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Abstract

In device-to-device (D2D) coded caching problems, it is possible that not all users will make file

requests in the delivery phase. Hence, we propose a new D2D centralized coded caching problem,

named the 3-user D2D coded caching with two random requesters and one sender (2RR1S), where in

the delivery phase, any two of the three users will make file requests, and the user that does not make

any file request is the designated sender. We find the optimal caching and delivery scheme, denoted as

the 2RRIS scheme, for any number of files N by proving matching converse and achievability results.

It is shown that coded cache placement is needed to achieve the optimal performance. Furthermore, the

optimal rate-memory tradeoff has a uniform expression for N ≥ 4 and different expressions for N = 2

and 3.

To examine the usefulness of the proposed model and scheme, we adapt the 2RR1S scheme to three

scenarios. The first one is the 3-user D2D coded caching model proposed by Ji et al. By characterizing

the optimal rate-memory tradeoff for the 3-user D2D coded caching when N = 2, which was previously

unknown, we show that the adapted 2RR1S scheme is in fact optimal for the 3-user D2D coded caching

problem when N = 2 and the cache size is medium. The benefit comes from coded cache placement

which is missing from existing D2D coded caching schemes. The second scenario is where in the

delivery phase, each user makes a file request randomly and independently with the same probability p.

We call this model the request-random D2D coded caching problem. Adapting the 2RR1S scheme to

The authors are with the National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
(e-mail: {wuquwang, nanliu, wkang}@seu.edu.cn).

DRAFT

ar
X

iv
:2

20
9.

10
22

5v
5 

 [
cs

.I
T

] 
 1

7 
A

ug
 2

02
3



2

this scenario, we show the superiority of our adapted scheme over other existing D2D coded caching

schemes for medium to large cache size. The third scenario is the K-user D2D coded caching with K−s

random requesters and s senders problem, for which an achievability result is obtained by generalizing

the 2RR1S scheme.

Index Terms

Coded caching, device-to-device, optimal rate-memory tradeoff, random request

I. INTRODUCTION

The applications of wireless networks have developed from traditional real-time voice com-

munication to multimedia transmissions such as video, virtual/augmented reality game, high

definition map etc., which require the throughput of each user to increase by nearly 1000 times

[1]. Fortunately, such content can be pre-stored into the user’s storage during periods of low

network utilization, thus avoiding network congestion during peak hours. This technology is

known as caching [2], [3]. The caching process is typically divided into two phases [5]. The

placement phase happens during the off-peak hours, where the server fills the users’ caches

before the users request any content, while the delivery phase represents the transmission stage

of the server when the users reveal their demands during peak hours. Caching technology has

developed rapidly in recent years, and it is currently considered as one of the effective solutions

to relieve the load pressure of wireless networks.

In traditional caching, the users cache the most likely requested contents, and the server

transmits the uncached portions of the files requested by the users. Both the cached contents of

the users and the transmitted signal of the server are uncoded. Contrary to traditional caching,

Maddah-Ali and Niesen proposed an idea [5] of combining coded multi-casting and device

caching to satisfy multiple uni-cast demands simultaneously through coded multi-cast transmis-

sions, which is known as coded caching. The coded caching problem allows both coded cache
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contents of the users and coded transmission from the server. The goal is to design a caching and

delivery scheme such that the worst-case delivery rate is the smallest, where “worst-case” refers

to the largest delivery rate among all possible request demands of the users. When the optimal

caching and delivery scheme that achieves the smallest worst-case delivery rate can be identified

for any cache size of the users, the optimal rate-memory tradeoff is found for the system. If each

user directly stores a subset of the files’ bits without coding, then the cache placement scheme

is called uncoded, otherwise it is called coded. The coded caching problem studied in [5] is of a

centralized nature, where it is assumed that the set of users present during the placement phase

will each request a file at the beginning of the delivery phase. Decentralized coded caching has

been studied in [7], which considers the possibility that some users may leave or turn off during

the delivery phase, and studies less coordinated caching strategies.

To further reduce the traffic load of the server at peak hours, Ji et al. [4] propose a framework

for device-to-device (D2D) coded caching. During the placement phase, similar to coded caching

[5], the server fills the users’ caches before the users request any content. During the delivery

phase, when each user makes a request for a file, the server is inactive and it is up to the users

to transmit signals among themselves so that each user can decode its requested file based on

the transmitted signals of the other users and its local cache content. For the centralized D2D

coded caching problem, [4] used the caching strategy of [5, Algorithm 1], which is uncoded, and

devised a novel delivery scheme fit for the D2D scenario. Furthermore, a widely recognized D2D

caching converse was proposed in [4], and it has been shown that the proposed D2D caching

and delivery scheme is order optimal within a constant factor when the memory size is large.

However, the optimal caching and delivery scheme and the corresponding optimal rate-memory

tradeoff for the centralized D2D coded caching problem remain open.

The optimal caching and delivery scheme for the centralized D2D coded caching problem was

characterized in [8] under the assumption that the cache placement and delivery are constrained

to be uncoded and one-shot, respectively. One-shot delivery schemes satisfy the condition that
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each user can decode any bit of its requested file from its own cache and the transmitted signal

from at most one user. It has been shown in [8] that one-shot delivery schemes are optimal

within a factor of 2 under the constraint of uncoded cache placement, and optimal within a

factor of 4 without the constraint of uncoded cache placement.

In addition to [4] and [8], there are many other researches for the D2D coded caching problem,

such as distinct cache sizes [9], private caching [10], private caching with a trusted server [11],

[12], secure coded caching [13], secure delivery [14], finite file packetizations [15], wireless

multi-hop D2D networks [16], [17], partially cooperative D2D communication networks [18]

[19], placement delivery array (PDA)-based design [20] and so on. Among these papers, to

the best of our knowledge, only [4] studies the fundamental limits of centralized D2D coded

caching allowing coded placement since the nature of the problem is complex and therefore

difficult to solve. More specifically, the converse result given in [4] characterizes the performance

of schemes allowing coded cache placement, while the achievability scheme proposed in [4]

employs uncoded cache placement. Furthermore, [4] shows that the proposed scheme is order

optimal within a constant factor when the number of users is less than the number of files and

the memory size of the users is not very small.

The D2D coded caching problems discussed above assume that all users will make a file

request at the beginning of the delivery phase. However, in practice, this may not always be

true. It is possible that some users do not request any files, or they request a file at a much

later time than the other users, for example, after the delivery phase of the other uses have

been completed. Hence, investigating the D2D coded caching problem where the number of

requesters is less than the number of total users is of practical interest. Note that this is different

from decentralized D2D coded caching [4], [13], [15], [21], and coded caching with offline users

[8], [22], [23], because the users who do not request are still present in the delivery phase and

will help with the transmission.
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A. Main Contributions

In this paper, noting that the number of requesters may be smaller than the number of users,

we propose a new D2D coded caching model, called the 3-user D2D coded caching with two

random requesters and one sender (2RR1S), where during the delivery phase, any two out of

the three users will request a file while the user that is not requesting any files is the designated

sender. The main contributions of the paper can be summarized as follows.

1) For the the 3-user D2D coded caching with 2RR1S, we characterize the fundamental perfor-

mance limits, i.e., the optimal rate-memory tradeoff, for any number of files N . We also find

the optimal caching and delivery scheme, called the 2RR1S scheme, which requires coded cache

placement.

2) To illustrate the usefulness of the proposed model and the 2RR1S scheme, we adapt the

2RR1S scheme to three D2D coded caching scenarios:

a) The first scenario is the 3-user D2D coded caching problem [4]. Using the 2RR1S scheme

as a baseline scheme, we propose a new coding and delivery scheme, named the rotated 2RR1S

scheme, which employs coded cache placement. By characterizing the optimal rate-memory

tradeoff for the 3-user D2D coded caching when N = 2, which was previously unknown, we

show that the rotated 2RR1S scheme proposed is in fact optimal for the 3-user D2D coded

caching problem when N = 2 and the cache size is medium. The benefit comes from coded

cache placement which is missing from existing D2D coded caching schemes [4], [8].

b) The second scenario is the case where at the beginning of the delivery phase, each user

makes a file request randomly and independently with the same probability p, and all three users

participate in sending the delivery signals to satisfy the users’ requests. We call this problem the

request-random D2D coded caching. We adapt the 2RR1S scheme to this setting and show that

its performance is better than existing D2D coded caching schemes for medium to large cache

size.
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c) The third scenario extends the 3-user D2D coded caching with 2RR1S to the K-user D2D

coded caching with K−s random requesters and s senders problem. We obtain an achievability

result for this problem, which is inspired by the 2RR1S scheme and employs coded cache

placement.

II. SYSTEM MODEL

We introduce a new model in this paper, called the 3-user D2D coded caching with two

random requesters and one sender (2RR1S). There is a server connected to a database of N

independent files, W1, ...,WN , and each file consists of F bits, i.e.,

H(W1) = H(W2) = · · · = H(WN) = F,

H(W1,W2, · · · ,WN) = H(W1) +H(W2) + · · ·+H(WN).

There are K = 3 users in the system, each with a cache of size MF bits, M ≤ N . The system

operates in two phases. In the placement phase, each user’s cache is filled with a function of the

N files, where we denote the content in the cache of User k as Zk, k = 1, 2, 3. In the delivery

phase, any 2 out of the 3 users will make a file request, and the file requests are known to all

3 users. The user who does not make the file request will send a signal XD, where D denotes

the request triple. The signal XD is received correctly by the two users with file requests, and

it is required that each of these two users can decode its requested file using the signal received

and its own cache content. We say that the request vector D = (0, d2, d3) when Users 2 and

3 request Files Wd2 and Wd3 , respectively, and User 1 does not request anything and is the

designated sender. Similarly, the request vector D can take the values of D = (d1, 0, d3) and

D = (d1, d2, 0), d1, d2, d3 ∈ [N ]. Note that we use [N ] to represent the set {1, 2, · · · , N} and

W[N ] to represent the set {W1,W2, · · · ,WN}.

More specifically, a caching and delivery scheme for this system model consists of
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1) three caching functions

φk : [2
F ]N → [2MF ], k = 1, 2, 3,

which maps the N files into the cached contents of the users, denoted by Zk = φk(W1, · · · ,WN),

k = 1, 2, 3. Since the cached contents are deterministic functions of the files, we have

H(Z1, Z2, Z3|W[N ]) = 0. (1)

2) 3N2 encoding functions

ϕD : [2MF ] → [2R
D(M)F ],

i.e., the encoding function ϕD denotes the mapping from the cached content of the sender to the

signal sent by the sender, and this mapping is a function of the file requests of the other two

users. We use X(0,d2,d3) to denote the signal sent by User 1, when Users 2 and 3 are requesting

files Wd2 and Wd3 , respectively, i.e., X(0,d2,d3) = ϕ(0,d2,d3)(Z1). Similarly, we define X(d1,0,d3) and

X(d1,d2,0), d1, d2, d3 ∈ [N ]. The signal transmitted by the sender for request vector D consists of

RD(M)F bits, where M is the cache size of the three users. Thus, we have

H(X(0,d2,d3)|Z1) = 0, H(X(d1,0,d3)|Z2) = 0, H(X(d1,d2,0)|Z3) = 0. (2)

3) 6N2 decoding functions

ψD
k : [2MF ]× [2R

D(M)F ] → [2F ], k ∈ {i| the i-th element of D ̸= 0},

which is the decoding function used at User k, when the request vector is D.

It is required that the caching and delivery scheme enables correct decoding at the users
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requesting files, i.e.,

H(Wd2|Z2, X
(0,d2,d3)) = 0, H(Wd3|Z3, X

(0,d2,d3)) = 0, H(Wd1|Z1, X
(d1,0,d3)) = 0,

H(Wd3|Z3, X
(d1,0,d3)) = 0, H(Wd1|Z1, X

(d1,d2,0)) = 0, H(Wd2|Z2, X
(d1,d2,0)) = 0,

(3)

which is called the decodability constraint. We see from (3) that for the decodability constraint

to be satisfied, the contents of the cache of any two users must be able to fully recover all N

messages, i.e.,

H(W[N ]|ZI) = 0, I = {1, 2}, {2, 3}, {3, 1}. (4)

which means that we must have 2M ≥ N .

Since in the delivery phase, any two of the three users may make file requests and the delivery

needs to be done by the third user through a common link between itself and the two users, we

call this problem the 3-user D2D coded caching with two random requesters and one sender

(2RR1S). The schematic diagram of the system model is shown in Fig. 1.

Fig. 1. System model for the 3-user D2D coded caching with two random requesters and one sender. In this realization, User
2 does not request and therefore is the designated sender. Solid and dotted lines indicate the placement and delivery phases,
respectively.

For a given caching and delivery scheme that satisfies the decodability constraint (3), the

performance metric of interest is the worst-case delivery rate, i.e., R(M) ≜ maxD R
D(M),
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where RD(M)F is the number of symbols transmitted to satisfy demand D. The minimum

achievable worst-case rate is given by

R∗(M)
△
= inf R(M),

where the infimum is taken over all possible caching and delivery schemes that satisfy (1), (2)

and (3).

To simplify notation, we drop the normalization measure F in the rest of the paper, where

the value of H(Wi) is normalized as “1”, ∀i [25].

A. Symmetric schemes

We observe that the characteristic of symmetry [6, Section 3] applies to the problem of the

3-user D2D coded caching with 2RR1S. More specifically, let π̄(·) be a permutation function

on the user index set {1, 2, 3}, and denote its inverse function as π̄−1(·). Further let Z ⊆

{Z1, Z2, Z3}, X ⊆ {X(0,d2,d3), X(d1,0,d3), X(d1,d2,0)|d1, d2, d3 ∈ [N ]}. The mapping π̄(Z) denotes

{Zπ̄(k)|Zk ∈ Z} and the mapping π̄(X ) denotes
{
X(dπ̄−1(1),dπ̄−1(2),dπ̄−1(3))|X(d1,d2,d3) ∈ X

}
. User-

index-symmetric schemes [6, Section 3] are defined as follows.

Definition 1: A caching and delivery scheme is called user-index-symmetric if for any permu-

tation function π̄(·), any subset of files W , any subset of caches Z , and any subset of transmitted

signals X , we have the following relation:

H(W ,Z,X ) = H(W , π̄(Z), π̄(X )).

For example, consider the permutation function π̄(1) = 2, π̄(2) = 3, π̄(3) = 1. For a user-

index-symmetric scheme for the 3-user D2D coded caching with 2RR1S, the entropy H(W1, Z1,

X(1,0,2)) under the permutation π̄ is equal to H(W1, Z2, X
(2,1,0)).

Similar to the definition of user-index-symmetric schemes, file-index-symmetric schemes [6,

Section 3] may be defined. More specifically, let π̂(·) be a permutation function on the file index
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set {1, 2, · · · , N}, and further let π̂(0) = 0. Let W ⊆ {W1,W2, · · · ,WN}, and by representing

the mapping π̂(W) as {Wπ̂(n)|Wn ∈ W} and the mapping π̂(X ) as {X(π̂(d1),π̂(d2),π̂(d3))|X(d1,d2,d3) ∈

X}, File-index-symmetric schemes [6, Section 3] are defined as follows.

Definition 2: A caching and delivery scheme is called file-index-symmetric if for any permu-

tation function π̂(·), any subset of files W , any subset of caches Z , and any subset of transmitted

signals X , we have the following relation:

H(W ,Z,X ) = H(π̂(W),Z, π̂(X )).

For example, for the 3-user D2D coded caching with 2RR1S, if User 2 does not request, the

permutation function π̂(0) = 0, π̂(1) = 2, π̂(2) = 3, π̂(3) = 1, will map W1 to π̂(W1) = W2, but

map X(1,0,2) to X(2,0,3). For such a file-index-symmetric scheme, the entropy H(W1, Z1, X
(1,0,2))

under the permutation is equal to H(W2, Z1, X
(2,0,3)).

The characteristics of symmetry [6, Section 3] applies to the 3-user D2D coded caching with

2RR1S problem. More specifically, we have the following lemma for the 3-user D2D coded

caching with 2RR1S, whose proof is similar to that of [6, Proposition 3.1].

Lemma 1: For the 3-user coded caching problem with 2RR1S, for any caching and delivery

scheme, there exists a caching and delivery scheme which is both user-index-symmetric and

file-index-symmetric with an equal or smaller worst-case delivery rate.

Proof: Consider a base code, which may not be user-index-symmetric or file-index-symmetric.

For demand D, the delivery rate is RD(M). Its worst-case delivery rate R(M) = maxD R
D(M).

We form a new code as follows. Split each file into N !K! segments, each having the same

size. For each file segment, use the base code with a different user-index and file-index joint

permutation to achieve N !K! relevant codes, whose rate is RD
π̄π̂(M) for demand D. Then, form a

new code by the space sharing of all the N !K! codes. Due to the symmetry of construction, the

new code is indeed user-index-symmetric and file-index symmetric. Furthermore, the delivery

DRAFT



11

rate of the new code for demand D is

R̄D(M) =
∑
π,π̂

1

N !K!
RD

π̄π̂(M)
(a)

≤
∑
π,π̂

1

N !K!
R(M) = R(M) (5)

where (a) follows from the fact that R(M) is the worst-case delivery rate over all possible

demand D. From (5), taking the maximum over D on both sides, we obtain that the worst-case

delivery rate of the new code R̄(M) = maxD R̄
D(M) is no larger than the worst-case delivery

rate of the base code, i.e., R(M), which proves Lemma 1.

This observation of Lemma 1 can be used to simplify the proof of the converse, where it is

sufficient to consider only caching and delivery schemes that satisfy both user-index symmetry

and file-index symmetry.

III. MAIN RESULTS ON THE 3-USER D2D CODED CACHING WITH 2RR1S

In this paper, we find the optimal rate-memory tradeoff for the proposed 3-user D2D coded

caching with 2RR1S for any number of files. It turns out that the rate-memory tradeoff satisfies

a uniform formula in the case of more than 4 files, and takes on distinct formulas in the case of

2 files and 3 files. More specifically, we have the following theorem when M ≥ N
2

. Note that

when M < N
2

, the problem is infeasible, i.e., there exists no caching and delivery scheme that

can satisfy the decodability constraint (3).

Theorem 1: For the problem of the 3-user D2D coded caching with 2RR1S where M ≥ N
2

,

(1) For N ≥ 4, the worst-case delivery rate R(M) must satisfy

4M +NR(M) ≥ 3N, M +NR(M) ≥ N, (6)

where the corner points are (M,R(M)) = (1
2
N, 1), (2

3
N, 1

3
), (N, 0). Conversely, there exist

caching and delivery schemes for any nonnegative R(M) satisfying (6).
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(2) For N = 2, the worst-case delivery rate R(M) must satisfy

18M + 8R(M) ≥ 25, 3M + 3R(M) ≥ 5, M + 2R(M) ≥ 2, (7)

where the corner points are (M,R(M)) = (1, 7
8
), (7

6
, 1
2
), (4

3
, 1
3
), (2, 0). Conversely, there exist

caching and delivery schemes for any nonnegative R(M) satisfying (7).

(3) For N = 3, the worst-case delivery rate R(M) must satisfy

6M + 4R(M) ≥ 13, 3M + 3R(M) ≥ 7, M + 3R(M) ≥ 3, (8)

where the corner points are (M,R(M)) = (3
2
, 1), (11

6
, 1
2
), (2, 1

3
), (3, 0). Conversely, there exist

caching and delivery schemes for any nonnegative R(M) satisfying (8).

The proof of Theorem 1 is given in Section IV. We make the following remarks regarding of

the result of Theorem 1, including comparisons with existing work.

Remark 1: The performance of the 3-user D2D coded caching with 2RR1S is upper bounded

by the optimal performance of the original 2-user coded caching problem where the sender is

the server. This is because the server knows everything and is more capable than any of the

D2D sender nodes. The optimal rate-memory tradeoff for the original coded caching problem

with 2 users and N files was found in [6], and the converse result of M + NR(M) ≥ N is

proved. From Theorem 1, we see that when the memory is large enough, i.e., M ∈ [2
3
N,N ],

M +NR(M) = N is achievable for the 3-user D2D coded caching with 2RR1S, which means

that when the memory is large, the random D2D sender node is as capable as the all-knowing

server.

Remark 2: We find that the proposed optimal scheme employs coded cache placement when

M ∈ [1
2
N, 2

3
N), while uncoded cache placement is sufficient when M ∈ [2

3
N,N ]. This obser-

vation is similar to the result of the traditional coded caching problem in [6] where uncoded

placement is sufficient, i.e., optimal, when M ∈ [K−1
K
N,N ].
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Remark 3: The corner point of
(
1
2
N, 1

)
for N ≥ 2, the corner points of

(
1, 7

8

)
,
(
7
6
, 1
2

)
for

N = 2, and the corner point
(
11
6
, 1
2

)
for N = 3 all employ coded cache placement. More

specifically, to deal with the fact that the identity of the transmitter is unknown at the time

of cache placement, the cache content of the users are MDS coded across the three users.

Furthermore, in the case of the corner points
(
7
6
, 1
2

)
for N = 2 and

(
11
6
, 1
2

)
for N = 3, transmitter

preprocessing is required, where the designated sender needs to do some computation to obtain

the transmitted signal. We also show in the achievability proof that the two corner points
(
7
6
, 1
2

)
for N = 2 and

(
11
6
, 1
2

)
for N = 3 belong to the more general set of achievable corner points(

4N−1
6
, 1
2

)
for N ≥ 2. These corner points are optimal for N = 2, 3, but for N ≥ 4, they are

sub-optimal.

Remark 4: In the problem considered, we have three users, i.e., K = 3. From Theorem 1, we

see that the number of corner points is different for the case of N > K and the case of N ≤ K.

This is because the corner point (4N−1
6
, 1
2
) is below the converse line 4M +NR(M) ≥ 3N only

when N ≤ K, which means that 4 corner points exist when N ≤ K and 3 corner points exist

when N > K. Note that in the traditional coded caching problem, e.g., [24], and other D2D

coded caching problems where a tight converse exists, e.g., [8], the number of corner points are

different for the case of N ≥ K and the case of N < K.

IV. PROOF OF THEOREM 1

In this section, we prove the converse and achievability for Theorem 1. The proof is different

for N ≥ 4, N = 3 and N = 2, where N is the number of files.

A. Achievability

1) N ≥ 4: We show that the three corner points (1
2
N, 1), (2

3
N, 1

3
) and (N, 0) are achievable

as long as N ≥ 2. It will be shown via the converse proof that the three corner points (1
2
N, 1),

(2
3
N, 1

3
) and (N, 0) are optimal only when N ≥ 4 is satisfied.
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The corner point of (N, 0) is trivial as all D2D nodes have enough cache to store all messages

and therefore, the delivery rate is zero. As for the corner point of (1
2
N, 1), its achievability scheme

is as follows: split all files into two subfiles of equal sizes, denoted as Wn = (Wn,1,Wn,2)
N
n=1.

In the cache placement phase, the cache content of the three users are given as

Z1 = (Wn,1 ⊕Wn,2)
N
n=1, Z2 = (Wn,1)

N
n=1, Z3 = (Wn,2)

N
n=1.

In the delivery phase, we have

X(0,d2,d3) = {Wd2,1 ⊕Wd2,2,Wd3,1 ⊕Wd3,2},

X(d1,0,d3) = {Wd1,1,Wd3,1}, X(d1,d2,0) = {Wd1,2,Wd2,2},

and it is easy to check that each user’s demand can be correctly decoded. Thus, the delivery rate

of R(M) = 1 is achieved for cache size M = 1
2
N . As can be seen, coded caching is necessary

to achieve the corner point of (1
2
N, 1).

Lastly, we provide the achievability scheme for the corner point of
(
2
3
N, 1

3

)
. The caching

scheme is the same as that of the Maddah-Ali Niesen (MAN) uncoded symmetric placement in

[5, Algorithm 1], more specifically, all files are split into three subfiles of equal sizes, denoted

as Wn = (Wn,{1,2},Wn,{1,3},Wn,{2,3})
N
n=1, and the cache placement is

Z1 = (Wn,{1,2},Wn,{1,3})
N
n=1, Z2 = (Wn,{1,2},Wn,{2,3})

N
n=1, Z3 = (Wn,{1,3},Wn,{2,3})

N
n=1.

In the delivery phase, we have

X(0,d2,d3) = {Wd2,{1,3} ⊕Wd3,{1,2}}, X(d1,0,d3) = {Wd1,{2,3} ⊕Wd3,{1,2}},

X(d1,d2,0) = {Wd1,{2,3} ⊕Wd2,{1,3}},

and it is easy to check that each user’s demand can be correctly decoded. Thus, the delivery
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rate of R(M) = 1
3

is achieved for cache size M = 2
3
N . To achieve the corner point of

(
2
3
N, 1

3

)
,

coded cache placement is not necessary, and the MAN symmetric uncoded placement scheme [5]

is used. Finally, memory sharing between the corner points (1
2
N, 1), (2

3
N, 1

3
) and (N, 0) proves

that (6) in Theorem 1 is achievable.

2) N = 2: We will prove that the four corner points (1, 7
8
), (7

6
, 1
2
), (4

3
, 1
3
), (2, 0) are achievable.

First, note the fact that the corner points (4
3
, 1
3
), (2, 0) are achievable has been proved in Section

IV-A1 which works for N = 2. So in the following, we will prove that the remaining two points

are achievable.

To achieve the corner point of (1, 7
8
), we split both files into 8 subfiles, i.e., W1 = (An)

8
n=1

and W2 = (Bn)
8
n=1. Coded cache placement is employed as shown in Table I, where the cache

size is indeed 1.

TABLE I
CACHE PLACEMENT FOR ACHIEVING THE CORNER POINT (1, 7

8
) WHEN N = 2

Z1: A1 ⊕B2 A2 ⊕B1 B4 A4 A5 B5 A7 ⊕ A8 B7 ⊕B8

Z2: A1 B1 A3 ⊕B4 A4 ⊕B3 B6 A6 A7 B7

Z3: B2 A2 A3 B3 A5 ⊕B6 A6 ⊕B5 A8 B8

For the delivery phase, the transmitted signal depends on the request vector as:

X(0,d2,d3) = {Wd2,2 ⊕Wd3,1, A4, B4, A5, B5, A7 ⊕ A8, B7 ⊕B8}, d2 ̸= d3,

X(0,d2,d3) = {Wd2,7 ⊕Wd2,8, A4, B4, A5, B5, A1 ⊕B2, A2 ⊕B1}, d2 = d3, (9)

X(d1,0,d3) = {Wd1,3 ⊕Wd3,4, A1, B1, A6, B6, A7, B7}, d1 ̸= d3,

X(d1,0,d3) = {Wd1,7, A1, B1, A6, B6, A3 ⊕B4, A4 ⊕B3}, d1 = d3,

X(d1,d2,0) = {Wd1,6 ⊕Wd2,5, A2, B2, A3, B3, A8, B8}, d1 ̸= d2,

X(d1,d2,0) = {Wd1,8, A2, B2, A3, B3, A5 ⊕B6, A6 ⊕B5}, d1 = d2,
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where d1, d2, d3 ∈ {1, 2}. As can be seen, when the two random requesters request different files,

both the 7-th and the 8-th elements of the designated sender’s cache are transmitted, but one

of the first six elements do not need to be transmitted, resulting in a delivery rate of 7
8
. On the

other hand, when the two random requesters request the same file, the first six elements of the

designated sender’s cache are transmitted, and only one of the 7-th or 8-th element is transmitted,

i.e., if both random requesters request file W1, then the 7-th element of the designated sender’s

cache is transmitted, and if both random requesters request file W2, then the 8-th element of

the designated sender’s cache is transmitted. This again results in a delivery rate of 7
8
. It is

easy to check that the decoding constraint is satisfied. Note that even though the caching and

delivery scheme looks asymmetrical in user index in terms of expressions, it is in fact user-index

symmetrical in terms of entropy.

To achieve the corner point of (7
6
, 1
2
), we split both files into 6 subfiles, i.e., W1 = (An)

6
n=1

and W2 = (Bn)
6
n=1. The caching scheme is given in Table II, where the cache size is indeed 7

6
.

TABLE II
CACHE PLACEMENT FOR ACHIEVING THE CORNER POINT ( 7

6
, 1
2
) WHEN N = 2

Z1: A1 ⊕ A2 B1 ⊕B2 A4 B4 A5 B5 A2 ⊕B1

Z2: A1 B1 A3 ⊕ A4 B3 ⊕B4 A6 B6 A4 ⊕B3

Z3: A2 B2 A3 B3 A5 ⊕ A6 B5 ⊕B6 A6 ⊕B5

For the delivery phase, the transmitted signal depends on the request vector as

X(0,d2,d3) = {Wd2,2 ⊕Wd3,1,Wd3,4,Wd2,5}, X(d1,0,d3) = {Wd1,3 ⊕Wd3,4,Wd3,1,Wd1,6}, (10)

X(d1,d2,0) = {Wd1,6 ⊕Wd2,5,Wd2,2,Wd1,3}, (11)

where d1, d2, d3 ∈ {1, 2}. Note that the first six columns are MDS coded across the three users,

so that any two of them can recover the entire segment, for example, the first column can recover

the segment (A1, A2) using the cache of any two users, and the second column can recover the
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segment (B1, B2) using the cache of any two users. The last column is a coded version that

enables User 1 to transmit any pairwise linear combination of (A1, A2, B1, B2), User 2 to transmit

any pairwise linear combination of (A3, A4, B3, B4), and User 3 to transmit any pairwise linear

combination of (A5, A6, B5, B6). This offers flexibility in the delivery signal of the designated

sender based on the demand of the other two users, i.e., transmitter preprocessing is needed.

For example, when the request vector is D = (0, 2, 1), i.e., User 1 does not request and is the

designated sender, Users 2 and 3 requests Files W2 and W1, respectively, the transmitted signal

is (B2 ⊕ A1, A4, B5). As can be seen, B2 ⊕ A1 is not directly stored in the cache of User 1.

Preprocessing at User 1 as B2 ⊕ A1 = (A1 ⊕ A2) ⊕ (B1 ⊕ B2) ⊕ (A2 ⊕ B1), is needed before

B2⊕A1 is transmitted. More generally, when User k needs to transmit A2k−1⊕B2k which is not

cached, User k does the following preprocessing: A2k−1⊕B2k = (A2k−1⊕A2k)⊕(B2k−1⊕B2k)⊕

(A2k ⊕B2k−1), k = 1, 2, 3. The fact that the decoding constraint is satisfied can be checked. We

mention here that sometimes several modulo-sums need to be computed to decode, rather than

just one modulo-sum. For example, in the case where the request vector is D = (0, 2, 1) as

discussed above, upon receiving (B2 ⊕ A1, A4, B5), which is the transmitted signal of User 1,

User 2 decodes B3 and B4 by first computing (A3 ⊕ A4) ⊕ A4 to obtain A3, and then decode

B4 as (A3 ⊕ B4) ⊕ A3, and finally, decode B3 as (B3 ⊕ B4) ⊕ B4. Note that the transmission

rate of the proposed scheme is 3
6
= 1

2
. Memory sharing between the corner points (1, 7

8
), (7

6
, 1
2
),

(4
3
, 1
3
) and (2, 0) proves that (7) in Theorem 1 is achievable.

3) N = 3: In the case of N = 3, the achievability of corner points (3
2
, 1), (2, 1

3
) and (3, 0)

has been proven in Section IV-A1 which works for N = 3. Thus, we only need to prove the

achievability of the corner point (11
6
, 1
2
).

We split the three files W1,W2,W3 into 6 subfiles, which can be represented as W1 = (An)
6
n=1,

W2 = (Bn)
6
n=1 and W3 = (Cn)

6
n=1. Coded cache placement is employed as shown in Table III,

where the cache size is indeed 11
6

.
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TABLE III
CACHE PLACEMENT FOR ACHIEVING THE CORNER POINT ( 11

6
, 1
2
) WHEN N = 3

Z1: A1 ⊕ A2 B1 ⊕B2 C1 ⊕ C2 A4 B4 C4

Z2: A1 B1 C1 A3 ⊕ A4 B3 ⊕B4 C3 ⊕ C4

Z3: A2 B2 C2 A3 B3 C3

Z1: A5 B5 C5 A2 ⊕B1 B2 ⊕ C1

Z2: A6 B6 C6 A4 ⊕B3 B4 + C3

Z3: A5 ⊕ A6 B5 ⊕B6 C5 ⊕ C6 A6 ⊕B5 B6 ⊕ C5

For the delivery phase, the transmitted signal depends on the request vector as

X(0,d2,d3) = {Wd2,2 ⊕Wd3,1,Wd3,4,Wd2,5},

X(d1,0,d3) = {Wd1,3 ⊕Wd3,4,Wd3,1,Wd1,6},

X(d1,d2,0) = {Wd1,6 ⊕Wd2,5,Wd2,2,Wd1,3}.

It can be checked that the proposed scheme has no decoding error and the transmission rate is

3
6
= 1

2
.

The scheme above is a generalization of the scheme that achieves the corner point
(
7
6
, 1
2

)
in N = 2. The first nine columns are MDS coded across the three users, so that any two of

them can recover the entire segment. The last two columns are a coded version that enables the

designated sender to do transmitter preprocessing and send out the signal needed based on the

demands of the other two users.

More generally, for any N ≥ 2, the corner point
(
4N−1

6
, 1
2

)
is achievable as follows: split all

files W1, · · · ,WN into six subfiles, i.e., Wn = (Wn,1, · · · ,Wn,6), n ∈ [N ]. The cache placement

at the three users are given as

Z1 = {Wn,1 ⊕Wn,2,Wn,4,Wn,5,Wn,2 ⊕Wn+1,1}N−1
n=1

⋃
{WN,1 ⊕WN,2,WN,4,WN,5},

Z2 = {Wn,3 ⊕Wn,4,Wn,1,Wn,6,Wn,4 ⊕Wn+1,3}N−1
n=1

⋃
{WN,3 ⊕WN,4,WN,1,WN,6},
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Z3 = {Wn,5 ⊕Wn,6,Wn,2,Wn,3,Wn,6 ⊕Wn+1,5}N−1
n=1

⋃
{WN,5 ⊕WN,6,WN,2,WN,3}.

The delivery scheme is given by (10) and (11). Note that for the case of N ≥ 4, the corner point(
4N−1

6
, 1
2

)
, though achievable, is not optimal, i.e., it lies above the memory-sharing curve of the

three achievable corner points (1
2
N, 1), (2

3
N, 1

3
) and (N, 0). Finally, we conclude that memory

sharing between the corner points (3
2
, 1), (11

6
, 1
2
), (2, 1

3
) and (3, 0) proves that (8) in Theorem 1

is achievable.

B. Converse

1) N ≥ 4: As mentioned in Remark 1, the performance of the 3-user D2D coded caching

with 2RR1S is upper bounded by the optimal performance of the original 2-user coded caching

problem where the sender is the server. Thus, the converse result of the original coded caching

problem [5], more specifically,

M +NR(M) ≥ N, N ≥ 2, (12)

is also a converse result for the 3-user D2D coded caching with 2RR1S. Hence, we only need

to prove 4M +NR(M) ≥ 3N .

To prove 4M +NR(M) ≥ 3N , we follow similar steps as those in the proof of [6, Lemma

1] and utilize the finding in [25, Lemma 4], which shows NH(Z1|W1) ≥ (N − 1)H(Z1) for

any file-index-symmetric schemes. Furthermore, the property given in (4) for the model under

consideration is exploited in the proof.

More specifically, as discussed in Section II-A, we may, without loss of generality, consider

only user-index-symmetric and file-index-symmetric caching and delivery schemes. For any user-

index-symmetric and file-index-symmetric caching and delivery scheme with achievable rate
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R(M), it must satisfy

(N − 1)H(X(1,0,2), Z1,W1)

=(N − 1)[H(Z1,W1) +H(X(1,0,2)|Z1,W1)]

=(N − 1)H(Z1,W1) +
N∑
i=2

H(X(1,0,i)|Z1,W1) (13)

≥(N − 1)H(Z1,W1) +H(X(1,0,[2:N ])|Z1,W1)

=(N − 2)H(Z1,W1) +H(X(1,0,[2:N ]), Z1,W1)

=H(Z3,W1) +H(Z2,W1) +H(X(1,0,[2:N ]), Z1,W1) + (N − 4)H(Z1,W1) (14)

=H(Z3,W1) +H(Z2, X
(1,0,[2:N ]),W1) +H(X(1,0,[2:N ]), Z1,W1) + (N − 4)H(Z1,W1) (15)

≥H(Z3,W1) +H(Z1, Z2, X
(1,0,[2:N ]),W1) +H(X(1,0,[2:N ]),W1) + (N − 4)H(Z1,W1) (16)

=H(Z3,W1) +H(W[N ]) +H(X(1,0,[2:N ]),W1) + (N − 4)H(Z1,W1) (17)

≥N +H(Z3, X
(1,0,[2:N ]),W1) +H(W1) + (N − 4)H(Z1,W1)) (18)

=2N + 1 + (N − 4)H(Z1,W1), (19)

where X(1,0,[2:N ]) denotes {X(1,0,2), · · · , X(1,0,N)}, (13) follows from the property of file-index-

symmetric schemes, (14) follows from the property of user-index-symmetric schemes, (15)

follows from (2), (16) and (18) both follow from the sub-modular property of the entropy

function, i.e., H(YA)+H(YB) ≥ H(YA⋃
B)+H(YA⋂

B), (17) follows from (1) and (4), and (19)

follows from the decodability constraint in (3), more specifically, H(W[2:N ]|Z3, X
(1,0,[2:N ])) = 0,

where W[2:N ] denotes {W2, · · · ,WN}. Using the result of (19), we have

(N − 1)H(X(1,0,2)|Z1,W1) =(N − 1)H(X(1,0,2), Z1,W1)− (N − 1)H(Z1,W1)

≥2N + 1 + (N − 4)H(Z1,W1)− (N − 1)H(Z1,W1) (20)
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=2(N − 1)− 3H(Z1|W1), (21)

where (20) follows from (19). Finally, we have

M +R(M) ≥H(Z1) +H(X(1,0,2)) ≥ H(Z1, X
(1,0,2),W1)

=H(W1) +H(Z1|W1) +H(X(1,0,2)|Z1,W1)

≥1 +H(Z1|W1) + 2− 3

N − 1
H(Z1|W1) (22)

=3 +
N − 4

N − 1
H(Z1|W1)

≥3 +
N − 4

N
H(Z1), (23)

where (22) follows from (21), (23) follows [25, Lemma 4] that shows NH(Z1|W1) ≥ (N −

1)H(Z1) for any file-index-symmetric schemes. From (23), we have 4M + NR(M) ≥ 3N,

which completes the proof of (6) in Theorem 1.

2) N = 2, 3: The converse proof for the case of N = 2 and N = 3 is given in Appendix

A. The proof benefited greatly from the computer-aided discovery of outer bounds presented

in [6]. The computer-aided approach is useful for investigating the fundamental limits of coded

caching for small number of users and files.

V. DISCUSSIONS

To show the usefulness and applicability of the proposed model, i.e., the 3-user D2D coded

caching with 2RR1S, and its optimal scheme given in Section IV-A, which we call the 2RR1S

scheme, we adapt the 2RR1S scheme to three coded caching scenarios.

A. Scenario 1: the traditional 3-user D2D Coded Caching Problem

In the traditional 3-user D2D coded caching problem [4], it is assumed that in the delivery

phase, all three users make file requests and they all participate in the signal transmission as
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senders. The following lemma illustrates the relationship between the 3-user D2D coded caching

with 2RR1S and the traditional 3-user D2D coded caching problem.

Lemma 2: Any achievable scheme for the 3-user D2D coded caching with 2RR1S can be

exploited as a baseline scheme to come up with an achievable scheme for the traditional 3-user

D2D coded caching problem.

Proof: Take a caching and delivery scheme for the 3-user D2D coded caching with 2RR1S

that satisfies (3), denoted as Scheme A, and suppose it requires the split of each file into L

subfiles, i.e., Wn = (Wn,1,Wn,2, · · · ,Wn,L), n ∈ [N ]. Then, further split each subfile into two

parts of equal sizes, denoted as Part (a) and Part (b), respectively, i.e., Wn,l = (W
(a)
n,l ,W

(b)
n,l ),

l ∈ [L], n ∈ [N ]. The caching scheme for the traditional 3-user D2D coded caching problem is

the same as that of Scheme A. In terms of the delivery scheme, when User k requests file Wdk ,

k = 1, 2, 3, User 1 uses the delivery scheme of scheme A for the request vector (0, d2, d3), acting

on Part (a) of each file, User 2 uses the delivery scheme of Scheme A for the request vector

(d1, 0, d3), acting on Part (a) of File Wd1 and Part (b) of the other files, and User 3 uses the

delivery scheme of scheme A for the request vector (d1, d2, 0), acting on Part (b) of each file.

As a result, the achievable delivery rate for the traditional 3-user D2D coded caching problem

when User k requests file Wdk , k = 1, 2, 3, is 1
2

(
R(0,d2,d3)(M) +R(d1,0,d3)(M) +R(d1,d2,0)(M)

)
,

where R(0,d2,d3)(M), R(d1,0,d3)(M), R(d1,d2,0)(M) denotes the delivery rates of Scheme A.

As an example, take a caching and delivery scheme for the 3-user D2D coded caching with

2RR1S when M = 1
2
N as follows: split all files into two subfiles of equal size, denoted as

Wn = (Wn,1,Wn,2)
N
n=1, i.e., L = 2. The caching scheme is Z1 = (Wn,1 ⊕ Wn,2)

N
n=1, Z2 =

(Wn,1)
N
n=1, Z3 = (Wn,2)

N
n=1. The delivery scheme is X(0,d2,d3) = {Wd2,1⊕Wd2,2,Wd3,1⊕Wd3,2},

X(d1,0,d3) = {Wd1,1,Wd3,1}, X(d1,d2,0) = {Wd1,2,Wd2,2}. It can be checked that each user’s

demand can be correctly decoded for the 3-user D2D coded caching with 2RR1S, and the

delivery rate of RD(M) = 1 for any demand vector D.

The above scheme can be used as a baseline scheme to come up with an achievable scheme
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for the traditional 3-user D2D coded caching problem as follows: further split each subfile

into two equal parts, i.e., W l
n = (W

(a)
n,l ,W

(b)
n,l ), n ∈ [N ], l ∈ [2]. The caching scheme is the

same as the above scheme, i.e., User 1 caches (W
(a)
n,1 ⊕W

(a)
n,2 ,W

(b)
n,1 ⊕W

(b)
n,2)

N
n=1, User 2 caches

(W
(a)
n,1 ,W

(b)
n,1)

N
n=1, and User 3 caches (W (a)

n,2 ,W
(b)
n,2)

N
n=1. The delivery scheme when User k requests

file Wdk , k = 1, 2, 3, is as follows: User 1 transmits X(0,d2,d3) of the above scheme acting on Part

(a) of the files only, i.e., {W (a)
d2,1

⊕W (a)
d2,2

,W
(a)
d3,1

⊕W (a)
d3,2

}, User 2 transmits X(d1,0,d3) of the above

scheme acting on Part (a) of File Wd1 and Part (b) of the other files, i.e., {W (a)
d1,1

,W
(b)
d3,1

}, and

User 3 transmits X(d1,d2,0) of the above scheme acting on Part (b) of files, i.e., {W (b)
d1,2

,W
(b)
d2,2

}.

It is easy to check that each user’s demand can be correctly decoded for the traditional 3-user

D2D coded caching problem, and the delivery rate is 3
2

for any demand vector (d1, d2, d3).

Applying Lemma 2, using the 2RR1S scheme as a baseline scheme, we obtain a scheme

for the traditional 3-user D2D coded caching problem, called the rotated 2RR1S scheme, which

achieves a delivery rate of 3
2
R(M), where R(M) is characterized by Theorem 1. We discuss its

performance in the following.

1) Better performance for N = 2 due to coded cache placement: The performance of the

proposed rotated 2RR1S scheme is shown in Fig. 2 by the red solid line for N = 2, 3, 4,

respectively. The achievable rates found in [4] and [8], are denoted by the black dash-dot line

and the blue dashed line, respectively. Recall that the achievable schemes in [4] and [8] both

employ uncoded cache placement and one-shot delivery. It can be seen that the proposed rotated

2RR1S scheme does not offer better performance in the case of 3 or 4 files. So we focus on the

case of 2 files, i.e., Fig. 2(a).

The proposed rotated 2RR1S scheme outperforms both schemes of [4] and [8] when M ∈[
1.1410, 4

3

]
, for N = 2, which is due to coded cache placement. Meanwhile, the rate of the

rotated 2RR1S scheme is the same as the rate of the schemes in [4] and [8], when the cache

capacity is large. When the cache capacity is small, the performance of the rotated 2RR1S

scheme is in general loose. This is because the rotated 2RR1S scheme places a restriction on the
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Fig. 2. Comparison of the worst-case rate achieved for three schemes for the traditional 3-user D2D coded caching problem
when N = 2, N = 3, N = 4, respectively.

number of senders being 1. As a result, first of all, the rotated 2RR1S scheme is only possible

when M ≥ N
2

. Secondly, some caching schemes that are feasible for the traditional 3-user D2D

coded caching problem are not included in the rotated schemes of Lemma 2 as they require

multiple senders to satisfy the decodability constraint. Hence, even though the baseline scheme

is optimal for the 3-user D2D coded caching with 2RR1S, the adaptation may be sub-optimal

for the traditional 3-user D2D coded caching problem. Improvements over existing D2D coded

caching schemes for N ≥ 3 are of great interest and left for future work. To do so, coded

cache placement and delivery schemes that are not of the one-shot delivery nature should be

considered.

2) Optimal for N = 2 and medium cache size: To further understand the performance of the

proposed rotated 2RR1S scheme, we first characterize the optimal rate-memory tradeoff for the

traditional 3-user D2D coded caching problem [4] when the number of files is 2, i.e., N = 2.

This result is previously unknown.

Theorem 2: For the traditional 3-user D2D coded caching problem for N = 2, when M ≥ 1
3
N ,

we have

2M +R(M) ≥ 3, 3M + 2R(M) ≥ 5, 3M + 4R(M) ≥ 6, (24)
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where the corner points are (2
3
, 5
3
), (1, 1), (4

3
, 1
2
), (2, 0). Conversely, there exist caching and

delivery schemes for any nonnegative R(M) satisfying (24).

Proof: We present the achievability proof of Theorem 2 in the following to show the need

for coded cache placement. The converse proof is given in Appendix B.

We prove that the four corner points (2
3
, 5
3
), (1, 1), (4

3
, 1
2
), (2, 0), as stated in Theorem 2, are

achievable. The achievability proof of the three corner points (2
3
, 5
3
), (4

3
, 1
2
), and (2, 0) is given

in [8], and it has been shown that uncoded cache placement is sufficient to achieve these three

corner points. Thus, we only need to prove that the corner point (1, 1) is achievable.

We split the two files W1 and W2 into 6 subfiles, which can be represented as W1 = (An)
6
n=1,

W2 = (Bn)
6
n=1. For M = 1, User 1 caches (A1 ⊕ B1, A2 ⊕ B2, A3, A4, B3, B4), User 2 caches

(A3⊕B3, A4⊕B4, A5, A6, B5, B6), and User 3 caches (A5⊕B5, A6⊕B6, A1, A2, B1, B2). Note

that coded cache placement is employed. During the delivery phase, when User k requests Wdk ,

then, User 1 transmits{Wd3,3,Wd3,4}, User 2 transmits {Wd1,5,Wd1,6}, and User 3 transmits

{Wd2,1,Wd2,2}. It can be checked that each user can decode its requested file and the delivery

rate is 1. Memory sharing between the corner points (2
3
, 5
3
), (1, 1), (4

3
, 1
2
) and (2, 0) shows that

(24) in Theorem 2 is achievable.

Now that we have found the optimal performance of the traditional 3-user D2D coded caching

problem for N = 2, i.e., Theorem 2, we may plot it in Fig. 3, denoted by the cyan dotted

dashed line. We further compare it to the performance of existing achievability schemes. The

performance of our rotated 2RR1S scheme is denoted by the dotted red solid line, the scheme

of [4] is denoted by the black dash-dot line, and the scheme of [8] is denoted by blue dashed

line. As can be seen, the proposed rotated 2RR1S scheme is in fact optimal for M ∈
[
7
6
, 4
3

]
in the case of N = 2. Hence, when the cache size is in the range of M ∈

[
7
6
, 4
3

]
, using the

scheme adapted from the 2RR1S scheme, which is the optimal scheme for the 3-user D2D coded

caching with 2RR1S, does not cause any performance loss. We further observe that neither the

existing schemes of [4] and [8], nor the rotated 2RR1S scheme is optimal for the cache size of

DRAFT



26

Fig. 3. Achievable performance and converse results for the traditional 3-user D2D coded caching problem when N = 2.

M ∈
[
2
3
, 7
6

]
. For this cache size range, the scheme used in proving Theorem 2 is optimal.

Next, we provide two remarks about the result of Theorem 2.

Remark 5: Recall that [8] has found the optimal performance of the traditional K-user D2D

coded caching problem for any number of files under the assumption of uncoded cache placement

and one-shot delivery. Comparing [8, Corollary 2] with Theorem 2 above, for 3 users and 2 files,

we see that while the corner points (2
3
, 5
3
), (4

3
, 1
2
), and (2, 0) are the same, the corner point (1, 1)

exists and is optimal when we remove the constraint of uncoded cache placement and one-shot

delivery. We see in the proof of Theorem 2 above that the achievability scheme of the corner

point (1, 1) employs coded cache placement, but is still a one-shot delivery scheme.

Remark 6: In terms of existing converse results, the optimal result for the traditional coded

caching problem in the case of 3 users and 2 files was found in [6]. This also serves as a

converse result for the traditional 3-user D2D coded caching problem and is plotted by the

yellow solid line in Fig. 3. The converse results derived in [4] is denoted by the purple dotted

line. From Fig. 3, we can see that both converse results are rather loose, compared to the optimal
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performance found in Theorem 2.

B. Scenario 2: the 3-user request-random D2D coded caching

In this section, we consider a 3-user D2D coded caching scenario, where in the delivery phase,

each user makes a file request randomly and independently with the same probability p, and

all three users participate in sending the delivery signal to satisfy the requests. This model is

applicable in practice because not all users have file requests at the delivery phase, or some users

have file requests much later than other users, for example, after the delivery phase of the other

uses have been completed. We call this problem the request-random D2D coded caching. We

denote the number of users requesting files as r, and since user requests happen at the beginning

of the delivery phase, the server does not know the value of r during the placement phase.

The performance of interest is the average worst-case delivery rate, which is defined as

follows. For a given caching and delivery scheme designed for the 3-user request-random D2D

coded caching, for each r ∈ [0, 3], denote R′
r(M) as the maximum delivery rate, where the

maximum is over all possible size-r requester sets and all possible file demands, i.e., [N ]r. The

average worst-case delivery rate of the scheme is defined as

R̄′p(M) =
3∑

x=0

Pr [r = x]R′
x(M), (25)

where Pr [r = x] =
(
3
x

)
px(1− p)3−x.

We first adapt the 2RR1S scheme to the request-random D2D coded caching problem, and

the adapted version is called the request-random 2RR1S scheme. Its caching scheme is the same

as the 2RR1S scheme. As for the delivery scheme, when r = 2, we use the delivery scheme

of the 2RR1S scheme. When r = 3, we use the delivery scheme of the rotated 2RR1S scheme

described in Section V-A. When r = 1, we use the delivery scheme of the 2RR1S scheme,

assuming a fake requester who requests the same file as the true requester. Furthermore, if

some parts of the delivery signal are solely for the benefit of the fake requester, these are
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not transmitted. To give an example, when the number of files is N = 2, the cache size is

M = 1, according to the 2RR1S scheme, each file is split into 8 subfiles, i.e., W1 = (An)
8
n=1

and W2 = (Bn)
8
n=1, and the caching scheme is the same as that of the 2RR1S scheme, given

in Table I. In the delivery phase, when the request vector is D = (0, 0, 1), i.e., r = 1, and

Users 1 and 2 do not request, while User 3 requests file W1, we assume that User 2 is a fake

requester, who also requests file W1, and User 1 is the designated sender. Thus, for the new

fake request vector D′ = (0, 1, 1), the 2RR1S scheme dictates that the signal transmitted by

User 1 is X(0,1,1)′ = {A7⊕A8, A4, B4, A5, B5, A1⊕B2, A2⊕B1}, as indicated in (9). However,

among these, the subfiles B4, A2 ⊕ B1 only serve the fake requester User 2. Therefore, they

are not transmitted and the true signal transmitted for the request-random 2RR1S scheme is

{A7 ⊕ A8, A4, A5, B5, A1 ⊕B2}, and the achievable rate is 5
8
.

Accordingly, the performance of the request-random 2RR1S scheme is: 1) when r = 1: for

N = 2, the corner points are (M,R′
1(M)) = (1, 5

8
), (7

6
, 1
2
), (4

3
, 1
3
), (2, 0); for N = 3, the

corner points are (M,R′
1(M)) = (3

2
, 1
2
), (11

6
, 1
2
), (2, 1

3
), (3, 0); and for N ≥ 4, the corner points

are (M,R′
1(M)) = (1

2
N, 1

2
), (2

3
N, 1

3
), (N, 0). The achievable rate R′

1(M) is the lower convex

envelope of these corner points. 2) when r = 2: R′
2(M) is the same as R(M) characterized in

Theorem 1. 3) when r = 3: R′
3(M) is the same as 3

2
R(M), where R(M) is characterized in

Theorem 1.Then, the average worst-case delivery rate of the request-random 2RR1S scheme can

be obtained via (25).

Existing schemes, developed for the traditional 3-user D2D coded caching problem, such

as that of [8], can also be adapted to the request-random D2D coded caching scenario. More

specifically, let Scheme B be a scheme for the traditional 3-user D2D coded caching problem.

Then, we adapt scheme B for the 3-user request-random D2D coded caching as follows: the

caching scheme is the same as that of scheme B. When r = 3, the delivery scheme is the

same as that in Scheme B. When r = 2, we use the delivery scheme of Scheme B while

assuming that the user who does not request to be a fake requester, and it requests the same file
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as one of the two true requesters. When r = 1, we use the delivery scheme of Scheme B while

assuming that the two users who do not request are fake requesters, and they both request the

same file as the one true requester. Similar to the request-random 2RR1S scheme, if some parts

of the delivery signal are solely for the benefit of the fake requesters, these are not transmitted.

Accordingly, the performance of the adapted scheme of [8] is: 1) when r = 1: for N ≥ 2,

the corner points are (M,R′
1(M)) = (1

3
N, 2

3
), (2

3
N, 1

3
), (N, 0). The achievable rate R′

1(M) is

the lower convex envelope of the corner points. 2) when r = 2: for N ≥ 2, the corner points

are (M,R′
2(M)) = (1

3
N, 4

3
), (2

3
N, 1

2
), (N, 0). The achievable rate R′

2(M) is the lower convex

envelope of the corner points. 3) when r = 3: R′
3(M) is the same as rate characterized in [8,

Corollary 2]. Then, the average worst-case delivery rate of the adapted scheme of [8] can be

obtained via (25).

Fig. 4. Comparison of the average worst-case rate achieved for adapted schemes for the 3-user request-random D2D coded
caching problem when N = 30.

In Fig. 4, for N = 30, we compare the average worst-case delivery rate of the request-random

2RR1S scheme and the adapted scheme of [8], which is the best-known achievable scheme for

the traditional 3-user D2D coded caching problem. The performance of our proposed request-

random 2RR1S scheme is given by the dotted blue solid line when p = 3
4
, the dotted green
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dash-dot line when p = 1
2
, and the dotted purple dashed line when p = 1

4
. The performance of

the adapted scheme of [8], is given by the cyan solid line when p = 3
4
, the red dash-dot line when

p = 1
2
, and the black dashed line when p = 1

4
. It can be seen that our proposed request-random

2RR1S scheme outperforms the adapted scheme of [8] when the cache size is medium to large.

Through numerical evaluation, we find that the gain can be as high as 17% when p = 0.59 and

the cache size is M = 2
3
N .

C. Scenario 3: K-user D2D coded caching with K − s random requesters and s senders

In this subsection, we study the K-user D2D coded caching scenario, where in the delivery

phase, any K − s out of the K users make a file request, and the s users who do not make file

requests are the designed senders. We call this problem the K-user D2D coded caching with

K − s random requesters and s senders. The 3-user D2D coded caching with 2RR1S problem

studied in Section III is a special case of this model where K = 3 and s = 1. Inspired by the

2RR1S scheme, we have the following achievability result.

Theorem 3: For the K-user D2D coded caching with K−s random requesters and s senders,

the following memory and worst-case rate tradeoff points (M,R(M)), are achievable for N ≥ 2(
1

s+ 1
N,

s

s+ 1
min{N,K − s}

)
,

(
K − 1

K
N,

1

K

)
, (N, 0) .

For other memory sizes, the memory and worst-case rate tradeoff point can be obtained by the

memory sharing of the corner points above.

Proof: Similar to the 2RR1S scheme in Section IV-A, the scheme of corner point ( 1
s+1

N,

s
s+1

min{N,K − s}) employs MDS code and the scheme of corner point (K−1
K
N, 1

K
) employs

the MAN uncoded symmetric placement. More details of the proof is given in Appendix I.

Remark 7: For the special case where K = 3 and s = 1, Theorem 3 recovers the achievability

result of Theorem 1 Point (1).
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VI. CONCLUSIONS

In this paper, we studied a new model called the 3-user D2D coded caching with 2RR1S, where

during the delivery phase, any two out of the three users will make file requests and the user who

does not make any file request will be the designated sender. We first characterized the optimal

rate-memory tradeoff of the 3-user D2D coded caching with 2RR1S for any number of files by

proving matching converse and achievability results. It is shown that coded cache placement is

needed to achieve the optimal performance. Next, using the optimal achievable scheme for the

3-user D2D coded caching with 2RR1S as a base scheme, we proposed a new achievable scheme

for the 3-user D2D coded caching problem which involves coded cache placement. The new

achievable scheme outperforms existing schemes when the number of files is 2 and the cache size

is medium. We further characterized the optimal rate-memory tradeoff of the 3-user D2D coded

caching when the number of files is 2. In doing so, we showed that the proposed new achievable

scheme is in fact optimal when the cache size is medium. Comparing to existing works which

focus on schemes of uncoded cache placement, we characterized the amount of performance

gain enabled by allowing coded cache placement. Further, we adapted the optimal achievable

scheme for the 3-user D2D coded caching with 2RR1S to the 3-user request-random D2D coded

caching problem and found that the adapted scheme outperforms the existing schemes when the

cache size is medium to large. Lastly, we extended the 3-user D2D coded caching with 2RR1S

to the K-user D2D coded caching with K − s random requesters and s senders problem, and

obtained an achievability result for this problem, which is inspired by the 2RR1S scheme and

employs MDS code.

APPENDIX A

PROOF OF CONVERSE FOR THEOREM 1: N = 2, 3

1) N = 2: The bound M + 2R(M) ≥ 2 has been proved in (12), which is valid for any

N ≥ 2. We now proceed to first prove the bound 18M + 8R(M) ≥ 25. First, we notice the
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following proposition for the problem under consideration.

Proposition 1: For our system model with N ≥ 2, the entropy of users’ caches must satisfy

H(Zf , A) +H(Zg, A) ≥ H(A) +H(W[N ]), ∀f ̸= g, f, g ∈ [K], (26)

where A can be any set of random variables of files W1, · · · ,WN , cache contents Z1, Z2, Z3 and

transmitted signals X(0,d2,d3), X(d1,0,d3), X(d1,d2,0), d1, d2, d3 ∈ [N ] in our system model.

Proof: For ∀f, g ∈ [1 : 3], f ̸= g, due to the sub-modular property of the entropy function,

we have

H(Zf , A) +H(Zg, A) ≥H(A) +H(Zf , Zg, A)

=H(A) +H(W[N ], A) (27)

=H(A) +H(W[N ]), (28)

where (27) follows from (4) and (28) follows from (1), (2) and the fact that A can only contain

files, cache contents and transmitted signals, which are all deterministic functions of the files

W[N ].

For example,

H(Z1,W3, X
(2,4,0)) +H(Z2,W3, X

(2,4,0))
(a)

≥H(W3, X
(2,4,0)) +H(Z1, Z2,W3, X

(2,4,0))

(b)
=H(W3, X

(2,4,0)) +H(W[N ],W3, X
(2,4,0))

=H(W3, X
(2,4,0)) +H(W[N ], X

(2,4,0))

(c)
=H(W3, X

(2,4,0)) +H(W[N ], Z3, X
(2,4,0))

(d)
=H(W3, X

(2,4,0)) +H(W[N ], Z3)

(e)
=H(W3, X

(2,4,0)) +H(W[N ]),
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where (a) follows from the sub-modular property of the entropy function, (b) follows from (4),

(c) and (e) follows from (1), and (d) follows from (2).

To prove the bound 18M +8R(M) ≥ 25, we use the following lemma, whose proof is given

in Appendix C. We note here that the proof benefited from the computer-aided discovery of

outer bounds [6] and Proposition 1.

Lemma 3: For N = 2, we have the following results:

8M + 6R(M) + 2H(X(1,0,1))− 4H(W1, X
(0,1,2), X(1,0,1)) ≥ 8, (29)

4M + 2R(M)− 2H(X(0,1,1)) + 2H(W1, X
(0,1,1))−H(W2, X

(0,1,2), X(1,0,2)) ≥ 5, (30)

6M − 3H(X(1,0,2),W1, X
(0,1,2)) + 3H(X(0,1,2), X(1,0,2)) ≥ 6. (31)

Adding (29)-(31) together, we have

18M + 8R(M)− 3H(X(1,0,2),W1, X
(0,1,2)) + 3H(X(0,1,2), X(1,0,2))

≥19 + 4H(W1, X
(0,1,2), X(1,0,1)) +H(W2, X

0,1,2, X1,0,2)− 2H(W1, X
0,1,1)

=19 + 2H(W1, X
(0,2,1), X(1,1,0)) + 2H(W1, X

(2,0,1), X(1,1,0))− 2H(W1, X
(1,1,0)) (32)

+H(W2, X
(0,1,2), X(1,0,2))

≥19 + 2H(W1, X
(0,2,1), X(1,1,0), X(2,0,1)) +H(W2, X

(0,1,2), X(1,0,2))

=19 + 2(W2, X
(0,1,2), X(2,2,0), X(1,0,2)) +H(W2, X

(0,1,2), X(1,0,2)) (33)

≥19 + 3H(W2, X
(0,1,2), X(1,0,2)),

where (32) and (33) both follow from the property of file-index-symmetric schemes. Hence, we

have 18M +8R(M) ≥ 19+3H(W2, X
(0,1,2), X(1,0,2))+3H(X(1,0,2),W1, X

(0,1,2))−3H(X(0,1,2),

X(1,0,2)) ≥ 19+3H(W1,W2) = 25, which completes the proof of the bound 18M+8R(M) ≥ 25.

Next, we proceed to prove the bound 3M+3R(M) ≥ 5. We have the following lemma, whose
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proof is given in Appendix D. We note here that the proof benefited from the computer-aided

discovery of outer bounds [6].

Lemma 4: For N = 2, we have the following results:

M +R(M) +H(W1, X
(2,0,1)) ≥ 3, (34)

2M + 2R(M)−H(W1, X
(1,0,2)) ≥ 2. (35)

Then, adding (34) and (35) together, we have

3M + 3R(M) +H(W1, X
(2,0,1))−H(W1, X

(1,0,2)) = 3M + 3R(M) ≥ 5, (36)

where the equality in (36) follows from the property of user-index-symmetric schemes. Thus,

(7) in Theorem 1 is proved.

2) N = 3: The bound M+3R(M) ≥ 3 has been proved in (12), which is valid for any N ≥ 2.

We now proceed to first prove the bound 6M + 4R(M) ≥ 13 by using the following lemma,

whose proof is in Appendix E. We note here that the proof benefited from the computer-aided

discovery of outer bounds [6] and Proposition 1.

Lemma 5: For N = 3, we have the following results:

2M + 2R(M)−H(W1, X
(0,1,3), X(1,0,2)) ≥ 3, (37)

4M + 2R(M) +H(W1, X
(0,1,3), X(1,0,2)) ≥ 10. (38)

Adding (37) and (38) together, we have 6M + 4R(M) − H(W1, X
(0,1,3), X(1,0,2)) + H(W1,

X(0,1,3), X(1,0,2)) = 6M + 4R(M) ≥ 13.

Next, we proceed to prove the bound 3M+3R(M) ≥ 7. We have the following lemma, whose

proof is given in Appendix F. We note here that the proof benefited from the computer-aided

discovery of outer bounds [6] and Proposition 1.
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Lemma 6: For N = 3, we have the following results:

M +R(M) +H(W1, X
(0,1,3), X(1,0,2)) ≥ 4, (39)

2M + 2R(M)−H(W1, X
(0,1,3), X(1,0,2)) ≥ 3. (40)

Adding (39) and (40) together, we have 3M+3R(M)+H(W1, X
(0,1,3), X(1,0,2))−H(W1, X

(0,1,3),

X(1,0,2)) = 3M + 3R(M) ≥ 7. Thus, (8) in Theorem 1 is proved.

APPENDIX B

CONVERSE PROOF OF THEOREM 2

For the 3-user D2D coded caching problem, we denote the request vector as D △
= (d1, d2, d3),

d1, d2, d3 ∈ [N ]. Each user sends a signal that is received without error by the other two users.

The transmitted signal generated from User k is denoted as XD
k , consisting of RD

k (M) bits.

Hence, we have:

H(XD
k |Zk) = 0. (41)

Similar to the 3-user coded caching with 2RR1S problem, (1) and decodability constraint are

applicable here. The decodability constraint means that it is required that the caching and delivery

scheme must satisfy the constraint of correct decoding, i.e.,

H
(
Wd1|Z1, X

(d1,d2,d3)
2 , X

(d1,d2,d3)
3

)
= 0,

H
(
Wd2|Z2, X

(d1,d2,d3)
1 , X

(d1,d2,d3)
3

)
= 0,

H
(
Wd3|Z3, X

(d1,d2,d3)
1 , X

(d1,d2,d3)
2

)
= 0.

(42)

Combining (41) and (42), one can decode any file by knowing the cache of all users, which

implies that we are interested in the case where 3M ≥ N and

H(W[N ]|Z1, Z2, Z3) = 0.
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R(M) is defined as the worst-case delivery rate of all users, i.e., R(M) = maxD R
D
1 (M) +

RD
2 (M) +RD

3 (M).

Moreover, we may define the file-index-symmetric and user-index-symmetric schemes for the

3-user D2D coded caching problem and again have the result of Lemma 1 for this model also.

Hence, for 3-user D2D coded caching problems, it is sufficient to consider caching and delivery

schemes that satisfy both user-index symmetry and file-index symmetry.

We first derive the following proposition for the 3-user D2D coded caching problem.

Proposition 2: For the 3-user D2D coded caching problem, when N ≥ 2, the following

equation must be satisfied for any caching and delivery scheme:

3M + 2NR(M) ≥ 3N.

Proof: We write the chain of inequalities as

3M + 2NR(M) ≥H(Z1) +H(Z2) +H(Z3) + 2N [H(X
(1,2,2)
1 ) +H(X

(1,2,2)
2 ) +H(X

(1,2,2)
3 )].

(43)

Observe that

H(Z1) +NH(X
(1,2,2)
2 ) +NH(X

(1,2,2)
3 )

=H(Z1) +H(X
(1,2,2)
2 ) +H(X

(1,2,2)
3 ) +

N∑
i=2

[H(X
(i,1,1)
2 ) +H(X

(i,1,1)
3 )] (44)

≥H(Z1) +H(X
(1,2,2)
2 ) +H(X

(1,2,2)
3 ) +H(X

([2:N ],1,1)
2 ) +H(X

([2:N ],1,1)
3 )

≥H(Z1, X
(1,2,2)
2 , X

(1,2,2)
3 , X

([2:N ],1,1)
2 , X

([2:N ],1,1)
3 )

=H(Z1, X
(1,2,2)
2 , X

(1,2,2)
3 , X

([2:N ],1,1)
2 , X

([2:N ],1,1)
3 ,W[N ])

=N, (45)

where X
([2:N ],1,1)
2 = {X(2,1,1)

2 , ..., X
(N,1,1)
2 }, X([2:N ],1,1)

3 = {X(2,1,1)
3 , ..., X

(N,1,1)
3 }, (44) follows
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from the property of file-index-symmetric schemes, and (45) follows from (1), (41) and (42).

Similarly, we have

H(Z2) +NH(X
(1,2,2)
1 ) +NH(X

(1,2,2)
3 ) ≥ N, (46)

H(Z3) +NH(X
(1,2,2)
1 ) +NH(X

(1,2,2)
2 ) ≥ N. (47)

From (43), (45), (46) and (47), we have proved Proposition 2.

The bound 3M + 4R(M) ≥ 6 is a special case of Proposition 2 when N = 2. Hence, we are

left to prove the bounds 2M +R(M) ≥ 3 and 3M + 2R(M) ≥ 5.

We first prove the bound 2M +R(M) ≥ 3. Due to the property of file-index-symmetric and

user-index-symmetric schemes for the 3-user D2D coded caching model, we have

H(X
(1,1,2)
1 ) = H(X

(1,2,1)
1 ) = H(X

(1,1,2)
2 ) = H(X

(1,2,2)
2 ) = H(X

(1,2,1)
3 ) = H(X

(1,2,2)
3 ),

H(X
(1,2,2)
1 ) = H(X

(1,2,1)
2 ) = H(X

(1,1,2)
3 ).

(48)

Then, we have the following lemma, whose proof is given in Appendix G. We note here that

the proof benefited from the computer-aided discovery of outer bounds [6].

Lemma 7: In the 3-user D2D coded caching problem, when N = 2, we have the following

results:

M +R(M) ≥H(X
(1,2,2)
1 )−H(W1, X

(1,2,1)
1 , X

(1,2,1)
2 , X

(1,2,1)
3 )− 2H(W1, Z1, Z2) (49)

+ 3H(W1,W2) +H(W1),

2M +R(M) ≥H(X
(1,2,1)
1 , X

(1,2,1)
2 ) +H(Z1, X

(1,2,1)
2 , X

(1,2,1)
3 ) (50)

−H(W1, X
(1,2,1)
1 , X

(1,2,1)
2 , X

(1,2,1)
3 ) +H(W1,W2),

3M +R(M) ≥2H(Z1) +H(Z1, X
(1,1,2)
2 , X

(1,1,2)
3 ) +H(X

(1,1,2)
1 ). (51)
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Using (48) to combine (49), (50) and (51), we have

6M + 3R(M) ≥ 2[H(Z1, X
(1,1,2)
2 , X

(1,1,2)
3 ) +H(Z2, X

(1,1,2)
1 , X

(1,1,2)
3 )

−H(W1, X
(1,2,1)
1 , X

(1,2,1)
2 , X

(1,2,1)
3 )]− 2H(W1, Z1, Z2) + 4H(W1,W2) +H(W1) (52)

=2[H(Z1,W1, X
(1,2,1)
1 , X

(1,2,1)
2 , X

(1,2,1)
3 ) +H(Z2,W1, X

(1,2,1)
1 , X

(1,2,1)
2 , X

(1,2,1)
3 ) (53)

−H(W1, X
(1,2,1)
1 , X

(1,2,1)
2 , X

(1,2,1)
3 )]− 2H(W1, Z1, Z2) + 4H(W1,W2) +H(W1)

≥2H(Z1, Z2,W1, X
(1,2,1)
1 , X

(1,2,1)
2 , X

(1,2,1)
3 )− 2H(W1, Z1, Z2) + 4H(W1,W2) +H(W1) (54)

≥4H(W1,W2) +H(W1) = 9, (55)

where (52) follows from the property of user-index-symmetric and file-index-symmetric schemes,

(53) follows from (41) and (42). (54) follows from the sub-modular property of the entropy

function. The chain of inequalities (55) proves the bound 2M +R(M) ≥ 3.

Next, we proceed to prove the bound 3M+2R(M) ≥ 5. We have the following lemma, whose

proof is given in Appendix H. We note here that the proof benefited from the computer-aided

discovery of outer bounds [6].

Lemma 8: In the 3-user D2D coded caching problem, when N = 2, we have the following

results:

3M + 2R(M)−H(W1, Z1)−H(W1, X
(1,1,2)
1 , X

(1,1,2)
2 ) ≥2, (56)

H(W1, Z1) +H(W1, X
(1,1,2)
1 , X

(1,1,2)
2 ) ≥3. (57)

Adding (56) and (57) together, we have 3M + 2R(M) ≥ 5.

Thus, (24) in Theorem 2 is proved.
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APPENDIX C

PROOF OF LEMMA 3

We will first prove (29).

8M + 6R(M) + 2H(X(1,0,1)) ≥4H(Z1) + 4H(Z2) + 4H(X(0,1,2))

+ 2H(X(1,0,1)) + 2H(X(1,0,1))

≥4H(Z1, X
(1,0,1)) + 4H(Z2, X

(0,1,2))

=4H(Z1, X
(1,0,1), X(0,1,2)) + 4H(Z2, X

(0,1,2), X(1,0,1)) (58)

=4H(Z1, X
(1,0,1), X(0,1,2),W1) (59)

+ 4H(Z2, X
(0,1,2), X(1,0,1),W1)

≥4H(W1, X
(0,1,2), X(1,0,1)) + 4H(W1,W2), (60)

where (58) follows from the fact that X(0,1,2) is a deterministic function of Z1 and X(1,0,1) is a

deterministic function of Z2, (59) follows from the fact that knowing (Z1, X
(1,0,1)) can decode

W1 and knowing (Z2, X
(0,1,2)) can decode W1, and (60) follows from (26). Thus, (29) is proved.

Next, we will prove (30). We have

4M + 2R(M)− 2H(X(0,1,1)) ≥2H(Z1) + 2H(Z2) + 2H(X(0,1,2))− 2H(X(0,1,1))

=2H(Z1, X
(0,1,1)) + 2H(Z2) + 2H(X(0,1,2)) (61)

− 2H(X(0,1,1))

≥2H(Z1, X
(0,1,1)) + 2H(Z2, X

(0,1,2))− 2H(X(0,1,1))

≥2H(W1, Z1, X
(0,1,1))− 2H(W1, X

(0,1,1)) (62)

+ 2H(Z2, X
(0,1,2)),
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where (61) follows from the fact that X(0,1,1) is a deterministic function of Z1, (62) follows the

sub-modular property of the entropy function. Hence, we further have

4M + 2R(M) + 2H(W1, X
(0,1,1))− 2H(X(0,1,1))

≥2H(W1, Z1, X
(0,1,1)) + 2H(Z2, X

(0,1,2))

≥2H(W1, Z1) + 2H(Z2, X
(0,1,2))

=2H(W1, Z1, X
(0,1,2)) + 2H(Z2, X

(0,1,2),W1) (63)

≥2H(W1, X
(0,1,2)) + 2H(W1,W2) (64)

=H(W2, X
(0,1,2)) +H(W2, X

(1,0,2)) + 2H(W1,W2) (65)

≥H(W2, X
(0,1,2), X(1,0,2)) +H(W2) + 2H(W1,W2), (66)

where (63) follows from the fact that X(0,1,2) is a deterministic function of Z1 and knowing

(Z2, X
(0,1,2)) can decode W1, (64) follows from (26) , (65) follows from

H(W1, X
(0,1,2))

(a)
= H(W1, X

(2,0,1))
(b)
= H(W2, X

(1,0,2)),

H(W1, X
(0,1,2))

(c)
= H(W2, X

(0,2,1))
(d)
= H(W2, X

(0,1,2)),

where (a) and (d) follow from the property of user-index-symmetric schemes, and (b) and (c)

follow from the property of file-index-symmetric schemes, and (66) follows again from the

sub-modular function of the entropy function. Hence, (30) is proved.

Finally, to prove (31), we have

6M ≥ 6H(Z1)

= 6H(Z1) + 3H(X(1,0,2))− 3H(X(0,1,2))

≥ 3H(Z1) + 3H(Z1, X
(1,0,2))− 3H(X(0,1,2))
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= 3H(Z1, X
(0,1,2)) + 3H(Z1, X

(1,0,2))− 3H(X(0,1,2)) (67)

≥ 3H(Z1, X
(0,1,2), X(1,0,2)) + 3H(Z1, X

(1,0,2))− 3H(X(0,1,2), X(1,0,2)) (68)

≥ 6H(Z1, X
(1,0,2))− 3H(X(0,1,2), X(1,0,2))

= 3H(Z1, X
(1,0,2)) + 3H(Z2, X

(0,1,2))− 3H(X(0,1,2), X(1,0,2)) (69)

= 3H(Z1, X
(1,0,2),W1, X

(0,1,2)) + 3H(Z2, X
(0,1,2),W1, X

(1,0,2)) (70)

− 3H(X(0,1,2), X(1,0,2))

≥ 3H(X(1,0,2),W1, X
(0,1,2)) + 3H(W1,W2)− 3H(X(0,1,2), X(1,0,2)), (71)

where (67) follows from the fact that X(0,1,2) is a deterministic function of Z1, (68) follows

from the sub-modular property of the entropy function, (69) follows from the property of user-

index-symmetric schemes, (70) follows from the fact that knowing (Z1, X
(1,0,2)) can decode W1,

X(0,1,2) is a deterministic function of Z1, knowing (Z2, X
(0,1,2)) can decode W1 and X(1,0,2) is

a deterministic function of Z2, and (71) follows from (26). Thus, (31) is proved.

APPENDIX D

PROOF OF LEMMA 4

We will first prove (34).

M +R(M) +H(W1, X
(2,0,1)) ≥ H(Z1) +H(X(1,0,2)) +H(W1, X

(2,0,1))

≥ H(Z1, X
(1,0,2)) +H(W1, X

(2,0,1))

= H(Z1, X
(1,0,2),W1) +H(W1, X

(2,0,1)) (72)

≥ H(Z1,W1) +H(W1, X
(2,0,1))

≥ H(Z1,W1, X
(2,0,1)) +H(W1) (73)

= H(Z1,W1, X
(2,0,1),W2) +H(W1) (74)
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= H(W1,W2) +H(W1) = 3, (75)

where (72) follows from the fact that knowing (Z1, X
(1,0,2)) can decode W1, (73) follows from

the sub-modular property of the entropy function, (74) follows from the fact that knowing

(Z1, X
(2,0,1)) can decode W2, and (75) follows from (1), (2). Hence, (34) is proved.

Next, we will prove (35).

2M + 2R(M)−H(W1, X
(1,0,2))

≥H(Z1) +H(Z2) +H(X(1,0,2)) +H(X(0,1,2))−H(W1, X
(1,0,2))

≥H(Z1, X
(1,0,2)) +H(Z2, X

(0,1,2))−H(W1, X
(1,0,2))

=H(Z1, X
(1,0,2),W1, X

(0,2,1)) +H(Z2, X
(0,1,2),W1, X

(1,0,2))−H(W1, X
(1,0,2)) (76)

≥H(Z1, X
(1,0,2),W1, X

(0,2,1)) +H(Z2, X
(0,1,2),W1, X

(1,0,2), X(0,2,1)) (77)

−H(W1, X
(1,0,2), X(0,2,1))

≥H(Z2, X
(0,1,2),W1, X

(1,0,2), X(0,2,1),W2) (78)

=H(W1,W2) = 2, (79)

where (76) follows from the fact that knowing (Z1, X
(1,0,2)) can decode W1, X(0,2,1) is a

deterministic function of Z1, knowing (Z2, X
(0,1,2)) can decode W1 and X(1,0,2) is a deterministic

function of Z2, (77) follows from the sub-modular property of the entropy function, (78) follows

from the fact that knowing (Z2, X
(0,2,1)) can decode W2, and (79) follows from (1) and (2).

Hence, (35) is proved.
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APPENDIX E

PROOF OF LEMMA 5

We will first prove (37).

2M + 2R(M)−H(W1, X
(0,1,3), X(1,0,2))

≥H(Z1) +H(Z2) +H(X(1,0,2)) +H(X(0,1,3))−H(W1, X
(0,1,3), X(1,0,2))

≥H(Z1, X
(1,0,2)) +H(Z2, X

(0,1,3))−H(W1, X
(0,1,3), X(1,0,2))

=H(Z1, X
(1,0,2),W1, X

(0,1,3)) +H(Z2, X
(0,1,3),W1, X

(1,0,2))−H(W1, X
(0,1,3), X(1,0,2)) (80)

≥H(W1,W2,W3) +H(W1, X
(0,1,3), X(1,0,2))−H(W1, X

(0,1,3), X(1,0,2)) (81)

=3,

where (80) follows from the fact that knowing (Z1, X
(1,0,2)) can decode W1, X(0,1,3) is a

deterministic function of Z1, knowing (Z2, X
(0,1,3)) can decode W1 and X(1,0,2) is a deterministic

function of Z2, (81) follows from (26). Hence, (37) is proved.

Next, we will prove (38). Firstly, we have

3M + 2R(M) +H(X(1,0,3))

≥3H(Z1) + 2H(X(1,0,2)) +H(X(1,0,3))

≥2H(Z1, X
(1,0,2)) +H(Z1, X

(1,0,3))

=H(Z1, X
(1,0,2)) +H(Z1, X

(1,0,2),W1) +H(Z1, X
(1,0,3),W1) (82)

≥H(Z1, X
(1,0,2)) +H(Z1, X

(1,0,2),W1, X
(1,0,3)) +H(Z1,W1) (83)

=H(Z1, X
(1,0,2)) +H(Z2, X

(0,1,2),W1, X
(0,1,3)) +H(Z1,W1) (84)

=H(Z1, X
(1,0,2),W1, X

(0,1,2), X(0,1,3)) +H(Z2, X
(0,1,2),W1, X

(0,1,3), X(1,0,2)) (85)

+H(Z1,W1)
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≥H(W1,W2,W3) +H(W1, X
(0,1,2), X(0,1,3), X(1,0,2)) +H(Z1,W1) (86)

=3 +H(W1, X
(0,1,2), X(0,1,3), X(1,0,2)) +H(Z1,W1), (87)

where (82) follows from the fact that knowing (Z1, X
(1,0,2)) or (Z1, X

(1,0,3)) both can decode

W1, (83) follows from the sub-modular property of the entropy function, (84) follows from the

property of user-index-symmetric schemes, (85) follows from the fact that X(0,1,2), X(0,1,3) is a

deterministic function of Z1 and X(1,0,2) is a deterministic function of Z2, (86) follows from

(26). Then, we notice that

M −H(X(1,0,2)) +H(X(0,1,2), X(0,1,3), X(1,0,2))

≥H(Z1)−H(X(1,0,2)) +H(X(0,1,2), X(0,1,3), X(1,0,2))

=H(Z1, X
(0,1,2), X(0,1,3))−H(X(1,0,2)) +H(X(0,1,2), X(0,1,3), X(1,0,2)) (88)

≥H(Z1, X
(0,1,2), X(0,1,3), X(1,0,2)) +H(X(0,1,2), X(0,1,3))−H(X(1,0,2)) (89)

=H(Z1, X
(1,0,2)) +H(X(0,1,2), X(0,1,3))−H(X(1,0,2)) (90)

=H(Z1, X
(1,0,3)) +H(X(1,0,3), X(2,0,3))−H(X(1,0,3)) (91)

≥H(Z1, X
(1,0,3), X(2,0,3)), (92)

where (88) and (90) both follow from the fact that X(0,1,2), X(0,1,3) is a deterministic function

of Z1, (89) and (92) both follow from the sub-modular property of the entropy function, (91)

follows from

H(Z1, X
(1,0,2))

(a)
= H(Z1, X

(1,0,3)), H(X(1,0,2))
(b)
= H(X(1,0,3)),

H(X(0,1,2), X(0,1,3))
(c)
= H(X(2,0,1), X(3,0,1))

(d)
= H(X(2,0,3), X(1,0,3)),

where (a), (b) and (d) all follow from the property of file-index-symmetric schemes, and (c)
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follows from the property of user-index-symmetric schemes.

Using the property of user-index-symmetric schemes to combine (87) and (92), we have

4M + 2R(M)

≥3 +H(W1, X
(0,1,2), X(0,1,3), X(1,0,2)) +H(Z1,W1) +H(Z1, X

(1,0,3), X(2,0,3))

−H(X(0,1,2), X(0,1,3), X(1,0,2))

≥3 +H(W1,W2, X
(0,1,2), X(0,1,3), X(1,0,2)) +H(Z1,W1) +H(Z1, X

(1,0,3), X(2,0,3)) (93)

−H(W2, X
(0,1,2), X(0,1,3), X(1,0,2))

=3 +H(W1,W2, X
(0,2,1), X(0,3,1), X(1,2,0)) +H(Z1,W1) +H(Z1, X

(1,0,3), X(2,0,3)) (94)

−H(W2, X
(0,2,1), X(0,3,1), X(1,2,0))

≥3 +H(W1,W2, X
(0,2,1), X(0,3,1), X(1,2,0), X(3,0,2)) +H(Z1,W1) (95)

+H(Z1, X
(1,0,3), X(2,0,3))−H(W2, X

(0,2,1), X(0,3,1), X(1,2,0), X(3,0,2))

=3 +H(W3,W2, X
(0,2,3), X(0,1,3), X(3,2,0), X(1,0,2)) +H(Z1,W1) (96)

+H(Z1, X
(1,0,3), X(2,0,3))−H(W2, X

(0,2,1), X(0,3,1), X(1,2,0), X(3,0,2))

≥3 +H(W3,W2, X
(0,2,3), X(0,1,3), X(1,0,2)) +H(Z1,W1) +H(Z1, X

(1,0,3), X(2,0,3)) (97)

−H(W2, X
(0,2,1), X(0,3,1), X(1,2,0), X(3,0,2)),

where (93) and (95) both follow from the sub-modular property of the entropy function, (94)

follows from the property of user-index-symmetric schemes, (96) follows from the property of

file-index-symmetric schemes.

Adding H(W1,W2, X
(0,2,3), X(0,1,3), X(1,0,2)) to both sides of (97), we have

4M + 2R +H(W1,W2, X
(0,2,3), X(0,1,3), X(1,0,2))
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≥3 +H(W3,W2, X
(0,2,3), X(0,1,3), X(1,0,2)) +H(W1,W2, X

(0,2,3), X(0,1,3), X(1,0,2))

+H(Z1,W1) +H(Z1, X
(1,0,3), X(2,0,3))−H(W2, X

(0,2,1), X(0,3,1), X(1,2,0), X(3,0,2))

≥3 +H(W1,W2,W3, X
(0,2,3), X(0,1,3), X(1,0,2)) +H(W2, X

(0,2,3), X(0,1,3), X(1,0,2)) (98)

+H(Z1,W1) +H(Z1, X
(1,0,3), X(2,0,3))−H(W2, X

(0,2,1), X(0,3,1), X(1,2,0), X(3,0,2))

=3 +H(W1,W2,W3) +H(W2, X
(0,2,3), X(0,1,3), X(1,0,2)) +H(Z1,W1) (99)

+H(Z1, X
(1,0,3), X(2,0,3))−H(W2, X

(0,2,1), X(0,3,1), X(1,2,0), X(3,0,2))

=6 +H(W2, X
(0,2,3), X(0,1,3), X(1,0,2)) +H(Z1,W1) +H(Z1, X

(1,0,3), X(2,0,3))

−H(W2, X
(0,2,1), X(0,3,1), X(1,2,0), X(3,0,2))

=6 +H(W2, X
(0,2,3), X(0,1,3), X(1,0,2)) +H(Z1,W1) +H(Z2, X

(0,1,3), X(0,2,3)) (100)

−H(W2, X
(0,2,1), X(0,3,1), X(1,2,0), X(3,0,2))

=6 +H(W2, X
(0,2,3), X(0,1,3), X(1,0,2)) +H(Z1,W1) (101)

+H(Z2, X
(0,1,3), X(0,2,3), X(1,0,2),W1,W2)−H(W2, X

(0,2,1), X(0,3,1), X(1,2,0), X(3,0,2)),

where (98) follows from the sub-modular property of the entropy function, (99) follows from

(1) and (2), (100) follows from the property of user-index-symmetric schemes, (101) follows

from the fact that X(1,0,2) is a deterministic function of Z2 and knowing (Z2, X
(0,1,3), X(0,2,3))

can decode W1,W2.

Through further calculations, we find that

H(W2, X
(0,2,3), X(0,1,3), X(1,0,2))−H(W2, X

(0,2,1), X(0,3,1), X(1,2,0), X(3,0,2))

=H(X(0,1,3), X(0,2,3),W2, X
(1,0,2))−H(X(0,1,3), X(0,2,3), X(3,2,0),W2, X

(1,0,2)) (102)

≥H(W2, X
(1,0,2))−H(X(3,2,0),W2, X

(1,0,2)) (103)

=H(W1, X
(2,0,1))−H(X(1,0,2),W1, X

(0,1,3)), (104)
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where (102) follows from the property of user-index-symmetric schemes, (103) follows from the

sub-modular property of the entropy function, (104) follows from

H(W2, X
(1,0,2))

(a)
= H(W1, X

(2,0,1)),

H(X(3,2,0),W2, X
(1,0,2))

(b)
= H(X(2,1,0),W1, X

(3,0,1))
(c)
= H(X(1,0,2),W1, X

(0,1,3)),

where (a) and (b) both follow from the property of file-index-symmetric schemes, and (c) follows

from the property of user-index-symmetric schemes.

Again, adding H(Z1,W1,W2, X
(0,2,3), X(0,1,3), X(1,0,2)) to both sides of (101) and applying

(104), we have

4M + 2R +H(W1,W2, X
(0,2,3), X(0,1,3), X(1,0,2)) +H(Z1,W1,W2, X

(0,2,3), X(0,1,3), X(1,0,2))

≥6 +H(Z1,W1) +H(Z2, X
(0,1,3), X(0,2,3), X(1,0,2),W1,W2)

+H(Z1,W1,W2, X
(0,2,3), X(0,1,3), X(1,0,2)) +H(W1, X

(2,0,1))−H(X(1,0,2),W1, X
(0,1,3))

≥6 +H(Z1,W1) +H(W1,W2,W3) +H(W1,W2, X
(0,2,3), X(0,1,3), X(1,0,2)) (105)

+H(W1, X
(2,0,1))−H(X(1,0,2),W1, X

(0,1,3))

=9 +H(Z1,W1) +H(W1,W2, X
(0,2,3), X(0,1,3), X(1,0,2)) +H(W1, X

(2,0,1)) (106)

−H(X(1,0,2),W1, X
(0,1,3)),

where (105) follows from (26).

Then, adding H(W1, X
(0,1,3), X(1,0,2)) to both sides of (106), and removing H(W1,W2, X

(0,2,3), X(0,1,3), X(1,0,2))

and H(Z1,W1,W2, X
(0,2,3), X(0,1,3), X(1,0,2)) from both sides of (106), we have

4M + 2R +H(W1, X
(0,1,3), X(1,0,2))

≥9 +H(Z1,W1)−H(Z1,W1,W2, X
(0,2,3), X(0,1,3), X(1,0,2)) +H(W1, X

(2,0,1))
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=9 +H(Z1,W1)−H(Z1,W2, X
(1,0,2)) +H(W1, X

(2,0,1)) (107)

=9 +H(Z1,W1)−H(Z1,W1, X
(2,0,1)) +H(W1, X

(2,0,1)) (108)

≥9 +H(W1)−H(X(2,0,1),W1) +H(W1, X
(2,0,1)) (109)

=10,

where (107) follows from the fact that X(0,2,3), X(0,1,3) is a deterministic function of Z1 and

knowing (Z1, X
(1,0,2)) can decode W1, (108) follows from the property of file-index-symmetric

schemes, (109) follows from the sub-modular property of the entropy function. Hence, (38) is

proved.

APPENDIX F

PROOF OF LEMMA 6

We will first prove (39).

M +R(M) +H(W1, X
(0,1,3), X(1,0,2)) ≥ H(Z1) +H(X(1,0,2)) +H(W1, X

(0,1,3), X(1,0,2))

≥H(Z1, X
(1,0,2)) +H(W1, X

(0,1,3), X(1,0,2))

=H(Z1, X
(1,0,2),W1) +H(W1, X

(0,1,3), X(1,0,2)) (110)

≥H(Z1,W1) +H(W1, X
(0,1,3), X(1,0,2))

=H(Z1,W1) +H(W1, X
(1,0,2)) +H(W1, X

(0,1,3), X(1,0,2))−H(W1, X
(1,0,2))

=H(Z1,W1) +H(W1, X
(2,0,1)) +H(W1, X

(0,1,3), X(1,0,2))−H(W1, X
(1,0,2)) (111)

≥H(Z1, X
(2,0,1),W1) +H(W1) +H(Z3,W1, X

(0,1,3), X(1,0,2))−H(Z3,W1, X
(1,0,2)) (112)

=H(Z3, X
(1,0,2),W1) +H(W1) +H(Z3,W1, X

(0,1,3), X(1,0,2))−H(Z3,W1, X
(1,0,2)) (113)

=H(W1) +H(Z3,W1, X
(0,1,3), X(1,0,2),W2,W3) (114)

=H(W1) +H(W1,W2,W3) = 4, (115)
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where (110) follows from the fact that knowing (Z1, X
(1,0,2)) can decode W1, (111) and (113)

both follow from the property of user-index-symmetric schemes, (112) follows from the sub-

modular property of the entropy function, (114) follows from the fact that knowing (Z3, X
(0,1,3),

X(1,0,2)) can decode W2,W3, (115) follows from (1) and (2). Hence, (39) is proved.

Next, we will prove (40).

2M + 2R(M)−H(W1, X
(0,1,3), X(1,0,2))

≥H(Z1) +H(Z2) +H(X(1,0,2)) +H(X(0,1,3))−H(W1, X
(0,1,3), X(1,0,2))

≥H(Z1, X
(1,0,2)) +H(Z2, X

(0,1,3))−H(W1, X
(0,1,3), X(1,0,2))

=H(Z1, X
(1,0,2),W1, X

(0,1,3)) +H(Z2, X
(0,1,3),W1, X

(1,0,2))−H(W1, X
(0,1,3), X(1,0,2)) (116)

≥H(W1,W2,W3) +H(X(1,0,2),W1, X
(0,1,3))−H(W1, X

(0,1,3), X(1,0,2)) (117)

=3,

where (116) follows from the fact that knowing (Z1, X
(1,0,2)) can decode W1, X(0,1,3) is a

deterministic function of Z1, knowing (Z2, X
(0,1,3)) can decode W1, and X(1,0,2) is a deterministic

function of Z2, (117) follows from (26). Hence, (40) is proved.

APPENDIX G

PROOF OF LEMMA 7

We will first prove (49). Applying (1), (41), (42) and (48), the following chains of inequalities

can be written as

M +R(M)

≥H(Z1) +H(X
(1,2,2)
1 ) +H(X

(1,2,2)
2 ) +H(X

(1,2,2)
3 ) ≥ H(Z1, X

(1,2,2)
2 , X

(1,2,2)
3 ) +H(X

(1,2,2)
1 )

=H(Z1, X
(1,2,2)
2 , X

(1,2,2)
3 ,W1) +H(Z2, Z1, X

(1,2,2)
2 ,W1)−H(Z2, Z1, X

(1,2,2)
2 ,W1) (118)
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+H(X
(1,2,2)
1 )

≥H(X
(1,2,2)
3 , Z2, Z1, X

(1,2,2)
2 ,W1) +H(W1, Z1, X

(1,2,2)
2 )−H(W1, Z1, Z2, X

(1,2,2)
2 ) (119)

+H(X
(1,2,2)
1 )

=H(W1,W2) +H(W1, Z1, X
(1,2,2)
2 )−H(W1, Z1, Z2) +H(X

(1,2,2)
1 ) (120)

=H(W1, Z1, X
(1,2,2)
3 )−H(W1, Z1, Z2) +H(X

(1,2,2)
1 ) +H(W1,W2) (121)

≥H(W1, Z1, Z2, X
(1,2,2)
3 )−H(W1, Z1) +H(X

(1,2,2)
1 ) +H(W1,W2) (122)

=H(W1,W2)−H(W1, Z1, Z2) +H(X
(1,2,2)
1 ) +H(W1,W2) (123)

≥H(W1, Z1)− 2H(W1, Z1, Z2) +H(X
(1,2,2)
1 ) + 2H(W1,W2) (124)

=H(W1, Z2)− 2H(W1, Z1, Z2) +H(X
(1,2,2)
1 ) + 2H(W1,W2) +H(W1, X

(1,2,1)
1 )

−H(W1, X
(1,2,1)
1 )

≥H(W1, Z2, X
(1,2,1)
1 )−H(W1, X

(1,2,1)
1 )− 2H(W1, Z1, Z2) +H(X

(1,2,2)
1 ) (125)

+ 2H(W1,W2) +H(W1)

=H(W1, X
(1,2,1)
1 , X

(1,2,1)
2 , Z2) +H(W1, X

(1,2,1)
1 , X

(1,2,1)
2 , X

(1,2,1)
3 ) (126)

−H(W1, X
(1,2,1)
1 , X

(1,2,1)
2 , X

(1,2,1)
3 )−H(W1, X

(1,2,1)
1 )− 2H(W1, Z1, Z2) +H(X

(1,2,2)
1 )

+ 2H(W1,W2) +H(W1)

≥H(W1, X
(1,2,1)
1 , X

(1,2,1)
2 , X

(1,2,1)
3 , Z2) +H(W1, X

(1,2,1)
1 , X

(1,2,1)
2 ) (127)

−H(W1, X
(1,2,1)
1 , X

(1,2,1)
2 , X

(1,2,1)
3 )−H(W1, X

(1,2,1)
1 )− 2H(W1, Z1, Z2) +H(X

(1,2,2)
1 )

+ 2H(W1,W2) +H(W1)

≥H(X
(1,2,2)
1 ) + 3H(W1,W2) +H(W1)−H(W1, X

(1,2,1)
1 , X

(1,2,1)
2 , X

(1,2,1)
3 ) (128)

− 2H(W1, Z1, Z2),
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where (118) follows from the fact that knowing (Z1, X
(1,2,2)
2 , X

(1,2,2)
3 ) can decode W1, (119),

(122), (125) and (127) all follow from the sub-modular property of the entropy function, (120)

and (123) both follow from the fact that X(1,2,2)
1 is a deterministic function of Z1, knowing

(Z2, X
(1,2,2)
1 , X

(1,2,2)
3 ) can decode W2, (1) and (41), (121) follows from the property of user-

index-symmetric schemes, (124) follows from the fact that H(W1, Z1) ≤ H(W1, Z1, Z2), (126)

follows from the fact that X(1,2,1)
2 is a deterministic function of Z2, (128) follows from the

fact that knowing (Z2, X
(1,2,1)
1 , X

(1,2,1)
3 ) can decode W2, (1), (41) and H(W1, X

(1,2,1)
1 , X

(1,2,1)
2 ) ≥

H(W1, X
(1,2,1)
1 ). Hence, (49) is proved.

Next, we will prove (50).

2M +R(M) ≥ H(Z2, X
(1,2,1)
1 , X

(1,2,1)
3 ) +H(Z1) +H(X

(1,2,1)
2 )

≥H(Z2, X
(1,2,1)
1 , X

(1,2,1)
3 ) +H(Z1, X

(1,2,1)
2 )

=H(W2, Z2, X
(1,2,1)
1 , X

(1,2,1)
3 , X

(1,2,1)
2 ) +H(W1, X

(1,2,1)
1 , X

(1,2,1)
2 , X

(1,2,1)
3 ) (129)

−H(W1, X
(1,2,1)
1 , X

(1,2,1)
2 , X

(1,2,1)
3 ) +H(Z1, X

(1,2,1)
2 )

≥H(X
(1,2,1)
1 , X

(1,2,1)
2 , X

(1,2,1)
3 )−H(W1, X

(1,2,1)
1 , X

(1,2,1)
2 , X

(1,2,1)
3 ) (130)

+H(Z1, X
(1,2,1)
2 ) +H(W1,W2)

=H(X
(1,2,1)
1 , X

(1,2,1)
2 , X

(1,2,1)
3 )−H(W1, X

(1,2,1)
1 , X

(1,2,1)
2 , X

(1,2,1)
3 ) (131)

+H(Z1, X
(1,2,1)
2 , X

(1,2,1)
1 ) +H(W1,W2)

≥H(X
(1,2,1)
1 , X

(1,2,1)
2 ) +H(Z1, X

(1,2,1)
1 , X

(1,2,1)
2 , X

(1,2,1)
3 ) (132)

−H(W1, X
(1,2,1)
1 , X

(1,2,1)
2 , X

(1,2,1)
3 ) +H(W1,W2)

=H(X
(1,2,1)
1 , X

(1,2,1)
2 ) +H(Z1, X

(1,2,1)
2 , X

(1,2,1)
3 ) (133)

−H(W1, X
(1,2,1)
1 , X

(1,2,1)
2 , X

(1,2,1)
3 ) +H(W1,W2),

where (129) follows from the fact that X(1,2,1)
2 is a deterministic function of Z2 and knowing
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(Z2, X
(1,2,1)
1 , X

(1,2,1)
3 ) can decode W2, (130) follows from the sub-modular property of the entropy

function, (1) and (41), (131) and (133) both follow from the fact that X(1,2,1)
1 is a deterministic

function of Z1, (132) follows from the sub-modular property of the entropy function. Hence,

(50) is proved.

Moreover, we directly have

3M +R(M) ≥ 2H(Z1) +H(Z1) +H(X
(1,1,2)
1 ) +H(X

(1,1,2)
2 ) +H(X

(1,1,2)
3 )

≥ 2H(Z1) +H(Z1, X
(1,1,2)
2 , X

(1,1,2)
3 ) +H(X

(1,1,2)
1 ),

Hence, (51) is proved.

APPENDIX H

PROOF OF LEMMA 8

We will first prove (56).

3M + 2R(M) ≥ 3H(Z1) + 2[H(X
(1,1,2)
1 ) +H(X

(1,1,2)
2 ) +H(X

(1,1,2)
3 )]

≥2H(Z1, X
(1,1,2)
2 , X

(1,1,2)
3 ) +H(Z1, X

(1,2,2)
2 , X

(1,2,2)
3 ) (134)

≥2H(W1, Z1, X
(1,1,2)
2 ) +H(W1, Z1, X

(1,2,2)
3 ) (135)

=H(W1, Z1, X
(1,1,2)
2 ) +H(W1, Z2, X

(1,1,2)
1 ) +H(W1, Z1, X

(1,2,2)
3 ) (136)

=H(W1, Z1, X
(1,1,2)
2 , X

(1,1,2)
1 ) +H(W1, Z2, X

(1,1,2)
1 , X

(1,1,2)
2 ) +H(W1, Z1, X

(1,2,2)
3 ) (137)

≥H(W1, Z1, Z2, X
(1,1,2)
1 , X

(1,1,2)
2 ) +H(W1, X

(1,1,2)
1 , X

(1,1,2)
2 ) +H(W1, Z1, X

(1,2,2)
3 ) (138)

≥H(W1, Z1) +H(W1, X
(1,1,2)
1 , X

(1,1,2)
2 ) +H(W1, Z1, Z2, X

(1,1,2)
1 , X

(1,1,2)
2 , X

(1,2,2)
3 ) (139)

=H(W1, Z1) +H(W1, X
(1,1,2)
1 , X

(1,1,2)
2 ) +H(W1,W2) (140)

=2 +H(W1, Z1) +H(W1, X
(1,1,2)
1 , X

(1,1,2)
2 ),
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where (134) follows from (48), (135) follows from the fact that knowing (Z1, X
(1,1,2)
2 , X

(1,1,2)
3 )

can decode W1 and knowing (Z1, X
(1,2,2)
2 , X

(1,2,2)
3 ) can decode W1, (136) follows from the prop-

erty of user-index-symmetric schemes, (137) follows from the fact that X(1,1,2)
1 is a deterministic

function of Z1 and X(1,1,2)
2 is a deterministic function of Z2, (138) and (139) both follow from

the sub-modular property of the entropy function, (140) follows from the fact that X(1,2,2)
1 is a

deterministic function of Z1, knowing (Z2, X
(1,2,2)
1 , X

(1,2,2)
3 ) can decode W2, (1) and (41). Hence,

(56) is proved.

Next, we will prove (57). We notice that

H(W1, Z1) +H(W1, X
(2,1,1)
2 ) +H(W1, X

(1,1,2)
1 , X

(1,1,2)
2 ) +H(W1, X

(1,1,2)
1 , Z3)

≥H(W1, Z1, X
(2,1,1)
2 ) +H(W1) +H(W1, X

(1,1,2)
1 ) +H(W1, X

(1,1,2)
1 , X

(1,1,2)
2 , Z3) (141)

=H(W1, Z1, X
(2,1,1)
2 ) +H(W1) +H(W1, X

(1,1,2)
1 ) +H(W1, X

(1,1,2)
1 , X

(1,1,2)
2 , Z3,W2) (142)

=H(W1, Z1, X
(2,1,1)
2 ) +H(W1) +H(W1, X

(1,1,2)
1 ) +H(W1,W2) (143)

=3 +H(W1, Z1, X
(2,1,1)
2 ) +H(W1, X

(1,1,2)
1 )

=3 +H(W1, Z3, X
(1,1,2)
1 ) +H(W1, X

(2,1,1)
2 ), (144)

where (141) follows from the sub-modular property of the entropy function, (142) follows from

the fact that knowing (Z3, X
(1,1,2)
1 , X

(1,1,2)
2 ) can decode W2, (143) follows from (1) and (41), (144)

follows from the property of user-index-symmetric schemes. Removing H(W1, Z3, X
(1,1,2)
1 ) +

H(W1, X
(2,1,1)
2 ) from both sides of (144), (57) is proved.

APPENDIX I

PROOF OF THEOREM 3

The corner point of (N, 0) is trivial. As for the corner point of
(

1
s+1

N, s
s+1

min{N,K − s}
)
,

its achievability scheme is as follows: split all files into s + 1 subfiles of equal sizes. For each

file, use a (K, s+ 1)-MDS code to encode the s+ 1 subfiles. The encoded copies of File n are
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denoted as W̄n,i, n ∈ [N ], i ∈ [K]. User k stores
{
W̄n,k, n ∈ [N ]

}
, which is of size 1

s+1
N . In

the delivery phase, each sender in S transmits the encoded copy of the requested files stored in

its cache. Denote the number of distinct requested files as Ne, then the transmission rate of each

sender is 1
s+1

Ne, and the total transmission rate of all s senders is s
s+1

Ne. In the worst-case,

Ne = min{N,K − s}. Hence, the worst-case delivery rate is R(M) = s
s+1

min{N,K − s}. Due

to the (K, s + 1)-MDS code employed, each requester can decode its requested file based on

the one encoded copy in its own cache and the s encoded copies from the s senders.

Lastly, we provide the achievability scheme for the corner point of
(
K−1
K
N, 1

K

)
. The caching

scheme is the same as that of the MAN uncoded symmetric placement in [5, Algorithm 1]

with t = K − 1. More specifically, all files are split into K subfiles of equal sizes, denoted as

(Wn,1, · · · ,Wn,K), and User k stores {(Wn,1, · · · ,Wn,k−1,Wn,k+1, · · · ,Wn,K), n ∈ [N ]}, which

is of size K−1
K
N . In the delivery phase, denote the set of users not requesting files as S, and

let User k ∈ [K] \ S requests File dk. One of the designated senders in S sends the signal

⊕k∈[K]\SWdk,k, which is of rate 1
K

. Note that the sender has all the pieces Wdk,k, k ∈ [K] \ S in

its cache. It is easily checked that the decodability constraint is satisfied.
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