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High Probability Convergence for Accelerated Stochastic Mirror Descent

Alina Ene∗ Huy L. Nguyen†

Abstract

In this work, we describe a generic approach to show convergence with high probability for stochastic
convex optimization. In previous works, either the convergence is only in expectation or the bound
depends on the diameter of the domain. Instead, we show high probability convergence with bounds
depending on the initial distance to the optimal solution as opposed to the domain diameter. The
algorithms use step sizes analogous to the standard settings and are universal to Lipschitz functions,
smooth functions, and their linear combinations.

1 Introduction

Stochastic convex optimization is a well-studied area with numerous applications in algorithms, machine
learning, and beyond. Various algorithms have been shown to converge for many classes of functions
including Lipschitz functions, smooth functions, and their linear combinations. However, one curious gap
remains in the understanding of their convergence with high probability compared with convergence in
expectation. Classical results show that in expectation, the function value gap of the final solution is
proportional to the distance between the original solution and the optimal solution. On the other hand,
classical results for convergence with high probability could only show that the function value gap of
the final solution is proportional to the diameter of the domain, which could be much larger or even
unbounded. In this work, we bridge this gap and establish a generic approach to show convergence with
high probability where the final function value gap is proportional to the distance between the original
solution and the optimal solution. We instantiate our approach in two settings, stochastic mirror descent
and stochastic accelerated gradient descent. The results are analogous to known results for convergence
in expectation but now with high probability. The algorithms are universal for both Lipschitz functions
and smooth functions.

The proof technique is inspired by classical works in concentration inequalities, specifically a type of
martingale inequalities where the variance of the martingale difference is bounded by a linear function of
the previous value. This technique is first applied to showing high probability convergence by Harvey et
al. [2]. Our proof is inspired by the proof of Theorem 7.3 by Chung and Lu [1]. In each time step with
iterate xt, let ξt := ∇̂f (xt)−∇f (xt) be the error in our gradient estimate. Classical proofs of convergence
evolve around analyzing the sum of 〈ξt, x∗ − xt〉, which can be viewed as a martingale sequence. Assuming
a bounded domain, the concentration of the sum can be shown via classical martingale inequalities. The
key new insight is that instead of analyzing this sum, we analyze a related sum where the coefficients
decrease over time to account for the fact that we have a looser grip on the distance to the optimal
solution as time increases. Nonetheless, the coefficients are kept within a constant factor of each others
and the same asymptotic convergence is attained with high probability.

Related work Lan [5] establishes high probability bounds for the general setting of stochastic mirror
descent and accelerated stochastic mirror descent under the assumption that the stochastic noise is sub-
gaussian. The rates shown in [5] match the best rates known in expectation, but they depend on the
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Bregman diameter maxx,y∈X Dψ (x, y) of the domain, which can be unbounded. Our work complements
the analysis of [5] with a novel concentration argument that allows us to establish convergence with respect
to the distance Dψ (x∗, x1) from the initial point. Our analysis applies to the general setting considered
in [5] and we use the same subgraussian assumption on the stochastic noise.

The algorithms and step sizes we consider capture the stochastic gradient descent algorithms with
the standard setting of the step sizes for both smooth and non-smooth problems. The high-probability
convergence of SGD is studied in the works [4, 6, 3, 2]. These works either assume that the function
is strongly convex or the domain is compact. In contrast, our work applies to non-strongly convex
optimization with a general domain.

2 Preliminaries

We consider the problem minx∈X f(x) where f : Rd → R is a convex function and X ⊆ R
d is a convex

domain. We consider the general setting where f is potentially not strongly convex and the domain X is
not necessarily compact.

We assume we have access to a stochastic gradient oracle that returns a stochastic gradient ∇̂f(x)
that satisfies the following two assumptions for any prior history:

1. Unbiased estimator: E

[
∇̂f (x) |x

]
= ∇f (x).

2. Sub-Gaussian noise:
∥∥∥∇̂f (x) − ∇f (x)

∥∥∥ is a σ-subgaussian random variable (Definition 2.1).

There are several equivalent definitions of subgaussian random variables up to an absolute constant scaling
(see, e.g., Proposition 2.5.2 in [7]). For convenience, we use the following property as the definition.

Definition 2.1. A random variable X is σ-subgaussian if

E

[
exp

(
λ2X2

)]
≤ exp

(
λ2σ2

)
for all λ such that |λ| ≤ 1

σ

The above definition is equivalent to the following property, see Proposition 2.5.2 in [7].

Lemma 2.2. (Proposition 2.5.2 in [7]) Let X be a σ-subgaussian random variables. Then

E

[
exp

(
X2

σ2

)]
≤ exp (1)

We will also use the following helper lemma whose proof we defer to the Appendix.

Lemma 2.3. For any a ≥ 0, 0 ≤ b ≤ 1
2σ and a nonnegative σ-subgaussian random variable X,

E

[
1 + b2X2 +

∞∑

i=2

1

i!

(
aX + b2X2

)i
]

≤ exp
(
3
(
a2 + b2

)
σ2
)

3 Analysis of Stochastic Mirror Descent

In this section, we analyze the Stochastic Mirror Descent algorithm (Algorithm 1). For simplicity, here we
consider the non-smooth setting, and assume that f is G-Lipschitz continuous, i.e., we have ‖∇f(x)‖ ≤ G
for all x ∈ X . The analysis for the smooth setting follows via a simple modification to the analysis
presented here as well as the analysis for the accelerated setting given in the next section.

We define
ξt := ∇̂f (xt) − ∇f (xt)
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Algorithm 1 Stochastic Mirror Descent Algorithm. ψ : Rd → R is a strongly convex mirror map.
Dψ (x, y) = ψ (x) − ψ (y) − 〈∇ψ (y) , x− y〉 is the Bregman divergence of ψ.

Parameters: initial point x1, step sizes {ηt}
for t = 1 to T :
xt+1 = arg minx∈X

{
ηt
〈
∇̂f (xt) , x

〉
+ Dψ (x, xt)

}

return 1
T

∑T
t=1 xt

We let Ft = σ (ξ1, . . . , ξt−1) denote the natural filtration. Note that xt is Ft-measurable.
The starting point of our analysis is the following inequality that follows from the standard stochastic

mirror descent analysis (see, e.g., [5]). We include the proof in the Appendix for completeness.

Lemma 3.1. ([5])For every iteration t, we have

ηt (f (xt) − f (x∗)) − η2
tG

2 + Dψ (x∗, xt+1) − Dψ (x∗, xt) ≤ ηt 〈ξt, x∗ − xt〉 + η2
t ‖ξt‖2

We now turn our attention to our main concentration argument. Towards our goal of obtaining a
high-probability convergence rate, we analyze the moment generating function for a random variable that
is closely related to the left-hand side of the inequality above. We let w1 ≥ w2 ≥ · · · ≥ wT ≥ wT+1 ≥ 0
be a non-increasing sequence where wt ∈ R for all t. We define

Zt = wt+1

(
ηt (f (xt) − f (x∗)) − η2

tG
2
)

+ wT+1 (Dψ (x∗, xt+1) − Dψ (x∗, xt)) ∀1 ≤ t ≤ T

St =
T∑

i=t

Zi ∀1 ≤ t ≤ T + 1

Before proceeding with the analysis, we provide intuition for our approach. If we consider S1, we see
that it combines the gains in function value gaps with weights given by the non-increasing sequence {wt}.
The intuition here is that we want to leverage the progress in function value to absorb the error from the
stochastic error terms on the RHS of Lemma 3.1. For the divergence terms, we use the same coefficient
to allow for the terms to telescope. In Theorem 3.2, we upper bound the moment generating function of
S1 and derive a set of conditions for the weights {wt} that allow us to absorb the stochastic errors. In
Corollary 3.3, we show how to choose the weights {wt} and obtain a convergence rate that matches the
standard rates that hold in expectation.

We now give our main concentration argument that bounds the moment generating function of St.
The proof of the following theorem is nspired by the proof of Theorem 7.3 in [1].

Theorem 3.2. Suppose that wt ≥ wt+1 + 6σ2η2
tw

2
t+1 and wt+1η

2
t ≤ 1

4σ2 for every 1 ≤ t ≤ T . For every
1 ≤ t ≤ T + 1, we have

E [exp (St) |Ft] ≤ exp

(
(wt − wT+1) Dψ (x∗, xt) + 3σ2

T∑

i=t

wi+1η
2
i

)

Proof. We proceed by induction on t. Consider the base case t = T + 1. We have St = 0 and
(wt − wT+1) Dψ (x∗, xt) = 0, and the inequality follows. Next, we consider 1 ≤ t ≤ T . We have

E [exp (St) |Ft] = E [exp (Zt + St+1) |Ft] = E [E [exp (Zt + St+1) |Ft+1] |Ft] (1)

We now analyze the inner expectation. Conditioned on Ft+1, Zt is fixed. Using the inductive hypothesis
, we obtain

E [exp (Zt + St+1) |Ft+1] ≤ exp (Zt) exp


(wt+1 − wT+1) Dψ (x∗, xt+1) + 3σ2

T∑

i=t+1

wi+1η
2
i


 (2)
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Let Xt = ηt 〈ξt, x∗ − xt〉. By Lemma 3.1, we have

ηt (f (xt) − f (x∗)) − η2
tG

2 ≤ Xt − (Dψ (x∗, xt+1) − Dψ (x∗, xt)) + η2
t ‖ξt‖2

and thus

Zt = wt+1

(
ηt (f (xt) − f (x∗)) − η2

tG
2
)

+ wT+1 (Dψ (x∗, xt+1) − Dψ (x∗, xt))

≤ wt+1

(
Xt − (Dψ (x∗, xt+1) − Dψ (x∗, xt)) + η2

t ‖ξt‖2
)

+ wT+1 (Dψ (x∗, xt+1) − Dψ (x∗, xt))

= wt+1Xt − (wt+1 − wT+1) (Dψ (x∗, xt+1) − Dψ (x∗, xt)) + wt+1η
2
t ‖ξt‖2

Plugging into (2), we obtain

E [exp (Zt + St+1) |Ft+1] ≤ exp


wt+1Xt + (wt+1 − wT+1) Dψ (x∗, xt) + wt+1η

2
t ‖ξt‖2 + 3σ2

T∑

i=t+1

wi+1η
2
i




Plugging into (1), we obtain

E [exp (St) |Ft] ≤ exp


(wt+1 − wT+1) Dψ (x∗, xt) + 3σ2

T∑

i=t+1

wi+1η
2
i


E

[
exp

(
wt+1Xt +wt+1η

2
t ‖ξt‖2

)
|Ft

]

(3)
Next, we analyze the the expectation on the RHS of the above inequality. We have

E

[
exp

(
wt+1Xt + wt+1η

2
t ‖ξt‖2

)
|Ft

]

= E

[ ∞∑

i=0

1

i!

(
wt+1Xt + wt+1η

2
t ‖ξt‖2

)i
|Ft

]

= E

[
1 + wt+1η

2
t ‖ξt‖2 +

∞∑

i=2

1

i!

(
wt+1Xt + wt+1η

2
t ‖ξt‖2

)i
|Ft

]

≤ E

[
1 + wt+1η

2
t ‖ξt‖2 +

∞∑

i=2

1

i!

(
wt+1ηt ‖x∗ − xt‖ ‖ξt‖ + wt+1η

2
t ‖ξt‖2

)i
|Ft

]

≤ exp
(
3σ2

(
w2
t+1η

2
t ‖x∗ − xt‖2 + wt+1η

2
t

))

≤ exp
(
3σ2

(
2w2

t+1η
2
tDψ (x∗, xt) + wt+1η

2
t

))
(4)

On the first line we used the Taylor expansion of ex, and on the second line we used that E [Xt|Ft] = 0.
On the third line, we used Cauchy-Schwartz and obtained

Xt = ηt 〈ξt, x∗ − xt〉 ≤ ηt ‖ξt‖ ‖x∗ − xt‖

On the fourth line, we applied Lemma 2.3 with X = ‖ξt‖, a = wt+1ηt ‖x∗ − xt‖, and b2 = wt+1η
2
t ≤ 1

4σ2 .

On the fifth line, we used that Dψ (x∗, xt) ≥ 1
2 ‖x∗ − xt‖2, which follows from the strong convexity of ψ.

Plugging (4) into (3) and using that wt ≥ wt+1 + 6σ2η2
tw

2
t+1, we obtain

E [exp (St) |Ft] ≤ exp

((
wt+1 + 6σ2η2

tw
2
t+1 − wT+1

)
Dψ (x∗, xt) + 3σ2

T∑

i=t

wi+1η
2
i

)

≤ exp

(
(wt − wT+1) Dψ (x∗, xt) + 3σ2

T∑

i=t

wi+1η
2
i

)

as needed.
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Theorem 3.2 and Markov’s inequality gives us the following convergence guarantee.

Corollary 3.3. Suppose the sequence {wt} satisfies the conditions of Theorem 3.2. For any δ > 0, the
following event holds with probability at least 1 − δ:

T∑

t=1

wt+1ηt (f (xt) − f (x∗)) + wT+1Dψ (x∗, xT+1)

≤ w1Dψ (x∗, x1) +
(
G2 + 3σ2

) T∑

t=1

wt+1η
2
t + ln

(
1

δ

)

Proof. Let

K = (w1 − wT+1) Dψ (x∗, x1) + 3σ2
T∑

t=1

wt+1η
2
t + ln

(
1

δ

)

By Theorem 3.2 and Markov’s inequality, we have

Pr [S1 ≥ K] ≤ Pr [exp (S1) ≥ exp (K)]

≤ exp (−K)E [exp (S1)]

≤ exp (−K) exp

(
(w1 − wT+1) Dψ (x∗, x1) + 3σ2

T∑

t=1

wt+1η
2
t

)

= δ

Note that

S1 =
T∑

t=1

Zt =
T∑

t=1

wt+1ηt (f (xt) − f (x∗)) −G2
T∑

t=1

wt+1η
2
t +wT+1 (Dψ (x∗, xT ) − Dψ (x∗, x1))

Therefore, with probability at least 1 − δ, we have

T∑

t=1

wt+1ηt (f (xt) − f (x∗)) +wT+1Dψ (x∗, xT+1) ≤ w1Dψ (x∗, x1) +
(
G2 + 3σ2

) T∑

t=1

wt+1η
2
t + ln

(
1

δ

)

With the above result in hand, we complete the convergence analysis by showing how to define the
sequence {wt} with the desired properties.

Corollary 3.4. Suppose we run the Stochastic Mirror Descent algorithm with fixed step sizes ηt = η.
Let wT+1 = 1

12σ2η2(T+1) and wt = wt+1 + 6σ2η2w2
t+1 for all 1 ≤ t ≤ T . The sequence {wt} satisfies the

conditions required by Corollary 3.3. By Corollary 3.3, for any δ > 0, the following events hold with
probability at least 1 − δ:

1

T

T∑

t=1

(f (xt) − f (x∗)) ≤ O

(
Dψ (x∗, x1)

ηT
+

(
G2 + σ2

(
1 + ln

(
1

δ

)))
η

)

and

Dψ (x∗, xT+1) ≤ O

(
Dψ (x∗, x1) +

(
G2 + σ2

(
1 + ln

(
1

δ

)))
η2T

)

Setting η =
√

Dψ(x∗,x1)

(G2+σ2(1+ln( 1
δ )))T

to balance the two terms in the first inequality gives

1

T

T∑

t=1

(f (xt) − f (x∗)) ≤ O




√√√√Dψ (x∗, x1)
(
G2 + σ2

(
1 + ln

(
1
δ

)))

T



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and
Dψ (x∗, xT+1) ≤ O (Dψ (x∗, x1))

Proof. Recall from Corollary 3.3 that the sequence {wt} needs to satisfy the following conditions for all
1 ≤ t ≤ T :

wt+1 + 6σ2η2
tw

2
t+1 ≤ wt

wt+1η
2
t ≤ 1

4σ2

Let C = 6σ2η2 (T + 1). We set wT+1 = 1
C+6σ2η2(T+1) = 1

2C . For 1 ≤ t ≤ T , we set wt so that the first
condition holds with equality

wt = wt+1 + 6σ2w2
t+1η

2
t = wt+1 + 6σ2η2w2

t+1

We can show by induction that, for every 1 ≤ t ≤ T + 1, we have

wt ≤ 1

C + 6σ2η2t

The base case t = T + 1 follows from the definition of wT+1. Consider 1 ≤ t ≤ T . Using the definition of
wt and the inductive hypothesis, we obtain

wt = wt+1 + 6σ2η2w2
t+1

≤ 1

C + 6σ2η2 (t+ 1)
+

6σ2η2

(C + 6σ2η2 (t+ 1))2

≤ 1

C + 6σ2η2 (t+ 1)
+

(
C + 6σ2η2 (t+ 1)

)
−
(
C + 6σ2η2t

)

(C + 6σ2η2 (t+ 1)) (C + 6σ2η2t)

=
1

C + 6σ2η2t

as needed.
Using this fact, we now show that {wt} satisfies the second condition. For every 1 ≤ t ≤ T , we have

wt+1η
2
t = wt+1η

2 ≤ η2

C
=

1

6σ2 (T + 1)
≤ 1

6σ2

as needed.
Thus, by Corollary 3.3, with probability ≥ 1 − δ, we have

T∑

t=1

wt+1ηt (f (xt) − f (x∗)) +wT+1Dψ (x∗, xT+1) ≤ w1Dψ (x∗, x1) +
(
G2 + 3σ2

) T∑

t=1

wt+1η
2
t + ln

(
1

δ

)

Note that wT+1 = 1
2C and 1

2C ≤ wt ≤ 1
C

for all 1 ≤ t ≤ T + 1. Thus we obtain

η
T∑

t=1

(f (xt) − f (x∗)) + Dψ (x∗, xT+1) ≤ 2Dψ (x∗, x1) + 2
(
G2 + 3σ2

)
η2T + 2C ln

(
1

δ

)

= 2Dψ (x∗, x1) + 2
(
G2 + 3σ2

)
η2T + 12σ2 ln

(
1

δ

)
η2 (T + 1)

≤ 2Dψ (x∗, x1) +

(
2G2 + 6σ2

(
1 + 4 ln

(
1

δ

)))
η2T
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Thus we have

1

T

T∑

t=1

(f (xt) − f (x∗)) ≤ 2Dψ (x∗, x1)

ηT
+

(
2G2 + 6σ2

(
1 + 4 ln

(
1

δ

)))
η

and

Dψ (x∗, xT+1) ≤ 2Dψ (x∗, x1) +

(
2G2 + 6σ2

(
1 + 4 ln

(
1

δ

)))
η2T

The analysis readily extends to the setting where the time horizon T is not known and we set time-
varying step sizes. We include below the analysis for well-studied steps ηt = η√

t
.

Corollary 3.5. Suppose we run the Stochastic Mirror Descent algorithm with time-varying step sizes
ηt = η√

t
. Let wT+1 = 1

12σ2η2
(∑T

t=1
1
t

) and wt = wt+1 + 6σ2η2w2
t+1 for all 1 ≤ t ≤ T . The sequence {wt}

satisfies the conditions required by Corollary 3.3. By Corollary 3.3, for any δ > 0, the following events
hold with probability at least 1 − δ:

1

T

T∑

t=1

(f (xt) − f (x∗)) ≤ O

(
1√
T

(
Dψ (x∗, x1)

η
+ η

(
G2 + σ2

(
1 + ln

(
1

δ

)))
ln T

))

and

Dψ (x∗, xT+1) ≤ O

(
Dψ (x∗, x1) + η2

(
G2 + σ2

(
1 + ln

(
1

δ

)))
lnT

)

Proof. Recall from Corollary 3.3 that the sequence {wt} needs to satisfy the following conditions for all
1 ≤ t ≤ T :

wt+1 + 6σ2η2
tw

2
t+1 ≤ wt

wt+1η
2
t ≤ 1

4σ2

Let Bt = 6σ2∑t−1
i=1 η

2
i and C = BT+1 = 6σ2η2

(∑T
t=1

1
t

)
. We set wT+1 = 1

C+BT+1
. For 1 ≤ t ≤ T , we set

wt so that the first condition holds with equality

wt = wt+1 + 6σ2η2
tw

2
t+1

We can show by induction that, for every 1 ≤ t ≤ T + 1, we have

wt ≤ 1

C +Bt

The base case t = T + 1 follows from the definition of wT+1. Consider 1 ≤ t ≤ T . Using the definition of
wt and the inductive hypothesis, we obtain

wt = wt+1 + 6σ2η2
tw

2
t+1

≤ 1

C +Bt+1
+

6σ2η2
t

(C +Bt+1)2

≤ 1

C +Bt+1
+

(C +Bt+1) − (C +Bt)

(C +Bt+1) (C +Bt)

=
1

C +Bt+1

as needed.
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Algorithm 2 Accelerated Stochastic Mirror Descent Algorithm [5]. ψ : Rd → R is a strongly convex
mirror map. Dψ (x, y) = ψ (x) − ψ (y) − 〈∇ψ (y) , x− y〉 is the Bregman divergence of ψ.

Parameters: initial point x0 = y0 = z0, step size η
Set αt = 2

t+1 , ηt = tη
for t = 1 to T :
xt = (1 − αt) yt−1 + αtzt−1

zt = arg minx∈X
(
ηt
〈

∇̂f(xt), x
〉

+ Dψ (x, zt−1)
)

yt = (1 − αt) yt−1 + αtzt
return yT

Using this fact, we now show that {wt} satisfies the second condition. For every 1 ≤ t ≤ T , we have

wt+1η
2
t ≤ η2

t

C
=

1

t
(
6σ2

∑T
t=1

1
t

) ≤ 1

6σ2

as needed.
Thus, by Corollary 3.3, with probability ≥ 1 − δ, we have

T∑

t=1

wt+1ηt (f (xt) − f (x∗)) +wT+1Dψ (x∗, xT+1) ≤ w1Dψ (x∗, x1) +
(
G2 + 3σ2

) T∑

t=1

wt+1η
2
t + ln

(
1

δ

)

Note that wT+1 = 1
2C and 1

2C ≤ wt ≤ 1
C

for all 1 ≤ t ≤ T + 1. Thus we obtain

1

2C
ηT

T∑

t=1

(f (xt) − f (x∗)) +
1

2C
Dψ (x∗, xT+1) ≤ 1

C
Dψ (x∗, x1) +

(
G2 + 3σ2

) 1

C

T∑

t=1

η2
t + ln

(
1

δ

)

Plugging in ηt = η√
t

and simplifying, we obtain

η√
T

T∑

t=1

(f (xt) − f (x∗)) + Dψ (x∗, xT+1) ≤ 2Dψ (x∗, x1) +
(
2G2 + 6σ2

)
η2

(
T∑

t=1

1

t

)
+ 2C ln

(
1

δ

)

= 2Dψ (x∗, x1) +

(
2G2 + 6σ2

(
1 + 2 ln

(
1

δ

)))
η2

(
T∑

t=1

1

t

)

Thus we have

1

T

T∑

t=1

(f (xt) − f (x∗)) ≤ 1√
T

(
2Dψ (x∗, x1)

η
+

(
2G2 + 6σ2

(
1 + 2 ln

(
1

δ

)))
η

(
T∑

t=1

1

t

))

and

Dψ (x∗, xT+1) ≤ 2Dψ (x∗, x1) +

(
2G2 + 6σ2

(
1 + 2 ln

(
1

δ

)))
η2

(
T∑

t=1

1

t

)

4 Analysis of Accelerated Stochastic Mirror Descent

In this section, we analyze the Accelerated Stochastic Mirror Descent Algorithm (Algorithm (2)). We
assume that f satisfies the following condition:
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f(y) ≤ f(x) + 〈∇f (x) , y − x〉 +G ‖y − x‖ +
β

2
‖y − x‖2 ∀x, y ∈ X

β-smooth functions, G-Lipschitz functions, and their sums all satisfy the above conditions.
As before, we define

ξt := ∇̂f (xt) − ∇f (xt)

We let Ft = σ (ξ1, . . . , ξt−1) denote the natural filtration. Note that xt is Ft-measurable and zt and yt are
Ft+1-measurable.

We follow a similar analysis to the previous section. As before, we start with the inequalities shown in
the standard analysis of the algorithm, and we combine them using coefficients {wt}1≤t≤T . The following
lemma follows from the analysis given in [5] and we include the proof in the Appendix for completeness.

Lemma 4.1. ([5]) For every iteration t, we have

ηt
αt

(f (yt) − f (x∗)) − ηt
αt

(1 − αt) (f (yt−1) − f (x∗)) − η2
t

1 − βαtηt
G2 + Dψ (x∗, zt) − Dψ (x∗, zt−1)

≤ ηt 〈ξt, x∗ − zt−1〉 +
η2
t

1 − βαtηt
‖ξt‖2

We now turn our attention to our main concentration argument. Towards our goal of obtaining a
high-probability convergence rate, we analyze the moment generating function for a random variable that
is closely related to the left-hand side of the inequality above. We let w0 ≥ w1 ≥ w2 ≥ · · · ≥ wT ≥ 0 be a
non-increasing sequence where wt ∈ R for all t. We define

Zt = wt

(
ηt
αt

(f (yt) − f (x∗)) − ηt (1 − αt)

αt
(f (yt−1) − f (x∗)) − η2

tG
2

1 − βαtηt

)

+ wT (Dψ (x∗, zt) − Dψ (x∗, zt−1)) ∀ 1 ≤ t ≤ T

St =
T∑

i=t

Zi ∀ 1 ≤ t ≤ T + 1

Theorem 4.2. Suppose that wt−1 ≥ wt + 6σ2η2
tw

2
t for every 1 ≤ t ≤ T and

wtη
2
t

1−βαtηt ≤ 1
4σ2 for every

0 ≤ t ≤ T . For every 1 ≤ t ≤ T + 1, we have

E [exp (St) |Ft] ≤ exp

(
(wt−1 − wT ) Dψ (x∗, zt−1) + 3σ2

T∑

i=t

wi
η2
i

1 − βαiηi

)

Proof. We proceed by induction on t. Consider the base case t = T+1. We have St = 0 and wt−1−wT = 0,
and the inequality follows. Next, we consider t ≤ T . We have

E [exp (St) |Ft] = E [exp (Zt + St+1) |Ft] = E [E [exp (Zt + St+1) |Ft+1] |Ft] (5)

We now analyze the inner expectation. Conditioned on Ft+1, Zt is fixed. Using the inductive hypothesis,
we obtain

E [exp (Zt + St+1) |Ft+1] ≤ exp (Zt) exp


(wt − wT ) Dψ (x∗, zt) + 3σ2

T∑

i=t+1

wi
η2
i

1 − βαiηi


 (6)

Let Xt = ηt 〈ξt, x∗ − zt−1〉. By Lemma 4.1, we have

ηt
αt

(f (yt) − f (x∗)) − ηt
αt

(1 − αt) (f (yt−1) − f (x∗)) − η2
t

1 − βαtηt
G2

≤ Xt +
η2
t

(1 − βαtηt)
‖ξt‖2 − (Dψ (x∗, zt) − Dψ (x∗, zt−1))

9



and thus

Zt ≤ wtXt − (wt − wT ) (Dψ (x∗, zt) − Dψ (x∗, zt−1)) + wt
η2
t

1 − βαtηt
‖ξt‖2

Plugging into (6), we obtain

E [exp (Zt + St+1) |Ft+1]

≤ exp


wtXt + (wt − wT ) Dψ (x∗, zt−1) + wt

η2
t

(1 − βαtηt)
‖ξt‖2 + 3σ2

T∑

i=t+1

wi
η2
i

1 − βαiηi




Plugging into (5), we obtain

E [exp (St) |Ft]

≤ exp


(wt − wT ) Dψ (x∗, zt−1) + 3σ2

T∑

i=t+1

wi
η2
i

1 − βαiηi


E

[
exp

(
wtXt + wt

η2
t

1 − βαtηt
‖ξt‖2

)
|Ft

]
(7)

Next, we analyze the the expectation on the RHS of the above inequality. We have

E

[
exp

(
wtXt + wt

η2
t

1 − βαtηt
‖ξt‖2

)
|Ft

]

= E




∞∑

i=0

1

i!

(
wtXt + wt

η2
t

1 − βαtηt
‖ξt‖2

)i
|Ft




= E


1 + wt

η2
t

1 − βαtηt
‖ξt‖2 +

∞∑

i=2

1

i!

(
wtXt + wt

η2
t

1 − βαtηt
‖ξt‖2

)i
|Ft




≤ E


1 + wt

η2
t

1 − βαtηt
‖ξt‖2 +

∞∑

i=2

1

i!

(
wtηt ‖x∗ − zt−1‖ ‖ξt‖ + wt

η2
t

1 − βαtηt
‖ξt‖2

)i
|Ft




≤ exp

(
3

(
w2
t η

2
t ‖x∗ − zt−1‖2 + wt

η2
t

1 − βαtηt

)
σ2

)

≤ exp

(
3

(
2w2

t η
2
tDψ (x∗, zt−1) +wt

η2
t

1 − βαtηt

)
σ2

)
(8)

On the first line we used the Taylor expansion of ex, and on the second line we used that E [Xt|Ft] = 0.
On the third line, we used Cauchy-Schwartz and obtained

Xt = ηt 〈ξt, x∗ − zt−1〉 ≤ ηt ‖ξt‖ ‖x∗ − zt−1‖

On the fourth line, we applied Lemma 2.3 with X = ‖ξt‖, a = wtηt ‖x∗ − zt−1‖, and b2 = wt
η2
t

1−βαtηt ≤ 1
4σ2 .

On the fifth line, we used that Dψ (x∗, zt−1) ≥ 1
2 ‖x∗ − zt−1‖2, which follows from the strong convexity of

ψ.
Plugging in (8) into (7) and using that wt−1 ≥ wt + 6σ2w2

t η
2
t , we obtain

E [exp (St) |Ft] ≤ exp

((
wt + 6σ2w2

t η
2
t − wT

)
Dψ (x∗, zt−1) + 3σ2

T∑

i=t

wi
η2
i

1 − βαiηi

)

as needed.

Theorem 4.2 and Markov’s inequality gives us the following convergence guarantee.
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Corollary 4.3. Suppose the sequence {wt} satisfies the conditions of Theorem 4.2. For any δ > 0, the
following event holds with probability at least 1 − δ:

T∑

t=1

wt

(
ηt
αt

(f (yt) − f (x∗)) − ηt (1 − αt)

αt
(f (yt−1) − f (x∗))

)
+ wTDψ (x∗, zT )

≤ w0Dψ (x∗, z0) +
(
G2 + 3σ2

) T∑

t=1

wt
η2
t

1 − βαtηt
+ ln

(
1

δ

)

Proof. Let

K = (w0 − wT ) Dψ (x∗, z0) + 3σ2
T∑

t=1

wt
η2
t

1 − βαtηt
+ ln

(
1

δ

)

By Theorem 4.2 and Markov’s inequality, we have

Pr [S1 ≥ K] ≤ Pr [exp (S1) ≥ exp (K)]

≤ exp (−K)E [exp (S1)]

≤ exp (−K) exp

(
(w0 − wT ) Dψ (x∗, z0) + 3σ2

T∑

t=1

wt
η2
t

1 − βαtηt

)

= δ

Note that

S1 =
T∑

t=1

Zt

=
T∑

t=1

wt

(
ηt
αt

(f (yt) − f (x∗)) − ηt (1 − αt)

αt
(f (yt−1) − f (x∗))

)

−G2
T∑

t=1

wt
η2
t

1 − βαtηt
+ wT (Dψ (x∗, zT ) − Dψ (x∗, z0))

Therefore, with probability at least 1 − δ, we have

T∑

t=1

wt

(
ηt
αt

(f (yt) − f (x∗)) − ηt (1 − αt)

αt
(f (yt−1) − f (x∗))

)
+ wTDψ (x∗, zT )

≤ w0Dψ (x∗, z0) +
(
G2 + 3σ2

) T∑

t=1

wt
η2
t

1 − βαtηt
+ ln

(
1

δ

)

With the above result in hand, we complete the convergence analysis by showing how to define the
sequence {wt} with the desired properties.

Corollary 4.4. Suppose we run the Accelerated Stochastic Mirror Descent algorithm with the standard
choices αt = 2

t+1 and ηt = ηt with η ≤ 1
4β . Let wT = 1

3σ2η2T (T+1)(2T+1) and wt−1 = wt + 6σ2η2
tw

2
t for all

1 ≤ t ≤ T . The sequence {wt}0≤t≤T satisfies the conditions required by Corollary 4.3. By Corollary 4.3,
for any δ > 0, the following events hold with probability at least 1 − δ:

f (yT ) − f (x∗) ≤ O

(
Dψ (x∗, z0)

ηT 2
+

(
G2 +

(
1 + ln

(
1

δ

))
σ2
)
ηT

)

11



and

Dψ (x∗, zT ) ≤ O

(
Dψ (x∗, z0) +

(
G2 +

(
1 + ln

(
1

δ

))
σ2
)
η2T 3

)

Setting η = min

{
1

4β ,

√
Dψ(x∗,z0)√

G2+σ2(1+ln( 1
δ ))T

3/2

}
to balance the two terms in the first inequality gives

f (yT ) − f (x∗) ≤ O



βDψ (x∗, z0)

T 2
+

√
Dψ (x∗, z0)

(
G2 +

(
1 + ln

(
1
δ

))
σ2
)

√
T




and
Dψ (x∗, zT ) ≤ O (Dψ (x∗, z0))

Proof. Recall from Corollary 4.3 that the sequence {wt} needs to satisfy the following conditions for all
1 ≤ t ≤ T :

wt + 6σ2η2
tw

2
t ≤ wt−1 ∀1 ≤ t ≤ T (9)

wtη
2
t

1 − βαtηt
≤ 1

4σ2
∀0 ≤ t ≤ T (10)

We will set {wt} so that it satisfies the following additional condition, which will allow us to telescope
the sum on the RHS of Corollary 4.3:

wt−1
ηt−1

αt−1
≥ wt

ηt (1 − αt)

αt
∀1 ≤ t ≤ T − 1 (11)

Given wT , we set wt−1 for every 1 ≤ t ≤ T so that the first condition (9) holds with equality:

wt−1 = wt + 6σ2η2
tw

2
t = wt + 6σ2η2t2w2

t

Let C = σ2η2T (T + 1) (2T + 1). We set

wT =
1

C + 6σ2η2
∑T
i=1 i

2
=

1

C + σ2η2T (T + 1) (2T + 1)
=

1

2σ2η2T (T + 1) (2T + 1)

Given this choice for wT , we now verify that, for all 0 ≤ t ≤ T , we have

wt ≤ 1

C + 6σ2η2
∑t
i=1 i

2
=

1

C + σ2η2t (t+ 1) (2t + 1)

We proceed by induction on t. The base case t = T follows from the definition of wT . Consider t < T .
Using the definition of wt−1 and the inductive hypothesis, we obtain

wt−1 = wt + 6σ2η2t2w2
t

≤ 1

C + 6σ2η2
∑t
i=1 i

2
+

6σ2η2t2
(
C + 6σ2η2

∑t
i=1 i

2
)2

≤ 1

C + 6σ2η2
∑t
i=1 i

2
+

(
C + 6σ2η2∑t

i=1 i
2
)

−
(
C + 6σ2η2∑t−1

i=1 i
2
)

(
C + 6σ2η2

∑t
i=1 i

2
) (
C + 6σ2η2

∑t−1
i=1 i

2
)

=
1

C + 6σ2η2
∑t−1
i=1 i

2

12



as needed.
Let us now verify that the second condition (10) also holds. Using that 2t

t+1 ≤ 2, βη ≤ 1
4 , and T ≥ 2,

we obtain

wtη
2
t

1 − βαtηt
=

wtη
2t2

1 − βη 2t
t+1

≤ 2wtη
2t2 ≤ 2η2t2

C
=

t2

σ2T (T + 1) (2T + 1)
≤ 1

σ2 (2T + 1)
≤ 1

4σ2

as needed.
Let us now verify that the third condition (11) also holds. Since ηt = ηt and αt = 2

t+1 , we have
ηt−1

αt−1
= ηt(1−αt)

αt
= ηt(t−1)

2 . Since wt ≤ wt−1, it follows that condition (11) holds.
We now turn our attention to the convergence. By Corollary 4.3, with probability ≥ 1 − δ, we have

T∑

t=1

wt

(
ηt
αt

(f (yt) − f (x∗)) − ηt (1 − αt)

αt
(f (yt−1) − f (x∗))

)
+ wTDψ (x∗, zT )

≤ w0Dψ (x∗, z0) +
(
G2 + 3σ2

) T∑

t=1

wt
η2
t

1 − βαtηt
+ ln

(
1

δ

)

Grouping terms on the LHS and using that α1 = 1, we obtain

T−1∑

t=1

(
wt
ηt
αt

− wt+1
ηt+1 (1 − αt+1)

αt+1

)
(f (yt) − f (x∗)) + wT

ηT
αT

(f (yT ) − f (x∗)) + wTDψ (x∗, zT )

≤ w0Dψ (x∗, z0) +
(
G2 + 3σ2

) T∑

t=1

wt
η2
t

1 − βαtηt
+ ln

(
1

δ

)

Since {wt} satisfies condition (11), the coefficient of f (yt) − f (x∗) is non-negative and thus we can drop
the above sum. We obtain

wT
ηT
αT

(f (yT ) − f (x∗)) + wTDψ (x∗, zT ) ≤ w0Dψ (x∗, z0) +
(
G2 + 3σ2

) T∑

t=1

wt
η2
t

1 − βαtηt
+ ln

(
1

δ

)

Using that wT = 1
2C and wt ≤ 1

C
for all 0 ≤ t ≤ T − 1, we obtain

1

2C

ηT
αT

(f (yT ) − f (x∗)) +
1

2C
Dψ (x∗, zT )

≤ 1

C
Dψ (x∗, z0) +

1

C

(
G2 + 3σ2

) T∑

t=1

η2
t

1 − βαtηt
+ ln

(
1

δ

)

Thus

ηT
αT

(f (yT ) − f (x∗)) + Dψ (x∗, zT )

≤ 2Dψ (x∗, z0) + 2
(
G2 + 3σ2

) T∑

t=1

η2
t

1 − βαtηt
+ 2C ln

(
1

δ

)

= 2Dψ (x∗, z0) + 2
(
G2 + 3σ2

) T∑

t=1

η2
t

1 − βαtηt
+ 2σ2 ln

(
1

δ

)
η2T (T + 1) (2T + 1)

Using that βη ≤ 1
4 and 2t

t+1 ≤ 2, we obtain

T∑

t=1

η2
t

1 − βαtηt
=

T∑

t=1

η2t2

1 − βη 2t
t+1

≤
T∑

t=1

2η2t2 =
1

3
η2T (T + 1) (2T + 1)

13



Plugging in and using that ηT = ηT and αT = 2
T+1 , we obtain

η
T (T + 1)

2
(f (yT ) − f (x∗)) + Dψ (x∗, zT )

≤ 2Dψ (x∗, z0) +

(
2

3
G2 + 2

(
1 + ln

(
1

δ

))
σ2
)
η2T (T + 1) (2T + 1)

≤ 2Dψ (x∗, z0) + 2

(
G2 +

(
1 + ln

(
1

δ

))
σ2
)
η2T (T + 1) (2T + 1)

We can further simplify the bound by lower bounding T (T + 1) ≥ T 2 and upper bounding T (T + 1) (2T + 1) ≤
6T 3. We obtain

ηT 2 (f (yT ) − f (x∗)) + Dψ (x∗, zT ) ≤ 4Dψ (x∗, z0) + 24

(
G2 +

(
1 + ln

(
1

δ

))
σ2
)
η2T 3

Thus we obtain

f (yT ) − f (x∗) ≤ 4Dψ (x∗, z0)

ηT 2
+ 24

(
G2 +

(
1 + ln

(
1

δ

))
σ2
)
ηT

and

Dψ (x∗, zT ) ≤ 2Dψ (x∗, z0) + 12

(
G2 +

(
1 + ln

(
1

δ

))
σ2
)
η2T 3
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A Omitted Proofs

Proof. (Lemma 2.3) Consider two cases either a ≥ 1/(2σ) or a ≤ 1/(2σ). First suppose a ≥ 1/(2σ). We

use the inequality uv ≤ u2

4 + v2,

E

[
1 + b2X2 +

∞∑

i=2

1

i!

(
aX + b2X2

)i
]

≤ E

[
1 + b2X2 +

∞∑

i=2

1

i!

(
1

4σ2
X2 + a2σ2 + b2X2

)i]

= E

[
b2X2 + exp

((
1

4σ2
+ b2

)
X2 + a2σ2

)
−
(

1

4σ2
+ b2

)
X2 − a2σ2

]

= E

[
exp

((
1

4σ2
+ b2

)
X2 + a2σ2

)
− 1

4σ2
X2 − a2σ2

]

≤ exp

((
1

4σ2
+ b2

)
σ2 + a2σ2

)

≤ exp
(
b2σ2 + 2a2σ2

)

Next, let c = max(a, b) ≤ 1/(2σ). We have

E

[
1 + b2X2 +

∞∑

i=2

1

i!

(
aX + b2X2

)i
]

= E

[
exp

(
aX + b2X2

)
− aX

]

≤ E

[(
aX + exp

(
a2X2

))
exp

(
b2X2

)
− aX

]

= E

[
exp

((
a2 + b2

)
X2
)

+ aX
(
exp

(
b2X2

)
− 1

)]

≤ E

[
exp

((
a2 + b2

)
X2
)

+ cX
(
exp

(
c2X2

)
− 1

)]

≤ E

[
exp

((
a2 + b2

)
X2
)

+ exp
(
2c2X2

)
− 1

]

≤ E

[
exp

((
a2 + b2 + 2c2

)
X2
)]

≤ exp
((
a2 + b2 + 2c2

)
σ2
)

In the first inequality, we use the inequality ex−x ≤ ex
2∀x. In the third inequality, we use x

(
ex

2 − 1
)

≤
e2x2 − 1 ∀x. This inequality can be proved with the Taylor expansion.

x
(
ex

2 − 1
)

=
∞∑

i=1

1

i!
x2i+1

≤
∞∑

i=1

1

i!

x2i + x2i+2

2

=
x2

2
+

∞∑

i=2

(
1 + i

2i!

)
x2i

≤ x2

2
+

∞∑

i=2

(
2i

i!

)
x2i

≤ e2x2 − 1
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Proof. (Lemma (3.1)) By the optimality condition, we have
〈
ηt∇̂f(xt) + ∇xDψ (xt+1, xt) , x

∗ − xt+1

〉
≥ 0

and thus 〈
ηt∇̂f(xt), xt+1 − x∗

〉
≤ 〈∇xDψ (xt+1, xt) , x

∗ − xt+1〉
Note that

〈∇xDψ (xt+1, xt) , x
∗ − xt+1〉 = 〈∇ψ (xt+1) − ∇ψ (xt) , x

∗ − xt+1〉
= Dψ (x∗, xt) − Dψ (xt+1, xt) − Dψ (x∗, xt+1)

and thus

ηt
〈

∇̂f(xt), xt+1 − x∗
〉

≤ Dψ (x∗, xt) − Dψ (x∗, xt+1) − Dψ (xt+1, xt)

≤ Dψ (x∗, xt) − Dψ (x∗, xt+1) − 1

2
‖xt+1 − xt‖2

where we have used that Dψ (xt+1, xt) ≥ 1
2 ‖xt+1 − xt‖2 by the strong convexity of ψ.

By convexity,

f (xt) − f (x∗) ≤ 〈∇f (xt) , xt − x∗〉 = 〈ξt, x∗ − xt〉 +
〈

∇̂f (xt) , xt − x∗
〉

Combining the two inequalities, we obtain

ηt (f (xt) − f (x∗)) + Dψ (x∗, xt+1) − Dψ (x∗, xt)

≤ ηt 〈ξt, x∗ − xt〉 + ηt
〈

∇̂f(xt), xt − xt+1

〉
− 1

2
‖xt+1 − xt‖2

≤ ηt 〈ξt, x∗ − xt〉 +
η2
t

2

∥∥∥∇̂f(xt)
∥∥∥

2

Using the triangle inequality and the bounded gradient assumption ‖∇f(x)‖ ≤ G , we obtain

∥∥∥∇̂f(xt)
∥∥∥

2
= ‖ξt + ∇f(xt)‖2 ≤ 2 ‖ξt‖2 + 2 ‖∇f(xt)‖2 ≤ 2

(
‖ξt‖2 +G2

)

Thus
ηt (f (xt) − f (x∗)) + Dψ (x∗, xt+1) − Dψ (x∗, xt) ≤ ηt 〈ξt, x∗ − xt〉 + η2

t

(
‖ξt‖2 +G2

)

as needed.

Proof. (Lemma 4.1) Starting with smoothness, we obtain

f (yt) ≤ f (xt) + 〈∇f (xt) , yt − xt〉 +G ‖yt − xt‖ +
β

2
‖yt − xt‖2 ∀x ∈ X

= f (xt) + 〈∇f (xt) , yt−1 − xt〉 + 〈∇f (xt) , yt − yt−1〉 +G ‖yt − xt‖ +
β

2
‖yt − xt‖2

= (1 − αt) (f (xt) + 〈∇f (xt) , yt−1 − xt〉)︸ ︷︷ ︸
convexity

+αt (f (xt) + 〈∇f (xt) , yt−1 − xt〉)︸ ︷︷ ︸
convexity

+ αt 〈∇f (xt) , zt − yt−1〉 +G ‖yt − xt‖ +
β

2
‖yt − xt‖2

≤ (1 − αt) f (yt−1) + αtf (xt) + αt 〈∇f (xt) , zt − xt〉 +G ‖yt − xt‖︸ ︷︷ ︸
=αt‖zt−zt−1‖

+
β

2
‖yt − xt‖2

︸ ︷︷ ︸
=α2

t ‖zt−zt−1‖2

= (1 − αt) f (yt−1) + αtf (xt) + αt 〈∇f (xt) , zt − xt〉 +Gαt ‖zt − zt−1‖ +
β

2
α2
t ‖zt − zt−1‖2
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By the optimality condition for zt,

ηt
〈
∇̂f(xt), zt − x∗

〉
≤ 〈∇xDψ (zt, zt−1) , x∗ − zt〉 = Dψ (x∗, zt−1) − Dψ (zt, zt−1) − Dψ (x∗, zt)

Rearranging, we obtain

Dψ (x∗, zt) − Dψ (x∗, zt−1) + Dψ (zt, zt−1) ≤ ηt
〈

∇̂f (xt) , x
∗ − zt

〉
= ηt 〈∇f (xt) + ξt, x

∗ − zt〉

By combining the two inequalities, we obtain

f (yt) +
αt
ηt

(Dψ (x∗, zt) − Dψ (x∗, zt−1) + Dψ (zt, zt−1))

≤ (1 − αt) f (yt−1) + αt (f (xt) + 〈∇f (xt) , x
∗ − xt〉)︸ ︷︷ ︸

convexity

+Gαt ‖zt − zt−1‖ +
β

2
α2
t ‖zt − zt−1‖2 + αt 〈ξt, x∗ − zt〉

≤ (1 − αt) f (yt−1) + αtf (x∗) +Gαt ‖zt − zt−1‖ +
β

2
α2
t ‖zt − zt−1‖2 + αt 〈ξt, x∗ − zt〉

Subtracting f (x∗) from both sides, rearranging, and using that Dψ (zt, zt−1) ≥ 1
2 ‖zt − zt−1‖2, we obtain

f (yt) − f (x∗) +
αt
ηt

(Dψ (x∗, zt) − Dψ (x∗, zt−1))

≤ (1 − αt) (f (yt−1) − f (x∗)) + αt 〈ξt, x∗ − zt〉 +Gαt ‖zt − zt−1‖ − αt
1 − βαtηt

2ηt
‖zt − zt−1‖2

= (1 − αt) (f (yt−1) − f (x∗)) + αt 〈ξt, x∗ − zt−1〉 + αt 〈ξt, zt − zt−1〉 +Gαt ‖zt − zt−1‖ − αt
1 − βαtηt

2ηt
‖zt − zt−1‖2

≤ (1 − αt) (f (yt−1) − f (x∗)) + αt 〈ξt, x∗ − zt−1〉 + αt ‖zt − zt−1‖ (‖ξt‖ +G) − αt
1 − βαtηt

2ηt
‖zt − zt−1‖2

≤ (1 − αt) (f (yt−1) − f (x∗)) + αt 〈ξt, x∗ − zt−1〉 +
αtηt

2 (1 − βαtηt)
(‖ξt‖ +G)2

Finally, we divide by αt
ηt

, and obtain

ηt
αt

(f (yt) − f (x∗)) + Dψ (x∗, zt) − Dψ (x∗, zt−1)

≤ ηt
αt

(1 − αt) (f (yt−1) − f (x∗)) + ηt 〈ξt, x∗ − zt−1〉 +
η2
t

2 (1 − βαtηt)
(‖ξt‖ +G)2

≤ ηt
αt

(1 − αt) (f (yt−1) − f (x∗)) + ηt 〈ξt, x∗ − zt−1〉 +
η2
t

1 − βαtηt

(
‖ξt‖2 +G2

)
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