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WEAK AND STRONG VERSIONS OF THE KOLMOGOROV 4/5-LAW

FOR STOCHASTIC BURGERS EQUATION

PENG GAO AND SERGEI KUKSIN

Abstract. For solutions of the space-periodic stochastic 1d Burgers equation we establish
two versions of the Kolmogorov 4/5-law which provides an asymptotic expansion for the third
moment of increments of turbulent velocity fields. We also prove for this equation an analogy
of the Landau objection to possible universality of Kolmogorov’s theory of turbulence, and
show that the third moment is the only one which admits a universal asymptotic expansion.

1. The 4/5 law

The Kolmogorov theory of turbulence, known as the K41 theory (see in [16, 13]), examines
homogeneous turbulence, corresponding to velocity fields u(t, x) which are random fields,
stationary in time t, homogeneous and isotropic in the space-variable x. Using dimension
analysis and arguing on physical level of rigour, Kolmogorov made a number of remarkable
predictions concerning small-scale properties of velocity fields with large Reynolds numbers
R, corresponding to increments u(t, x + r) − u(t, x). Here the vectors r are such that their
lengths ∣r∣ belong to the inertial range, which is an interval in R+, formed by real numbers
which are “small but not too small” in term of R and the rate of dissipation of energy
ε = νE∣∇u(t, x)∣2, where ν > 0 is the kinematic viscosity of the fluid. One of these predictions
is the 4/5-law, stating that for large R and for r from the inertial range

(1.1) E[(u(t, x + r) − u(t, x)) ⋅ r∣r∣]
3 = −4

5 ε∣r∣.
Later the law was intensively discussed by physicists and was re-proved, using physical ar-
guments, always related to the original Kolmogorov’s arguing (see [13, Sec. 6.2] and [11,
Sec. 2.2.2]). Rigorous verification of the 4/5-law and other laws of the K41 theory remains
an outstanding open mathematical problem. Recently a progress was achieved in [5]. There
– as it is often the case since 1960’s – 3d turbulent flows are modelled by solutions of the
stochastic 3d NSE with small viscosity ν > 0 on the torus T

3. It is known that the latter
equation has stationary solutions. Taking such a solutions uν(t, x) and assuming that it
meets the assumption νE∥u(t)∥2L2

= o(1) as ν → 0 they prove that (1.1) holds after averaging

in r over a sphere of radius ∣r∣. The relation is established for all ∣r∣ from an interval in R+

whose left end goes to zero with ν, but whose relation with the inertial range is not clear.
In order to understand better turbulence and the laws of the K41 theory, starting 1940’s

physicists use stochastic 1d models, where the most popular one is given by the stochastic
space-periodic Burgers equation, see [12, 3, 4]. The equation describes fictitious 1d “burgers
fluid” and turbulence in it, called by U. Frisch burgulence. Our goal in this work is to
rigorously derive for this equation two relations, which may be regarded as weak and strong
forms of the 4/5-law (1.1).

In the next Section 2 we discuss the stochastic space-periodic Burgers equation, following
the book [7]. There we develop the notation and state properties of the equation’s solutions,
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used in the rest of the paper. Then in Section 3 we prove a weak form of the 4/5-law for
the Burgers equation. There we show that for any solution u(t, x) of the equation, its cubed
increments (u(t, x+ l)−u(t, x))3 with l from the inertial range for burgulence, averaged in x,
in ensemble and locally averaged in time, behave as −Const l, uniformly in small non-negative
viscosities. See relations (3.4), (3.5).

In Section 4 we prove a strong form of the 4/5-law for the Burgers equation. Namely, there
in Theorem 4.1 we show that if uν st(t, x) is a stationary in time solution of the equation with
a positive viscosity ν 1 and εB = νE ∫ ∣ux(t, x)∣2dx is its rate of dissipation of energy, then,
for any t,

(1.2) E∫ ((u(t, x + l) − u(t, x))3dx = −12εB l + o(l) as ν → 0.

The relation is proved to hold for l from a strongly inertial range, which is “just a bit smaller”
than the inertial range for burgulence. The latter is the segment [c1ν, c], where the constants
c1, c2 depend on the force, applied to the “burgers fluid” (see a discussion after Theorem 3.1),
and the strongly inertial range is defined in (4.8). In Corollary 4.2 we show that (1.2) as
well holds for any solution of Burgers equation, asymptotically as t → ∞. We also prove in
Theorem 4.1 that a stationary solution of the inviscid Burgers equation satisfies (1.2) with
removed limit “ν → 0” and o(l) replaced by O(l3). Relation (1.2) is the form in which the
“4/5-law for burgulence” appears in works of physicists, justified by heuristic arguments.
E.g. see [17, 9].

In Section 5 we discuss the criticism of possible universality of the K41 theory, made by
Landau. It implies (on the physical level of rigour) that in the frame of K41 the only universal
relation for moments of increments u(t, x+r)−u(t, x) is the 4/5-law (1.1) for cubic moments.
We state a reformulation for burgulence of the Landau claim and rigorously prove it.

Notation. For a metric space M we denote by P(M) the set of probability Borel measures
on M , for a random variable ξ, valued in M , denote by D(ξ) ∈ P(M) its distribution, and
for a function f and a measure µ on M denote ⟨f,µ⟩ = ∫M f dµ. The arrow ⇀ stands for weak
convergence of measures.

2. Stochastic Burgers equation

2.1. The setting and well posedness of the equation. The stochastic Burgers equation
under periodic boundary conditions has the following form:

ut(t, x) + u(t, x)ux(t, x) − νuxx(t, x) = ∂tξ(t, x), t ≥ 0, x ∈ S1 ∶= R/Z,(2.1)

where the viscosity coefficient satisfies ν ∈ (0,1], and
(2.2) ξ(t, x) ∶= ∑

s∈Z∗
bsβs(t)es(x).

Here {bs} are real numbers, {βs} are standard independent Wiener processes defined on a
probability space (Ω,F ,P), and {es(x), s ∈ Z∗ = Z∖{0}} is an usual trigonometric basic in the

space of 1-periodic functions with zero mean-value. Namely, for a k ≥ 1, ek(x) =√2 cos(2πkx)
and e−k(x) = √2 sin(2πkx). We suppose that the process ξ is non-zero and is sufficiently
smooth in x:

(2.3) B0 > 0, BM <∞ for some M ≥ 5, where Bm ∶=∑ ∣2πs∣2mb2s ≤∞.

Since always ν ≤ 1, then below ν > 0 stands for 0 < ν ≤ 1.
1All such solutions have the same distribution.
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As the space-meanvalue of ξ(t, x) is zero, then ∫S1 u(t, x)dx is an integral of motion for
the equation, and we always assume that it vanishes:

∫ u(t, x)dx ≡ 0.
For short we will write the solutions uν(t, x) of (2.1) as uν(t) or just u(t). If u0 is a

random field, independent from ξ (e.g. u0 is non-random), then by uν(t, x;u0) = uν(t;u0) we
will denote a solution of (2.1), equal u0 at t = 0. By H we denote the space of L2-functions
on S1 with zero mean, given the L2-norm ∥ ⋅ ∥ (so {es} is its Hilbert basis). For m ∈ N ∪ {0}
we denote by Hm the Sobolev space

Hm = {v ∈H ∶ ∂mv ∈H},
given the homogeneous norm ∥u∥m = ∥∂mu∥ (so ∥u∥0 = ∥u∥). By ∣ ⋅ ∣p, 1 ≤ p ≤ ∞, we denote
the Lp-norm on S1, and abbreviate Lp(S1) to Lp.

It is well known that under assumption (2.3) eq. (2.1) is well posed in spaces Hm, 1 ≤
m ≤ M , and defines in spaces Hm with 1 ≤ m ≤ M − 1 Markov processes with continuous
trajectories. E.g. see [8, 7] and references in [7]. Moreover, if u0 ∈H1 is non-random, then

(2.4) E exp(σ∥uν(t;u0)∥2) ≤ C
for some σ,C > 0 (depending on u0, ν and the random force). If u0 ∈Hm, 1 ≤m ≤M , then

(2.5) E∥uν(t;u0)∥2m ≤ Cm ∀ t ≥ 0,
where again Cm depends on u0, ν and ξ. A solution uν = uν(t;u0) may be constructed by

Galerkin’s method. Then uν is obtained as a limit of Galerkin’s approximations u(N)(t) ∈
span{es, ∣s∣ ≤ N} ⊂ H, which also satisfy estimates (2.4), (2.5). If u0 ∈ Hm with 1 ≤ m <M ,
then a.s.

(2.6) u(N)(t)→ uν(t) in Hm−1 as N →∞, uniformly in t ∈ [0, T ],
for any finite T > 0. See in [7] Theorems 1.4.2 and 1.4.4.

2.2. Main estimates for solutions. A remarkable property of solutions uν of eq. (2.1) is
given by Oleinik’s estimates: If u0 ∈H1 is a r.v., independent from ξ, then for each 0 < q <∞
and 0 < θ ≤ 1 there exists C = C(q,B4) > 0 such that for every ν > 0 and t ≥ θ the solution
uν(t) = uν(t;u0) satisfies
(2.7) E∣uν +x (t)∣q∞ ≤ Cθ−q,

(2.8) E(∣uν(t)∣q∞ + ∣uνx(t)∣q1) ≤ Cθ−q

(in (2.7) uν +x (t) = uν +x (t, x) is a positive part of the function uνx(t, x)). We stress that C does
not depend on ν and u0. These relations imply crucial lower and upper estimates on Sobolev
norms of solutions. To state them we need a definition: for a random process fω(t) and
σ ≥ 0, T > 0 we denote

(2.9) ⟨⟨f⟩⟩ ∶= ⟨⟨f⟩⟩T+σT = 1

σ
∫

T+σ

T
Ef(s)ds.

The following result is proved in [7, Section 2.3]:

Theorem 2.1. For each θ > 0, any N ∋ m ≤ M and for every random variable u0 ∈ H1,
independent from ξ, solution uν(t) = uν(t;u0) satisfies

1) E∥uν(t)∥2m ≤ C ′mν−(2m−1) for t ≥ θ, where C ′m depends on θ and Bmax(4,m).
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2) There exists T∗(θ) > 0 such that

(2.10) C−1m ν−(2m−1) ≤ ⟨⟨E∥uν∥2m⟩⟩ ≤ Cmν−(2m−1)

for some Cm ≥ 1. Here the averaging ⟨⟨⋅⟩⟩ = ⟨⟨⋅⟩⟩T+σT corresponds to arbitrary constants σ ≥ θ
and T ≥ T∗. The constants Cm depend on θ, T∗ and ξ, but not on σ ≥ θ,T ≥ T∗ and ν ∈ (0,1].

We will write A ∼ B if the two quantities satisfy C1B ≤ A ≤ C2B for some C1,C2 > 0 which
do not depend on ν and σ,T as in the theorem. Then (2.10) may be written as

⟨⟨E∥uν∥2m⟩⟩ ∼ ν−(2m−1).
For m = 0 relations for the norm ∥uν(t;u0)∥0 are different. Namely from (2.8) it follows that
E∥uν(t)∥2 ≤ C ′0 for t ≥ θ, and it is shown in [7] that for the brackets as in the theorem’s
assumptions, ⟨⟨E∥uν∥2⟩⟩ ∼ 1. The quantity 1

2E∥uν(t)∥2 is the (averaged) energy of the “1d

flow” uν(t, x). Formally applying Ito’s formula to 1
2∥uν(t)∥2 and taking the expectation we

get the balance of energy relation

(2.11) 1
2E∥uν(t)∥2 − 1

2E∥uν(0)∥2 = −E∫
t

0
ν∥uν(s)∥21ds + 1

2B0t.

See [7, Chapter 1.4] for its rigorous derivation if u0 is sufficiently smooth.

2.3. The mixing. Equation (2.1) is mixing. It means that there exists a unique measure
µν ∈ P(HM+1) such that for any r.v. u0 ∈H1, independent from ξ,

(2.12) Duν(t;u0)⇀ µν in P(HM−1) as t→∞,

see [7, Chapter 3.3]. The rate of convergence in (2.12) may depend on ν (but it becomes
ν-independent if we regard Duν(t) and µν as measures in Lp, see [7, Chapter 4.2]). If u0 is
a r.v. such that Du0 = µν , then Duν(t;u0) ≡ µν . Such solutions uν are called stationary.

2.4. Inviscid limit. When ν → 0, a solution uν(t;u0) converges to a limit, known as an
entropy solution of eq. (2.1)∣ ν=0. This result may be established in a number of different
ways. In the form, given in the theorem below, it is proved in [7, Chapter 8], following
Kruzkov’s approach [14], based on a version of Oleinik’s estimates (2.7), (2.8).

Theorem 2.2. Let T > 0, u0 ∈H2 be a non-random function and uν = uν(t;u0). Then there
exists a random field u0(t, x) ∶= u0ω(t, x;u0) such that almost surely, for any 1 ≤ p <∞,

1) u0 ∈ L∞([0, T ] × S1) ∩C([0, T ];Lp);
2) uν(t)→ u0(t) in Lp, uniformly in t ∈ [0, T ];
3) for any t ≥ θ > 0 and 0 < q <∞, E∣u0(t)∣qp ≤ C(q,B4)θ−q;
4) u0(0, x) = u0 and u0(t, x) satisfies eq. (2.1) in the sense of generalised functions.

Eq. (2.1)∣ν=0 with a prescribed initial data has many generalised solution, but its entropy
solution, defined by the limiting construction above, exists and is unique. Entropy solutions
extend to a mixing process in L1:

Theorem 2.3. Solutions u0(t;u0) extend by continuity in u0 to a Markov process in L1

such that for every u0 ∈ L1, u0(t;u0) a.s. is continuous in t and meets the estimate in
item 3) of Theorem 2.2. This process is mixing: there is a measure µ0 ∈ P(L1), satisfying
µ0(∩q<∞Lq) = 1, such that for every r.v. u0 ∈ L1, independent from ξ,

(2.13) Du0(t;u0)⇀ µ0 in P(Lp) as t→∞,

for any p <∞. If Du0 = µ0, then solution u0(t;u0) is stationary: Du0(t;u0) ≡ µ0.
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See [7, Chapter 8.5] and see [10, 4] for another approach to stationary solutions of the
inviscid Burgers equation (2.1).

3. Moments of increments uν(t, x + r) − uν(t, x) and a weak form of the 4/5-law
for Burgers equation.

Let us adopt some more notation. For a function v(x) on S1 and ∣l∣ < 1 we denote
vl = v(x + l) and set δlv(x) = vl(x) − v(x). The absolute moments of increments in x of a
solution uν(t, x) for (2.1) with respect to the brackets ⟪⋅⟫ and averaging in x are

⟨⟨∫ ∣δluν(t, x)∣pdx ⟩⟩ = ⟨⟨ ∣δluν(t)∣pp ⟩⟩ =∶ Sp,l = Sp,l(uν) <∞, p > 0.
Obviously if uν(t) is a stationary solution, then Sp,l(uν) = E ∫ ∣δluν(t, x)∣pdx . The function
(p, l) ↦ Sp,l(uν) is called the structure function of a solution uν . Since the function v(x) ↦
∣δlv∣pp is continuous on Lmax(1,p), then in view of item 3) of Theorem 2.2 the structure function

Sp,l(u0) for entropy solutions u0(t, x) also is well defined and finite.
Careful analysis of solutions uν with ν ≥ 0 and of estimates (2.7), (2.8), (2.10) implies that

for any random initial data u0 ∈ H1 (independent from ξ) the structure function Sp,l(uν)
obeys the following law:

Theorem 3.1. There exist constants c∗, c > 0 and c1 ≥ 1, and for each p > 0 there exists
Cp ≥ 1, all depending only on the random force in eq. (2.1) and on θ,T∗ as in Theorem 2.1,
such that for each ν ∈ [0, c∗] and p > 0 we have:

1) if l ∈ [c1ν, c], then
(3.1) C−1p lmin(1,p) ≤ Sp,l(uν) ≤ Cp l

min(1,p);

2) if l ∈ [0, c1ν), then
C−1p lpν1−max(1,p) ≤ Sp,l(uν) ≤ Cp l

pν1−max(1,p)

(for ν = 0 this assertion is empty).

We see from this result that statistically the increments ∣δluν(t)∣, ν > 0, with l ∈ [0, c1ν]
behave “linearly in l”, while for l ∈ [c1ν, c] their behaviour is non-linear. So the interval
[0, c1ν] is the dissipation range for burgulence, described by the Burgers equation (2.1), while
[c1ν, c] is the inertial range. The frontier c1ν between the two interval is the dissipation or
inner scale of the flow. The constants c1 and c, depending on the random force, may change
from one group of results to another.

On the physical level of rigour the first assertion of the theorem was proved in [1]. Rig-
orously for ν > 0 it was established in [6], using some ides from [1]. For a complete proof of
assertions 1) and 2) see [7, Chapter 7.2].

Now we start to discuss moments (not absolute ones) of increments δluν of solutions
uν(t;u0) as above:
(3.2) Ss

p,l(uν) = ⟨⟨sp,l(uν(t))⟩⟩, sp,l(v) = ∫ (δlvν(x))pdx, ν > 0, 0 ≤ l < 1,
where p ∈ N (the upper index s stands for “skew”). If p is an even number then Ss

p,l = Sp,l,
but for an odd p the two moments are different. As Ss

1,l = 0, then the first non-trivial skew
moment is the third one. Let us examine it. Since any real number x may be written as
x = 2x+ − ∣x∣, then
(3.3) Ss

3,l = −S3,l + 2⟨⟨∫ (δluν)+)3dx⟩⟩.
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But for any x, (δluν(x))+ ≤ ∫ x+l
x (uνx)+(t, y)dy ≤ l ∣(uνx)+∣∞. So in view of (2.7) the second

term in the r.h.s. of (3.3) is bounded by Cl3, uniformly in ν > 0. From here, (3.3) and (3.1)
with p = 3 we get that for a suitable c′ > 0 and all ν ∈ (0, c∗],
(3.4) −C ′1l ≤ Ss

3,l(uν) ≤ −C ′2l if l ∈ [c1ν, c′],
for some C ′1 ≥ C ′2 > 0, independent from ν > 0 and solution uν .

Since in view of (2.8) with p = 4 the family of functions ∫ (δluν(t, x))3dx, ν > 0, is uniformly
integrable in variables (t,ω) ∈ [σ,σ +T ]×Ω, then passing to the limit in (3.4) as ν → 0 using
item 2) of Theorem 2.2 with p = 3 we find that entropy solutions u0 = u0(t;u0), u0 ∈ H2,
satisfy

(3.5) −C ′1l ≤ Ss
3,l(u0) ≤ −C ′2l if l ∈ [0, c′].

Relation (3.4) + (3.5), valid for all small ν ≥ 0, is a weak form of the 4/5-law (1.1) for Burgers
equation. Literally the same argument shows that the two relations hold for all moments Ss

p,l

with odd p ≥ 3 (the constants C ′1,C
′
2 should be modified).

In the next section we will see that some ideas, originated in K41, allow to strengthen the
asymptotic behaviour (3.4) for Ss

3,l (as ν → 0) with l in the inertial range to a real asymptotic,
if l belongs not to the whole inertial range, but to some large part of the latter.

4. Strong form of the 4/5-law for Burgers equation

Assuming that in (1.1) the velocity field u is homogeneous and isotropic in x (not necessarily

stationary in t), for any p ∈ N define the p-th moment S
∣∣
p(t, r) of a longitudinal increment

(u(t, x + r) − u(t, x)) ⋅ (r/∣r∣) as E[(u(t, x + r) − u(t, x)) ⋅ (r/∣r∣)]p (so the l.h.s. of (1.1) is

S
∣∣
3(t, r)). Following Kolmogorov, proofs of the 4/5-law in physical works, e.g. in [13, 11], as

well as in the rigorous paper [5],2 crucially use the Karman–Howard–Monin formula (which
is rather a class of formulas, see for them the references above and relation (5.5.5) in [2]).

The formula relates time-derivative of the second moment S
∣∣
2(t, r) with derivatives in r of

the third moment S
∣∣
3(t, r). Variations of the formula (e.g. see in [11]) instead of the second

moments S
∣∣
2 analyse the correlations Eu(t, x)⋅u(t, x+r), closely related to S

∣∣
2. Thus motivated

let us examine time-derivatives of correlations of a solution uν(t, x) = uν(t, x;u0) of Burgers
equation with ν > 0 and a non-random initial data u0 ∈HM−1, i.e. of

∫ uν(t, x)uνl(t, x)dx =∶ f l(uν(t)).
Abbreviating uν(t) to u(t), formally applying the Ito formula to f l(u(t)) and taking the
expectation we get:

d

dt
Ef l(u(t)) = E( − df l(u)(uux) + ν df l(u)(uxx) + 1

2∑ b2sd
2f l(u)(es, es))

=∶ E(−I1(t) + I2(t) + I3(t)).
(4.1)

Since df l(u)v = ∫ (uvl + ulv)dx = ∫ (uvl + uv−l)dx and

(4.2) (∂/∂l)ul(x) = ulx(x),
2There, to adjust the formula to periodic boundary conditions, it is integrated in dr with suitable densities.

It turns out that thus obtained “weak KHM formula” is sufficient for a “conditional” derivation of relation
(1.1).
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we get that

I1(t) = ∫ (uululx + uu−lu−lx )dx = 1
2
∂
∂l ∫ (u(ul)2 − u(u−l)2)dx = 1

2
∂
∂l ∫ (u(ul)2 − ulu2)dx.

Recalling that the functional s3,l was defined in (3.2), we have s3,l(v(x)) = ∫ (δlv(x))3dx =
3 ∫ (vlv2 − (vl)2v)dx. So

I1(t) = −1
6
∂
∂l
s3,l(u(t)).

Similar, using (4.2) we get

I2(t) = ν ∫ (uulxx + uu−lxx)dx = ν ∂2

∂l2
∫ (uul + uu−l)dx = 2ν ∂2

∂l2
f l(u(t)).

Since d2f l(u)(v, v) = 2f l(v), then relation (4.1) may be re-written as

(4.3)
d

dt
Ef l(u(t)) = 1

6E
∂

∂l
s3,l(u(t)) + 2νE ∂2

∂l2
f l(u(t)) + B̃0(l),

where B̃0(l) ∶= ∑s b
2
sf

l(es) = ∑s b
2
s cos(2πsl).

We have obtained (4.1) by a formal application of Ito’s formula to the infinite-dimensional

stochastic process uν(t;u0) ∈HM−1 with u0 ∈HM−1 . But Galerkin’s approximations u(N)(t)
to solutions uν(t) satisfy finite-dimensional stochastic systems. Estimates (2.4), (2.5) also

hold for them and imply the validity of Ito’s formula for u(N)’s. The latter has the form
(4.1) with Ito’s term EI3(t) modified to E1

2 ∑∣s∣≤N b2sd
2f l(u)(es, es). Then passing to a limit

as N → ∞ using (2.6) and the uniform in N estimates we justify the validity of (4.1) for
u(t) = uν(t;u0). (Doing that we write the Ito equation in the integrated in time form.)
Cf. [7], where the energy balance (2.11) is established in a similar way. Since solutions
uν(t) ∈ HM−1 meet estimates (2.4), (2.5) with m = M − 1 ≥ 4, then the given above formal
transformation from (4.1) to (4.3) also is rigorous.

Relation (4.3) is a version of the Karman–Howarth–Monin formula for the stochastic Burg-
ers equation.

Now let µν ∈ P(HM+1) be the stationary measure for eq. (2.1) (see Section 2.3), and let
uν st(t) be a corresponding stationary solution. Then uν st(t) = uν(t;u0), where Du0 = µν .
Using estimate (2.8), where uν = uν st, we see that all terms in the integrated in time relation
(4.3) with u(t) = uν(t;u0), are integrable in µν(du0). Performing this integration we get that
equality (4.3) stays true for u = uν st(t). Then the l.h.s. of (4.3) vanishes, so the relation
takes form

(∂/∂l)E(s3,l(uν st(t))) = −12ν(∂2/∂l2)E(f l(uν st(t))) − 6B̃0(l).
Since s3,0(u(x)) ≡ 0 and since by (4.2) (∂/∂l)f l(u)∣ l=0 = ∫ u(x)ux(x)dx = 0, then integrating
this equality in dl we find that

(4.4) E(s3,l(uν st(t))) = −12ν(∂/∂l)E(f l(uν st(t))) − 6∫
l

0
B̃0(r)dr.

Next, convergence (2.12), estimate (2.8), item 1) of Theorem 2.1 and Fatou’s lemma imply
that for all ν > 0,
(4.5) E∥uνst(t)∥21 ≤ Cν−1,
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for all ν > 0 and a suitable C. Consider the first term in the r.h.s of (4.4). Dropping the
factor −12ν and using (4.2) we write its modulus as

∣E∫ uulxdx∣ = ∣E∫ (u(t, x) − u(t, x + l))ux(x + l)dx∣
≤ [E∫ (u(t, x) − u(t, x + l))2dx]

1/2[E∫ ux(t, x)2dx]
1/2

(we used that ∫ u(x+ l)ux(x+ l)dx = 0). Since u is a stationary solution, then the first factor

in the r.h.s. equals S
1/2
2,l (uν st). So in view of Theorem 3.1 and estimate (4.5) the first term

in the r.h.s. of (4.4) is O(√l√ν).
In view of (2.3), B̃0 is an even C2-function. Since B̃0(0) = B0, then ∫ l

0 B̃0(r)dr = B0l+O(l3).
Using in (4.4) the estimates for the terms in its r.h.s. which we have just obtained we find
that

(4.6) E(s3,l(uν st(t))) = −6B0l +O(l3) +O(
√
l
√
ν).

By relation (8.5.4) in [7], µν ⇀ µ0 in P(L3) as ν → 0. Next, by convergence (2.12) and
estimate (2.8) (with q = 4), ⟨∣u∣43, µν⟩ ≤ C uniformly in ν > 0 (e.g. see [7, Corollary 11.1.7]).
Since functional s3,l is continuous on L3 and s3,l(u) ≤ C ∣u∣33, then we derive from here that

lim
ν→0
⟨s3,l, µν⟩ = ⟨s3,l, µ0⟩.

Let u0st(t) be a stationary entropy solutions of eq. (2.1)∣ ν=0, D(u0st(t)) ≡ µ0 (see Theo-
rem 2.3). Then ⟨s3,l, µ0⟩ = Es3,l(u0st(t)). So passing in (4.6) to the limit as ν → 0, we get
that

(4.7) E(s3,l(u0st(t))) = −6B0l +O(l3).
If in (4.6) l belongs to the inertial range [c1ν, c], then the norm of third term in the r.h.s. of

(4.6) is bounded by Cc
−1/2
1 l. Assuming that c1 is sufficiently big, we obtain from (4.6) another

proof of the weak law (3.4) for stationary solutions uν st(t) (since Ss
3,l(uν st) = Es3,l(uν st(t))).

Now let l belongs to a “strongly inertial range”, i.e.

(4.8) l ∈ [L(ν), c],
for any fixed function L(ν) such that

L(ν)→ 0 and L(ν)/ν →∞ as ν → 0.

Then
√
l
√
ν = o(l) as ν → 0 and we arrive at the main result of this work:

Theorem 4.1. Let uν st(t), ν > 0, be a stationary solution of eq. (2.1) and l satisfies (4.8).
Then

(4.9) Ss
3,l(uν st(t)) = E(s3,l(uν st(t))) = −6B0l + o(l) as ν → 0,

where o(l) depends only on the function L(ν) and the random force ξ. While the stationary
entropy solution u0st(t) satisfies (4.7).3

Due to the balance relation (2.11), for stationary solution uν st with ν > 0 the rate of
dissipation of energy is given by

(4.10) εB = 1
2B0.

3Equivalently, ⟨s3l, µ0⟩ = −6B0l +O(l
3) as l → 0.
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So (4.9) may be written as

(4.11) Ss
3,l(uν st(t)) = −12εB l + o(l) as ν → 0.

Combining the theorem’s result with (2.12) and (2.13) we get

Corollary 4.2. 1) Let ν > 0, and u0 ∈ H1 be a r.v., independent from ξ. Then for any l as
in (4.8) we have

lim
t→∞

E(s3,l(uν(t;u0))) = −6B0l + o(l) as ν → 0.

2) If ν = 0 and u0 ∈ L1 is a r.v., independent from ξ, then

lim
t→∞

E(s3,l(u0(t;u0))) = −6B0l +O(l3) as l → 0.

The proof of Theorem 4.1 crucially uses that the moment which we analyse is cubic.
Indeed, for the proof the Ito term I3 should be a constant, for that the functional f l should
be quadratic, and then the term I1 in (4.11) is of the third order in u. But this does not
imply that moments Ss

p,l with integers p ≠ 3 do not admit asymptotic expansions in l. In the
next section we show that an asymptotic expansion of Ss

p,l with an integer p ≥ 2, p ≠ 3, is not
possible if in addition we require that its leading term “is universal”.

Remark 4.3. While suitable analogies of Theorems 2.1, 2.2, 3.1 and of the weak 4/5-law
(3.5) hold for solutions of the free Burgers equation (2.1)ξ=0 with a non-zero smooth initial
data (see [7, Section 10.11]), we see no way to establish for the latter equation a reasonable
analogy of Theorem 4.1.

5. On the Landau objection to universality in K41 and burgulence

The celebrated 2/3-law of K41 states that for turbulent velocity fields u(t, x) as those,

treated by the theory, the second moments S
∣∣
2(r) 4 of longitudinal increments of u behave

as (ε∣r∣)2/3. Originally Kolmogorov insisted on the universality of the law and claimed that

S
∣∣
2(r) = CK(ε∣r∣)2/3 + o((ε∣r∣)2/3), where CK is an absolute constant. But this universality

was put in doubt by Landau who suggested a physical argument, implying that a relation for
a moment of velocity increment may be universal only if the value of the moment, suggested
by the relation, is linear in the rate of energy dissipation ε (like relation (1.1) for the third
moment). See in [16] a footnote at page 126 and see [13, Section 6.4]. The goal of this section
is to show that for burgulence, indeed, the only universal relation for the moments Ss

p,l is

relation (4.11) for the cubic one (which is linear in εB).
Namely, for a stationary solution uν st(t, x) of stochastic Burgers equation (2.1) and an

integer p ≥ 2 consider the following relation for the p-th moment Ss
p,l of increments of uν st:

(5.1) Ss
p,l(uν st(t)) = C∗(εB l)q + o(εBl)q as ν → 0,

where l is any number from the inertial range [c1ν, c] and q > 0. We address the following
question: for which p and q relation (5.1) holds with a universal constant C∗, independent
from the random force ξ?

Theorem 5.1. If relation (5.1) holds for any random force ξ, satisfying (2.3), with a C∗,
independent from ξ, then

p = 3, q = 1, C∗ = −12.
4The moments do not depend on t by the assumed stationarity of u.
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Proof. Let us abbreviate uν st(t) to u(t). We take some real number µ > 1 and set ξ̃(τ) ∶=
µ−

1

2 ξ(µτ). This also is a standard Wiener process. Denote w(τ, x) ∶= µu(µτ,x). Then w is a
stationary solution of equation

wτ(τ, x) +w(τ, x)wx(τ, x) − νµwxx(τ, x) = µ 3

2∂τ ξ̃(τ, x), νµ = νµ.(5.2)

Consider the inertial range J1 = [c1ν, c] for eq. (2.1) and inertial range Jµ = [cµ1ν, cµ] for
eq. (5.2). For small ν their intersection J = J1 ∩ Jµ is not empty. For l ∈ J relation (5.1)
holds for u which solves eq. (2.1) and for w, solving eq. (5.2). Since Sp,l(w) = µpSp,l(u) and
as εBw = µ3εBu in view of (4.10), then from here

µpC∗(εBu l)q + o(εBu l)q = C∗(µ3εBu l)q + o(εBu l)q
for l ∈ J and all small ν. As µ > 1, then by this equality q = p/3. 5 On the other hand, it
follows from Theorem 3.1 if p is even and from (3.4) and a discussion after (3.5) if p is odd
that Sp,l(u) ∼ −l for any integer p ≥ 2. Thus in (5.1) q = 1, and so p = 3q = 3. Then by
Theorem 4.1 C∗ = −12 and the theorem is proved. �

Remark 5.2. 1) The result of Theorem 5.1 remains true with the same proof if relation
(5.1) is claimed to hold not for all l from the inertial range, but only for l from a strongly
inertial range as in (4.8). In this form asymptotic (5.1) with p = 3 and q = 1 indeed is valid
by Theorem 4.1.

2) We do not know if for some integer p ≥ 2, different from 3, asymptotical expansion
for Sp,l(uν st(t)) of the form (5.1), valid for all l from the inertial range (or from a strongly
inertial range) may hold with a constant C∗ which depends on the random force ξ.
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