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Abstract

Previously an equation of state for the relativistic hydrodynamics encountered in heavy-ion
collisions at the LHC and RHIC has been calculated using lattice gauge theory methods. This
leads to a prediction of very low viscosity, due to the calculated trace anomaly. Finite system
corrections to this trace anomaly could challenge this calculation, since the lattice calcula-
tion was done in an effectively infinite system. In order to verify this trace anomaly it is
sensible to add phenomenologically relevant finite system corrections. We investigate mas-
sive φ4 theory with periodic boundary conditions on n of the 3 spatial dimensions. 2→ 2
NLO scattering is then computed. Using a newly derived formula for an arbitrary dimen-
sional sum of sinc functions, we show that the NLO finite size corrections preserve unitarity.

1 Introduction

There is an apparent formation of Quark Gluon Plasma (QGP) in heavy ion collisions [1–3], where
the correlations between the outgoing low-momentum particles appear to be well described by
nearly inviscid relativistic hydrodynamics. This calculation uses an Equation of State (EoS) pro-
vided by a lattice QCD calculation that is extrapolated to infinite system size [4].

It is currently unclear what happens in QCD just above the transition temperature T = 180
MeV. There is strong evidence of a second order phase transition, but the nature of the new phase
is largely unknown. It is therefore necessary to understand how reliably the experimental be-
haviour found in the finite systems (such as heavy ion or parton collisions) can be extrapolated to
effectively infinite systems, such as the QGP found in the ∼ 0.000001 seconds after Big Bang.

A possibly significant assumption to be investigated is that heavy ion collisions can be well
approximated as infinite sized systems [5]. Indeed quenched lattice QCD calculations have shown
significant possible corrections dependent on the size of the system [6]. An analytic derivation
of the finite size effects on the equation of state (or equivalently the trace anomaly) is therefore
sought. This work is a step in that direction, with the intention to develop and understand the
mathematical techniques necessary for a full treatment necessary for finite temperature finite sized
QCD.
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2 Finite Sized φ4 Theory

Let us consider the φ4 Lagrangian

L= 1
2
∂ µφ∂µφ −

1
2

m2φ2 −
λ

4!
φ4 (1)

in a system with periodic boundary conditions. If we consider n compact spatial dimensions,
with the ith dimension being parameterized by [−πLi ,πLi] with periodic boundary conditions.
This discretizes the possible spatial momenta to ~p = ( k1

L1
, k2

L2
, . . . , kn

Ln
, ) where ~k ∈ Zn. In analogy

with [7] we can define −iλ2V (p2) ≡ with p being the total incoming momentum. One

then finds [8] in n= 3 spatial dimensions that, up to NLO, one gets the renormalized

V (p2, {Li}) = −
1

2(4π)2
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0

d x

�

log

�
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∆2

�

+ 2
∑′
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cos(2πx
∑

mi p
i Li)K0

�

2π
p

∆2
r

∑

(mi Li)2
�

�

. (2)

Here we recognize the log term as corresponding to the standard result in infinite φ4 systems [7].
As one would then expect the second term in the integral vanishes in the limit as all Li →∞ since
limx→∞ K0(x) = 0. We can see that we could reduce the effective number of finite dimensions by
quite simply taking the corresponding Li →∞, since only terms in the sum with the corresponding
mi = 0 will survive the limit. We then find that, as in the infinite system case,

M= λ
�

1+λ
�

V (s) + V (t) + V (u)
��

(3)

up to NLO, with s, t and u being the usual Mandelstam variables.

3 Unitarity

In order to verify that unitarity has stayed intact we will show that the optical theorem holds, no
matter how many dimensions m are of finite size. For the optical theorem to hold, we need that

2 Im[M] = σtot. (4)

It is a straight-forward calculation to find

σtot =
λ2

16π
π

1−m
2

Γ
�3−m

2

�

1
L
p

s

∑∗

0≤l<R2

rm(l)
p

R2 − l
m−1 . (5)

By following [8] one gets that

2 Im[M] = λ2

16π
2R
L
p

s

∑

~k∈Zm

sinc
�

2πR‖~k‖
�

(6)
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up to NLO. We can then use 14 to get

2 Im[M] = λ2

16π
2R
L
p

s
1

2Rπ
m−1

2 Γ
�3−m

2

�

∑∗

0≤l<R2

rm(l)
p

R2 − l
m−1 . (7)

The equivalence of Equations 5 and 7 shows that the Optical Theorem, and therefore Unitarity,
holds independent of the amount of compact dimensions.

4 Conclusion

By passing all considered self-consistency checks, namely having the correct infinite limit and pre-
serving unitarity, we have shown the viability of the mathematical tools developed and employed.
Notably it greatly supports the generalization of the number theoretic formula derived in A, which
has potential implications in number theory.
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A Sum of Sinc functions

We will need a generalization of a formula for the multi-dimensional sum of sinc functions, namely
sums of the form

∑

~k∈Zm

sinc(2πR‖~k‖) (8)

where we define sinc(x) =

¨

sin(x)
x x 6= 0

1 x = 0
.

Since the sum only depends on the magnitude of ~k, we can simplify the sum using the Sum of
Squares function rd(n) which gives the amount of ~k ∈ Zd with ‖~k‖2 = n. Allowing us to use

∞
∑

l=0

rd(l) f (
p

l) =
∞
∑

l=0

rd(l) f̂ (
p

l) (9)
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from [9]. To employ their analytically continued version of the Poisson summation formula we
can first set f (r) = sinc(2πRr). Then we can calculate f̂

f̂ (p) =
2π

m
2

Γ (m
2 )

∫ ∞

0

sinc(2πRr) 0F1(
m
2

;−π2p2r2) rm−1dr (10)

=
1

2Rπ
m−1

2 Γ (3−m
2 )
(R2 − p2)

1−m
2 θ (R2 − p2) (11)

Now we can apply 9

∑

~k∈Zm

sinc(2πR‖~k‖) =
∞
∑

l=0

rm(l) sinc(2πR
p

r) (12)

=
∞
∑

l=0

rm(l)
(R2 − l)

1−m
2

2Rπ
m−1

2 Γ (3−m
2 )
θ (R2 − l). (13)

Here we should note that if rm(R2) 6= 0 we will get a term with θ (0) = 1
2 which we note will give

a 1
0 term in the sum for m> 1. Therefore

∑

~k∈Zm

sinc(2πR‖~k‖) =
1

2Rπ
m−1

2 Γ (3−m
2 )

∑∗

0≤l<R2

rm(l)
p

R2 − l
m−1 , (14)

where
∑∗

0≤l<R2
means that if R2 ∈ Z, then its term in the sum has weight 1

2 . The m = 2 case
corresponds directly to a formula of Ramanujan [10], making this result a generalization thereof.
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