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18.1 Introduction

The quest of an analytic solution for the simplest mean-field spin-glass

model (the Sherrington-Kirkpatrick (SK) one [Sherrington and Kirkpatrick

(1975)]) led Giorgio Parisi to the invention of the replica method [Parisi

(1980)]. This method is able to describe and handle the complicated struc-

ture of the configuration space of the SK model, with a hierarchical divi-

sion of the configurations into nested pure states, through the analytical

parametrization of matrices of size n×n, in the limit where n → 0, which is,

to say the least, a questionable mathematical construction (its predictions

have been nevertheless confirmed rigorously later on [Guerra and Toninelli

(2002); Talagrand (2006); Panchenko (2013)]). In the physics literature an

alternative method to solve the SK model was proposed in [Mézard et al.

(1986)], and subsequently dubbed the cavity method. In a nutshell the idea

is to consider the effect of the addition of one spin in a large SK model,

or equivalently to create a “cavity” by isolating one spin and modeling the

influence that the rest of the system has on it in a self-consistent way. The

replica and the cavity methods yield the same predictions for the SK model,
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with complementary insights on its structure, the cavity method bypassing

the “analytic continuation” from integer values of n to 0.

Even if the replica and cavity methods have had an impact inside

physics, in particular in the context of structural glasses, they have also

been very fruitful in fields which at first sight could seem unrelated, and

in particular in computer science, information theory and discrete mathe-

matics. Roughly speaking, the reason for their versatility lies in the rather

universal character of the structure of the configuration space evoked above,

that appears not only in the SK model but in many other problems with

a non-physical origin, notably some random constraint satisfaction prob-

lems and error correcting codes. It turns out indeed that these problems

can be viewed as mean-field spin-glasses, but slightly different from the SK

one: the degrees of freedom in these problems interact strongly with a finite

number of neighbors, whereas in the SK all degrees of freedom interact with

each other weakly, in a “fully-connected” manner. The mean-field character

of these sparse, or diluted, models arise from the choice of the neighbors,

which is done uniformly at random, without the geometrical constraints of

an Euclidean space. In physics terms such a network of interaction is called

a Bethe lattice, in mathematics a random graph. This type of model ap-

peared in the physics literature relatively shortly after the fully-connected

ones [Viana and Bray (1985)], but it became quickly clear that they were

much more challenging to solve, some simplifications of the diverging con-

nectivity (of a central limit theorem flavor) being absent in this case. A

line of research extended the replica method to this sparse setting, see in

particular [Monasson (1998); Biroli et al. (2000)] and references therein, at

the price of a rather complicated order parameter. It turned out that the

cavity method is a more convenient framework than the replica one for these

problems, the complex configuration space encoded by the replica symme-

try breaking being formulated in a more transparent manner through the

cavity approach, as first discussed in [Mézard and Parisi (2001)]; in addi-

tion the formalism of the cavity method can be used to develop algorithms

that provide informations on a single sample of mean-field spin-glasses, not

only on average thermodynamic quantities.

The goal of this chapter is to review the main ideas that underlie the

cavity method for models defined on random graphs, as well as present some

of its outcomes, focusing on the random constraint satisfaction problems

for which it provided both a better understanding of the phase transitions

they undergo, and suggestions for the development of algorithms to solve

them. It is organized as follows; section 18.2 focuses on the analytic aspects
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of the method. It contains an introduction to models defined on random

graphs (in Sec. 18.2.1), then the equations of the cavity method at the

so-called replica symmetric (RS) level and one step of replica symmetry

breaking (1RSB) are presented in Sec. 18.2.2 and 18.2.3, before reviewing

in Sec. 18.2.4 their outcomes concerning the phase diagram of random con-

straint satisfaction problems. Algorithmic consequences of this approach

are detailed in Sec. 18.3.

18.2 The cavity method for sparse mean-field models

18.2.1 Models on random graphs

We shall consider systems made of N elementary degrees of freedom (spins)

σi, which take values in some finite alphabet χ, and whose global configu-

ration will be denoted σ = (σ1, . . . , σN ) ∈ χN . They interact through an

energy function (also called Hamiltonian, or cost function), that we decom-

pose as

E(σ) =

M∑

a=1

εa(σ∂a) , (18.1)

where the sum runs over the M basic interactions terms εa. We denote

∂a ⊂ {1, . . . , N} the set of variables involved in the a’th constraint, and

for a subset S of the variables σS means {σi|i ∈ S}. In what follows we

assume that all interactions involves a subset of k variables, for a given

k ≥ 2. This framework encompasses usual Ising spin-glass models, with

χ = {−1, 1}, k = 2 and εa(σ∂a) = −Jaσiaσja , Ja being the coupling con-

stant between the spins ia and ja. It also allows to deal with Potts spins

when χ = {1, . . . , q} for a number q ≥ 2 of spin states, also interpreted

as colors; in this case a relevant energy function corresponds to pairwise

interactions (k = 2), with εa(σ∂a) = δσia ,σja
. This yields the Hamiltonian

of the Potts antiferromagnetic model, corresponding in the perspective of

computer science to the q-coloring problem, the cost function counting the

number of monochromatic edges among the interacting ones. More generi-

cally a constraint satisfaction problem (CSP) corresponds to a cost function

of the form (18.1) with εa taking values 0 or 1, and being interpreted as

the indicator function of the event “the a-th constraint is not satisfied by

the configuration of the variables in σ∂a”. In particular the k-SAT and

k-XORSAT problems can be described in this way with Ising spins and k-

wise interactions. One calls solution of a CSP a configuration σ satisfying
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simultaneously all the constraints, i.e. a zero-energy groundstate, and one

says that the CSP is satisfiable if and only if it admits at least one solution.

The Gibbs-Boltzmann probability measure associated to this Hamilto-

nian for an inverse temperature β reads

µ(σ) =
1

Z

M∏

a=1

wa(σ∂a) , Z =
∑

σ∈XN

M∏

a=1

wa(σ∂a) , Φ =
1

N
lnZ . (18.2)

where the partition function Z ensures the normalization of the probability

law, and wa(σ∂a) = e−βεa(σ∂a). We introduced the thermodynamic poten-

tial Φ which we shall call a free-entropy, as we did not include the constant

−1/β that would make it a free-energy. This choice allows to handle the

uniform measure over the solutions of a CSP (assumed to be satisfiable),

that corresponds to wa(σ∂a) = (1 − εa(σ∂a)), in which case Z counts the

number of solutions and Φ is the associated entropy rate. It amounts to set

formally β = ∞ in the Gibbs-Boltzmann definition, in other words to work

directly at zero temperature.

A convenient representation of a probability measure µ of the form

(18.2) is provided by a factor graph [Kschischang et al. (2001)], see Fig. 18.1

for an example, which is a bipartite graph where each of the N variables

σi is represented by a circle vertex, while the M weight functions wa are

associated to square vertices. An edge is drawn between a variable i and

an interaction a if and only if wa actually depends on σi, i.e. i ∈ ∂a. In a

similar way we shall denote ∂i the set of interactions in which σi appears,

i.e. the graphical neighborhood of i in the factor graph, and call |∂i| the

degree of the i-th variable. One has a natural notion of graph distance

between two variable nodes i and j, defined as the minimal number of

interaction nodes on a path linking i and j.

Our interest lies in disordered systems, in which the probability measure

µ is itself a random object. Suppose indeed that the weight functions wa

are built by drawing, independently for each a, the k-uplet of variables ∂a

uniformly at random among the
(
N
k

)
possible choices (and also the coupling

constants defining the interaction if necessary). We will denote E[•] the

average with respect to this quenched randomness (let us emphasize that

there are two distinct level of probabilities in these systems: the spins σ

are random variables with the probability law µ, and µ is random because

of the stochastic choices in the construction of the factor graph). For k = 2

the resulting factor graph is drawn from nothing but the celebrated Erdős-

Rényi G(N,M) random graph ensemble, the case k > 2 corresponding

to its natural hypergraph generalization. The large size (thermodynamic)
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i a

µi→a

b

a i

µ̂a→i

j

Fig. 18.1 Left: an example of a factor graph. Right: illustration of Eqs. (18.4,18.5).

limit we shall consider corresponds to N,M → ∞, with α = M/N a fixed

parameter. Let us recall some elementary properties of these random factor

graphs in this limit:

• the probability that a randomly chosen variable i has degree |∂i| =

d is qd = e−αk(αk)d/d!, the Poisson law of mean αk.

• if one chooses randomly an interaction a, then a variable i ∈ ∂a,

the probability that i appears in d interactions besides a, i.e. that

|∂i \ a| = d, is q̃d = e−αk(αk)d/d!.

• the random factor graphs are locally tree-like: choosing at random

a vertex i, the subgraph made of all nodes at graph distance from

i smaller than some threshold t is, with a probability going to 1 in

the thermodynamic limit with t fixed, a tree.

More general ensembles of random factor graphs can be constructed, by

fixing a degree distribution qd and drawing at random from the set of all

graphs of size N with Nq0 isolated vertices, Nq1 vertices of degree 1, and

so on and so forth. Then the two distributions qd and q̃d are different in

general, and related through q̃d = (d + 1)qd+1/
∑

d′ d′qd′ . An important

example in this class corresponds to random regular graphs, where qd is

supported by a single integer.
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18.2.2 The replica symmetric (RS) cavity method

The goal of the cavity method is to describe the properties of the random

measure µ constructed above, for typical samples of the random graph

ensemble. The free-entropy Φ is self-averaging in the thermodynamic limit,

its typical value concentrates around its average, the quenched free-entropy

φ defined as

φ = lim
N→∞

E[Φ] = lim
N→∞

1

N
E[lnZ] . (18.3)

The computation of this quantity is thus the objective of the cavity method,

along with a local description of the measure µ, in terms of its marginal

distributions on a finite number of spins.

The cavity method relies crucially on the local convergence of random

factor graph models to random trees explained at the end of Sec. 18.2.1.

Let us assume momentarily that the factor graph representing the model

under study is a finite tree. Then the problem of characterizing the mea-

sure (18.2) and computing the associated partition function Z can be solved

exactly in a simple, recursive way: one can break the tree into independent

subtrees, solve the problems on these substructures, and combine them to-

gether to get the solution on the larger problem. This is nothing but a

generalization of the transfer matrix method used in physics to solve unidi-

mensional problems, a form of what is known as dynamic programming in

computer science. More precisely, for each edge between a variable i and an

adjacent interaction a one introduces two directed “messages”, µi→a and

µ̂a→i, which are probability measures on the alphabet χ, that would be the

marginal probability of σi if, respectively, the interaction a were removed

from the graph, or if all interactions around i except a were removed. A

moment of thought reveals that these messages obey the following recur-

sive (so-called Belief Propagation (BP)) equations (see the right part of

Fig. 18.1 for an illustration),

µi→a(σi) =
1

zi→a

∏

b∈∂i\a

µ̂b→i(σi) , (18.4)

µ̂a→i(σi) =
1

ẑa→i

∑

σ∂a\i

wa(σ∂a)
∏

j∈∂a\i

µj→a(σj) , (18.5)

with zi→a and ẑa→i ensuring the normalization of the laws. On a tree factor

graph there exists a single solution of these equations, which is easily deter-

mined starting from the leaves of the graph (for which the empty product

above is conventionally equal to 1) and sweeping towards the inside of the
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graph. Once the messages have been determined all local averages with

respect to µ can be computed, as well as the partition function, in terms

of the solutions of these BP equations. The Belief Propagation algorithm

consists in looking for a fixed-point solution of (18.4,18.5), iteratively, even

if the factor graph is not a tree; in this case the formula giving Φ in terms of

the messages is only an approximation, known as the Bethe formula for the

free-entropy (see for instance [Yedidia et al. (2003)] for more details on the

connections between the stationary points of the Bethe free-entropy and

the solutions of the Belief Propagation equations). These equations were

discovered independently in Statistical Physics as the Bethe-Peierls approx-

imation, in artificial intelligence as the Belief Propagation algorithm, and in

Information Theory as the Sum-Product algorithm [Mézard and Montanari

(2009)].

Of course random graphs are only locally tree-like, they do possess loops,

even if their lengths typically diverge in the thermodynamic limit. The

cavity method amounts thus to a series of prescriptions to handle these long

loops and to describe the boundary condition they impose on the local tree

neighborhoods inside a large random graph. The simplest prescription, that

goes under the name of replica symmetric (RS) and that is valid for weakly

interacting models (i.e. small α and/or large temperature), assumes some

spatial correlation decay properties of the probability measure µ. When

one removes an interaction a from a factor graph the variables around it

becomes strictly independent if one starts from a tree, and asymptotically

independent provided only long enough loops join them in absence of a, and

provided the correlation decays fast enough along these loops. To compute

the average thermodynamic potential (18.3) it is enough in this case to

study the statistics with respect to the quenched disorder of the messages

µi→a, µ̂a→i on the edges of the random factor graph. In other words the

order parameter of the RS cavity method is the law of the random variables

η, η̂, which are equal to the random messages one obtains by drawing at

random a sample, solving the BP equations on it, choosing at random an

edge a−i, and observing the value of µi→a and µ̂a→i. With the assumption

of independence underlying the RS cavity method the equations (18.4,18.5)

translate into Recursive Distributional Equations (RDE) of the form:

η
d
= f(η̂1, . . . , η̂d) , η̂

d
= f̂(η1, . . . , ηk−1) . (18.6)

In this equation all the ηi’s and η̂i’s are independent copies of the random

variables η and η̂,
d
= denotes the equality in distribution between random

variables, d is drawn according to the law q̃d, and the functions f and f̂ are
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defined by the right hand sides of equations (18.4,18.5) (with possibly an

additional random draw of the weight w). The RS prediction for φ can then

be expressed as the average over random copies of η and η̂ of the local free-

entropy contributions obtained from the exact computation of the partition

function of a finite tree. Note that the equation (18.6), if it has in general no

analytic solution, lends itself to a very natural numerical resolution where

the law of η is approximately represented as an empirical distribution over

a set of representatives η (a population representation) [Abou-Chacra et al.

(1973); Mézard and Parisi (2001)].

The exactness of the predictions of the RS cavity method has been

proven rigorously for some models which are not too frustrated (e.g. fer-

romagnetic systems, or matching models), see for instance [Dembo and

Montanari (2010); Bordenave and Lelarge (2010); Bordenave et al. (2012)].

But in general the correlation decay assumption fails, in this case one has

to turn to a more sophisticated version of the cavity method, which will be

introduced in the next section.

18.2.3 Handling the replica symmetry breaking (RSB) with

the cavity method

As a matter of fact for low enough temperature, and high enough density

of interactions α, the configuration space of frustrated random models gets

fractured in a large number of pure states (or clusters), and the correla-

tion decay hypothesis only holds for the Gibbs measure restricted to one

pure state, not for the complete Gibbs measure. In the replica method

this phenomenon shows up as a breaking of the equivalence between differ-

ent replicas, we will now explain how the cavity method is able to handle

this structure of the configuration space. It amounts to make further self-

consistent hypotheses on the correlated boundary conditions this induces

on the tree-like portions of the factor graph. Inside each pure state the RS

computation is assumed to hold true, and the RSB computation is then a

study of the statistics of the pure states. Let us explain how this is done

in practice at the first level of RSB (1RSB cavity method). The partition

function is written as a sum over the pure states γ, that form a partition of

the configuration space, Z =
∑

γ Zγ , where Zγ is the partition function re-

stricted to the pure state γ. It can be written in the thermodynamic limit

as Zγ = eNfγ , with fγ the internal free-entropy density of a given pure

state. One further assumes that the number of pure states with a given

value of f is, at the leading exponential order, eNΣ(f), with the so-called
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configuration entropy, or complexity, Σ a concave function of f , positive on

the interval [fmin, fmax]. In order to compute Σ one introduces a parameter

m (called Parisi breaking parameter) conjugated to the internal thermody-

namic potential, and the generating function of the Zγ as Z(m) =
∑

γ Z
m
γ .

In the thermodynamic limit its dominant behavior is captured by the 1RSB

potential φ1RSB(m),

φ1RSB(m) = lim
N→∞

1

N
logZ(m) = sup

f

[Σ(f) +mf ] , (18.7)

where the last expression is obtained by a saddle-point evaluation of the sum

over γ. The complexity function is then accessible via the inverse Legendre

transform of φ1RSB(m) [Monasson (1995)], or in a parametric form

f(m) = φ′
1RSB(m) , Σ(f(m)) = φ1RSB(m)−mφ′

1RSB(m) , (18.8)

where f(m) denotes the point where the supremum is reached in Eq. (18.7).

One has Σ′(f(m)) = −m, i.e. the introduction of the parameter m allows

to explore the complexity curve by tuning the tangent slope of the selected

point.

The actual computation of φ1RSB(m) is done as follows [Mézard and

Parisi (2001)]. One introduces on each edge of the factor graph two dis-

tributions Pi→a and P̂i→a of messages, which are the probability over the

different pure states γ, weighted proportionally to Zm
γ , to observe a given

value of µγ
i→a and µ̂γ

a→i respectively, where µ
γ
i→a and µ̂γ

a→i are the messages

that appear in Eq. (18.4,18.5), for the measure restricted to the pure state

γ. Because Pi→a and P̂a→i are themselves random objects with respect

to the choices in the generation of the instance of the factor graph, the

order parameter of the 1RSB cavity method becomes the distributions of

Pi→a and P̂a→i with respect to the disorder. The latter is solution of a

self-consistent functional equation written as

P
d
= F (P̂1, . . . , P̂d) , P̂

d
= F̂ (P1, . . . , Pk−1) , (18.9)

that parallels the equation (18.6) of the RS cavity method, with again

independent copies of the distributions Pi and P̂i. The right hand sides of

these distributional equalities stand for:

P (η) =
1

Z

∫ d∏

i=1

dP̂i(η̂i) δ(η − f({η̂i})) z({η̂i})
m , (18.10)

P̂ (η) =
1

Ẑ

∫ k−1∏

i=1

dPi(ηi) δ(η̂ − f̂({ηi})) ẑ({ηi})
m , (18.11)
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with the functions f and f̂ corresponding to the recursion functions at

the RS level, see Eq. (18.4,18.5), and z and ẑ the associated normalization

factors. From the solution of this equation (that again can be found numer-

ically with the population dynamics method [Mézard and Parisi (2001)])

one computes the 1RSB potential φ1RSB(m) via an expression similar to

the one giving the expression of φ at the RS level, with now averages over

random distributions P and P̂ .

There are different justifications for the appearance of the “reweighting

factors” zm and ẑm in Eqs. (18.10,18.11). The argument in [Mézard and

Parisi (2001)] is based on the exponential distribution of the free-entropies

Nfγ of the pure states with respect to some reference value, and on con-

sistency requirements on the evolution of the pure states when the cavity

factor graph is modified. One can also study the statistics of the many

fixed point solutions of the BP equations (18.4,18.5) and devise a dual fac-

tor graph for the counting of these fixed points [Mézard and Montanari

(2009)], the reweighting factor allowing to select the fixed points associ-

ated to some internal free-entropy. Another interpretation was proposed

in [Krzakala et al. (2007)], associating the pure states of a large but finite

factor graph model to boundary conditions on trees. This interpretation is

particularly relevant in the case m = 1, for which these boundary condi-

tions are actually drawn from the Gibbs measure itself, and reveals a deep

connection between the 1RSB cavity method and the reconstruction on tree

problem, as first unveiled in [Mézard and Montanari (2006)], and with the

point-to-set correlations of the Gibbs measure [Montanari and Semerjian

(2006)].

This construction can be generalized to higher levels of replica symmetry

breaking [Parisi (1980)], with a hierarchical partition of the configuration

space into nested pure spaces; the resulting equations for models on sparse

random graphs involve a recursive tower of probability distributions over

probability distributions, whose numerical resolution becomes extremely

challenging beyond 1RSB.

18.2.4 Some analytic outcomes of the cavity method

As presented above the cavity method is quite versatile, in the sense that it

can address a variety of models defined on random graphs, and it has indeed

been applied to several different problems. As an illustration of some of its

outcomes we shall now present some results it has provided on the phase

diagram of random constraint satisfaction problems (see also chapter 31),
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and sketch the connections between this qualitative understanding and the

quantitative formalism we have introduced before.

In the case of a constraint satisfaction problem the cost function defined

in Eq. (18.1) is made of a sum of indicator functions of events that the a-th

constraint is unsatisfied, for instance the number of monochromatic edges

in the q-coloring problem. The natural questions in this context are: does

an instance of the problem admit at least one solution? if yes, how are

the solutions organized in the configuration space? It turns out that the

answers to these questions have drastically different answers depending on

the value of the density of constraints α, in other words there exist, in the

thermodynamic limit, sharp phase transitions for some threshold values of

this parameter.

PSfrag replacements

ααd αc αs

Fig. 18.2 Schematic representation of the phase transitions in a random CSP ensemble.

The main transitions that occur for generic ensembles of random CSPs

are represented in a schematic way on Fig. 18.2. The squares represent the

full configuration space, for four different values of α (obviously the rep-

resentation of this N -dimensional hypercube on a two-dimensional draw-

ing is only a cartoon), while the black area stands for the solutions. For

α > αs, the satisfiability transition, the square is empty, which translates

the absence of solution in typical instances for these density of constraints.

The satisfiable regime α < αs is further divided in three regions, sepa-

rated by structural phase transitions at which the organization of the set

of solutions changes qualitatively. For α < αd, the so-called clustering, or

dynamic transition, all solutions are somehow close to each other, while in

the rest of the satisfiable regime they are broken in clusters of nearby solu-

tions, each cluster being separated from the other ones. The number and

size of the relevant clusters further change at the condensation threshold

αc: for αd < α < αc most solutions are contained in an exponential num-

ber of clusters which have all roughly the same size, while in the regime

αc < α < αs most solutions are found in a sub-exponential number of
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clusters with strongly fluctuating sizes.

These qualitative predictions, along with quantitative numerical values

for some definite random CSPs families, have been obtained by the analysis

of the solutions of the 1RSB cavity equations, according to the following

criteria [Mézard and Zecchina (2002a); Krzakala et al. (2007)]:

• αd is the smallest value of α such that the 1RSB equations atm = 1

admit a non-trivial solution.

• in the regime [αd, αc] the configurational entropy, or complexity,

associated to the m = 1 solution, is positive, whereas it becomes

negative for α > αc.

• the satisfiability transition is marked by the vanishing of the com-

plexity computed at m = 0, in the so-called energetic version of

the 1RSB cavity method [Mézard and Parisi (2003)], that counts

all clusters irrespectively of their sizes.

18.3 Some algorithmic outcomes of the cavity method

18.3.1 Algorithmic applications of the cavity method

As mentioned above the equations (18.4)-(18.5) can be used on a single

instance to compute (approximately) several properties of the distribution

(18.2), including single-site marginals, joint marginals of variables in a com-

mon factor, the free energy and Shannon’s entropy. This approach has been

applied to Bayesian networks, in the decoding phase of communication

codes (syndrome-based decoding, Turbo Codes [Benedetto et al. (1996)])

and in stereo image reconstruction. More recently, it has found applications

in a large variety of fields that we shall now review.

BP applications in notable models In [Kabashima (2003)], a Belief

Propagation algorithm for CDMA decoding has been presented. Interest-

ingly, it shows how BP can be efficiently applied to dense models (i.e. in

which constraints involve an extensive number of variables) through an ap-

plication of the Central Limit Theorem (the basis of a BP derivative called

AMP, see Chapter 19), and it is also shown that solutions are also fixed

points of the famous Thouless-Anderson-Palmer (TAP) equations [Thou-

less et al. (1977)] while showing superior iterative convergence properties.

A similar approach has been employed in [Braunstein and Zecchina (2006)]

for the binary discrete perceptron learning problem.
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In [Frey and Dueck (2005)], the Affinity Propagation (AP) algorithm

was presented. AP is a BP algorithm for variables with an extensive num-

ber of states. The AP algorithm solves approximately a clustering problem

which is similar in spirit to K-means, but with the important difference

of only relying on a distance matrix instead of the original, possibly high-

dimensional, data representation. Auxiliary variables with a large num-

ber of states can be employed to locally enforce global constraints such as

connectivity, by representing in the variables state the discrete time of an

underlying dynamics. BP has been applied to the resulting extended model

[Bayati et al. (2008)].

The dynamic cavity method [Neri and Bollé (2009)] is an application of

BP to study a certain class of out-of equilibrium dynamical models. The

method can be understood as an application of BP to an auxiliary model in

which a variable consists in a couple of time-dependent quantities: one is a

single spin trajectory, the other a local field. Subsequent works showed that

a slightly simpler but equivalent representation can be obtained with a pair

of spin trajectories. On certain models such as discrete, microscopically ir-

reversible ones (i.e. ones in which a variable can never go back to a visited

state, including the Bootstrap percolation model [Altarelli et al. (2013)],

SI or SIR epidemic models [Altarelli et al. (2014)]), single trajectories can

be efficiently represented by the transition times. In other cases, some ap-

proximations must be employed [Aurell and Mahmoudi (2012)]. A somehow

related variant of the cavity method deals with quantum models, the basic

degrees of freedom becoming imaginary-time spin trajectories [Bapst et al.

(2012)].

Exactness of BP on single instances Some rigorous results have been

proven regarding the exactness of BP algorithms. For certain models and

sufficiently large temperature, the BP update equation becomes a contrac-

tive mapping, guaranteeing the existence and uniqueness of its fixed point

and the convergence towards it under iterations thanks to the Banach theo-

rem. Moreover, this condition guarantees exactness in the thermodynamical

limit on graphs with large girth [Bayati and Nair (2006)].

On the other side of the spectrum, some exactness results exist in the

small temperature limit as well. Equations to analize models explicitely

at zero temperature can be devised by taking the T → 0 limit of the BP

equations under an an opportune change of variables, resulting in equations

for energy-shifts instead of probabilities. These had been known in coding

theory as Max-Sum algorithms. Existing proofs of exactness (on some
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models) rely on a local optimality condition for BP fixed points. [Bayati

et al. (2005); Weiss and Freeman (2001a); Gamarnik et al. (2012)].

Gaussian BP (GaBP) [Weiss and Freeman (2001b)] is an application

of BP for a continuous model with positive definite quadratic potential,

i.e. a Multivariate Gaussian. It is shown under certain conditions on the

precision matrix that the GaBP equations converge and give the correct

estimation of the means (but wrong estimation of the variances in general),

effectively solving a linear system iteratively, with convergence properties

that make the method competitive. Note that due to the fact that the

mode is equal to the mean in a Gaussian distribution, this result can be

again thought of as the exactness of the computation of the maximum.

Survey Propagations and the RSB Phase Survey propagation (SP)

is the algorithmic counterpart of the 1RSB cavity method. It has seen

its first applications to study the k-SAT [Mézard and Zecchina (2002b);

Braunstein et al. (2005)] and q−coloring [Krzakala et al. (2004)] problems

in the replica symmetry broken phase. SP can be thought as BP for the

combinatorial problem of solutions of a lower order message passing system

(typically Max-Sum or some coarsened version of it). Such a hierarchical

approach can also be employed to analyze problems that possess explicitely

such a nested structure, such as the ones coming from (stochastic) control

problems (e.g. the Stochastic Matching problem [Altarelli et al. (2011)]).

It should also be noted that BP can be used in the RSB phase of con-

straint satisfaction problems. In [Braunstein and Zecchina (2006)] BP has

been applied successfully to the perceptron learning problem with binary

synapses, even in the regime in which it shows a RSB phase. The solution

to this conundrum has been clarified in [Baldassi et al. (2016)], where it

was shown that BP describes an exponentially small portion of the solution

space that is still exponentally large and has a non-clustered geometry akin

to the dominant region of the solution space in the RS phase.

Decimation and reinforcement. An algorithm estimating marginal

distributions such as BP can be employed for sampling, and in particu-

lar to find solutions to a constraint satisfaction problem. The main idea

is ancestral sampling, i.e. given an arbitrary permutation of variable in-

dices π, one can estimate the marginal distribution p (xπ1
) and sample x∗

π1

from it, then restrict the solution space to solutions with xπ1
= x∗

π1
and

reiterate, effectively sampling x∗
πi

∼ p
(
xπi

|x∗
π1
, . . . , x∗

πi−1

)
for i = 1, . . . , n.
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As p (x) =
∏n

i=1 p
(
xπi

|xπ1
, . . . , xπi−1

)
, this solution provides a fair sample

x∗ if the estimation of the marginals is exact. The analysis of ancestral

sampling with BP has been performed in [Montanari et al. (2007); Ricci-

Tersenghi and Semerjian (2009); Coja-Oghlan (2011); Coja-Oghlan and

Pachon-Pinzon (2012)]. When one is merely interested in finding any so-

lution to a contraint satisfaction problem, and remembering that marginal

estimations are only approximate, it is convenient to iteratively fix the vari-

able that reduces the solution space the less, which corresponds to fixing

the most polarized variable in the direction of the largest probability of

its marginal. This process is called decimation. In practice, decimation

corresponds to iteratively selecting the variable with the largest local field

and applying an infinite external field to it with the same sign (and then

making the equations converge again and reiterating). A soft version of

decimation, called reinforcement, can also be conceived, in which a field is

applied iteratively to all variables with the same sign of their local field and

an intensity that is either a constant [Chavas et al. (2005)] or proportional

to its magnitude [Braunstein and Zecchina (2006); Bayati et al. (2008)].

This dynamics slowly drives the system to one with sufficiently large exter-

nal fields that becomes trivially polarized on one solution. As an additional

twist, a backtracking procedure can be implemented on top of decimation,

in which variables are occasional freed from their external field when that

choice enlarges the solution space sufficiently. This has been implemented

for SP, with excellent results [Marino et al. (2016)].

18.4 Conclusions

The Cavity method is a powerful and versatile approach to the description

of disordered systems, that has been shown so far to provide the exact

asymptotic solution for many models. For given (finite) system instances,

its algorithmic counterpart has many practical applications, ranging from

a statistical description of the Boltzman-Gibbs distribution to the indi-

viduation of single solutions of a CSP. Moreover, at variance with more

traditional methods for inference such as MCMC sampling, it can provide

an analytical description, given implicitly by the solution(s) of the cavity

equations. This fact enables many possibilities, such as its recursive appli-

cation (SP), and a functional expression of statistical features as a function

of the disorder parameters (see for instance chapter 21 for a discussion of

inverse problems).
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