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Abstract

We consider wave equations with a special type of log-fractional damping. We study the Cauchy

problem for this model in R
n, and we obtain an asymptotic profile and optimal estimates of solutions

as t → ∞ in L2-sense. A maximal discovery of this note is that under the effective damping, in case

of n = 1 L2-norm of the solution blows up in infinite time, and in case of n = 2 L2-norm of the

solution never decays and never blows up in infinite time. The latter phenomenon seems to be a rare

case in the community.

1 Introduction

We consider the following dissipative wave equation:

utt −∆u+ µLut = 0, (t, x) ∈ (0,∞)×R
n, (1.1)

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ R
n, (1.2)

where µ > 0 is a constant, and the linear operator

L := log(I + (−∆)
1
2 ) : D(L) ⊂ L2(Rn) → L2(Rn),

is defined by

f ∈ D(L) := {u ∈ L2(Rn) :

∫

Rn

(1 + log2(1 + |ξ|))|û(ξ)|2dξ < +∞},

(Lf)(x) := F−1
ξ→x

(

log(1 + |ξ|)f̂(ξ)
)

(x).
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Here, one has just denoted the Fourier transform Fx→ξ(f)(ξ) of f(x) by

Fx→ξ(f)(ξ) = f̂(ξ) :=

∫

Rn

e−ix·ξf(x)dx, ξ ∈ R
n,

as usual with i :=
√
−1, and F−1

ξ→x expresses its inverse Fourier transform (for the logarithmic Laplacian

itself including applications to PDEs, see [1, 2], [9] and the references therein). Concerning the existence

of a unique solution to problem (1.1)-(1.2), by a similar argument to [20, Proposition 2.1] (see also

[5]) based on the Lumer-Phillips Theorem one can find that the problem (1.1)-(1.2) with initial data

(u0, u1) ∈ H1(Rn)× L2(Rn) has a unique mild solution

u ∈ C([0,∞);H1(Rn)) ∩ C1([0,∞);L2(Rn)).

Let us first mention the motivation of this work by restricting to the following linear equations

(mainly):

utt −∆u + µ(−∆)θut = 0, (1.3)

with µ > 0 and θ ∈ [0, 1]. It is very well-known from many research articles produced so far in the case

of θ ∈ [0, 1/2) the solution to (1.3) is diffusive (see e.g., [12], [14], [15], [19] ), while in the case when

θ ∈ (1/2, 1] the solution is oscillating (see e.g., [6], [15], [18], [23]). However, it seems that there are few

papers treating the special case of θ = 1/2 in detail. For example, in [16, Theorem 5] or [21] they derives

(L1 ∩ Lm)-Lm estimates with m ∈ (1, 2] such that

‖u(t, ·)‖m ≤ C(1 + t)1−n(1− 1
m )‖(u0, u1)‖L1∩Lm .

If we choose m = 2 one can get

‖u(t, ·)‖ ≤ C(1 + t)1−
n
2 ‖(u0, u1)‖L1∩L2

for all n ≥ 1 and µ > 0. This estimate is important to apply it to nonlinear problems, however, it

seems unknown to check the optimality of those estimates. Indeed, the estimates for n = 1 (infinite time

blowup) and n = 2 (no-decay and no-blowup) may be trivial only from the viewpoint of the upper bound

estimates. Optimality implies, in this research, both upper and lower bound estimates simultaneously.

This will be done by capturing the leading terms of solutions as time goes to infinity. In this connection,

in the paper [13, page 17] they speak of the case θ = 1/2 as parabolic-like. As will be seen below, this

fact depends on the value of µ > 0 (this may be pointed out in [16, Theorem 5]). Anyway, from the

authors’ point of views once we check previously published papers, one will see that the case n = 1, 2 may

be treated a little sloppy. It should be mentioned that our model (1.1) cannot be included as an example

recenly studied in [7], where several L2-deay properties of the solution itself have been investigated to

the wave equations with a more general damping.

The purpose of this paper is to consider (1.1)-(1.2) by capturing asymptotic profiles (as t → ∞), and

is to study optimal rates of estimates for the solution itself in terms of L2-norm. In particular, we shall

deal with the low dimensional case n = 1, 2 more politely. Furthermore, we are concentrating only on

analyzing the L2-norm itself of the solution, and this is because the higher order derivatives of solutions

with respect to time and spatial variables do not reflect a singularity of them. A study on a singularity

included in the solutions seems strongly attractive, so the analysis of the higher order derivatives is out

of scope in our research.

In this work one sets

P1 :=

∫

Rn

u1(x)dx.

The result below is about the case of small µ satisfying µ ∈ (0, 2). The solution has an oscillation

property in asymptotic sense as t → ∞.
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Theorem 1.1 Let n ≥ 1 and µ ∈ (0, 2). Let u0 ∈ (H1(Rn) ∩ L1(Rn)) and u1 ∈ (L2(Rn) ∩ L1,1(Rn)).

Then, the solution u(t, x) to problem (1.1)-(1.2) satisfies

‖u(t, ·)−F−1
ξ→x (χ(t, ξ)) (·)‖ ≤ C

(

‖u1‖1,1 + ‖u0‖1
)

t−
n
2 ,

for t ≫ 1, where C > 0 is a constant depending only on n and µ ∈ (0, 2), and

χ(t, ξ) := (1 + r)−
tµ
2

2

r
√

4− (µ log(1+r)
r )2

sin

(

r
√

4− µ2

2
t

)

P1, ξ ∈ R
n, t ≥ 0.

Theorem 1.2 Under the same assumption as in Theorem 1.1 the solution u(t, x) to problem (1.1)-(1.2)

satisfies

C1|P1|t1−
n
2 ≤ ‖u(t, ·)‖ ≤ C2

(

‖u1‖1,1t−
n
2 + ‖u0‖1t−

n
2 + |P1|t1−

n
2 + |P1|e−αt

)

,

for t ≫ 1, where Cj > 0 (j = 1, 2) and α > 0 are generous constants depending on n and µ ∈ (0, 2).

The third result is dealing with the case of large µ > 2. The oscillation property of the solution in the

zone of low frequency disappears and have a diffusive aspect asymptotically.

Let δ > 0 be a unique solution satisfying

µ log(1 + δ)− 2δ = 0, (1.4)

µ log(1 + r)− 2r > 0, ∀r < δ,

µ log(1 + r)− 2r < 0, ∀r > δ.

A unique existence of such real number δ > 0 can be guaranteed by a simple fundamental differential

calculus. Furthermore, let

λ± := −µ log(1 + r)

2
±

√

µ2 log2(1 + r)− 4r2

2
, ξ ∈ {r := |ξ| ≤ δ}.

Then, one can get the following statement.

Theorem 1.3 Let n ≥ 1, µ > 2 and let δ > 0 be a constant defined by (1.4). Suppose [u0, u1] ∈
(H1(Rn) ∩ L1(Rn))× (L2(Rn) ∩ L1,1(Rn)). Then, the solution u(t, x) to problem (1.1)-(1.2) satisfies

‖Fx→ξ(u(t, ·))(ξ) − ν(t, ·)‖L2(|ξ|≤δ) ≤ C(‖u0‖+ ‖u0‖1 + ‖u1‖+ ‖u1‖1,1)t−
n
2 , t ≫ 1,

and

‖Fx→ξ(u(t, ·))(ξ)‖L2(|ξ|≥δ) ≤ C(‖u0‖1 + ‖u1‖1)e−αt, (t ≫ 1),

where

ν(t, ξ) := P1
eλ+t − eλ−t

√

µ2 log2(1 + r) − 4r2
, ∀ξ ∈ {|ξ| < δ}, (1.5)

where C > 0 is a constant depending only on n and µ > 2, and α > 0 is a generous constant.

Remark 1.1 In some sense, r = δ is also a singular point in the frequency region r := |ξ| ∈ [0,∞). This

is a peculiar phenomenon for the wave equation with log-damping satisfying µ > 2. It seems that nobody

has ever pointed out this new observation in the community.

As an application one can have the optimal estimate.
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Theorem 1.4 Under the same assumption as in Theorem 1.3 the solution u(t, x) to problem (1.1)-(1.2)

satisfies

C1|P1|t1−
n
2 ≤ ‖u(t, ·)‖ ≤ C2(‖u0‖+ ‖u0‖1 + ‖u1‖+ ‖u1‖1,1)t1−

n
2

for t ≫ 1, where Cj > 0 (j = 1, 2) are generous constants depending on n and µ ∈ (2,∞).

Remark 1.2 In the case when n = 1 and P1 6= 0 one notices from Theorems 1.2 and 1.4 that the L2-

norm of the solution u(t, x) blows-up in infinite time with blowup rate
√
t, while in the two dimensional

case the solution u(t, x) never decays and never blows up. This phenomenon for n = 2 also seems quite

rare case in the community (see [8] for a recent result). This type of study for all µ > 0 seems to be

unknown so far to the equation (1.1) with (at least) log-damping.

Remark 1.3 In particular, in the case when µ > 2 from the profile point of view observed in Theorem

1.3 the so called double diffusion structure is captured explicitly (see (1.5) and Remark 4.1 below). This

structure has been first discovered in D’Abbicco-Ebert [12] to the fractionally damped waves utt −∆u+

(−∆)θut = 0 with 0 < θ < 1/2, and developed in Piske-Charaõ-Ikehata [22] to the wave equation with a

log-type damping utt −∆u + log(I + (−∆)θ)ut = 0 with 0 < θ < 1/2. A double diffusion structure for

the case θ = 1/2 and µ > 2 does not seem to be clearly mentioned so far there.

Finally, let us study the critical case µ = 2. One can explain a specialty of the critical case µ = 2 by

comparing already studied equation case (cf., [11, 16]) such that

utt −∆u+ µ(−∆)1/2ut = 0. (1.6)

One observes that (1.6) can be written in the Fourier space as follows

ûtt + |ξ|2û+ µ|ξ|ût = 0. (1.7)

In the case when µ = 2 its corresponding characteristic roots for (1.7) are λ± = − |ξ|
2 , that is, a diffusive

aspect appears in the solution û(t, ξ), while, the characteristic roots for (1.1) with µ = 2 are

λ± = − log(1 + |ξ|)
2

± i

√

|ξ|2 − log2(1 + |ξ|),

and since r ≥ log(1 + r) for all r ≥ 0, one notices λ± ∈ C, which implies an oscillation property of the

Fourier transformed solution û(t, ξ) of (1.1). There is a big difference between (1.6) with µ = 2 and (1.1)

with µ = 2. The following results express a peculiar property of the equation (1.1) with µ = 2.

Theorem 1.5 Let n ≥ 1 and µ = 2. Let u0 ∈ (H1(Rn)∩L1(Rn)) and u1 ∈ (L2(Rn)∩L1,1(Rn)). Then,

the solution u(t, x) to problem (1.1)-(1.2) satisfies

‖u(t, ·)−F−1
ξ→x (ν(t, ξ)) (·)‖ ≤ C

(

‖u1‖1,1 + ‖u0‖1
)

t−
n
2 ,

for t ≫ 1, where C > 0 is a constant depending only on n, and

ν(t, ξ) := (1 + r)−t 1
√

r2 − log2(1 + r)
sin

(

t

√

r2 − log2(1 + r)

)

P1, ξ ∈ R
n, t ≥ 0.

Theorem 1.6 Under the same assumption as in Theorem 1.5 the solution u(t, x) to problem (1.1)-(1.2)

satisfies

C1|P1|t1−
n
2 ≤ ‖u(t, ·)‖ ≤ C2

(

‖u1‖1,1t−
n
2 + ‖u0‖1t−

n
2 + |P1|t1−

n
2 + |P1|e−αt

)

,

for t ≫ 1, where Cj > 0 (j = 1, 2) and α > 0 are generous constants depending on n.
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Remark 1.4 As a result of a series of Theorems above, one can classify the asymptotic properties of the

solution to problem (1.1)-(1.2) as follows: 0 < µ ≤ 2 ⇒ oscillating, while 2 < µ ⇒ diffusive. It seems

interesting to note that although the structure of the solution for such cases is different, they have the

same decay/nondecay rates for the L2-norm of the solution itself. Furthermore, in the case of n = 1,

a strong singularity appears in the L2-norm of the solution itself for all µ > 0 which shows a growth

property with the rate
√
t as t → ∞.

Notation. Throughout this paper, ‖ · ‖q stands for the usual Lq(Rn)-norm. For simplicity of notation, in

particular, we use ‖ · ‖ instead of ‖ · ‖2. We also introduce the following weighted functional spaces.

L
1,γ(Rn) :=

{

f ∈ L
1(Rn)

∣

∣ ‖f‖1,γ :=

∫

Rn

(1 + |x|γ)|f(x)|dx < +∞

}

.

For two positive functions f(r) and g(r) defined on (0,∞), one denotes f(r) ∼ g(r) as r → +0 (resp. r → ∞) if

there exists constants Cj > 0 (j = 1, 2) such that

C1g(r) ≤ f(r) ≤ C2g(r),

for small r > 0 (resp. r → ∞). For two quantities F (t) and G(t) (t ∈ [0,∞)), we denote F (t) � G(t) if there

exists a constant C > 0 such that F (t) ≤ CG(t) for some t ≥ t0 with t0 ≥ 0. Finally, we denote the surface area

of the n-dimensional unit ball by ωn :=

∫

|ω|=1

dω.

The paper is organized as follows. In Section 2 we prove Theorems 1.1 and 1.5, and in Section 3 the

proof of Theorem 1.3 is developed. Theorem 1.4 is proved in Section 4, which is rather technical. In

Section 5 we finalize the proof of Theorem 1.2. A proof of Theorem 1.6 can be done in Section 6.

2 Asymptotic profile: the case 0 < µ ≤ 2

In this section we deal with the case of µ ∈ (0, 2], which corresponding to the non-effective damping

case. Theorem 1.1 with the case µ ∈ (0, 2) and Theorem 1.5 for the case µ = 2 can be treated simulta-

neously divided into two subsection, recpectively.

We first prepare the next useful lemmas which can be obtained from similar lemmas in [3] and [4] by

a simple changing of variable.

Lemma 2.1 Let p > −1, δ > 0 and µ > 0. Then, it holds that

∫ δ

0

(1 + r)−µtrpdr ∼ t−(p+1) (t ≫ 1).

Lemma 2.2 Let p ∈ R, δ > 0 and µ > 0. Then, there exists a constant α > 0 such that

∫ ∞

δ

(1 + r)−µtrpdr ∼ e−αt (t ≫ 1).

In each one of above two lemmas the constants of equivalence may depend on n, µ, p and δ.

We need to consider the equivalent problem to (1.1)–(1.2) in the Fourier space which is

wtt(t, ξ) + |ξ|2w(t, ξ) + µ log(1 + |ξ|)w(t, ξ) = 0, (t, ξ) ∈ (0,∞)×R
n, (2.1)

w(0, ξ) = w0(ξ), wt(0, ξ) = w1(ξ), ξ ∈ R
n, (2.2)

where

w(t, ξ) := û(t, ξ), wj(ξ) := ûj(ξ) (j = 0, 1).
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The characteristic roots associated to (2.1) are given by

λ± =
−µ log(1 + |ξ|)±

√

µ2 log2(1 + |ξ|)− 4|ξ|2

2
, ξ ∈ R

n. (2.3)

Now, we note that the function f(r) := µ log(1 + r)− 2r satisfies f(0) = 0 and f(r) < 0 for all r > 0

because f ′(r) = µ
1+r − 2 < 0 for all r > 0 due to the assumption that µ ≤ 2. Therefore, the characteristic

roots are all complex-valued for all ξ ∈ R
n, ξ 6= 0, and are expressed by

λ± = −µ log(1 + r)

2
±

r
√

4− (µ log(1+r)
r )2

2
i, r = |ξ|, ξ ∈ R

n. (2.4)

Here, note that in the case when µ ∈ (0, 2] one has

µ log(1 + r)− 2r ≤ 0, ∀r ≥ 0.

Then, it is easy to check that the solution in the Fourier space can be explicitly expressed as

w(t, ξ) = e−
tµ log(1+r)

2 cos
(r
√

4− (µ log(1+r)
r )2

2
t
)

w0(ξ)

+e−
tµ log(1+r)

2
µ log(1 + r)

r
√

4− (µ log(1+r)
r )2

sin
(r
√

4− (µ log(1+r)
r )2

2
t
)

w0(ξ)

+e−
tµ
2 log(1+r) 2

r
√

4− (µ log(1+r)
r )2

sin
(r
√

4− (µ log(1+r)
r )2

2
t
)

w1(ξ)

= (1 + r)−
tµ
2 cos

(r
√

4− (µ log(1+r)
r )2

2
t
)

w0(ξ)

+(1 + r)−
tµ
2

µ log(1 + r)

r
√

4− (µ log(1+r)
r )2

sin
(r
√

4− (µ log(1+r)
r )2

2
t
)

w0(ξ)

+ (1 + r)−
tµ
2

2

r
√

4− (µ log(1+r)
r )2

sin
(r
√

4− (µ log(1+r)
r )2

2
t
)

w1(ξ). (2.5)

By applying the decomposition of initial data w1(ξ) (see [17]) such that

w1(ξ) = û1(ξ) = P1 +A1(ξ)− iB1(ξ), (2.6)

where

P1 :=

∫

Rn

u1(x)dx,

A1(ξ) :=

∫

Rn

(cos(xξ)− 1)u1(x)dx, B1(ξ) :=

∫

Rn

sin(xξ)u1(x)dx,

6



one can get the meaningful identity for r = |ξ| > 0, with ξ ∈ R
n, as follows

w(t, ξ)− (1 + r)−
tµ
2

2

r
√

4− (µ log(1+r)
r )2

sin
(r
√

4− (µ log(1+r)
r )2

2
t
)

P1

= (1 + r)−
tµ
2

2

r
√

4− (µ log(1+r)
r )2

sin
(r
√

4− (µ log(1+r)
r )2

2
t
)

(A1(ξ)− iB1(ξ))

+ (1 + r)−
tµ
2

µ log(1 + r)

r
√

4− (µ log(1+r)
r )2

sin
(r
√

4− (µ log(1+r)
r )2

2
t
)

w0(ξ) (2.7)

+ (1 + r)−
tµ
2 cos

(r
√

4− (µ log(1+r)
r )2

2
t
)

w0(ξ).

As a candidate of the leading term of the solution w(t, ξ) as t → ∞, at this stage we can present the

following function, defined for ξ ∈ R
n \ {0} and t ≥ 0,

ν(t, ξ) := (1 + r)−
tµ
2

2

r
√

4− (µ log(1+r)
r )2

sin
(r
√

4− (µ log(1+r)
r )2

2
t
)

P1. (2.8)

2.1 The case 0 < µ < 2: Proof of Theorem 1.1

In this case it is possible to have the leading term in a slightly simpler form, applying the mean value

theorem, and in fact, the profile ν(t, ξ) can be divided into the following form:

ν(t, ξ) = (1 + r)−
µt
2

2

r
√

4− (µ log(1+r)
r )2

sin
(rt
√

4− µ2

2

)

P1 + P1R(t, ξ), (2.9)

where

R(t, ξ) = µ2t(1 + r)−
µt
2

cos(η(t, ξ))
√

4− (µ log(1+r)
r )2

1− log2(1+r)
r2

√

4− µ2 +
√

4− (µ log(1+r)
r )2

, (2.10)

η(t, ξ) := θ
r
√

4− (µ log(1+r)
r )2

2
t+ (1− θ)

r
√

4− µ2

2
t

with some θ ∈ (0, 1). Here, to simplify the notation one set

γ :=

√

4− µ2

2
> 0.

Then, in case of µ ∈ (0, 2) one can introduce a new simplified form of the leading term of the solution

w(t, ξ), as t → ∞, by

χ(t, ξ) := (1 + r)−
µt
2

2

r
√

4− (µ log(1+r)
r )2

sin
(

γtr
)

P1. (2.11)

Now, substituting the new expression (2.9) for ν(t, ξ) in the identity (2.7) and using the expression

7



(2.11) for the simplified leading term, one obtains the following identity:

w(t, ξ) − χ(t, ξ) = w(t, ξ) − (1 + r)−
µt
2

2

r
√

4− (µ log(1+r)
r )2

sin
(

γtr
)

P1

= P1R(t, ξ) + (1 + r)−
tµ
2

2

r
√

4− (µ log(1+r)
r )2

sin
(r
√

4− (µ log(1+r)
r )2

2
t
)

(

A1(ξ)− iB1(ξ)
)

+ (1 + r)−
tµ
2

µ log(1 + r)

r
√

4− (µ log(1+r)
r )2

sin
(r
√

4− (µ log(1+r)
r )2

2
t
)

w0(ξ) (2.12)

+ (1 + r)−
tµ
2 cos

(r
√

4− (µ log(1+r)
r )2

2
t
)

w0(ξ),

with the function R(t, ξ) given by (2.10).

We have to estimate all terms in the right hand side of (2.12) including R(t, ξ).

In the following, let us make sure the validity of the fact that in the case when µ ∈ (0, 2) the

function given by (2.11) is really a leading term, by estimating the remainder terms given by functions

Ji(t, ξ), i = 1, 2, 3, and R(t, ξ) in terms of L2-norm, where Ji(t, ξ) are three functions on the right hand

side of (2.12) defined as

J1(t, ξ) =: (1 + r)−
tµ
2

2

r
√

4− (µ log(1+r)
r )2

sin
(r
√

4− (µ log(1+r)
r )2

2
t
)

(

A1(ξ) − iB1(ξ)
)

,

J2(t, ξ) = (1 + r)−
tµ
2

µ log(1 + r)

r
√

4− (µ log(1+r)
r )2

sin
(r
√

4− (µ log(1+r)
r )2

2
t
)

w0(ξ),

J3(t, ξ) = (1 + r)−
tµ
2 cos

(r
√

4− (µ log(1+r)
r )2

2
t
)

w0(ξ).

It is important to get upper bound estimates of the L2-norm of each functions Ji(t, ξ), i = 1, 2, 3 and

R(t, ξ).

For these estimates one uses two inequalities such as
∣

∣

∣

∣

sin θ

θ

∣

∣

∣

∣

≤ K, for all θ ∈ R,

with some K ≥ 1, and

|A1(ξ)− iB1(ξ)| ≤ M‖u1‖1,1|ξ|, ξ ∈ R
n, (2.13)

where M > 0 is a constant (see [18]). Then, by similar arguments as in [18] (see also [5]), by using (2.13)

one can estimate the L2-norm of J1(t, ξ) as follows:
∫

Rn

|J1(t, ξ)|2dξ ≤ K2M2‖u1‖21,1t2
∫

Rn

(1 + r)−µtr2dξ

≤ K2M2‖u1‖21,1t2
(

∫

|ξ|≤1

(1 + r)−µtr2dξ +

∫

|ξ|≥1

(1 + r)−µtr2dξ

)

(2.14)

= K2M2‖u1‖21,1t2ωn

(
∫ 1

0

(1 + r)−µtrn+1dr +

∫ ∞

1

(1 + r)−µtrn+1dr

)

≤ ωnK
2M2‖u1‖21,1t2(t−n−2 + e−αt) ≤ ωnK

2M2‖u1‖21,1t−n, t ≫ 1,

where one has just used Lemmas 2.1 and 2.2 in the last line.
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While, one can get the estimate for J3(t, ξ) as follows,
∫

Rn

|J3(t, ξ)|2dξ ≤
∫

Rn

(1 + r)−µt|w0(ξ)|2dξ

≤ ||u0||21
(

∫

|ξ|≤1

(1 + r)−µtdξ +

∫

|ξ|≥1

(1 + r)−µtdξ
)

≤ C||u0||21
(

t−n + e−αt
)

≤ C||u0||21t−n, t ≫ 1, (2.15)

with C a positive constant depending on µ and n. In the same way, using the fact µ log(1 + r) ≤ µr for

all r ≥ 0, and Lemmas 2.1 and 2.2 , we may get the following estimate for J2(t, ξ),
∫

Rn

|J2(t, ξ)|2dξ ≤
∫

Rn

(1 + r)−µtµ2r2t2|w0(ξ)|2dξ

≤ µ2t2‖u0‖21
(

t−n−2 + e−αt
)

≤ Cµ2‖u0‖21 t−n, t ≫ 1 (2.16)

with C a positive constant.

Finally, one can estimate the part of the remainder terms given by the function R(t, ξ) that is defined

in (2.10). To do that we need the following trivial facts:

lim
r→0

r2 − log2(1 + r)

4r2 − µ2 log2(1 + r)
= 1/4, (2.17)

lim
r→∞

r2 − log2(1 + r)

4r2 − µ2 log2(1 + r)
= 1/4. (2.18)

Moreover, one should note that for 0 < µ < 2 it holds that

4− (
µ log(1 + r)

r
)2 > 0

for all r > 0. To simplify the notation as always one writes r in place of |ξ|, thus one can estimate R(t, ξ):
∫

|ξ|≤1

|R(t, ξ)|2dξ

=

∫

|ξ|≤1

∣

∣

∣
µ2t (1 + r)−

µt
2

cos(η(t, ξ))
√

4− (µ log(1+r)
r )2

1− log2(1+r)
r2

√

4− µ2 +
√

4− (µ log(1+r)
r )2

∣

∣

∣

2

dξ

≤
∫

|ξ|≤1

µ4t2(1 + r)−µt
( 1
√

4− (µ log(1+r)
r )2

1− log2(1+r)
r2

√

4− µ2 +
√

4− (µ log(1+r)
r )2

)2

dξ

≤
∫

|ξ|≤1

µ4

4− µ2
t2(1 + r)−µt

(

1− log2(1+r)
r2

)2

4− (µ log(1+r)
r )2

dξ

=

∫

|ξ|≤1

µ4

4− µ2
t2(1 + r)−µt

(

1− log2(1+r)
r2

)2

4− µ2 log2(1+r)
r2

dξ

=

∫

|ξ|≤1

µ4

4− µ2
t2(1 + r)−µt

(

r2 − log2(1 + r)
)2

4r2 − µ2 log2(1 + r)
dξ

=

∫

|ξ|≤1

µ4

4− µ2
t2(1 + r)−µt r2 − log2(1 + r)

4r2 − µ2 log2(1 + r)

(

r2 − log2(1 + r)
)

dξ

≤
∫

|ξ|≤1

µ4

4− µ2
t2(1 + r)−µt r2 − log2(1 + r)

4r2 − µ2 log2(1 + r)
r2dξ.

At this point, from (2.17) and (2.18) one can note that the function

r2 − log2(1 + r)

4r2 − µ2 log2(1 + r)
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is bounded on ξ ∈ R
n, ξ 6= 0. Hence, from the last estimate for

∫

|ξ|≤1 |R(t, ξ)|2dξ given by (2.10) one

obtains,
∫

|ξ|≤1

|P1R(t, ξ)|2dξ ≤ P 2
1C

µ4

4− µ2

∫

|ξ|≤1

t2(1 + r)−µtr2dξ

= P 2
1 ωnC

µ4

4− µ2

∫ 1

0

t2(1 + r)−µtrn+1dξ

≤ P 2
1Cn,µt

2t−n−2 ≤ P 2
1Cn,µt

−n, t ≫ 1, (2.19)

with Cn,µ > 0 a constant depending only on µ and n, where one has just used Lemma 2.1.

However, one can employ the same estimates as the low frequency zone to get the following estimates

for R(t, ξ) on the high frequency zone by relying on Lemma 2.2, that is,
∫

|ξ|≥1

|P1R(t, ξ)|2dξ ≤ P 2
1C

µ4

4− µ2

∫

|ξ|≥1

t2(1 + r)−µtr2dξ

= P 2
1 ωnC

µ4

4− µ2

∫ ∞

1

t2(1 + r)−µtrn+1dξ

≤ P 2
1Cn,µt

2e−αt = P 2
1Cn,µe

−α
2 t, t ≫ 1. (2.20)

The identity (2.7) and estimates (2.14), (2.15), (2.16), (2.19) and (2.20) prove the next lemma.

Lemma 2.3 Let µ ∈ (0, 2), and let χ(t, ξ) be the function defined by (2.11), and let u0 ∈ L1(Rn) and

u1 ∈ L1,1(Rn). Then it is true that
∫

Rn

|w(ξ, t) − χ(ξ, t)|2dξ ≤ C
(

P 2
1 + ‖u1‖21,1 + ‖u0‖21

)

t−n + CP 2
1 e

−αt, t ≫ 1, (2.21)

with some constants C = C(µ, n) > 0 and α > 0.

This implies the desired statement of Theorem 1.1 which is polynomial decay.

2.2 The case µ = 2: Proof of Theorem 1.5

In this case instead of using the simplified expression (2.11) for the asymptotic profile we use the

leading term calculated by (2.8) with µ = 2, that is ,

ν(t, ξ) := (1 + r)−
tµ
2

1

r
√

1− ( log(1+r)
r )2

sin
(

r

√

1− (
log(1 + r)

r
)2t
)

P1

defined for t > 0 and ξ ∈ R
n, ξ 6= 0.

According to the estimates in Subsection 2.1, via (2.7) the estimate for the L2-norm of the difference

w(t, ξ) − ν(t, ξ) depends only on the estimates for the functions Ji(t, ξ), i = 1, 2, 3 already obtained in

(2.14), (2.15) and (2.16). Thus, such fact proves Theorem 1.5.

3 Asymptotic profile: the case µ > 2

In this section we deal with the case µ > 2, which corresponding to the effective damping.

For the case µ > 2 we note that the function f(r) := µ log(1 + r) − 2r is such that f(0) = 0 and

f ′(r) =
µ

1 + r
− 2 > 0 for 0 < r <

µ− 2

2
and f has a positive global maximum value in r =

µ− 2

2
. Then,

one can conclude that there exists a unique number δ >
µ− 2

2
such that the characteristic roots given

by (2.3) satisfy

λ±are real for 0 ≤ r ≤ δ,

λ±are complex-valued for r > δ. (3.1)
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3.1 The case of real characteristic roots

The characteristic roots are real in the case µ > 2 and r = |ξ| ≤ δ. Here we note that on the zone of

low frequency {ξ ∈ R
n : |ξ| ≤ δ} one has the following equivalence

C1|ξ| ≤ µ log(1 + |ξ|) ≤ C2|ξ|, |ξ| ≤ δ (3.2)

with C1 and C2 positive constants depending only on δ.

In this case, the characteristic roots are real-valued given in (3.1), and using the above equivalence,

they can be expressed as

λ± = −µ log(1 + r)

2
±

√

µ2 log2(1 + r) − 4r2

2
, ξ ∈ {r := |ξ| ≤ δ}. (3.3)

Then, it is easy to check that the solution of (2.1)–(2.2) can be explicitly represented as

w(t, ξ) =
eλ+t − eλ−t

λ+ − λ−
w1(ξ) +

λ+e
λ−t − λ−eλ+t

λ+ − λ−
w0(ξ)

=
w1(ξ)− λ−w0(ξ)

λ+ − λ−
eλ+t +

w0(ξ)λ+ − w1(ξ)

λ+ − λ−
eλ−t, |ξ| ≤ δ, (3.4)

where r := |ξ|, w(t, ξ) := û(t, ξ) and wj(ξ) := ûj(ξ) for j = 0, 1 again.

In the following, for simplicity of notation we set

h(r) := µ2 log2(1 + r)− 4r2,

L := log(1+r), and r := |ξ| ≤ δ. Then, basing on the explicit representation (3.4) we use the Chill-Haraux

idea [10] to have the relation:

w(t, ξ) =
e−t

(r2+λ2
+)

µL

λ+ − λ−
w1(ξ) + e−

tr2

µL w0(ξ) + e−
tr2

µL
λ+w0(ξ)

λ− − λ+

+ e−
tr2

µL
λ−(1 − e−

tλ2
+

µL )

λ+ − λ−
w0(ξ) + e−

tr2

µL
w0(ξ)λ+ − w1(ξ)

λ+ − λ−
e−

tλ2
−

µL . (3.5)

Let us apply the decomposition (2.6) of the initial data w1(ξ) to (3.5) to get the following equality on

the zone of low frequency |ξ| ≤ δ and t > 0. We use the fact

λ2
± + r2 = −µLλ± = −µ log(1 + r)λ±.

Then, it follows that

w(t, ξ) =
e−t

(r2+λ2
+)

µL

λ+ − λ−
P1 +

e−t
(r2+λ2

+)

µL

λ+ − λ−
(A1(ξ)− iB1(ξ)) + e−

tr2

µL w0(ξ) + e−
tr2

µL
λ+w0(ξ)

λ− − λ+

+e−
tr2

µL
λ−(1 − e−

tλ2
+

µL )

λ+ − λ−
w0(ξ) + e−

tr2

µL
w0(ξ)λ+ − w1(ξ)

λ+ − λ−
e−

tλ2
−

µL

=
P1

λ+ − λ−
etλ+ − P1

λ+ − λ−
etλ− +

e−t
(r2+λ2

+)

µL

λ+ − λ−
(A1(ξ)− iB1(ξ)) + e−

tr2

µL w0(ξ) + e−
tr2

µL
λ+w0(ξ)

λ− − λ+

+e−
tr2

µL
λ−(1 − e−

tλ2
+

µL )

λ+ − λ−
w0(ξ) +

λ+

λ+ − λ−
etλ−w0(ξ)−

(A1(ξ)− iB1(ξ))

λ+ − λ−
etλ−
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=:
P1

λ+ − λ−
etλ+ − P1

λ+ − λ−
etλ− + E1(t, ξ) + E2(t, ξ) + E3(t, ξ) + E4(t, ξ) + E5(t, ξ) + E6(t, ξ). (3.6)

Since r2 + λ2
+ = −µLλ+ and λ+ − λ− =

√

h(r), one has a meaningful equality such that

w(t, ξ)− P1
etλ+ − etλ−

√

h(r)
=

6
∑

j=1

Ej(t, ξ). (3.7)

Now, let us introduce the leading term as t → ∞ of the solution w(t, ξ) in the low frequency region

r := |ξ| ≤ δ as follows:

ν(t, ξ) := P1
etλ+

√

µ2 log2(1 + r) − 4r2
− P1

etλ−

√

µ2 log2(1 + r) − 4r2
, ξ ∈ {ξ ∈ R

n : |ξ| ≤ δ}, t > 0. (3.8)

One prepares the following lemma to estimate such remainder terms (3.7).

Lemma 3.1 Let µ > 2, and let δ > 0 be a number defined in (3.1). Then, there exist real numbers

δ1 ∈ (0, δ], c > 0 and d > 0 such that

(1) c log(1 + r) ≤ λ+ − λ− =
√

h(r) ≤ d log(1 + r) for 0 ≤ r ≤ δ1,

(2)−cr ≤ λ+ ≤ −dr for 0 ≤ r ≤ δ1,

(3)−c log(+r) ≤ λ− ≤ −d log(1 + r) for 0 ≤ r ≤ δ1.

Proof of Lemma 3.1. We first prepare basic concept to prove results (1)-(3), and for later use.

Since

lim
r→+0

log(1 + r)

r
= 1,

there is a small number δ∗ ≤ δ such that

1

2
r ≤ log(1 + r) ≤ 3

2
r, r ∈ [0, δ∗].

One hand, the continuity of the function g(r) := r−1 log(1 + r) on [δ∗, δ] guarantees the existence of two

numbrs M > m > 0 satisfying

m ≤ g(r) ≤ M, r ∈ [δ∗, δ].

Thus, one has the estimate

c1r := min{1
2
,m}r ≤ log(1 + r) ≤ max{3

2
,M}r =: d1r, r ∈ [0, δ]. (3.9)

Under these preparations we shall prove the statements.

Proof of (1). Let µ > 2, an let δ1 ∈ (0, δ] be a small number such that

µ2 − 4(1 + δ1)
2 > 0. (3.10)

In fact, because of µ > 2 one can choose as

δ1 ∈ (0,min{µ
2
− 1, δ}].

Then,
√

h(r) = λ+ − λ− ≥
√

µ2 log2(1 + r)− 4(1 + δ1)2 log
2(1 + r)

=
√

µ2 − 4(1 + δ1)2 log(1 + r), (3.11)

where one has just used the fact that

r ≤ (1 + δ1) log(1 + r), ∀r ∈ [0, δ1]. (3.12)
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A check of (3.12) is an easy exercise of calculus. Also, it is trivial:

√

h(r) ≤ µ log(1 + r), r ∈ [0, δ]. (3.13)

Therefore, from (3.11) and (3.13) one can get the desired result (1) by choosing c :=
√

µ2 − 4(1 + δ1)2

and d := µ:

d log(1 + r) ≥
√

h(r) ≥ c log(1 + r), r ∈ [0, δ1].

Proof of (2). Indeed, from (3.9) it follows that

−2λ+ =
4r2

µ log(1 + r) +
√

h(r)
≤ 4r2

µ

1

log(1 + r)
≤ 4

c1µ
r, r ∈ [0, δ].

While, because of (1), (3.13) and (3.9) one has

−2λ+ =
4r2

µ log(1 + r) +
√

h(r)
≥ 4r2

2µ log(1 + r)
≥ 2r2

µd1r
=: d2r, r ∈ [0, δ1].

These prove the statement of (2) in [0, δ1].

Proof of (3). Indeed, from (3.13) one has

2λ− = −µ log(1 + r) −
√

h(r) ≥ −2µ log(1 + r).

While, 2λ− ≤ −µ log(1 + r) is trivial. These mean the statement of (3) in [0, δ].

It should be remarked, in fact, one can choose the same coefficients c > 0 and d > 0 through all

results (1)-(3) by a standard argument. �

Based on Lemma 3.1 let us check that each terms Ej(t, ξ) (j = 1, 2, 3, 4, 5) are remainders in the

decomposition (3.7).

(1)Low frequency estimate for w(t, ξ) on [0, δ1] when µ > 2.

Let δ1 > 0 be the number defined in Lemma 3.1. In this part we estimate each remainder terms of

(3.7) on r ∈ [0, δ1] becaue we use Lmma 3.1 to check them.

At first one can estimate E1(t, ξ) as follows by using (1) and (2) of Lemma 3.1, the decomposition

(2.6) of the initial data and (2.13):

∫

|ξ|≤δ1

|E1(t, ξ)|2ξ ≤
∫

|ξ|≤δ1

e2tλ+

|λ+ − λ−|2
|A1(ξ)− iB1(ξ)|2dξ

� M2‖u1‖21,1
∫

|ξ|≤δ1

r2e−ctr

log2(1 + r)
dξ � ‖u1‖21,1

∫ δ1

0

e−ctrrn−1dr

≤ C‖u1‖21,1t−n, t > 0 (3.14)

with some equivalence constant c > 0.

Next, let us check E2(t, ξ), however, this is easy to have the estimate:

∫

|ξ|≤δ1

|E2(t, ξ)|2ξ ≤ C‖u0‖21t−n, t > 0 (3.15)

because of (3.9).

For E3(t, ξ), by using (1) and (2) of Lemma 3.1 and (3.9) one has the following:

∫

|ξ|≤δ1

|E3(t, ξ)|2ξ ≤
∫

|ξ|≤δ1

e−
2tr2

µ log(1+r)
λ2
+

|λ− − λ+|2
|w0(ξ)|2dξ

� ‖u0‖21
∫

|ξ|≤δ1

e−
2tr2

µ log(1+r)
r2

log2(1 + r)
dξ � ‖u0‖21

∫ δ1

0

e−ctrrn−1dr

13



≤ C‖u0‖21t−n, t > 0 (3.16)

with some equivalence constant c > 0.

E4(t, ξ) can be estimated by using (1) and (3) of Lemma 3.1 and (3.9):

∫

|ξ|≤δ1

|E4(t, ξ)|2ξ ≤
∫

|ξ|≤δ1

e−
2tr2

µ log(1+r)
λ2
−

|λ+ − λ−|2
|1− e−

tλ2
+

µ log(1+r) |2|w0(ξ)|2dξ

� ‖u0‖21
∫

|ξ|≤δ1

e−ctrdξ

≤ C‖u0‖21t−n, t > 0 (3.17)

with some equivalence constant c > 0.

We treat E5(t, ξ) by using can be estimated by Lemma 3.1 and Lemma 2.1 :

∫

|ξ|≤δ1

|E5(t, ξ)|2dξ ≤
∫

|ξ|≤δ1

e2tλ−

|λ+|2
|λ+ − λ−|2

|w0(ξ)|2dξ

� ‖u0‖21
∫

|ξ|≤δ1

e−ct log(1+r)dξ

≤ C‖u0‖21t−n, t > 0 (3.18)

with some equivalence constant c > 0.

We treat E6(t, ξ) can be checked by (2.6), (2.13), Lemma 3.1 and Lemma 2.1 :

∫

|ξ|≤δ1

|E6(t, ξ)|2dξ ≤
∫

|ξ|≤δ1

e2tλ−

|A1(ξ)− iB1(ξ)|2
|λ+ − λ−|2

dξ

� M2‖u1‖21,1
∫

|ξ|≤δ1

e2tλ−

r2

|λ+ − λ−|2
dξ

� M2‖u1‖21,1
∫

|ξ|≤δ1

e−ct log(1+r) r2

log2(1 + r)
dξ

≤ C‖u1‖21,1t−n, t > 0 (3.19)

with some equivalence constant c > 0.

Summarizing computations above one can arrive at the following low frequency estimate.

Lemma 3.2 Let n ≥ 1 and µ > 2. Then, it holds that

∫

|ξ|≤δ1

|w(t, ξ)− ν(t, ξ)|2dξ ≤ Cn,µ

(

‖u0‖21 + ‖u1‖21,1
)

t−n, t ≫ 1,

where C = Cn,µ is a positive constant and β > 0 is a constant.

Next we deal with th remainder terms of (3.7) in the middle frequency region [δ1, δ]

(2)Midle frequency estimate for w(t, ξ) on [δ1, δ] when µ > 2.

To prove the middle frequency estimate for the solution w(t, ξ) we rely on the energy estimate in the

Fourier space due to [7, Proposition 2.1]:

|ξ|2|w(t, ξ)|2 ≤ Ce−cρ(|ξ|)t(|ξ|2|w0(ξ)|2 + |w1(ξ)|2), ξ ∈ R
n \ {0},

where

ρ(r) :=
µr2 log(1 + r)

r2 + µ2 log2(1 + r)
.
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Note that Proposition 2.1 of [7] itself can be applied to our case with the weight function ρ(r) just defined.

This implies

|w(t, ξ)|2 ≤ Ce−cρ(|ξ|)t(|w0(ξ)|2 + |ξ|−2|w1(ξ)|2), ξ ∈ R
n \ {0}.

Thus, for r ∈ [δ1, δ] one has

|w(t, ξ)|2 ≤ Ce−cρ(|ξ|)t(|w0(ξ)|2 + δ−2
1 |w1(ξ)|2) ≤ C(1 + δ−2

1 )e−cρ(|ξ|)t(|w0(ξ)|2 + |w1(ξ)|2).

This implies

∫

δ1≤|ξ|≤δ

|w(t, ξ)|2dξ ≤ C(1 + δ−2
1 )

∫

δ1≤|ξ|≤δ

e−cρ(|ξ|)t(|w0(ξ)|2 + |w1(ξ)|2)dξ.

In the case when r ∈ [δ1, δ] one has

e−cρ(|ξ|)t ≤ e−Act,

where

A :=
µδ21 log(1 + δ1)

δ2 + µ2 log2(1 + δ)
.

Therefore, it follows that

∫

δ1≤|ξ|≤δ

|w(t, ξ)|2dξ ≤ C(1 + δ−2
1 )e−Act(‖u0‖2 + ‖u1‖2), (3.20)

which implies the exponential decay result of the solution w(t, ξ) in [δ1, δ].

Next, let us derive exponential decay for the leading term ν(t, ξ) itself in [δ1, δ].

For this aim set

A∗ :=
δ21

µ log(1 + δ) +
√

µ2 log2(1 + δ)− 4δ21

.

Note that since δ1 < δ, one has µ log(1+ δ) > 2δ1 which implies the well-definedness of A∗. Furthermore,

it should be noted that since

lim
r→+0

1− e−r

r
= 1,

as in the argument of Lemma 3.1 one can assume that there exists constants γ0 > 0 and δ2 > 0 such that

γ0 ≤ 1− e−r

r
, ∀r ∈ (0, δ2]. (3.21)

In particular, since

lim
r→∞

1− e−r

r
= 0,

and the continuity of the function r 7→ 1−e−r

r on (0,∞), there exists a number κ0 > 0 such that

0 <
1− e−r

r
≤ κ0, ∀r > 0. (3.22)

Then, it follows from the general above result (3.22), one has

|1− e−(λ+−λ−)t|2
|λ+ − λ−|2t2

≤ κ2
0, t > 0, r ∈ [δ1, δ].

Thus, one can estimate as follows:

K0(t) :=

∫

δ1≤|ξ|<δ

|ν(t, ξ)|2dξ = P 2
1 t

2

∫

δ1≤|ξ|<δ

e2λ+t |1− e−(λ+−λ−)t|2
|λ+ − λ−|2t2

dξ
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≤ κ2
0P

2
1 t

2

∫

δ1≤|ξ|<δ

e2λ+tdξ = κ2
0P

2
1 t

2ωn

∫ δ

δ1

e
−4tr2

µ log(1+r)+
√

µ2 log2(1+r)−4r2 rn−1dr

≤ κ2
0P

2
1 t

2ωn

∫ δ

δ1

e−4A∗trn−1dr ≤ κ2
0P

2
1 ωnt

2e−4A∗tδn−1(δ − δ1),

which implies

K0(t) ≤ CP 2
1 e

−αt (t > 1). (3.23)

Now, let us prove the first estimate of Theorem 1.3. It follows from Lemma 3.2, (3.20) and (3.23) that

‖w(t, ·) − ν(t, ·)‖L2(|ξ|≤δ) = ‖w(t, ·) − ν(t, ·)‖L2(|ξ|≤δ1) + ‖w(t, ·) − ν(t, ·)‖L2(δ1≤|ξ|≤δ)

≤ C(‖u0‖1 + ‖u1‖1,1)t−
n
2 + ‖w(t, ·)‖L2(δ1≤|ξ|≤δ) + ‖ν(t, ·)‖L2(δ1≤|ξ|≤δ)

≤ C(‖u0‖1 + ‖u1‖1,1)t−
n
2 + Ce−αt(‖u0‖+ ‖u1‖) + |P1|e−αt,

which implies the desired first estimate of Theorem 1.3.

Let us make sure the high frequency estimates for w(t, ξ) directly. This seems easier because the

characteristic roots are complex-valued on this zone.

(3)High frequency estimate for w(t, ξ) when µ > 2.

On the zone of high frequency the characteristic roots are complex-valued according to (3.1). Then the

solution in the Fourier space given by (3.4) can be rewritten for |ξ| > δ as

w(t, ξ) = (1 + r)−
tµ
2

2

r
√

4− (µ log(1+r)
r )2

sin
(
r
√

4− (µ log(1+r)
r )2

2
t
)

w1(ξ)

+ (1 + r)−
tµ
2 cos

(
r
√

4− (µ log(1+r)
r )2

2
t
)

w0(ξ) (3.24)

+ (1 + r)−
tµ
2

µ log(1 + r)

r
√

4− (µ log(1+r)
r )2

sin
(
r
√

4− (µ log(1+r)
r )2

2
t
)

w0(ξ),

where we have used that exp(− tµ
2 log(1 + r)) = (1 + r)−

tµ
2 .

Now, it is necessary to estimate the three terms in the right hand side of (3.24).

The first estimate is to

∫

r=|ξ|>δ

∣

∣

∣
(1 + r)−

tµ
2

2

r
√

4− (µ log(1+r)
r )2

sin
(
r
√

4− (µ log(1+r)
r )2

2
t
)

w1(ξ)
∣

∣

∣

2

dξ

≤ t2
∫

|ξ|>δ

(1 + r)−tµ |w1(ξ)|2dξ

≤ ωn‖w1‖2∞t2
∫ ∞

δ

(1 + r)−tµrn−1dr

≤ C‖u1‖21t2e−β1t ≤ C‖u1‖21e−βt, t ≫ 1, (3.25)

where C and β is positive constants depending on n and µ and β1 is some positive constant given by

Lemma 2.2. We have just used the estimate | sin θ| ≤ |θ| for all θ ∈ R.
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Similarly, to get the second estimate, using the fact | cos θ| ≤ 1 for all θ, one has

∫

r=|ξ|>δ

∣

∣

∣
(1 + r)−

tµ
2 cos

(

r
√

4− (µ log(1+r)
r )2

2
t
)

w0(ξ)
∣

∣

∣

2

dξ

≤
∫

|ξ|>δ

(1 + r)−tµ |w0(ξ)|2dξ

≤ C‖u0‖21e−β1t, t ≫ 1. (3.26)

To estimate the third integral in the right hand side of (3.24) we proceed similarly as in the estimate

to the first integral. Then one has

∫

|ξ|>δ

∣

∣

∣
(1 + r)−

tµ
2

µ log(1 + r)

r
√

4− (µ log(1+r)
r )2

sin
(

r
√

4− (µ log(1+r)
r )2

2
t
)

w0(ξ)
∣

∣

∣

2

dξ

≤ t2

4

∫

|ξ|>δ

(1 + r)−tµµ2 log2(1 + r) |w0(ξ)|2dξ

≤ t2

4

∫

|ξ|>δ

(1 + r)−tµµ2r2 |w0(ξ)|2dξ

≤ t2

4
µ2ωn‖u0‖21

∫ ∞

δ

(1 + r)−tµrn+1dr

≤ Ct2‖u0‖21e−β2t ≤ C‖u0‖21e−βt, t ≫ 1, (3.27)

for some β2 and β positive constants.

By combining estimates (3.25), (3.26) and (3.27) we arrive at the exponential estimate in the high

frequency zone. Note that one can replace the integral region |ξ| < δ with |ξ| ≤ δ in the result below since

all derived final estimates are independent from δ > 0. In fact, δ > 0 is a fixed constant that depends

only on µ > 0 (see (1.4)).

Lemma 3.3 Let µ > 2, and let u0 ∈ L1(Rn) and u1 ∈ L1(Rn). Then, it holds that

∫

|ξ|≥δ

|w(t, ξ)|2dξ ≤ Cn,µ

(

‖u0‖21 + ‖u1‖21
)

e−βt, t ≫ 1, (3.28)

where C = Cn,µ is a positive constant and β > 0 is a constant.

Finally, the second inequality of Theorem 1.3 is a direct consequence of Lemma 3.3.

4 Optimal L2-estimates of solutions: the case µ > 2

In this section we shall try to get the optimal estimates of the solutions to problem (1.1)-(1.2) in

terms of the L2-norm. We treat the effective damping case µ > 2.

In order to get such estimates of the quantity ‖u(t, ·)‖ = C‖w(t, ξ)‖ with some C > 0, we first note

the following inequalities.

‖w(t, ·)‖2 ≥
∫

|ξ|≤δ1

|w(t, ξ) − ν(t, ξ) + ν(t, ξ)|2dξ

≥ 1

2

∫

|ξ|≤δ1

|ν(t, ξ)|2dξ −
∫

|ξ|≤δ1

|w(t, ξ) − ν(t, ξ)|2dξ, (4.1)
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because of |a+ b|2 ≥ 1
2 |a|2 − |b|2 (a, b ∈ C), and

‖w(t, ·)‖2 =

(

∫

|ξ|≤δ1

+

∫

δ1≤|ξ|≤δ

+

∫

δ≤|ξ|

)

|w(t, ξ)|2dξ

≤ 2

∫

|ξ|≤δ1

|w(t, ξ) − ν(t, ξ)|2dξ + 2

∫

|ξ|≤δ1

|ν(t, ξ)|2dξ

+

∫

δ1≤|ξ|≤δ

|w(t, ξ)|2dξ +
∫

δ≤|ξ|
|w(t, ξ)|2dξ, (4.2)

where δ > 0 and δ1 > 0 are constants defined in (3.1) and Lemma 3.1, respectively. So, because of Lemma

3.2, (3.20) and (3.28), in order to prove Theorem 1.4 it suffices to consider only one factors

I0(t) :=

∫

|ξ|≤δ1

|ν(t, ξ)|2dξ.

We will get upper and lower bound estimates for I0(t) as t → ∞.

We first get upper bound estimate.

Upper bound estimate.

I0(t) = P 2
1

∫

|ξ|≤δ1

|eλ+t − eλ−t|2
|λ+ − λ−|2

dξ = P 2
1 t

2

∫

|ξ|≤δ1

e2λ+t |1− e−(λ+−λ−)t|2
|(λ+ − λ−)t|2

dξ.

Then, from (3.22) one has

I0(t) ≤ P 2
1 t

2κ2
0

∫

|ξ|≤δ1

e2λ+tdξ = P 2
1 t

2κ2
0ωn

∫ δ1

0

e2λ+trn−1dr

≤ P 2
1 t

2κ2
0ωn

∫ δ1

0

e−2drtrn−1dr ≤ CP 2
1 t

2κ2
0ωnt

−n,

which implies the desired upper bound estimate

I0(t) ≤ CP 2
1 t

2−n, t ≫ 1, (4.3)

where one has just used (2) of Lemma 3.1.

Lower bound estimate.

Next, we get the lower bound estimate for I0(t). Let δ1 > 0 and δ2 > 0 be constants defined in Lemma

3.1 and (3.21), respectively, and choose t > 0 sufficiently large to satisfy

e
δ2
dt − 1 ≤ δ1.

If we consider r ∈ [0, e
δ2
dt − 1], then r ∈ [0, δ1] and

d log(1 + r)t ≤ δ2,

where d > 0 is a constant defined in Lemma 3.1. This implies, because (1) of Lemma 3.1,

(λ+ − λ−)t ≤ d log(1 + r)t ≤ δ2, t ≫ 1.

Thus, one can apply (3.21) of Section 3 to get

γ0 ≤ 1− e−(λ+−λ−)t

(λ+ − λ−)t
, r ∈ (0, e

δ2
dt − 1], t ≫ 1. (4.4)
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Based on (4.4) and (2) of Lemma 3.1 one can estimate I0(t) as follows:

I0(t) = P 2
1 t

2

∫

|ξ|≤δ1

e2tλ+

∣

∣

∣

∣

1− e−(λ+−λ−)t

(λ+ − λ−)t

∣

∣

∣

∣

2

dξ

≥ P 2
1 t

2γ2
0

∫

|ξ|≤e
δ2
dt −1

e2tλ+dξ ≥ P 2
1 t

2γ2
0

∫

|ξ|≤e
δ2
dt −1

e−2ctrdξ

≥ P 2
1 t

2γ2
0ωn

∫ e
δ2
dt −1

0

e−2ctrrn−1dr, t ≫ 1,

where c is a positive constant defined in (2) of Lemma 3.1.

Since ex − 1 > x for x ≥ 0 one can get the estimate

I0(t) ≥ P 2
1 t

2γ2
0ωn

∫

δ2
dt

0

e−2ctrrn−1dr ≥ P 2
1 t

2γ2
0ωne

−2ct(
δ2
dt )

∫

δ2
dt

0

rn−1dr

= P 2
1 t

2γ2
0ωn

e−2cδ2/d

n

δn2
dn

t−n,

which implies the desired lower bound estimate:

I0(t) ≥ CP 2
1 t

2−n, t ≫ 1. (4.5)

The proof of Theorem 1.4 is a direct consequence of (4.1), (4.2), (4.3), (4.5) as is already mentioned.

Remark 4.1 From the proof above one may realize that one can not treat two factors P1
eλ+t√

µ2 log2(1+r)−4r2

and P1
eλ−

t√
µ2 log2(1+r)−4r2

of the leading term ν(t, ξ) separately. In this sense, one can observe an effective

role of the ”double diffusion” structure of the solution itself as is pointed out in [12] and [22].

5 Optimal L2-estimates of solutions: case 0 < µ < 2

In this section we shall prove Theorem 1.2. To do that we treat the non-effective damping case

µ ∈ (0, 2) where the characteristic roots associated with the problem (2.1)–(2.2) are complex-valued for

all ξ ∈ R
n.

For the estimates needed in this section, one uses the following facts that

L := sup
θ 6=0

∣

∣

∣

∣

sin θ

θ

∣

∣

∣

∣

< +∞, (5.1)

and there exists a real number δ0 ∈ (0, 1) such that for all θ ∈ (0, δ0]

∣

∣

∣

∣

sin θ

θ

∣

∣

∣

∣

≥ 1

2
. (5.2)

As in the same concept discussed in Section 4, for our purpose it suffices to get upper and lower bound

estimates for the quantity

Kn(t) :=

∫

|ξ|≤1

|χ(t, ξ)|2dξ,

where

χ(t, ξ) := (1 + r)−
tµ
2

2

r
√

4− (µ log(1+r)
r )2

sin(γtr)P1, (5.3)
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and γ =

√

4− µ2

2
> 0. Note that a contribution from the high frequency estimates in {|ξ| ≥ 1} is

exponentially small, and in fact, the following exponential decay estimate is true:
∫

|ξ|≥1

|χ(t, ξ)|2dξ ≤ P 2
1 t

2L2

∫

|ξ|≥1

(1 + r)−µtdξ ≤ CnP
2
1 t

2e−αt, t > 0, (5.4)

because of Lemma 2.2, where the constants Cn > 0 and α > 0 depend on n, and µ ∈ (0, 2).

We first get the lower bound estimate for Kn(t). For this purpose, we prepare one facts that since

lim
r→+0

1

4− (µ log(1+r)
r )2

=
1

4γ2
,

there exists a constant ρ0 ∈ (0, 1) such that for all r ≤ ρ0, one has

1

8γ2
≤ 1

4− (µ log(1+r)
r )2

≤ 1

2γ2
. (5.5)

Now, take t > 0 sufficiently large such that
δ0
γt

< ρ0. This implies γtr ≤ δ0 and r < ρ0 if r ≤ δ0
γt

, which

brings to the useful inequalities (5.5) and

∣

∣

∣

∣

sin(γtr)

γtr

∣

∣

∣

∣

≥ 1

2
, (5.6)

where one has just used (5.2). Then, from (5.5) and (5.6) one has a series of inequalities:

Kn(t) ≥ 4P 2
1

∫

|ξ|≤ρ0

(1 + r)−µt sin2(γrt)

r2
(

4− (µ log(1+r)
r )2

)dξ

= 4t2P 2
1 γ

2

∫

|ξ|≤ρ0

(1 + r)−µt sin
2(γrt)

t2γ2r2

(

1

(4 − (µ log(1+r)
r )2

)

dξ

≥ 4t2P 2
1 γ

2

∫

|ξ|≤ δ0
γt

(1 + r)−µt sin
2(γrt)

t2γ2r2

(

1

(4− (µ log(1+r)
r )2

)

dξ

≥ t2
P 2
1

8

∫

|ξ|≤ δ0
γt

(1 + r)−µtdξ = t2
P 2
1

8
ωn

∫

δ0
γt

0

(1 + r)−µtrn−1dr

≥ t2
P 2
1

8
ωn(1 +

δ0
γt

)−µt 1

n
(
δ0
γ
)nt−n

≥ ωnP
2
1

16n
(
δ0
γ
)ne−

µδ0
γ t2−n =: Cnt

2−n, t ≫ 1, (5.7)

where one has just relied on the fact that

lim
t→∞

(1 +
δ0
γt

)−µt = e−
µδ0
γ .

While, one can get the upper bound estimates for Kn(t). Indeed, one has

Kn(t) =

(

∫

|ξ|≤ρ0

+

∫

1≥|ξ|≥ρ0

)

|χ(t, ξ)|2dξ =: Kn,1(t) +Kn,2(t).

Kn,1(t) can be estimated as follows from (5.1), (5.5) and Lemma 2.1:

Kn,1(t) ≤ 4γ2P 2
1 t

2L2

∫

|ξ|≤ρ0

(1 + r)−µt 1

4− (µ log(1+r)
r )2

dξ
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≤ 2P 2
1 t

2L2

∫

|ξ|≤ρ0

(1 + r)−µtdξ ≤ DnP
2
1 t

2−n (5.8)

for large t > 1 and some constant Dn > 0. Furthermore, for the estimate of Kn,2(t) one can proceed the

same computation as in (5.4) to get

Kn,2(t) ≤
∫

|ξ|≥ρ0

|χ(t, ξ)|2dξ ≤ CnP
2
1 t

2e−αt, t > 0. (5.9)

By using (5.7), (5.9) and (5.8) one can obtain the following lemma:

Lemma 5.1 Let n ≥ 1 and µ ∈ (0, 2). Than it holds that

C2
nP

2
1 t

2−n ≤
∫

|ξ|≤1

|χ(t, ξ)|2dξ ≤ D2
nP

2
1 t

2−n (t ≫ 1),

where Cn > 0 and Dn > 0 are generous constants depending on n and µ ∈ (0, 2).

To end this section, based on the inequalities

∫

|ξ|≤1

|χ(t, ξ)|2dξ −
∫

Rn

|w(t, ξ) − χ(t, ξ)|2dξ ≤
∫

Rn

|w(t, ξ)|2dξ

≤
∫

Rn

|w(t, ξ) − χ(t, ξ)|2dξ +
∫

|ξ|≤1

|χ(t, ξ)|2dξ +
∫

|ξ|≥1

|χ(t, ξ)|2dξ, (5.10)

because of Theorem 1.1, estimates (5.4) and Lemma 5.1 combined with the Plancherel Theorem, one can

prove Theorem 1.2.

6 Optimal L2-estimates of solutions: case µ = 2

In this section, we prove Theorem 1.6 based on Theorem 1.5. For this purpose, one shall consider the

critical case of µ = 2. In this case, from Theorem 1.5 one can see that the leading term is

ν(t, ξ) := (1 + t)−t

sin

(

t
√

r2 − log2(1 + r)

)

√

r2 − log2(1 + r)
P1 r > 0.

It suffices to estimate the quantity: for P1 6= 0;

1

P 2
1

∫

|ξ|≤η

|ν(t, ξ)|2dξ (6.1)

for small η > 0.

Now, note that since

lim
r→+0

r2 − log2(1 + r)

r3
= 1,

lim
r→+0

r − log(1+r)
1+r

r2
=

3

2
,

one can assume that

r2 − log2(1 + r) ∼ r3 r → +0, (6.2)

r − log(1 + r)

1 + r
∼ r2 r → +0. (6.3)
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One uses (6.2), (6.3) and a polar coordinate transform to estimate the essential part of (6.1):

In(t) :=

∫ η

0

(1 + r)−2trn−1 sin
2(t
√

f(r))

(
√

f(r))2
dr,

where f(r) := r2 − log2(1 + r) for small η > 0. One applies the change of variable as w =
√

f(r). Then,

it is true that

dw =
r − log(1+r)

1+r
√

f(r)
dr.

It should be noticed that w ∼
√
r3 = r

3
2 , so that r ∼ w

2
3 when r → +0. Then, one has a series of

inequalities: for small η > 0 it holds that

In(t) ∼
∫ η

0

(1 + w
2
3 )−2tw

2n−6
3

sin2(tw)

w
dw =

∫ η

0

(1 + w
2
3 )−2tw

2n−3
3

sin2(tw)

w2
dw =: Ĩn(t).

Lower bound estimate for In(t) ∼ Ĩn(t):

By a change of variable by σ = w
2
3 one has

Ĩn(t) =
3

2

∫ η
2
3

0

(1 + σ)−2tσn−4 sin2(tσ
3
2 )dσ.

Since log(1 + σ) ∼ σ as σ → 0, one finds that (1 + σ)−2t ∼ e−2tσ for small σ > 0. Thus, one can asume

Ĩn(t) ∼
∫ η

2
3

0

e−2tσσn−4 sin2(tσ
3
2 )dσ (6.4)

= t2
∫ δ0

0

e−2tσσn−1

∣

∣

∣

∣

∣

sin(tσ
3
2 )

tσ
3
2

∣

∣

∣

∣

∣

2

dσ

for small δ0 > 0 defined in (5.2). Thus, by a change of variable tσ = r one has

Ĩn(t) ≥ C
t2

4

∫ δ
2
3
0 t−

2
3

0

e−2tσσn−1dσ

= C
t2−n

4

∫ At
1
3

0

e−2rrn−1dr ≥ C
t2−n

4

∫ At
1
3

0

e−2rrn−1dr

≥ C
t2−n

4

∫ 1

0

e−2rrn−1dr,

for large t > 1 satisfying At
1
3 > 1, where A := δ

2
3
0 and C > 0 is a constant brought by equivalence (6.4).

This implies that there exists a generous constant Cn > 0 such that

In(t) ∼ Ĩn(t) ≥ Cnt
2−n, t ≫ 1. (6.5)

Upper bound estimate In(t) ∼ Ĩn(t):

Because of (5.1) one can estimate

Ĩn(t) ≤ L2t2
∫ η

0

(1 + w
2
3 )−2tw

2n−3
3 dw

= L2t2
∫ η2/3

0

(1 + σ)−2tσn−1dw

≤ CL2t2t−(n−1+1) = CL2t2−n (6.6)
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with some constant C > 0 because of Lemma 2.1 with p := n− 1.

A rest part of proof of Theorem 1.6 can be done as in Section 5 based on the inequality (5.10) with

χ(t, ξ) replaced by ν(t, ξ) above.
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