary, set G := π1(N). Suppose that G is infinite, and denote by Rn(G) := Hom(G, SL(n,C))
the representation variety, then Theorem 1.1 implies that the twisted L2-torsion can be viewed as
a positive function

ρ 7−→ τ (2)(N, ρ), ρ ∈ Rn(G).

The continuity of this torsion function is an interesting but rather hard question. The work of Liu
[Liu17, Theorem 1.2] have shown that the torsion function is continuous in Hom(G,R) along the
Alexander twists, we remark that in his article the twist is not unimodular, and an equivalence
class for torsion functions is introduced to guarantee well-definedness. If N is hyperbolic and
ρ0 : G → PSL(2,C) is a holonomy representation associated to the hyperbolic structure, and
ρ ∈ R2(G) is a lifting of ρ0 (such lifting always exists, see [Cul86, Corollary 2.2]), then Bernard
and Raimbault [BR22] proved that the torsion function is analytic near ρ. The continuity of the
torsion function in general is wide open. In this section we present a partial result on the continuity
of the twisted L2-torsion function, namely Theorem 1.2. We start with a brief discussion of the
L2-Alexander torsions since it is closely related to the proof of Theorem 1.2.

5.1. L2-Alexander torsions. The L2-torsion twisted by 1-dimensional representations are called
the L2-Alexander torsion. To be precise, for any 1-cohomology class ψ ∈ H1(G;R) and any real
number t > 0, the L2-Alexander torsion of N associated to (ψ, t) is defined to be

A(2)(N,ψ, t) := τ (2)(C
(2)
∗ (N,ψt)).

Recall that ψt : G → C× maps g ∈ G to tψ(g) is the representation associated to (ψ, t). Since
ψt is not a unimodular representation, the L2-Alexander torsion depends on the based CG-chain

complex C∗(N̂). Indeed, altering the CG-basis of C∗(N̂), the base change matrix for C
(2)
∗ (N,ψt)

will be a permutation matrix with entries ±t±ψ(gi)gi (compare Proposition 3.3), whose regular
Fuglede-Kadison determinant is t

∑
i
±ψ(gi). Since gi ∈ G are independent of ψ and t, the continuity

of A(2)(N,ψ, t) as a function of (ψ, t) ∈ H1(G;R)×R+ is irrelevant of the choice of cellular basis,
here H1(N ;R) is given the usual real vector space topology.

In literature [DFL15, DFL16], one consider A(2)(N,ψ, t) as a function of t, and introduce an
equivalence relation between functions. Namely, two functions f1, f2 : R+ → [0,+∞) are equivalent
if and only if there exists a real number r such that

f1(t) = tr · f2(t)

holds for all t > 0. In this case we denote by f1=̇f2. So the equivalence class of A(N,ψ, t) as a
function of t does not depend on the choice of cellular basis.

Another way to cure the ambiguity is to modify ψt to be a unimodular 2-dimensional represen-
tation. Set

ψt ⊕ ψt−1 : G→ SL(2,C), g 7→

(
tψ(g) 0
0 t−ψ(g)

)
.

Then it is easy to observe that C
(2)
∗ (N,ψt ⊕ ψt−1) = C

(2)
∗ (N,ψt) ⊕ C

(2)
∗ (N,ψt−1) and hence by

Lück [Lüc02, Theorem 3.35] we have

A(2)(N,ψ, t) · A(2)(N,ψ, t−1) = τ (2)(N,ψt ⊕ ψt−1)

which does not depend on the choice of cellular basis. This fact motivates the following definition.

Definition 5.1. For any ψ ∈ H1(G;R) and t > 0, we define the symmetric L2-Alexander torsion
of N associated to (ψ, t) to be

A(2)
sym(N,ψ, t) := τ (2)(N,ψt ⊕ ψt−1)

1
2 .
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It is shown in [DFL16, Chapter 6] that the L2-Alexander torsion satisfies

A(2)(N,ψ, t) = t−ψ(c1(e)) ·A(2)(N,ψ, t−1)

where c1(e) ∈ H1(N ;Z) is independent of (ψ, t). This shows that

A(2)
sym(N,ψ, t) = tr ·A(2)(N,ψ, t)

for some real number r. We remark that, as a function of (ψ, t), the continuity of A(2)(N,ψ, t)

defined by any CW structure is equivalent to the continuity of A
(2)
sym(N,ψ, t).

As an illustration of the various definitions, we rediscover the L2-Alexander torsion A(2)(N,ψ, t)
for graph manifold N using Theorem 4.1. The calculation is first carried out by Herrmann [Her16]
for Seifert fibering space and by Dubois et al. [DFL16] for graph manifolds.

Theorem 5.2. Let N be a graph manifold with infinite fundamental group. Suppose that N 6=
S1 ×D2 and N 6= S1 × S2. Then a representative of the L2-torsion twisted by (ψ, t) is

A(2)(N,ψ, t) = max{1, txN(ψ)}

where xN is the Thurston norm for H1(N ;R).

Proof. For t > 1, set ρ := ψt ⊕ ψt−1 , then by Theorem 4.1, we have

A(2)
sym(N,ψ, t)

2 = τ (2)(N,ψt ⊕ ψt−1) =
∏

M⊂N is a Seifert piece

t−|ψ(h)|·χorb

where h ∈ H1(M ;R) is represented by the regular fiber of M and χorb is the orbifold Euler
characteristic of M/S1. By our assumption on N , we know that χorb 6 0, so −|ψ(h)| · χorb =
xM (ψ) by [Her16, Lemma A], where xM is the Thurston norm for H1(M ;R). Then by [ENN85,
Proposition 3.5], we have ∑

M⊂N is a Seifert piece

xM (ψ) = xN (ψ)

and then
A(2)

sym(N,ψ, t)
2 = txN (ψ), t > 1.

Since the symmetric L2-Alexander torsion is by definition symmetric, so

A(2)
sym(N,ψ, t) = max{t

1
2
xN (ψ), t−

1
2
xN (ψ)}=̇max{1, txN(ψ)}.

�

It follows that the L2-Alexander torsion of graph manifolds is continuous in (ψ, t) ∈ H1(G;R)×
R+. For a general 3-manifold N , the continuity of the L2-Alexander torsion is a hard question. Liu
[Liu17] and Lück [Lüc18] independently proved that the L2-Alexander torsion function is always
positive. Moreover Liu proved in the same article that A(2)(N,ψ, t) is multiplicatively convex with
respect to t, and in particular it is continuous. Lück [Lüc18, Chapter 10] conjectured that this
function is continuous with respect to (ψ, t) ∈ H1(N ;R)× R+. We will see that this statement is
true.

Theorem 5.3. Let N be a compact orientable irreducible 3-manifold with empty or incompressible
toral boundary. Suppose π1(N) = G is infinite. Then any representative of the L2-Alexander
torsion function A(2)(N,ψ, t) is continuous with respect to (ψ, t) ∈ H1(N ;R)× R+.

Theorem 1.2 is now a corollary of Theorem 5.3, as we restate here

Theorem 5.4. Let N be a compact orientable irreducible 3-manifold with empty or incompressible
toral boundary. Suppose π1(N) = G is infinite. Define Rt

n(G) to be the subvariety of Rn(G)
consisting of upper triangular representations. Then the twisted L2-torsion function

ρ 7−→ τ (2)(N, ρ)

is continuous with respect to ρ ∈ Rt
n(G).



ON THE POSITIVITY OF TWISTED L2-TORSION FOR 3-MANIFOLDS 15

Proof. Fix a CW structure for N and fix a choice of cell-lifting to N̂ , so we can talk about the
L2-Alexander torsion unambiguously. For any ρ ∈ Rt

n(G), we can assume that

ρ(g) =



χ1(g) · · · ∗

. . .
...

χn(g)




where χk : G→ C× are characters. The modulus of those characters can be written as

|χk| = eφk , g 7−→ eφk(g)

for some real 1-cohomology class φk ∈ H1(G;R). The classes φ1, · · · , φn are continuous with
respect to ρ ∈ Rt

n(G).
Let Vn be the G-invariant subspace of V corresponding to χn, and let V ′ := V/Vn, then there

is an exact sequence of G-representations

0 −→ Vn −→ V −→ V ′ −→ 0

where the G-actions are given by

ρn(g) = χn(g), ρ(g) =



χ1(g) · · · ∗

. . .
...

χn(g)


 , ρ′(g) =



χ1(g) · · · ∗

. . .
...

χn−1(g)




respectively. Then by Lück [Lüc18, Lemma 3.3], we have

τ (2)(N, ρ) = τ (2)(N, ρn)τ
(2)(N, ρ′).

Since unitary twists have no effects on L2-torsions by Lück [Lüc18, Theorem 4.1], we have

τ (2)(N, ρn) = τ (2)(N, eφn) = A(2)(N,φn, e).

The above process can then be applied to ρ′ and finally we have the formula

τ (2)(N, ρ) = A(2)(N,φ1, e) · · ·A
(2)(N,φn, e).

Since the cohomology classes φ1, · · · , φn vary continuously with respect to ρ ∈ Rt
n(G), the conclu-

sion follows from Theorem 5.3. �

The following part of this section is devoted to the proof of Theorem 5.3. We will need the
notion of Alexander multi-twists.

5.2. Alexander multi-twists of matrices. Recall that G is any finitely generated, residually
finite group. For any collection of 1-cohomology classes Φ = (φ1, · · · , φn) ∈

∏n
i=1H

1(G;R) and
any collection of positive real numbers T = (t1, · · · , tn) ∈ Rn+, we define a CG-homomorphism

κ(Φ, T ) : CG→ CG, g → t
φ1(g)
1 · · · tφn(g)

n · g, g ∈ G.

This is called the Alexander multi-twist of CG associated to (Φ, T ).

Proposition 5.5. Basic properties of the Alexander multi-twist:
(1) (Associativity) Suppose Φ = (φ1, · · · , φn), T = (t1, · · · , tn). Then

κ(Φ, T ) = κ(φ1, t1) ◦ · · · ◦ κ(φn, tn).

(2) (Commutativity) κ(φ1, t1) ◦ κ(φ2, t2) = κ(φ2, t2) ◦ κ(φ1, t1).
(3) (Change of coordinate) Let r1, r2 ∈ R, then we have

κ(r1φ1 + r2φ2, t) = κ(φ1, t
r1) ◦ κ(φ2, t

r2).

κ(φ, tr11 t
r2
2 ) = κ(r1φ, t1) ◦ κ(r2φ, t2).
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The Alexander multi-twist extends to an endomorphism of the matrix algebra with entries in
CG.

In the following part of this section, we shall fix a square matrix Ω over CG, and suppose that
detrNG(Ω) is not zero. For any collection of 1-cohomology classes Φ = (φ1, · · · , φn) and positive
real numbers T = (t1, · · · , tn), we introduce the notation

VΦ(T ) := detrNG(κ(Φ, T )Ω).

Proposition 5.6. For any fixed choice of Φ, the multi-variable function VΦ(T ) is everywhere
positive and is multiplicatively convex in each coordinate with respect to T = (t1, · · · , tn) ∈ Rn+.

Proof. By associativity and commutativity of Alexander multi-twist we have

κ(Φ, T )Ω = κ(φi, ti) ◦ κ(Φ
′, T ′)Ω

where (Φ′, T ′) are variables other than (φi, ti). The conclusion then follows from applying Theorem
4.4 to each i. �

Theorem 5.7. For any fixed choice of Φ, the multi-variable real function VΦ(T ) is multiplicatively
convex with respect to T = (t1, · · · , tn) ∈ Rn+.

Proof. We will prove that for any fixed choice of Φ and every positive integer k 6 n, the function
VΦ(T ) is multiplicatively convex with respect to the first k coordinates.

The case k = 1 is proved by Proposition 5.6. Assume the claim holds for (k − 1) and consider

Vφ1,··· ,φk
(t1, · · · , tk) = VΦ(T )

as a function of the first k variables of Φ and T . It suffices to prove that for any θ ∈ (0, 1) and any
collection of positive numbers r1, · · · , rk > 0, s1, · · · , sk > 0, then

(Vφ1,··· ,φk
(r1, · · · , rk))

θ · (Vφ1,··· ,φk
(s1, · · · , sk))

1−θ
> Vφ1,··· ,φk

(rθ1s
1−θ
1 , · · · , rθkr

1−θ
k ).

We can assume that r1 6= s1, otherwise this inequality degenerates to the (k − 1) case after
permuting the coordinates. Consider ψ1 = φ1 +λφk for a real number λ which will be determined
later. We have the identity that for all t1, · · · , tk > 0,

Vψ1,φ2,··· ,φk
(t1, · · · , tk−1, tk) = Vφ1,φ2,··· ,φk

(t1, · · · , tk−1, t
λ
1 tk).

By induction hypothesis, for all r > 0, we have

(Vψ1,φ2,··· ,φk
(r1, · · · , rk−1, r))

θ · (Vψ1,φ2,··· ,φk
(s1, · · · , sk−1, r))

1−θ

> Vψ1,φ2,··· ,φk

(
rθ1s

1−θ
1 , · · · , rθk−1s

1−θ
k−1, r

)

which is equivalent to
(
Vφ1,··· ,φk

(r1, · · · , rk−1, r
λ
1 r)
)θ

·
(
Vφ1,··· ,φk

(s1, · · · , sk−1, s
λ
1r)
)1−θ

> Vφ1,··· ,φk

(
rθ1s

1−θ
1 , · · · , rθk−1s

1−θ
k−1, (r

λ
1 r)

θ · (sλ1r)
1−θ
)
.

Since r1 6= s1, we can prescribe λ ∈ R and r > 0 by solving the following equations

rλ1 r = rk, sλ2r = sk.

This finishes the induction. �

Corollary 5.8. For any fixed (Φ, T ) ∈
∏n
i=1H

1(G;R) × Rn+, the function WΦ,T : Rn → R,

WΦ,T (s1, · · · , sn) := log (Vs1φ1,··· ,snφs
(T ))

is convex. In particular it is continuous.

Proof. This follows from the identity

WΦ,T (s1, · · · , sn) := log (Vs1φ1,··· ,snφs
(T )) = log (VΦ(t

s1
1 , · · · , t

sn
n ))

and the multiplicatively convexity of VΦ(T ). �
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Theorem 5.9. The regular Fuglede-Kadison determinant map detrNG(κ(φ, t)Ω) is continuous with
respect to (φ, t) ∈ H1(G;R)× R+.

Proof. Let Ψ = (ψ1, · · · , ψk) be a basis for the real vector space H1(G;R). Suppose

φ =

k∑

i=1

cjψj , 1 6 i 6 n,

where the coefficients cj are continuous with respect to φ ∈ H1(G;R). Then

κ(φ, t)Ω = κ(c1ψ1, t) ◦ · · · ◦ κ(ckψk, t)Ω

= κ(c1 log t · ψ1, e) ◦ · · · ◦ κ(ck log t · ψk, e)Ω

= κ
(
(c1 log t · ψ1, · · · , ck log t · ψk), (e, · · · , e)

)
Ω.

By definition we have

detrNG(κ(φ, t)Ω) = expWΨ,(e,··· ,e)(c1 log t, · · · , ck log t).

The continuity follows from corollary 5.8. �

5.3. Applications to 3-manifolds. We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3. If N is a graph manifold, then Theorem 5.2 offers an explicit formula for
the L2-Alexander torsion, the theorem holds since the Thurston norm is continuous in H1(N ;R).

If N is a compact connected orientable irreducible 3-manifold which is hyperbolic or mixed,

then as in the proof of Theorem 4.5, we can find a regular finite covering p : Ñ → N of degree d.
Since by Lemma 3.6 we have

τ (2)(N,ψt ⊕ ψt−1)d = τ (2)(Ñ , p∗ψt ⊕ p∗ψt−1),

and then A
(2)
sym(N,ψ, t)d = A

(2)
sym(Ñ , p∗ψ, t). Note that the pullback map p∗ : H1(N ;R) →

H1(Ñ ;R) is a continuous embedding, we only need to prove the theorem for Ñ . So we can
assume without loss of generality that our manifold N fibers over circle. From proof of Theorem
4.5 we see that

A(2)(N,ψ, t) = detrNG(κ(ψ, t)T ) · det
r
NG(κ(ψ, t)S)

−2

where T = Ik×k − hAρ, S = 1 − h are square matrices over CG with positive regular Fuglede-
Kadison determinant. The conclusion follows immediately from Theorem 5.9. �

The continuity result can be used to improve the calculation of the L2-Alexander torsion asso-
ciated to fibered classes.

Theorem 5.10. Let N be any compact, connected, irreducible, orientable 3-manifold with empty
or incompressible toral boundary. Suppose π1(N) is infinite, N 6= S1 × D2 and N 6= S1 × S2.
Let φ ∈ H1(N ;R) be in the interior of a fibered cone. Then there exists a representative of L2-
Alexander torsion associated to (φ, t) such that

A(2)(N,φ, t) =





1, t <
1

h(φ)
,

txN (φ), t > h(φ)

where h(φ) is the entropy function defined on the fibered cone of H1(N ;R) (compare [DFL15,
Section 8]).
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Proof. Let φn ∈ H1(G;Q) be a sequence in the fibered cone that converge to φ. By [DFL15,
Theorem 8.5], for any n we have

A(2)(N,φn, t) =





1, t <
1

h(φn)
,

txN (φn), t > h(φn).

By Theorem 5.3 we have

A(2)(N,φn, t) → A(2)(N,φ, t), n→ ∞

for any t ∈ R. Since the entropy and the Thurston norm are continous functions of H1(N ;R), we
have

h(φn) → h(φ), xN (φn) → xN (φ), n→ ∞.

This proves our claim. �
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[DFL15] Jérôme Dubois, Stefan Friedl, and Wolfgang Lück, The L2-Alexander torsions of 3-manifolds, Comptes
Rendus Mathematique 353 (2015), no. 1, 69–73.

[DFL16] , The L2-Alexander torsion is symmetric, Algebraic & Geometric Topology 15 (2016), no. 6,
3599–3612.

[ENN85] David Eisenbud, Walter Neumann, and Walter D Neumann, Three-dimensional link theory and invariants

of plane curve singularities, no. 110, Princeton University Press, 1985.
[FL19] Stefan Friedl and Wolfgang Lück, The L2-torsion function and the Thurston norm of 3-manifolds, Com-

ment. Math. Helv 94 (2019), no. 1, 21–52.
[Hat07] Allen Hatcher, Notes on basic 3-manifold topology, 2007.
[Hem87] John Hempel, Residual finiteness for 3-manifolds, Combinatorial group theory and topology (Alta, Utah,

1984) 111 (1987), 379–396.
[Her16] Gerrit Herrmann, The L2-Alexander torsion for Seifert fiber spaces, arXiv preprint arXiv:1602.08768

(2016).
[Liu17] Yi Liu, Degree of L2-Alexander torsion for 3-manifolds, Inventiones mathematicae 207 (2017), no. 3,

981–1030.
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