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COMPLETE POSITIVITY OF COMULTIPLICATION AND PRIMARY

CRITERIA FOR UNITARY CATEGORIFICATION

LINZHE HUANG, ZHENGWEI LIU, SEBASTIEN PALCOUX, AND JINSONG WU

Abstract. In this paper, we investigate quantum Fourier analysis on subfactors and unitary
fusion categories. We prove the complete positivity of the comultiplication for subfactors and
derive a primary n-criterion of unitary categorifcation of multifusion rings. It is stronger than
the Schur product criterion when n ≥ 3. The primary criterion could be transformed into
various criteria which are easier to check in practice even for noncommutative, high-rank, high-
multiplicity, multifusion rings. More importantly, the primary criterion could be localized on a
sparse set, so that it works for multifusion rings with sparse known data. We give numerous
examples to illustrate the efficiency and the power of these criteria.
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1. Introduction

Jones discovered a quantum knot invariant, the Jones polynomial [19], inspired by the clas-
sification of Jones index of subfactors [18]. Witten extended the Jones polynomial as a three
manifold invariant through certain partition function in topological quantum field theory in
[43]. Atiyah [1] introduced a mathematical axiomatization for topological quantum field theo-
ries, which computes the topological invariants for quantum field theories. One can construct
2+1 topological quantum field theory from modular tensor categories [39] and from spherical cat-
egories [41]. In addition, the partition function has reflection positivity, if the tensor categories
are unitary which naturally come from subfactors [34].
We study the analytic aspects of reflection positivity and the Fourier duality of subfactors

in quantum Fourier analysis [13, 15, 5, 16, 17, 29, 10], which has led to various applications
in subfactor theory [26, 23, 25, 5, 2]. The positivity of convolution for subfactors, called the
quantum Schur product theorem (Theorem 4.1 in [23]), turned out to be a surprisingly effi-
cient analytic obstruction of unitary categorification of fusion rings, called the Schur product
criterion (Proposition 8.3 and Corollary 8.5 in [26]). This adds an extra dimension to algebraic
obstructions for categorification that have been found in [6, 35, 36, 27].
In this paper, we show that the complete positivity of comultiplication is more fundamen-

tal than the positivity of convolution, which encodes stronger analytic obstructions of unitary
categorification. In a companion paper [10], we prove various convolution inequalities based on
the positivity of comultiplication, which provide analytic obstructions as well. Suppose R is a
fusion ring [28] with fusion coefficients Nk

i,j , 1 ≤ i, j, k ≤ m, and fusion matrices Mi = N ·
i,·. We

prove in Theorem 3.12 that if R has a unitary categorification, then
m∑

i=1

‖Mi‖2
(

Mi

‖Mi‖

)⊗n

≥ 0. (1.1)

We call this inequality the primary n-criterion. The primary n-criterion is stronger than the
Schur product criterion when n ≥ 3, more friendly to noncommutative fusion rings, and easier
to check by computer in practice.
More importantly, for any subset S ⊆ {1, 2, . . . , m}, denote MS

i to be the submatrix of Mi,
we can derive the following localized categorification criteria in Theorem 4.1 from Inequality
(1.1),

m∑

i=1

‖Mi‖2
(

MS
i

‖Mi‖

)⊗n

≥ 0. (1.2)

By Frobenius reciprocity, Nk
i,j = N i∗

j,k∗, which only depends on the local fusion rules on S. We
call Inequality (1.2) the S-localized n-criterion. The size of the checking matrices in the
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primary criteria is large when the rank of the fusion ring is large. It would take a long time
for computers to check the positivity. Fortunately, the submatrices inherit the positivity of
matrices. Based on this fact, the localized criteria make it more efficient to check the positivity
when the size of the local set S is fixed. Moreover, the localized criteria are still valid when only
sparse data of the fusion rules are known.
Such local obstructions are rare. The triple/quadruple point obstructions [9, 21, 31, 40, 12, 37]

are local obstructions to eliminate certain bipartite graphs with a triple/quadruple point from
principal graph of subfactors, which are crucial in the small-index classification of subfactors
[14]. Technically, a subfactor could produce a “fusion ring” with 2-color. Inspired by this, we
generalize our results to multifusion rings in §6, including a general version of the localized
categorification criterion in Theorem 6.2. Applying this criterion, we eliminate a large family of
bipartite graphs of the following form from principal graphs of subfactor with certain dimension
bounds (See Theorem 6.5 and Remark 6.2).

x1 x2 x3

...

ℓ arcs

· · ·
. (1.3)

It is the first local obstruction for principal graphs with arbitrary high multiplicities.
When n grows, the computational complexity of checking positivity in Inequality (1.1) grows

exponentially O(m3n). We applied the Hadamard product to reduce the computation complexity
to O(m3 + m2 log n). For any subset S ⊆ {1, 2, . . . , m} and unitary matrices Uj ∈ M|S|(C),
j = 1, . . . , n, we can derive reduced twisted n-criterion in Theorem 5.1 from Inequality
(1.2),

m∑

i=1

‖Mi‖2
(
UjM

S
i U

∗
j

‖Mi‖

)∗nj=1

≥ 0, (1.4)

where ∗ is the Hadamard product and ∗nj=1 means the Hadamard product of the nmatrices. This
twisted version is better in practice whenever there are enough zero entries of fusion matrices.
We could choose proper unitary matrices to make it computable even some entries of fusion
matrices are unknown (See Theorem 5.2 for application). Applying these criteria to fusion
rings, we eliminate numerous fusing rings with sparse data from unitary categorification. We
present the corresponding results as follows.
Fusion rings always pass primary 1, 2-criteria. By checking the dataset of [42] with computer

assistance, among the 28451 fusion rings, 19738 ones do not pass primary 3-criterion (about
68.37%). In particular, the primary 3-criterion is more efficient for simple fusion rings. Among
13893 simple fusion rings in [42], exactly 11729 ones can be excluded from unitary categorification
by primary 3-criterion (about 84.4%). One of the three simple noncommutative fusion rings in
the dataset of [42] can be excluded by primary 3-criterion. We expect primary criteria to be
powerful for fusion rings of high ranks.
Localized criteria allow us to eliminate fusion rings and bipartite graphs in a single time (See

Subsection 4.3 and Theorem 6.5). K7 is excluded by only two points local set in §4.2. Other
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9 fusion rings are also excluded with a small perturbation of the Frobenius-Perron dimensions
in §4.2.1. By applying the reduced criteria to a simple integral fusion ring of rank 8, we see
that localized n-criteria are locally inequivalent for different n (See §5.2). A family of infinitely
many simple fusion rings with unbounded dimension are excluded by reduced twisted criterion
in Theorem 5.3.
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2. Preliminaries

In this section, we will recall the notion of fusion ring, fusion bi-algebra, subfactor and the
connections between them, see [26] for further details.
Let N be the set of natural numbers, i.e. N = {0, 1, 2, . . .}. Let R≥0 be the set of non-negative

real numbers. Let C be the complex field.
A based ring R is a free Z-module with basis {xj}j∈I such that

(1) xixj =
∑

k∈I

Nk
ijxk, where Nk

ij ∈ N and the sum here is a finite sum.

(2) The identity 1 is an N-linear combination of the basis elements.
(3) There exists an involution ∗ on I such that the induced map

∑

j∈I

njxj 7→
∑

j∈I

njxj∗

is an anti-involution of the ring R.
(4) The linear functional τ : R → Z given by τ(xj) = 1 if xj occurs in the decomposition of

1 and 0 otherwise satisfies that

τ(xixj) = δi,j∗, i, j ∈ I.

A unital based ring is a based ring such that the identity 1 is a basis element. A multifusion
ring is a based ring of finite rank. A fusion ring is a unital based ring of finite rank.
Furthermore, R is called a fusion algebra, if the condition Nk

ij ∈ N is released as Nk
ij ≥ 0 [26,

Definition 2.1]. We obtain a finite dimensional unital C∗-algebra B := R⊗Z C equipped with a
faithful trace τ . In this paper, we identify R as B if there is no confusion.
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We obtain another abelian C∗-algebra A with the basis {xj}j∈I of a fusion ring R, a multi-
plication ⋄ and an involution #,

xi ⋄ xj = δijd(xi)
−1xi,

x#
i = xi,

(2.1)

where d(xj) is the operator norm of xj in B, also called the Perron-Frobenius dimension of xj .
Then d extends to a faithful trace on A. The Fourier transform F: A → B is defined as

F(xi) = xi, ∀i ∈ I.

Then F is a unitary from L2(A, d) to L2(B, τ). The quintuple (A,B, d, τ,F) is called the fusion

bialgebra arising from R. Given a fusion bialgebra (A,B, d, τ,F), (A,B, λ1d, λ2τ, λ
1
2
1 λ

− 1
2

2 F) is
also a fusion bialgebra, for any gauge parameters λ1, λ2 > 0. The multiplication ⋄ on A induces
a convolution on B:

xi ∗ xj := F(xi ⋄ xj) = δijd(xi)
−1xi. (2.2)

The study of the positivity of the convolution led to the Schur product criterion [26, Proposition
8.3] for unitary categorification of fusion rings.
Jones introduced planar algebras [20] to study the standard invariants of subfactors. Suppose

P is a subfactor planar algebra with Jones index δ2, and P2,+ is abelian, then the quintuple
(P2,+,P2,−, tr2,+, tr2,−,Fs) is a fusion bialgebra. Here tr2,± are the Markov traces on P2,±:

tr2,±(x) = x (2.3)

Moreover, the multiplication and the convolution on P2,± are defined as

xy =
x

y

, x ∗ y = x y .

The string Fourier transform Fs: P2,± → P2,∓ is

Fs(x) = x (2.4)

We refer the readers to [20, 3, 4, 27, 23, 15, 13] and references therein for further study on P2,±

of subfactor planar algebras.
A fusion bialgebra (A,B, d, τ,F) is called subfactorizable if it comes from the quintuple

(P2,+,P2,−, tr2,+, tr2,−,Fs) of a subfactor planar algebra up to gauge parameters (λ1, λ2).
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If a fusion ring R admits a unitary categorification C , then the quantum double construction
of C produces a subfactor planar algebra which subfactorizes R. For readers’ convenience, we
briefly recall this process in §8.3 in the Appendix.
The convolution is positive on P2,± for a subfactor planar algebra, called the quantum Schur

product theorem [23, Theorem 4.1]. However, the convolution may not be positive on B of a
fusion bialgebra. Due to the subfactorization process, the failure of the quantum Schur prod-
uct theorem turned out to be a surprisingly efficient obstruction of unitary categorification of
fusion rings, called the Schur product criterion [26, Proposition 8.3]. This criterion could be
reformulated for commutative fusion rings as follows [26, Corollary 8.5].

Corollary 2.1. Suppose R is a commutative fusion ring with a basis {x1 = 1, x2, . . . , xm} and
Mi is the fusion matrix of xi. Let (λi,j)1≤i,j≤m be the character table such that λi,1 = ‖Mi‖. If

R admits a unitary categorification, then for any m-tuple ~j = (j1, . . . , jm) and n ≥ 1,

ν~j :=
m∑

i=1

∏n
k=1 λi,jk

λn−2
i,1

≥ 0. (2.5)

For each n, Equation (2.5) is equivalent to that the convolution of n− 1 positive operators is
positive. Therefore, the case n = 3 implies the case n ≥ 3. For noncommutative fusion rings, the
corresponding statement in terms of irreducible representations of R is given in [26, Proposition
8.3], which is inconvenient to check (by computer) in practice.
It is worth mentioning that {ν~j} are the eigenvalues of the primary matrix for commutative

fusion rings. Etingof, Nikshych and Ostrik considered these eigenvalues as invariants of fusion
rings and discussed their integrality property in [8]. It will be interesting to study the integrality
property of these eigenvalues of the primary matrix for fusion rings in general. In particular, if
Kaplansky’s 6th conjecture holds for spherical categories, then {δ2(n−2)ν~j} are algebraic integers
for Grothendiec rings of spherical categories.

3. Primary Criteria

In this section, we prove a family of criteria for unitary categorification of fusion rings in
Theorem 3.12, which are stronger than the Schur product criterion. We also provide concrete
examples and computation results to illustrate the efficiency of the criteria.

3.1. Complete positivity and Fourier Multiple. Suppose A and B are C∗-algebras and
A is finite dimensional. Let τ be a faithful trace on A and Ω be the vacuum vector in the
GNS construction. Let A′ be the commutant algebra of A on L2(A). Let J be the modular
conjugation, J(aΩ) = a∗Ω. Then conjugation of J is a map from A to A′ and JAJ = A′ in
Tomita-Takesaki theory

Proposition 3.1. Let {aj}mj=1 be an orthonormal basis of A with respect to τ . Then

m∑

j=1

JajJ ⊗ aj ≥ 0
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in A′ ⊗A.

Proof. Define a linear map T : A′ ⊗A → C,

J(x)J ⊗ y 7→ τ(x∗y).

Then T is a positive linear functional. Indeed,

T

(
n∑

j=1

J(xj)J ⊗ yj

)(
n∑

j=1

J(xj)J ⊗ yj

)∗

=

n∑

i,j=1

T (J(xix
∗
j )J ⊗ xix

∗
j )

=
n∑

i,j=1

T (x∗
ixix

∗
jxj)

≥ 0.

It is clear that

〈

J(x)J ⊗ y,

m∑

j=1

JajJ ⊗ aj

〉

=

m∑

j=1

〈J(x)J, J(aj)J〉 〈y, aj〉

=
m∑

j=1

〈aj , x〉 〈y, aj〉

= 〈y, x〉 .

By Riesz representation theorem and the positivity of T , we have
∑m

j=1 JajJ ⊗ aj ≥ 0. �

Definition 3.1. For a linear map Φ : A → B, we define its Fourier multiplier Φ̂ in A′ ⊗ B as

Φ̂ =
∑

j

J(aj)J ⊗ Φ(aj),

where {aj} is an orthonormal basis of A w.r.t. τ .

Note that Φ̂ is independent of the choice of the basis.

Proposition 3.2. We define

a ∗ Φ̂ := (Ω∗ ⊗ IB)((a⊗ IB)Φ̂)(Ω⊗ IB),

where IB is the identity of B. Then a ∗ Φ̂ = Φ(a).
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Proof. We have

a ∗ Φ̂ =
∑

j

(Ω∗ ⊗ IB)((a⊗ IB)(J(aj)J ⊗ Φ(aj)))(Ω⊗ IB),

=
∑

j

Ω∗aJ(aj)JΩ⊗ Φ(aj)

=
∑

j

Ω∗aa∗jΩ⊗ Φ(aj)

=
∑

j

τ(aa∗j )Φ(aj)

= Φ(a) .

�

Proposition 3.3. For a linear map Φ : A → B, we have that Φ is completely positive if and
only if Φ̂ ≥ 0.

Proof. If Φ̂ ≥ 0, then Φ̂1/2 is in A′ ⊗ B. We have that

Φ(a) = (Ω∗ ⊗ IB)((a⊗ IB)Φ̂)(Ω⊗ IB)

= (Ω∗ ⊗ IB)(Φ̂
1/2(a⊗ IB)Φ̂

1/2)(Ω⊗ IB).

So Φ is completely positive. On the other hand,

Φ̂ = I ⊗ Φ

(
m∑

j=1

JajJ ⊗ aj

)

.

By Proposition 3.1, Φ̂ ≥ 0. �

3.2. Comultiplication and Primary Matrix. Suppose R is a fusion ring with basis {x1 =
1, x2, . . . , xm} and Mi is the fusion matrix of xi. Let (A,B, d, τ,F) be the fusion bialgebra arising
from R.

Definition 3.2. Let (A,B, d, τ,F) be a fusion bialgebra. We define the comultiplication ∆:
B → B ⊗ B as a linear map such that

∆(xj) =
1

dj
xj ⊗ xj ,

where dj is the quantum dimension of xj. Moreover, we define the higher comultiplication

∆(n): B → B⊗(n+1), n ≥ 2, as a linear map such that

∆(n)(xj) =
1

dnj
x
⊗(n+1)
j .
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The convolution on B in (2.2) induces a linear map B ⊗ B → B: ∑ ai ⊗ bi 7→
∑

ai ∗ bi. It is
clear that

〈xi ∗ xj , xk〉 = 〈xi ⊗ xj ,∆(xk)〉 . (3.1)

So the comultiplication is the dual operator of this linear map.

Proposition 3.4. If the comultiplication ∆: B → B⊗B is positive then the convolution is also
positive, i.e., x ∗ y ≥ 0, for x, y ≥ 0, x, y ∈ B.
Proof. For any x, y, z ≥ 0, x, y, z ∈ B, we have

〈x ∗ y, z〉 = 〈x⊗ y,∆(z)〉 ≥ 0. (3.2)

So x ∗ y ≥ 0. �

Definition 3.3. Let (A,B, d, τ,F) be a fusion bialgebra. For any n ≥ 1, we define

Tn(B) =
m∑

i=1

‖Mi‖2
(

Mi

‖Mi‖

)⊗n

, (3.3)

where ‖Mi‖ is the operator norm of Mi acting on Cm. We call it the primary n-matrix of B.
For simplicity, we use Tn instead Tn(B) if there is no confusion.

Proposition 3.5. Let (A,B, d, τ,F) be a fusion bialgebra. Then the primary 1-matrix is positive.

Proof. Let e =
∑m

j=1 djxj . Then e = e∗ and e2 = FPdimC(R)e. So e is a multiple of a projection.

Thus e ≥ 0. The representation of e on the basis {xj} is
m∑

j=1

‖Mj‖Mj .

So it is positive. �

Proposition 3.6. Let (A,B, d, τ,F) be a fusion bialgebra. Then the primary 2-matrix is positive.

Proof. By Proposition 3.1, we have
m∑

j=1

JxjJ ⊗ xj ≥ 0.

The representation of this operator on the basis {J(xi)J ⊗ xj} is
m∑

j=1

Mj ⊗Mj .

So it is positive. �

Proposition 3.7. Let (A,B, d, τ,F) be a fusion bialgebra. Then the comultiplication ∆ : R →
R⊗R is completely positive if and only if the primary 3-matrix is positive. If the comultiplication
∆ is completely positive, then the primary n-matrix is positive for all n.
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Proof. For the comultiplication ∆ : R → R⊗R, its Fourier multiplier is an operator in R′ ⊗
R⊗R. We have

∆̂ =

m∑

j=1

J(xj)J ⊗∆(xj) =

m∑

j=1

d−1
j J(xj)J ⊗ xj ⊗ xj .

The representation of ∆̂ on the basis {J(xi)JΩ⊗ xjΩ⊗ xkΩ} is
m∑

j=1

‖Mj‖−1Mj ⊗Mj ⊗Mj .

By Proposition 3.3, if the primary 3-matrix is positive, then ∆ is completely positive. Then
∆(n) is a positive map and ∆(n)(e) is a positive operator. Therefore, the primary n-matrix as a
representation of ∆n−1(e) on the basis is positive. �

Proposition 3.8. Let (A,B, d, τ,F) be a fusion bialgebra. If the primary n-matrix is positive,
then the primary (n− 1)-matrix is also positive.

Proof. Recall that the representation of e on the basis {xj} is
∑m

j=1 ‖Mj‖Mj, denoted by M .

Then M ≥ 0 and MiM = diM . Let Tr1 be the partial trace from Mm(C)
⊗n onto Mm(C)

⊗(n−1).
Then

Tr1[(M ⊗ I)Tn(M ⊗ I)] = Tr(M2)Tn−1 ≥ 0.

So the primary (n− 1)-matrix is positive. �

In summary, we have

Theorem 3.9. Let (A,B, d, τ,F) be a fusion bialgebra. The following statements are equivalent:

(1) ∆ is completely positive;
(2) the primary 3-matrix is positive;
(3) the primary n-matrix is positive for some n ≥ 3;
(4) the primary n-matrix is positive for any n ∈ N.

3.3. Main Results. Suppose P is a subfactor planar algebra with index δ2. We define the
comultiplication ∆: P2,− → P2,− ⊗ P2,− as a linear map such that

〈∆(z), x ⊗ y〉 = 〈z, x ∗ y〉 , ∀x, y, z ∈ P2,−. (3.4)

Switching the input discs and the output disc of the convolution tangle, we obtain the following
surface tangle representing the comultiplication, see [24] for the theory of surface tangles and
surface algebras:
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Theorem 3.10. Suppose P is a subfactor planar algebra. Then the comultiplication∆: P2,− →
P2,− ⊗ P2,− is completely positive.

Proof. From Equation (3.4), we have

tr2,−












x y

∆(z)












= tr2,−












x y

z












= tr2,−












x y

z












Let

Ψ : P4,± → P
⊗2
2,±

be the trace-preserving conditional expectation. Then one could obtain that ∆ has graphical
representation as follows:

∆(z) = Ψ




 z




 . (3.5)

This indicates that ∆ is a composition (up to a scalar) of a ∗-isomorphism and a conditional
expectation. So ∆ is completely positive. �

Remark 3.1. The positivity of the comultiplication ∆: P2,− → P2,− ⊗ P2,− indicates the
positivity of the convolution: x ∗ y ≥ 0, for x, y ≥ 0, x, y ∈ P2,−, the Schur product theorem
[23, Theorem 4.1].

Proposition 3.11. Let (A,B, d, τ,F) be a fusion bialgebra. If it is subfactorizable, then the
comultiplication ∆: B → B ⊗ B is completely positive and the primary n-matrix in (3.3) is
positive for all n.

Proof. Suppose the fusion bialgebra arises from a subfactor planar algebra P. Then the comul-
tiplication ∆: B → B ⊗ B is consistent with the comultiplication ∆: P2,− → P2,− ⊗ P2,−. So
by Theorem 3.10, it is completely positive. By Theorem 3.9, the primary n-matrix is positive
for all n. �

A fusion ring R admits a unitary categorification means it is the Grothendieck ring of a
unitary fusion category. For the definition of fusion category, we refer the readers to [7] and
[6, Section 1.12]. The Grothendieck ring of a fusion category is a fusion ring. A unitary fusion
category is a fusion category with a unitary structure (See e.g. [6, Remark 9.4.7]). If R is the
Grothendieck ring of a unitary fusion category, then the canonical fusion bialgebra associated
to the fusion ring is subfactorizable by quantum double construction [26, Proposition 7.4].
Let (P2,+,P2,−,Tr2,+, tr2,−,F) be the canonical fusion bialgebra associated to the canonical

Frobenius algebra γ of C ⊗C in the quantum double construction, see Appendix 8.2. Here Tr2,+
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is the unnormalized Markov trace on P2,+ and F = δFs. From Equations (3.4) and (8.1), we
have that the comultiplication ∆: P2,− → P2,− ⊗ P2,− satisfying

〈∆(F(βj)),F(βk)⊗ F(βi)〉 = 〈F(βj),F(βk) ∗ F(βi)〉

=
δk,i
di

〈F(βj),F(βk)〉

=
δk,iδjk
di

.

We see that

∆(F(βj)) =
1

dj
F(βj)⊗ F(βj). (3.6)

Let (A,B, d, τ,F) be the canonical fusion bialgebra associated to the Grothendieck ring R of
a unitary fusion category C . Then it is isomorphic to (P2,+,P2,−,Tr2,+, tr2,−,F) by mapping
xj to βj [26, Proposition 7.4]. So the comultiplication ∆: P2,− → P2,− ⊗ P2,− and the
comultiplication ∆: B → B ⊗ B are consistent.

Theorem 3.12 (Primary criteria). Suppose R is a fusion ring with basis {x1 = 1, x2, . . . , xm}
and Mj is the fusion matrix of xj. If R admits a unitary categorification, then for any n ≥ 1,
we have

m∑

j=1

‖Mj‖2
(

Mj

‖Mj‖

)⊗n

≥ 0. (3.7)

Proof. Let (A,B, d, τ,F) be the fusion bialgebra associated to R. Then it is subfactorizable.
So the comultiplication ∆: B → B ⊗ B is completely positive by Proposition 3.11. Further by
Theorem 3.9, the primary n-matrix is positive for all n. �

Definition 3.4. For any n ≥ 1, we call Inequality (3.7) as primary n-criterion of unitary
categorification of fusion rings.

Remark 3.2. Though primary n-criterion are equivalent when n ≥ 3, we will show that they
are not locally equivalent in §5.

Proposition 3.13. Suppose R is a fusion ring. If R passes the primary 3-criterion then R
passes the Schur product criterion.

Proof. Let (A,B, d, τ,F) be the fusion bialgebra arising from the fusion ring R. If R passes
the primary 3-criterion, then the primary 3-matrix is positive. Theorem 3.9 indicates that the
comultiplication ∆ : B → B ⊗ B is completely positive. By Proposition 3.4, we have x ∗ y ≥ 0
for any x, y ≥ 0, x, y ∈ B. So R passes the Schur product criterion. �

In [42], many fusion rings of low rank were produced by computers. One of the three simple
non-commutative fusion rings in the dataset of [42] can be excluded from unitary categorification
by primary 3-criterion.
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Proposition 3.14. Let R6 be the following non-commutative simple fusion ring of rank 6, type
[[1, 1], [7 + 2

√
13, 3], [11 + 3

√
13, 2]] with fusion matrices:

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

,

0 1 0 0 0 0
1 4 2 2 2 2
0 2 2 1 2 4
0 2 1 2 4 2
0 2 2 4 5 4
0 2 4 2 4 5

,

0 0 1 0 0 0
0 2 2 1 4 2
0 1 3 1 3 3
1 2 3 3 1 3
0 2 3 3 5 4
0 4 1 3 4 5

,

0 0 0 1 0 0
0 2 1 2 2 4
1 2 3 3 3 1
0 1 1 3 3 3
0 4 3 1 5 4
0 2 3 3 4 5

,

0 0 0 0 1 0
0 2 4 2 5 4
0 4 1 3 5 4
0 2 3 3 5 4
1 5 5 5 5 7
0 4 4 4 7 7

,

0 0 0 0 0 1
0 2 2 4 4 5
0 2 3 3 4 5
0 4 3 1 4 5
0 4 4 4 7 7
1 5 5 5 7 5

Then R6 admits no unitary categorification.

Proof. The primary 3-matrix T3 of R6 has a negative eigenvalue ≃ −1.176375 (See Appendix
8.1.1 for SageMath code). So R6 admits no unitary categorification by Theorem 3.12. �

Moreover, we complete the full computation on their dataset in [42]:

• Among the 28451 fusion rings, exactly 19738 does not pass primary 3-criterion (about
69.37%);

• Among the 14558 non-simple ones, exactly 8009 does not pass primary 3-criterion (about
55.01%);

• Among the 13893 simple ones, exactly 11729 ones does not pass primary 3-criterion
(about 84.4%).

It turns out that primary 3-criterion is more efficient for simple fusion rings.

Remark 3.3. The primary criteria in Inequality (3.7) are very easy to check, and friendly
to computers for all fusion rings including non-commutative cases. It is hard to check non-
commutative fusion rings by the Schur product criterion (See Proposition 8.3 in [26]) since we
have to know all the irreducible unital ∗-representations of the non-commutative fusion rings.
So checking noncommutative fusion rings is an advantage of the primary criteria.

Remark 3.4. We need to compute the full character table of fusion matrices to apply the Schur
product criterion. But the full fusion rules are not always known, so the Schur product criterion
may not be valid all the time. In §4 and §5, we introduce localized versions of primary criteria
to deal with this problem, which could check fusion rings with sparse data.

4. Localized Criteria

In this section, we localize the primary criteria via the basic fact that submatrices inherit the
positivity of matrices. In this way, we only need to check the positivity of a small submatrix
instead of a full large matrix. This would improve the efficiency of calculations. Moreover, this
localized method makes it applicable to fusion rings with incomplete data, which is superior to
the Schur product criterion.

4.1. Results and Definitions.

Theorem 4.1 (Localized criteria). Suppose R is a fusion ring with basis {x1 = 1, x2, . . . , xm}
and Mi is the fusion matrix of xi. Let S ⊆ {1, 2, . . . , m} be a subset. If R admits a unitary
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categorification, then
m∑

i=1

‖Mi‖2
(

MS
i

‖Mi‖

)⊗n

≥ 0, ∀n ≥ 1, (4.1)

where MS
i is the sub-matrix of Mi with rows and columns in S.

Proof. Let PS: C
m → C|S| be the projection. By Inequality (3.7), we have
m∑

i=1

‖Mi‖2
(

MS
i

‖Mi‖

)⊗n

= P⊗n
S

m∑

i=1

‖Mi‖2
(

Mi

‖Mi‖

)⊗n

P ∗⊗n
S ≥ 0.

This completes the proof of the theorem. �

Definition 4.1. For any n ≥ 1 and S ⊆ {1, 2, . . . , m}, we call Inequality (4.1) S-localized
n-criterion of unitary categorification of fusion rings.

Definition 4.2. For any n ≥ 1 and S ⊆ {1, 2, . . . , m}, we call

T S
n (R) =

m∑

i=1

‖Mi‖2
(

MS
i

‖Mi‖

)⊗n

(4.2)

primary (S, n)-matrix of R. For simplicity, we use T S
n instead of T S

n (R) if there is no confusion.

4.2. K7 Revisited and Perturbations. We denote by K7 the simple integral fusion ring of
rank 7, FPdim 210, type [[1, 1], [5, 3], [6, 1], [7, 2]], with fusion matrices (See page 54 in [26]):

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

,

0 1 0 0 0 0 0
1 1 0 1 0 1 1
0 0 1 0 1 1 1
0 1 0 0 1 1 1
0 0 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 1 0 0 0 0
0 0 1 0 1 1 1
1 1 1 0 0 1 1
0 0 0 1 1 1 1
0 1 0 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 0 1 0 0 0
0 1 0 0 1 1 1
0 0 0 1 1 1 1
1 0 1 1 0 1 1
0 1 1 0 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 0 0 1 0 0
0 0 1 1 1 1 1
0 1 0 1 1 1 1
0 1 1 0 1 1 1
1 1 1 1 1 1 1
0 1 1 1 1 2 1
0 1 1 1 1 1 2

,

0 0 0 0 0 1 0
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 2 1
1 1 1 1 2 0 3
0 1 1 1 1 3 1

,

0 0 0 0 0 0 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 2
0 1 1 1 1 3 1
1 1 1 1 2 1 2

With the character table of these fusion matrices, K7 is excluded from unitary categorification
by the Schur product criterion in [26].
In this subsection, we exclude K7 again by the localized criterion with a local set with only

two points. In this way, the computations are much simpler. Let S = {x6, x7}. Then

MS
1 =

(
1 0
0 1

)

,MS
2 = MS

3 = MS
4 =

(
1 1
1 1

)

,MS
5 =

(
2 1
1 2

)

,MS
6 =

(
0 3
3 1

)

,MS
7 =

(
3 1
1 2

)

.

The primary (S, 3)-matrix T S
3 of K7 is

1

210














1426 536 536 286 536 286 286 1001
536 1156 286 446 286 446 1001 526
536 286 1156 446 286 1001 446 526
286 446 446 976 1001 526 526 476
536 286 286 1001 1156 446 446 526
286 446 1001 526 446 976 526 476
286 1001 446 526 446 526 976 476
1001 526 526 476 526 476 476 886














.
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It is not positive since it has a negative eigenvalue ≃ −0.62949 (see Appendix 8.1.2). So K7

does not admit a unitary categorification by Theorem 4.1.

4.2.1. Perturbation of Frobenius-Perron dimensions. Localized criteria allow us to do some per-
turbations of the Frobenius-Perron dimensions. We obtain a bound of FPdim, which provides a
sufficient condition for a fusion ring’s exclusion from unitary categorification. This helps us to
exclude another nine non-integral fusion rings from unitary categorification.
Suppose that R is a fusion ring with basis {I = x1, · · · , x7} and Mi are fusion matrices such

that

MS
1 =

(
1 0
0 1

)

,MS
2 = MS

3 = MS
4 =

(
1 1
1 1

)

,MS
5 =

(
2 1
1 2

)

,MS
6 =

(
0 3
3 1

)

,MS
7 =

(
3 1
1 2

)

,

where S = {x6, x7}. We assume that dj is the Frobenius-Perron dimension and they are variables
here. Let

T S
3 =

7∑

i=1

1

di
(MS

i )
⊗3

where di ≥ 1 and d1 = 1. The exclusion of fusion ring K7 can be seen as the application of the
following proposition to (d1, . . . , d7) = (1, 5, 5, 5, 6, 7, 7).

Proposition 4.2. The matrix T S
3 has a negative eigenvalue if

d6 < max
i=1,2

Qi,+(d2, d3, d4, d5, d7),

where Qi,± =
−Bi ±

√
∆i

2Ai
, ∆i = B2

i − 4AiCi, and

A1 =d25d
2
7 + 25d25d7 + 12d5d

2
7 + 125d25 + 120d5d7 + 27d27,

B1 =− 9(d5d7 − 15d5 − 12d7)d5d7,

C1 =− 729d25d
2
7,

A2 =d2d3d4d
3
5d

3
7 + 67d2d3d4d

3
5d

2
7 + 32d2d3d4d

2
5d

3
7 + 7d2d3d

3
5d

3
7 + 7d2d4d

3
5d

3
7 + 7d3d4d

3
5d

3
7

+1025d2d3d4d
3
5d7 + 962d2d3d4d

2
5d

2
7 + 172d2d3d

3
5d

2
7 + 172d2d4d

3
5d

2
7 + 172d3d4d

3
5d

2
7

+195d2d3d4d5d
3
7 + 54d2d3d

2
5d

3
7 + 54d2d4d

2
5d

3
7 + 54d3d4d

2
5d

3
7 + 3375d2d3d4d

3
5 + 4600d2d3d4d

2
5d7

+665d2d3d
3
5d7 + 665d2d4d

3
5d7 + 665d3d4d

3
5d7 + 1833d2d3d4d5d

2
7 + 432d2d3d

2
5d

2
7 + 432d2d4d

2
5d

2
7

+432d3d4d
2
5d

2
7 + 216d2d3d4d

3
7 + 63d2d3d5d

3
7 + 63d2d4d5d

3
7 + 63d3d4d5d

3
7,

B2 =18(d2d3d4d
2
5d

2
7 + 12d2d3d4d

2
5d7 − 7d2d3d4d5d

2
7 − 5d2d3d

2
5d

2
7 − 5d2d4d

2
5d

2
7 − 5d3d4d

2
5d

2
7

−405d2d3d4d
2
5 − 471d2d3d4d5d7 − 123d2d3d

2
5d7 − 123d2d4d

2
5d7 − 123d3d4d

2
5d7 − 96d2d3d4d

2
7

−33d2d3d5d
2
7 − 33d2d4d5d

2
7 − 33d3d4d5d

2
7)d5d7,

C2 =− 729(d2d3d4d5d7 + 27d2d3d4d5 + 8d2d3d4d7 + d2d3d5d7 + d2d4d5d7 + d3d4d5d7)d
2
5d

2
7.
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Proof. If a corner of T S
3 has a negative eigenvalue then so is T S

3 . Let N be the 7 × 7 top left
corner of T S

3 . By Lemma 4.3 and the fact that di ≥ 1 for all i, the sign of det(N) is the sign of
A2d

2
6 + B2d6 + C2, so if Qk,− < d6 < Qk,+, with k = 2, then N has a negative eigenvalue. But

Lemma 4.3 states also that for k = 1. Finally, observe that Qk,− < 0 for k = 1, 2. The result
follows. �

Lemma 4.3. Let N be the 7× 7 top left corner of T S
3 . Then

det(N) =
(A1d

2
6 +B1d6 + C1)

2(A2d
2
6 +B2d6 + C2)

d2d3d4d75d
6
6d

7
7

,

with the notations of Proposition 4.2. Moreover, N has an eigenvalue which is negative for
Q1,− < d6 < Q1,+.

Proof. See the SageMath computation in Appendix 8.1.4. �

Remark 4.1. Observe that Q1,+ <
9

2
(1 +

√
37) = 31.87243 . . . and Q2,+ < 9(

√
10 − 1) =

19.4604989 . . . .

Remark 4.2. Note that dim = [1, 5, 5, 5, 6, 7, 7] is covered by Q2,+ only, because Q2,+(5, 5, 5, 6, 7) =
8.882676 · · · > 7, whereas Q1,+(5, 5, 5, 6, 7) = 6.537671 · · · < 7.

Remark 4.3. The converse of Proposition 4.2 is false, because for (d2, d3, d4, d5, d7) = (5, 5, 5, 6, 7),
the matrix T S

3 has a negative eigenvalue if d6 < α = 9.5934 . . . , see Appendix 8.1.5.

Remark 4.4. To show how an ultimate update of Proposition 4.2 should be complex to state,
note that α (in Remark 4.3) is a root of an irreducible polynomial of degree 4 in Z[X ]. It can
be written as follows (see Appendix 8.1.6):

α =
B

a
+

1

2

√

−A− i/j/A− k/b/B + l/b+
m

n
where

A =

(
f + c

√
eI

d

)1/3

, B =
√

bA + g/A+ h,

and

a = 421113102, b = 44334061169015601, c = 250462485504, d = 345734333761887148583413,

e = 5213988190704773354123819324759655, f = 64964979666121194605838007808,

g = 149108026701745210176, h = 3010843992410706004, i = 16567558522416134464,

j = 4926006796557289, k = 1151178558485955841275891856, l = 6021687984821412008,

m = 241694327, n = 210556551.

In fact, α = Q(5, 5, 5, 6, 7) where Q is an algebraic function requiring about one million char-
acters (or about 500 pages) to be written (at least before any simplification). A laptop needed
about 24 hours to compute it. Of course, we can compute α directly, see Appendix. In addition,
it seems that Q < β = 9

2
(1 +

√
37). So if d6 ≥ β then T S

3 should not have a negative eigenvalue.
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A natural question is that whether we could exclude fusion rings by the restriction condition
on PFdim in Proposition 4.2. The answer is yes. With the help of computers, we find another
9 simple (non-integral) fusion rings of rank 7 and multiplicity ≤ 6, having the same local data
for S = {x6, x7}, as above, and whose exclusion from unitary categorification is covered by
Proposition 4.2.

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

,

0 1 0 0 0 0 0
1 1 1 0 0 1 1
0 1 0 0 1 1 1
0 0 0 1 1 1 1
0 0 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 1 0 0 0 0
0 1 0 0 1 1 1
1 0 1 1 0 1 1
0 0 1 0 1 1 1
0 1 0 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 0 1 0 0 0
0 0 0 1 1 1 1
0 0 1 0 1 1 1
1 1 0 1 0 1 1
0 1 1 0 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 0 0 1 0 0
0 0 1 1 1 1 1
0 1 0 1 1 1 1
0 1 1 0 1 1 1
1 1 1 1 1 1 1
0 1 1 1 1 2 1
0 1 1 1 1 1 2

,

0 0 0 0 0 1 0
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 2 1
1 1 1 1 2 0 3
0 1 1 1 1 3 1

,

0 0 0 0 0 0 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 2
0 1 1 1 1 3 1
1 1 1 1 2 1 2

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

,

0 1 0 0 0 0 0
1 0 0 0 1 2 2
0 0 1 1 1 1 1
0 0 1 1 1 1 1
0 1 1 1 1 1 1
0 2 1 1 1 1 1
0 2 1 1 1 1 1

,

0 0 1 0 0 0 0
0 0 1 1 1 1 1
1 1 1 0 0 1 1
0 1 0 0 1 1 1
0 1 0 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 0 1 0 0 0
0 0 1 1 1 1 1
0 1 0 0 1 1 1
1 1 0 1 0 1 1
0 1 1 0 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 0 0 1 0 0
0 1 1 1 1 1 1
0 1 0 1 1 1 1
0 1 1 0 1 1 1
1 1 1 1 1 1 1
0 1 1 1 1 2 1
0 1 1 1 1 1 2

,

0 0 0 0 0 1 0
0 2 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 2 1
1 1 1 1 2 0 3
0 1 1 1 1 3 1

,

0 0 0 0 0 0 1
0 2 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 2
0 1 1 1 1 3 1
1 1 1 1 2 1 2

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

,

0 1 0 0 0 0 0
1 1 1 1 2 3 3
0 1 1 2 1 1 1
0 1 2 1 2 2 2
0 2 1 2 1 1 1
0 3 1 2 1 1 1
0 3 1 2 1 1 1

,

0 0 1 0 0 0 0
0 1 1 2 1 1 1
1 1 0 1 0 1 1
0 2 1 0 1 1 1
0 1 0 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 0 1 0 0 0
0 1 2 1 2 2 2
0 2 1 0 1 1 1
1 1 0 2 1 2 2
0 2 1 1 1 1 1
0 2 1 2 1 1 1
0 2 1 2 1 1 1

,

0 0 0 0 1 0 0
0 2 1 2 1 1 1
0 1 0 1 1 1 1
0 2 1 1 1 1 1
1 1 1 1 1 1 1
0 1 1 1 1 2 1
0 1 1 1 1 1 2

,

0 0 0 0 0 1 0
0 3 1 2 1 1 1
0 1 1 1 1 1 1
0 2 1 2 1 1 1
0 1 1 1 1 2 1
1 1 1 1 2 0 3
0 1 1 1 1 3 1

,

0 0 0 0 0 0 1
0 3 1 2 1 1 1
0 1 1 1 1 1 1
0 2 1 2 1 1 1
0 1 1 1 1 1 2
0 1 1 1 1 3 1
1 1 1 1 2 1 2

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

,

0 1 0 0 0 0 0
1 4 2 4 3 4 4
0 2 1 3 1 1 1
0 4 3 3 3 3 3
0 3 1 3 1 1 1
0 4 1 3 1 1 1
0 4 1 3 1 1 1

,

0 0 1 0 0 0 0
0 2 1 3 1 1 1
1 1 0 1 0 1 1
0 3 1 1 1 1 1
0 1 0 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 0 1 0 0 0
0 4 3 3 3 3 3
0 3 1 1 1 1 1
1 3 1 4 2 3 3
0 3 1 2 1 1 1
0 3 1 3 1 1 1
0 3 1 3 1 1 1

,

0 0 0 0 1 0 0
0 3 1 3 1 1 1
0 1 0 1 1 1 1
0 3 1 2 1 1 1
1 1 1 1 1 1 1
0 1 1 1 1 2 1
0 1 1 1 1 1 2

,

0 0 0 0 0 1 0
0 4 1 3 1 1 1
0 1 1 1 1 1 1
0 3 1 3 1 1 1
0 1 1 1 1 2 1
1 1 1 1 2 0 3
0 1 1 1 1 3 1

,

0 0 0 0 0 0 1
0 4 1 3 1 1 1
0 1 1 1 1 1 1
0 3 1 3 1 1 1
0 1 1 1 1 1 2
0 1 1 1 1 3 1
1 1 1 1 2 1 2

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

,

0 1 0 0 0 0 0
1 1 1 0 0 1 1
0 1 3 1 1 1 1
0 0 1 0 1 1 1
0 0 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 1 0 0 0 0
0 1 3 1 1 1 1
1 3 0 3 4 5 5
0 1 3 1 1 1 1
0 1 4 1 1 1 1
0 1 5 1 1 1 1
0 1 5 1 1 1 1

,

0 0 0 1 0 0 0
0 0 1 0 1 1 1
0 1 3 1 1 1 1
1 0 1 1 0 1 1
0 1 1 0 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 0 0 1 0 0
0 0 1 1 1 1 1
0 1 4 1 1 1 1
0 1 1 0 1 1 1
1 1 1 1 1 1 1
0 1 1 1 1 2 1
0 1 1 1 1 1 2

,

0 0 0 0 0 1 0
0 1 1 1 1 1 1
0 1 5 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 2 1
1 1 1 1 2 0 3
0 1 1 1 1 3 1

,

0 0 0 0 0 0 1
0 1 1 1 1 1 1
0 1 5 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 2
0 1 1 1 1 3 1
1 1 1 1 2 1 2

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

,

0 1 0 0 0 0 0
1 0 1 1 0 1 1
0 1 3 2 1 1 1
0 1 2 0 1 1 1
0 0 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 1 0 0 0 0
0 1 3 2 1 1 1
1 3 3 3 4 5 5
0 2 3 3 2 2 2
0 1 4 2 1 1 1
0 1 5 2 1 1 1
0 1 5 2 1 1 1

,

0 0 0 1 0 0 0
0 1 2 0 1 1 1
0 2 3 3 2 2 2
1 0 3 0 1 2 2
0 1 2 1 1 1 1
0 1 2 2 1 1 1
0 1 2 2 1 1 1

,

0 0 0 0 1 0 0
0 0 1 1 1 1 1
0 1 4 2 1 1 1
0 1 2 1 1 1 1
1 1 1 1 1 1 1
0 1 1 1 1 2 1
0 1 1 1 1 1 2

,

0 0 0 0 0 1 0
0 1 1 1 1 1 1
0 1 5 2 1 1 1
0 1 2 2 1 1 1
0 1 1 1 1 2 1
1 1 1 1 2 0 3
0 1 1 1 1 3 1

,

0 0 0 0 0 0 1
0 1 1 1 1 1 1
0 1 5 2 1 1 1
0 1 2 2 1 1 1
0 1 1 1 1 1 2
0 1 1 1 1 3 1
1 1 1 1 2 1 2

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

,

0 1 0 0 0 0 0
1 5 5 3 3 4 4
0 5 3 4 3 3 3
0 3 4 0 2 2 2
0 3 3 2 1 1 1
0 4 3 2 1 1 1
0 4 3 2 1 1 1

,

0 0 1 0 0 0 0
0 5 3 4 3 3 3
1 3 1 5 3 4 4
0 4 5 0 0 0 0
0 3 3 0 1 1 1
0 3 4 0 1 1 1
0 3 4 0 1 1 1

,

0 0 0 1 0 0 0
0 3 4 0 2 2 2
0 4 5 0 0 0 0
1 0 0 2 2 3 3
0 2 0 2 1 1 1
0 2 0 3 1 1 1
0 2 0 3 1 1 1

,

0 0 0 0 1 0 0
0 3 3 2 1 1 1
0 3 3 0 1 1 1
0 2 0 2 1 1 1
1 1 1 1 1 1 1
0 1 1 1 1 2 1
0 1 1 1 1 1 2

,

0 0 0 0 0 1 0
0 4 3 2 1 1 1
0 3 4 0 1 1 1
0 2 0 3 1 1 1
0 1 1 1 1 2 1
1 1 1 1 2 0 3
0 1 1 1 1 3 1

,

0 0 0 0 0 0 1
0 4 3 2 1 1 1
0 3 4 0 1 1 1
0 2 0 3 1 1 1
0 1 1 1 1 1 2
0 1 1 1 1 3 1
1 1 1 1 2 1 2

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

,

0 1 0 0 0 0 0
1 1 1 0 0 1 1
0 1 4 1 1 1 1
0 0 1 0 1 1 1
0 0 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 1 0 0 0 0
0 1 4 1 1 1 1
1 4 4 4 5 6 6
0 1 4 1 1 1 1
0 1 5 1 1 1 1
0 1 6 1 1 1 1
0 1 6 1 1 1 1

,

0 0 0 1 0 0 0
0 0 1 0 1 1 1
0 1 4 1 1 1 1
1 0 1 1 0 1 1
0 1 1 0 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1

,

0 0 0 0 1 0 0
0 0 1 1 1 1 1
0 1 5 1 1 1 1
0 1 1 0 1 1 1
1 1 1 1 1 1 1
0 1 1 1 1 2 1
0 1 1 1 1 1 2

,

0 0 0 0 0 1 0
0 1 1 1 1 1 1
0 1 6 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 2 1
1 1 1 1 2 0 3
0 1 1 1 1 3 1

,

0 0 0 0 0 0 1
0 1 1 1 1 1 1
0 1 6 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 2
0 1 1 1 1 3 1
1 1 1 1 2 1 2

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

,

0 1 0 0 0 0 0
1 1 5 4 3 4 4
0 5 2 5 1 1 1
0 4 5 2 3 3 3
0 3 1 3 1 1 1
0 4 1 3 1 1 1
0 4 1 3 1 1 1

,

0 0 1 0 0 0 0
0 5 2 5 1 1 1
1 2 1 2 3 4 4
0 5 2 3 2 2 2
0 1 3 2 1 1 1
0 1 4 2 1 1 1
0 1 4 2 1 1 1

,

0 0 0 1 0 0 0
0 4 5 2 3 3 3
0 5 2 3 2 2 2
1 2 3 6 2 3 3
0 3 2 2 1 1 1
0 3 2 3 1 1 1
0 3 2 3 1 1 1

,

0 0 0 0 1 0 0
0 3 1 3 1 1 1
0 1 3 2 1 1 1
0 3 2 2 1 1 1
1 1 1 1 1 1 1
0 1 1 1 1 2 1
0 1 1 1 1 1 2

,

0 0 0 0 0 1 0
0 4 1 3 1 1 1
0 1 4 2 1 1 1
0 3 2 3 1 1 1
0 1 1 1 1 2 1
1 1 1 1 2 0 3
0 1 1 1 1 3 1

,

0 0 0 0 0 0 1
0 4 1 3 1 1 1
0 1 4 2 1 1 1
0 3 2 3 1 1 1
0 1 1 1 1 1 2
0 1 1 1 1 3 1
1 1 1 1 2 1 2
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If we release the bound of the multiplicities, then there may exist an infinite family of fusion
rings with the same local data that could be excluded.

4.2.2. An Orbifold Construction of Fusion Rings. Considering the orbifold theory, we exclude a
family of fusion rings with unbounded Frobenius-Perron dimension.

Definition 4.3. Suppose R is a fusion ring with basis {x1 = 1, x2, . . . , xm} and Mi is the fusion
matrix of xi. Let Rℓ be the fusion ring obtained by a Zℓ action on R⊗ Zℓ with basis {xij , Xk :
0 ≤ i, j ≤ ℓ− 1, 2 ≤ k ≤ m}, where xij = gi ⊗ gj and Xk = {xk ⊗ I, xk ⊗ g, . . . , xk ⊗ gn−1}, g is
the generator of Zℓ.

Proposition 4.4. Suppose R is a fusion ring with basis {x1 = 1, x2, . . . , xm} and Rℓ is the
fusion ring obtained in Definition 4.3. Then for any local set S ⊆ {Xk : 2 ≤ k ≤ m}, we have

T S
n (Rℓ) = ℓ2T S

n (R),

where T S
n (Rℓ) and T S

n (R) are the primary (S, n)-matrices of Rℓ and R respectively.

Proof. Note that MS
xij

= I and MS
Xk

= ℓMS
i , ‖Mxij

‖ = 1 and ‖MXk
‖ = ℓ‖Mi‖. So

T S
n (Rℓ) =

∑

0≤i,j≤ℓ−1

‖Mxij
‖2
(

MS
xij

‖Mxij
‖

)⊗n

+

m∑

k=2

‖MXk
‖2
(

MS
Xk

‖MXk
‖

)⊗n

= ℓ2M1 + ℓ2
m∑

k=2

‖Mk‖2
(

MS
k

‖Mk‖

)⊗n

= ℓ2T S
n (R).

This completes the proof of the theorem. �

Remark 4.5. Let R be the above simple integral fusion ring K7 of rank 7 and Rℓ is the fusion
ring obtained from R in Proposition 4.4, ℓ ≥ 1. So T S

3 (Rℓ) = ℓ2T S
3 (R) is not positive since it

has a negative eigenvalue ≃ −0.62949ℓ2. Therefore, Rℓ admits no unitary categorification by
Theorem 4.1. We obtain a family of fusion rings with unbounded dimension, which admit no
unitary categorification.

4.3. Five Simple Fusion Rings Excluded in a Single Time. There are five simple integral
fusion rings of rank 8, FPdim 660, type [[1,1],[5,2],[10,2],[11,1],[12,2]], multiplicity 5 on page 57
in [26], with the same local data on the last two simple objects.
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
1 0 0 0 0 0 1 1
0 0 1 0 1 1 1 1
0 0 1 1 0 1 1 1
0 0 0 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 0 1 1 1 1 1

,

0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1
0 1 0 1 1 0 0 0
0 1 0 0 1 1 1 1
0 1 0 1 0 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1

,

0 0 0 1 0 0 0 0
0 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1
1 0 0 2 2 1 2 2
0 1 1 2 0 2 2 2
0 1 1 1 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 1 0 0 0
0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
0 1 1 2 0 2 2 2
1 0 0 0 4 1 2 2
0 1 1 2 1 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 1 1 1 2 2 2 2
0 1 1 2 1 2 2 2
1 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
0 1 1 2 2 2 2 3

,

0 0 0 0 0 0 1 0
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
1 1 1 2 2 3 0 5
0 1 1 2 2 2 5 1

,

0 0 0 0 0 0 0 1
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 3
0 1 1 2 2 2 5 1
1 1 1 2 2 3 1 4

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
1 0 0 0 0 0 1 1
0 0 1 0 1 1 1 1
0 0 1 1 0 1 1 1
0 0 0 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 0 1 1 1 1 1

,

0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1
0 1 0 1 1 0 0 0
0 1 0 0 1 1 1 1
0 1 0 1 0 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1

,

0 0 0 1 0 0 0 0
0 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1
1 0 0 3 1 1 2 2
0 1 1 1 1 2 2 2
0 1 1 1 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 1 0 0 0
0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
0 1 1 1 1 2 2 2
1 0 0 1 3 1 2 2
0 1 1 2 1 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 1 1 1 2 2 2 2
0 1 1 2 1 2 2 2
1 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
0 1 1 2 2 2 2 3

,

0 0 0 0 0 0 1 0
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
1 1 1 2 2 3 0 5
0 1 1 2 2 2 5 1

,

0 0 0 0 0 0 0 1
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 3
0 1 1 2 2 2 5 1
1 1 1 2 2 3 1 4
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1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
1 0 0 0 0 0 1 1
0 0 1 1 0 1 1 1
0 0 1 0 1 1 1 1
0 0 0 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 0 1 1 1 1 1

,

0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1
0 1 0 1 1 0 0 0
0 1 0 1 0 1 1 1
0 1 0 0 1 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1

,

0 0 0 1 0 0 0 0
0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
1 1 1 0 3 1 2 2
0 0 0 3 0 2 2 2
0 1 1 1 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 1 0 0 0
0 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1
0 0 0 3 0 2 2 2
1 1 1 0 3 1 2 2
0 1 1 2 1 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 1 1 1 2 2 2 2
0 1 1 2 1 2 2 2
1 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
0 1 1 2 2 2 2 3

,

0 0 0 0 0 0 1 0
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
1 1 1 2 2 3 0 5
0 1 1 2 2 2 5 1

,

0 0 0 0 0 0 0 1
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 3
0 1 1 2 2 2 5 1
1 1 1 2 2 3 1 4

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
1 0 0 0 0 0 1 1
0 0 1 1 0 1 1 1
0 0 1 0 1 1 1 1
0 0 0 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 0 1 1 1 1 1

,

0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1
0 1 0 1 1 0 0 0
0 1 0 1 0 1 1 1
0 1 0 0 1 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1

,

0 0 0 1 0 0 0 0
0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
1 1 1 1 2 1 2 2
0 0 0 2 1 2 2 2
0 1 1 1 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 1 0 0 0
0 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1
0 0 0 2 1 2 2 2
1 1 1 1 2 1 2 2
0 1 1 2 1 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 1 1 1 2 2 2 2
0 1 1 2 1 2 2 2
1 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
0 1 1 2 2 2 2 3

,

0 0 0 0 0 0 1 0
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
1 1 1 2 2 3 0 5
0 1 1 2 2 2 5 1

,

0 0 0 0 0 0 0 1
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 3
0 1 1 2 2 2 5 1
1 1 1 2 2 3 1 4

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
1 0 0 0 0 0 1 1
0 0 1 0 1 1 1 1
0 0 1 1 0 1 1 1
0 0 0 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 0 1 1 1 1 1

,

0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 1
0 1 0 1 1 0 0 0
0 1 0 0 1 1 1 1
0 1 0 1 0 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1

,

0 0 0 1 0 0 0 0
0 0 1 0 1 1 1 1
0 1 0 0 1 1 1 1
0 1 1 2 0 2 2 2
1 0 0 2 2 1 2 2
0 1 1 1 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 1 0 0 0
0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
1 0 0 2 2 1 2 2
0 1 1 0 2 2 2 2
0 1 1 2 1 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2

,

0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1
0 1 1 1 2 2 2 2
0 1 1 2 1 2 2 2
1 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
0 1 1 2 2 2 2 3

,

0 0 0 0 0 0 1 0
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 3 2
1 1 1 2 2 3 0 5
0 1 1 2 2 2 5 1

,

0 0 0 0 0 0 0 1
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 2
0 1 1 2 2 2 2 3
0 1 1 2 2 2 5 1
1 1 1 2 2 3 1 4

They are all excluded by the Schur product criterion in [26]. Here, we exclude them again by
localized criterion in a single time. Let S = {x7, x8}. Then they have the same local fusion
matrices:

MS
1 =

(
1 0
0 1

)

,MS
2 = MS

3 =

(
1 1
1 1

)

,MS
4 = MS

5 =

(
2 2
2 2

)

.

MS
6 =

(
3 2
2 3

)

,MS
7 =

(
0 5
5 1

)

,MS
8 =

(
5 1
1 4

)

.

So the primary (S, 3)-matrix T S
3 of them are same as follows:

1

132














2095 755 755 463 755 463 463 1746
755 1820 463 700 463 700 1746 727
755 463 1820 700 463 1746 700 727
463 700 700 1600 1746 727 727 711
755 463 463 1746 1820 700 700 727
463 700 1746 727 700 1600 727 711
463 1746 700 727 700 727 1600 711
1746 727 727 711 727 711 711 1435














.

It is not positive since it has a negative eigenvalue ≃ −2.948812 (see Appendix 8.1.3). Hence
these five fusion rings admit no unitary categorification by Theorem 4.1.

Remark 4.6. This example of five fusion rings indicates that one could exclude more than one
fusion rings by checking the positivity of only one matrix. This could not be done by the Schur
product criterion. So localized criteria could improve the efficiency to check fusion rings.
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5. Reduced Twisted Criteria

In this section, we twist the fusion (sub)matrices and take Hadamard product of fusion
(sub)matrices to obtain much more powerful criteria. Recall that the computational complex-
ity of checking fusion rings of rank m by primary n-criterion grows exponentially O(m3n).
Note that the order of the matrix remains the same under the Hadamard product. So we
apply the Hadamard product to primary criteria and reduce the computation complexity to
O(m3 + m2 log n). Moreover, the twisting of the fusion (sub)matrices leads to corresponding
criteria, which allow us to exclude fusion rings with unknown data.

5.1. Results and Examples.

Theorem 5.1 (Reduced twisted criteria). SupposeR is a fusion ring with basis {x1 = 1, x2, . . . , xm}
and Mi is the fusion matrix of xi. Let S ⊆ {1, 2, . . . , m} be a subset and Uj ∈ M|S|(C) are unitary
matrices. If R admits a unitary categorification, then for any n ≥ 1, we have

m∑

i=1

‖Mi‖2
(

MS
i

‖Mi‖

)∗n

≥0, Reduced (5.1)

m∑

i=1

‖Mi‖2U
⊗n

j=1

j

(
MS

i

‖Mi‖

)⊗n

(U∗
j )

⊗n
j=1 ≥0, Twisted (5.2)

m∑

i=1

‖Mi‖2
(
UjM

S
i U

∗
j

‖Mi‖

)∗nj=1

≥0, Reduced twisted (5.3)

where ∗ is the Hadamard product of matrices.

Proof. Define
S(n) := {(i, i, . . . , i

︸ ︷︷ ︸

n

) : i ∈ S}, S(1) = S.

Then
(UjM

S
i U

∗
j )

∗nj=1 = PS(n)(UjM
S
i U

∗
j )

⊗n
j=1PS(n).

Theorem 4.1 implies
m∑

i=1

‖Mi‖2
(
UjM

S
i U

∗
j

‖Mi‖

)∗nj=1

= PS(n)U
⊗n

j=1

j

m∑

i=1

‖Mi‖2
(

MS
i

‖Mi‖

)⊗n

U
∗⊗n

j=1

j PS(n)

∣
∣
∣
∣
S(n)×S(n)

≥ 0.

This completes the proof of the theorem. �

Remark 5.1. If there are enough zero entries of the fusion matrices, then we can eliminate the
unknown entries of the fusion matrices by choosing proper unitary matrices.

Remark 5.2. In Theorem 5.1, when the fusion matrices Mj is twisted by unitary matrices Uj,
we have

m∑

i=1

‖Mi‖2
(
(UjMiU

∗
j )

S

‖Mi‖

)⊗n
j=1

≥ 0.
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This gives a different twisted positivity for a fusion ring.

Now we apply the criteria to a family of fusion rings.

Theorem 5.2. Let R be a fusion ring with basis {x1 = 1, x2, . . . , xm} and Mi is the fusion
matrix of xi. Suppose that

x2x
∗
2 =I + sx2 + ℓx3

x3x
∗
3 =I + tx2 + kx3 +

m∑

i=4

λixi

for s, t, k, λi ≥ 0, ℓ ≥ 1, i ≥ 4. Then we have the following statements:

(1) If x2 is self-dual and and there exist n ≥ 2, a, b ≥ 1, a + b = n, such that
(
satb

dn−2
2

+
ℓakb

dn−2
3

+ 1

)(
sbta

dn−2
2

+
ℓbka

dn−2
3

+ 1

)

−
(

ℓn

dn−2
2

+
tn

dn−2
3

)2

< 0, (5.4)

then R admits no unitary categorification.
(2) If x2 is not self-dual and there exist n ≥ 2, a, b ≥ 1, a+ b = n, such that

2sn

dn−2
2

+ 1− saτ(x3
2)

b + sbτ(x3
2)

a

dn−2
2

< 0, (5.5)

then R admits no unitary categorification, where τ is the faithful tracial state on R.

Proof. (1) If x2 is self-dual, then x3 is also self-dual. Take the local data S = {2, 3}. Then

MS
1 =

(
1 0
0 1

)

,MS
2 =

(
s ℓ
ℓ t

)

,MS
3 =

(
ℓ t
t k

)

,MS
i =

(
0 ∗
∗ λi

)

, i ≥ 4.

Let U1 = · · · = Ua = I, Ua+1 = · · · = Un =

(
0 1
1 0

)

. By the assumption that a, b ≥ 1 and

{xi : 4 ≤ i ≤ m} = {x∗
i : 4 ≤ i ≤ m}, we have

m∑

i=4

1

dn−2
i

(UjM
S
i U

∗
j )

∗nj=1 =

(
0 λ
λ 0

)

for some λ > 0. Applying Theorem 5.1 to R, we have

det

( m∑

i=1

1

dn−2
i

(UjM
S
i U

∗
j )

∗nj=1

)

≤ det

[(
1 0
0 1

)

+
1

dn−2
2

(
satb ℓn

ℓn sbta

)

+
1

dn−2
3

(
ℓakb tn

tn ℓbka

)

+

(
0 λ
λ 0

)]

≤
(
satb

dn−2
2

+
ℓakb

dn−2
3

+ 1

)(
sbta

dn−2
2

+
ℓbka

dn−2
3

+ 1

)

−
(

ℓn

dn−2
2

+
tn

dn−2
3

)2

<0. (From inequality (5.4))
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Hence R admits no unitary categorification.
(2) If x2 is not self-dual, then x3 = x∗

2 and s = k = t = ℓ. Take the local data S = {2, 3}.
Then

MS
1 =

(
1 0
0 1

)

,MS
2 =

(
s τ(x3

2)
s s

)

,MS
3 =

(
s s

τ(x3
2) s

)

,MS
i =

(
0 ∗
∗ λi

)

, i ≥ 4.

With the same process, we could obtain the conclusion. �

Remark 5.3. In the proof of Theorem 5.2, the unknown data λi is removed by the following
equation:

(UjM
S
i U

∗
j )

∗nj=1 =

(
0 ∗
∗ 0

)

.

So the reduced twist criteria allow us to check fusion rings with unknown data, which is superior
to the Schur product criterion.

In the following, we give an example of a family of fusion rings excluded by reduced twisted
criteria.

Theorem 5.3. Suppose R4,k is a ring generated by the following 4 matrices:






1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







,







0 1 0 0
1 k 0 1
0 0 k 1
0 1 1 k







,







0 0 1 0
0 0 k 1
1 k 0 0
0 1 0 k







,







0 0 0 1
0 1 1 k
0 1 0 k
1 k k 1







.

Then R4,k is a simple fusion ring admitting no unitary categorification for any k ≥ 3.

Proof. By computations, we have the following fusion rules:

x2
2 = 1 + kx2 + x4,

x2
3 = 1 + kx2,

x2
4 = 1 + k(x2 + x3) + x4,

x2x3 = kx3 + x4,

x3x4 = x2 + kx4,

x2x4 = x2 + x3 + kx4.

Take local data S={2, 3}. Then R4,k satisfies the condition in Theorem 5.2 by switching x2 and
x3. By the Collatz-Wielandt formula for non-negative matrix, we have d3 = ‖x3‖ ≤ k + 1 ≤
‖x2‖ = d2. Then √

k2 + k + 1 ≤ ‖x3‖ ≤ k + 1.

Inequality (5.4) (n = 3) is equivalent to

f(‖x3‖) = ‖x3‖3 − k3‖x3‖2 + (k4 − 1)‖x3‖+ k3 < 0.
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Note that f ′(x) < 0 for any x ∈ [
√
k2 + k + 1, k + 1] when k ≥ 3. It is not difficult to check

that f(
√
k2 + k + 1) < 0 when k ≥ 5. So f(x) < 0 for any x ∈ [

√
k2 + k + 1, k+1] when k ≥ 5.

Thus, f(‖x3‖) < 0 and R4,k admits no unitary categorification when k ≥ 5. On the other hand,
R4,3 and R4,4 could be excluded by direct computations. �

Remark 5.4. The reduced twist criteria make it applicable to exclude a family of infinitely
many simple fusion rings. This is not easy to complete by the Schur product criterion since the
character table of R4,k are very complex and it is hard to compute.

5.2. Inequivalence of Localized Criteria. Let R be any one of the five fusion rings of rank
8 in subsection 4.3. Recall that S = {x7, x8}. Applying Theorem 5.1 for n = 3, U1 = U2 = I,

U3 =

(
0 1
1 0

)

, we obtain

8∑

i=1

1

‖Mi‖
(UjM

S
i U

∗
j )

∗3j=1 =
1

330

(
4286 4101
4101 3736

)

.

It is not positive since its determinant ≃ −7.4. Hence we see that these five fusion rings
admit no unitary categorifications by reduced twisted criteria. For n = 4, U1 = U2 = I,

U3 = U4 =

(
0 1
1 0

)

, we have that

8∑

i=1

1

‖Mi‖2
(UjM

S
i U

∗
j )

∗4j=1 ≃
(
4.85 4.88
4.88 4.85

)

.

It is not positive either.

Now let us consider the limit of
n∑

i=1

1

‖Mi‖2
(UjM

S
i U

∗
j )

∗nj=1 when n goes to infinity.

Proposition 5.4. Suppose R is a fusion ring with basis {x1 = I, x2, . . . , xm} and Mi is the
fusion matrix of xi. Let S ⊆ {1, 2, . . . , m} be a subset. Define LS

i = (akj)
m
k,j=1 ∈ Mm(C) such

that

akj =

{

1 if j or k ∈ S and Nk
i,j = ‖Mi‖,

0 otherwise.

If R admits a unitary categorification, then
m∑

i=1

‖Mi‖2LS
i ≥ 0. (5.6)

Proof. Note that Nk
i,j ≤ ‖Mi‖. Let Ui = I. Theorem 5.1 implies that

m∑

i=1

‖Mi‖2LS
i = lim

n→∞

m∑

i=1

‖Mi‖2
(

MS
i

‖Mi‖

)∗n

≥ 0.

This completes the proof of the proposition. �
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Note that for any unitary matrices Uj , we have

lim
n→∞

8∑

i=1

1

‖Mi‖n−2
(UjM

S
i U

∗
j )

∗nj=1 = I.

We see that it is positive when n is sufficiently large. This implies localized criteria are not all
equivalent.

6. Multifusion rings and principal graphs

The Grothendieck ring of a multifusion category is a multifusion ring. We could ask whether
a multifusion ring is a Grothendieck ring of a multifusion category. By similar arguments, we
see that the criteria obtained in this paper are true for unitary multifusion categorification of a
multifusion ring. The principal graph of a subfactor provides partial data of the multifusion ring
of its bimodule category, see §8.2 in the Appendix. We apply the localized criteria to provide
obstruction of bipartite graphs from being principle graphs for subfactors of finite depth.

6.1. Results and Examples. By a similar argument in the proof of Theorem 3.12, we have
the following result.

Theorem 6.1. Suppose R is a multifusion ring with basis {x1, x2, . . . , xm} and Mj is the fusion
matrix of xj. If R admits a unitary multifusion categorification, then for any n ≥ 1, we have

m∑

j=1

‖Mj‖2
(

Mj

‖Mj‖

)⊗n

≥ 0. (6.1)

All localized criteria for unitary categorification of fusion rings obtained before in this paper
are true for unitary multifusion categorification of a multifusion ring. Hence the localized posi-
tivity are obstructions for constructing principal graphs of subfactors of finite depth. Applying
the idea of localization from Theorem 4.1, we have

Theorem 6.2. Suppose R is a multifusion ring with basis {x1, x2, . . . , xm} and Mj is the fusion
matrix of xj. Let S ⊆ {1, 2, · · · , m} be a subset. If R admits a unitary multifusion categorifica-
tion, then for any n ≥ 1, we have

∑

j

d2j

(
MS

j

dj

)⊗n

≥ 0, (6.2)

where dj is the quantum dimension of xj for j = 1, . . . .
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Example 6.1. Let D5 be the following bipartite graph: q = eπi/8,

• • •
x1 x2 x3

x4

x5

[1]q [2]q [3]q

[4]q/2

[4]q/2 (6.3)

We take the local set S = {x1, x4}. Then

T S
1 =

5∑

j=1

djM
S
j =

(
1 [4]q/2

[4]q/2 1

)

is not positive. So D5 is not a principal graph of a subfactor.

Applying the idea of Theorem 5.1, we further have

Theorem 6.3. Suppose R is a multifusion ring with basis {x1, x2, . . . , xm} and Mj is the fusion
matrix of xj. Let S ⊆ {1, 2, · · · , m} be a subset, and Uj ∈ M|S|(C) are unitary matrices. If R
admits a unitary multifusion categorification, then for any n ≥ 1, we have

∑

i

d2i

(
MS

i

di

)∗n

≥0, Reduced (6.4)

∑

i

d2iU
⊗n

j=1

j

(
MS

i

di

)⊗n

(U∗
j )

⊗n
j=1 ≥0, Twisted (6.5)

∑

i

d2i

(
UjM

S
i U

∗
j

di

)∗nj=1

≥0, Reduced twisted (6.6)

where ∗ is the Hadamard product of matrices.

Note that multifusion categories are multicolored. For graded multifusion rings, we have

Theorem 6.4. Suppose R is a Zk-graded multifusion ring with basis {x1, x2, . . . , xm} and Mj

is the fusion matrix of xj. Let S ⊆ {1, 2, · · · , m} be a subset. If R admits a unitary multifusion
categorification, then

m∑

i=1

(−1)|i|d2i

(
MS

i

di

)⊗n

≥ 0, (6.7)

where |i| is the grading of xi and di is the quantum dimension of xi for i = 1, . . . ..
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6.2. Bipartite Graphs with Local data Excluded. In this subsection, we will present a
family of bipartite graphs excluded from principal graphs of subfactors by the reduced twisted
criteria.

Theorem 6.5. Let G be a bipartite graph of finite depth with the following local form ℓ ≥ 1:

x1 x2 x3

...

ℓ arcs

xi

xk+3

...

x4

...

· · ·

m1

mi−3

mk

(6.8)

Let M =
∑k

j=1m
2
i + ℓ2−1 and d2 is the quantum dimension of x2. If there exist n ≥ 2, a, b ≥ 1,

a+ b = n, such that
(

ℓ2a−2M b

(d22 − 1)n−2
+ 1

)(
ℓ2b−2Ma

(d22 − 1)n−2
+ 1

)

− ℓ2n

d2n−4
2

< 0, (6.9)

then G can not be a principal graph of a subfactor.

Proof. Suppose that G is a principal graph of a subfactor. Let R be the multifusion ring arising
from G, generated by {x1, x2, · · · } with fusion matrices Mi, where xi is the direct sum of two
irreducible bimodules. Let di be the quantum dimension of xi. Note that x2, x3 are self-dual.
We have

x2
2 = 1 + ℓx3

x2
3 = 1 +

M

ℓ
x3 +

∑

i≥k+4

λixi.

Then d3 = (d22 − 1)/ℓ. Take local data S = {2, 3}, we have

MS
1 =

(
1 0
0 1

)

,MS
2 =

(
0 ℓ
ℓ 0

)

,MS
3 =

(
ℓ 0

0
M

ℓ

)

,MS
i =

(
0 ∗
∗ λi

)

, i ≥ 4.

Let U1 = · · · = Ua =

(
1 0
0 1

)

and Ua+1 = · · · = Un =

(
0 1
1 0

)

. Since {xi : i ≥ 4} = {x∗
i : i ≥ 4},

we have
∑

i≥4

1

dn−2
i

(UjM
S
i U

∗
j )

∗nj=1 =

(
0 λ
λ 0

)

for some λ > 0. So from Inequality (6.9),

det
m∑

i=1

1

dn−2
i

(UjM
S
i U

∗
j )

∗nj=1 ≤ det
3∑

i=1

1

dn−2
i

(UjM
S
i U

∗
j )

∗nj=1 < 0.
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By Theorem 6.3, R admits no unitary multifusion categorification. This leads to a contradiction.
�

Remark 6.1. The key point in the proof of Theorem 6.5 is that we use the reduced twist criterion
to remove the unknown data λi. So it is practicable to check the positivity of the matrix even
some entries are known. This is a big advantage of the reduced twist criterion.

Remark 6.2. Suppose the bipartite graph G in Theorem 6.5 is a principal graph of a subfactor
with finite index δ2, we have M = dimC(P3,±) − ℓ4 − ℓ2 − 2 and dimC(P2,±) = ℓ2 + 1. So
Theorem 6.5 indicates that there does not exist a principal graph of a subfactor of index δ2 such
that

(1) It has the following local graph

x1 x2 x3

...

ℓ arcs

· · · (6.10)

(2) There exist n ≥ 2, a, b ≥ 1, a + b = n, such that
(

ℓ2a−2M b

(δ2 − 1)n−2
+ 1

)(
ℓ2b−2Ma

(δ2 − 1)n−2
+ 1

)

− ℓ2n

δ2n−4
< 0. (6.11)

In particular, let a = b = 2. Suppose that ℓ2 ≥ δ. Then Inequality (6.11) is equivalent to

dimC P3,± <
δ2 − 1

ℓ

√

ℓ4

δ2
− 1 + ℓ4 + ℓ2 + 2. (6.12)

So Theorem 6.5 allows us to eliminate a large family of bipartite graphs from principal graphs
of subfactors with certain dimension bounds.

Next, we present a special case of Theorem 6.5 when a = b = 2 and n = 4.

Corollary 6.6. Suppose G is the bipartite graph defined in Theorem 6.5. If
√
2M

ℓ
< d2 −

1

d2
< d2 <

ℓ2√
2
, (6.13)

then G can not be a principal graph of a subfactor.

Proof. When a = b = 2, inequality (6.9) is equivalent to

ℓ2M2

(d22 − 1)2
+ 1 <

ℓ4

d22
.

It is not difficult to check that inequality (6.13) indicates

ℓ2M2

(d22 − 1)2
<

1

2
· ℓ

4

d22
, and 1 <

1

2
· ℓ

4

d22
.

Adding this two inequalities, we know that inequality (6.9) holds. So from Theorem 6.5, G can
not be a principal graph of a subfactor. �
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Remark 6.3. Suppose that M ≤ Aℓ2, where A is a positive constant. If

√
2Aℓ < d2 <

ℓ2√
2
,

then inequality (6.13) holds. So G can not be a principal graph of a subfactor.

7. Questions

Unitary multifusion categories are unitary multitensor categories [38] whose ranks could be
infinite and the Grothendieck ring of a unitary multitensor categories is a based ring. A natural
question is whether a based ring is a Grothendieck ring of a unitary multitensor category.
Inspired by localized criteria for multifusion rings in Section 6, we propose the following question.

Question 1. Suppose R is a based ring with basis {x1, x2, . . .}. Let S be a finite subset of N and
MS

j is the fusion matrix of xj restricted on S. If R admits a unitary multitensor categorification,
does the following inequality hold for all n ∈ N:

∑

j

d2j

(
MS

j

dj

)⊗n

≥ 0? (7.1)

Note that these unitary categorification criteria are also criteria of subfactorization of fusion
bialgebras (See Definition 7.3 in [26]). There are subfactorizable fusion rings that admit no
unitary categorification. For example, the subfactor planar algebra Zn∗TL(δ), such that δ2−1 =√
δ2 − 1 + n, is a subfactorization of the following near group fusion ring,

Rn := {b, gk, k ∈ Zn : gn = 1, gb = bg = b, b2 = b+
n∑

k=1

gk}.

We see that Rn passes primary criteria because it is subfactorizable. However, Rn admits no
unitary categorification when n ≥ 2, due to Theorem 1.1 in [11].
Bisch-Haagerup constructed the following sequence of fusion rings in 1994,

BHr :=
〈
ρ, τ : ρ2 = ρ+ 1, τ 2 = 1, (ρτ)r = (τρ)r

〉
.

and they asked that whether they have unitary categorifications. It had been widely believed
that the whole sequence of fusion rings have unitary categorification. A surprising answer was
given in [22] that BHr admits a unitary categorification if and only if r = 0, 1, 2, 3. (This is a
slightly weaker version of the original question and answer on possible compositions of A3 and
A4 subfactors.) It is natural to ask the following question.

Question 2. For each r ≥ 4, does BHr pass the primary 3-criterion? If so, then is BHr

subfactorizable?

8. Appendix

8.1. SageMath computations.
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8.1.1. Computation for Proposition 3.14.

sage: MM=[

....: [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]],

....: [[0,1,0,0,0,0],[1,4,2,2,2,2],[0,2,2,1,2,4],[0,2,1,2,4,2],[0,2,2,4,5,4],[0,2,4,2,4,5]],

....: [[0,0,1,0,0,0],[0,2,2,1,4,2],[0,1,3,1,3,3],[1,2,3,3,1,3],[0,2,3,3,5,4],[0,4,1,3,4,5]],

....: [[0,0,0,1,0,0],[0,2,1,2,2,4],[1,2,3,3,3,1],[0,1,1,3,3,3],[0,4,3,1,5,4],[0,2,3,3,4,5]],

....: [[0,0,0,0,1,0],[0,2,4,2,5,4],[0,4,1,3,5,4],[0,2,3,3,5,4],[1,5,5,5,5,7],[0,4,4,4,7,7]],

....: [[0,0,0,0,0,1],[0,2,2,4,4,5],[0,2,3,3,4,5],[0,4,3,1,4,5],[0,4,4,4,7,7],[1,5,5,5,7,5]]

....: ]

sage: L=[matrix(m) for m in MM]

sage: dim=[m.norm() for m in L]

sage: M=sum((L[i].tensor_product(L[i])).tensor_product(L[i])/(dim[i]) for i in range(6))

sage: E=M.eigenvalues()

sage: E[24]

-1.176375045085803

8.1.2. Computation for Subsection 4.2.

sage: MM=[[[1,0],[0,1]],[[1,1],[1,1]],[[1,1],[1,1]],

....: [[1,1],[1,1]],[[2,1],[1,2]],[[0,3],[3,1]],[[3,1],[1,2]]]

sage: L=[matrix(m) for m in MM]

sage: dim=[1,5,5,5,6,7,7][1,1],[5,2],[10,2],[11,1],[12,2]

sage: M=sum((L[i].tensor_product(L[i])).tensor_product(L[i])/(dim[i]) for i in range(7))

sage: E=M.eigenvalues()

sage: E[4]

-0.6294949095094869

8.1.3. Computation for Subsection 4.3.

sage: MM=[[[1,0],[0,1]],[[1,1],[1,1]],[[1,1],[1,1]],[[2,2],[2,2]],

....: [[2,2],[2,2]],[[3,2],[2,3]],[[0,5],[5,1]],[[5,1],[1,4]]]

sage: L=[matrix(m) for m in MM]

sage: dim=[1,5,5,10,10,11,12,12]

sage: M=sum((L[i].tensor_product(L[i])).tensor_product(L[i])/(dim[i]) for i in range(8))

sage: E=M.eigenvalues()

sage: E[4]

-2.948812175750019

8.1.4. Computation for Lemma 4.3.

sage: MM=[[[1,0],[0,1]],[[1,1],[1,1]],[[1,1],[1,1]],

....: [[1,1],[1,1]],[[2,1],[1,2]],[[0,3],[3,1]],[[3,1],[1,2]]]

sage: L=[matrix(m) for m in MM]

sage: var(’x2,x3,x4,x5,x6,x7’)

sage: dim=[1,x2,x3,x4,x5,x6,x7]

sage: M=sum((L[i].tensor_product(L[i])).tensor_product(L[i])/(dim[i]) for i in range(7))

sage: N=M[:7,:7]

sage: N.determinant().factor()

(x2*x3*x4*x5^3*x6^2*x7^3 + 67*x2*x3*x4*x5^3*x6^2*x7^2 + 18*x2*x3*x4*x5^3*x6*x7^3

+ 32*x2*x3*x4*x5^2*x6^2*x7^3 + 7*x2*x3*x5^3*x6^2*x7^3 + 7*x2*x4*x5^3*x6^2*x7^3

+ 7*x3*x4*x5^3*x6^2*x7^3 + 1025*x2*x3*x4*x5^3*x6^2*x7 + 216*x2*x3*x4*x5^3*x6*x7^2

+ 962*x2*x3*x4*x5^2*x6^2*x7^2 + 172*x2*x3*x5^3*x6^2*x7^2 + 172*x2*x4*x5^3*x6^2*x7^2
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+ 172*x3*x4*x5^3*x6^2*x7^2 - 729*x2*x3*x4*x5^3*x7^3 - 126*x2*x3*x4*x5^2*x6*x7^3

- 90*x2*x3*x5^3*x6*x7^3 - 90*x2*x4*x5^3*x6*x7^3 - 90*x3*x4*x5^3*x6*x7^3

+ 195*x2*x3*x4*x5*x6^2*x7^3 + 54*x2*x3*x5^2*x6^2*x7^3 + 54*x2*x4*x5^2*x6^2*x7^3

+ 54*x3*x4*x5^2*x6^2*x7^3 + 3375*x2*x3*x4*x5^3*x6^2 - 7290*x2*x3*x4*x5^3*x6*x7

+ 4600*x2*x3*x4*x5^2*x6^2*x7 + 665*x2*x3*x5^3*x6^2*x7 + 665*x2*x4*x5^3*x6^2*x7

+ 665*x3*x4*x5^3*x6^2*x7 - 19683*x2*x3*x4*x5^3*x7^2 - 8478*x2*x3*x4*x5^2*x6*x7^2

- 2214*x2*x3*x5^3*x6*x7^2 - 2214*x2*x4*x5^3*x6*x7^2 - 2214*x3*x4*x5^3*x6*x7^2

+ 1833*x2*x3*x4*x5*x6^2*x7^2 + 432*x2*x3*x5^2*x6^2*x7^2 + 432*x2*x4*x5^2*x6^2*x7^2

+ 432*x3*x4*x5^2*x6^2*x7^2 - 5832*x2*x3*x4*x5^2*x7^3 - 729*x2*x3*x5^3*x7^3

- 729*x2*x4*x5^3*x7^3 - 729*x3*x4*x5^3*x7^3 - 1728*x2*x3*x4*x5*x6*x7^3

- 594*x2*x3*x5^2*x6*x7^3 - 594*x2*x4*x5^2*x6*x7^3 - 594*x3*x4*x5^2*x6*x7^3

+ 216*x2*x3*x4*x6^2*x7^3 + 63*x2*x3*x5*x6^2*x7^3 + 63*x2*x4*x5*x6^2*x7^3

+ 63*x3*x4*x5*x6^2*x7^3)*(x5^2*x6^2*x7^2 + 25*x5^2*x6^2*x7 - 9*x5^2*x6*x7^2

+ 12*x5*x6^2*x7^2 + 125*x5^2*x6^2 + 135*x5^2*x6*x7 + 120*x5*x6^2*x7 - 729*x5^2*x7^2

+ 108*x5*x6*x7^2 + 27*x6^2*x7^2)^2/(x2*x3*x4*x5^7*x6^6*x7^7)

sage: E=N.eigenvalues()

sage: E[4].factor()

1/2*(2*x5*x6*x7 + 25*x5*x6 - 9*x5*x7 + 12*x6*x7 - sqrt(125*x5^2*x6^2 + 9*(333*x5^2 - 72*x5*x6

+ 4*x6^2)*x7^2 - 30*(33*x5^2*x6 - 4*x5*x6^2)*x7))/(x5*x6*x7)

sage: S=solve((2*x5*x6*x7 + 25*x5*x6 - 9*x5*x7 + 12*x6*x7)^2 - 125*x5^2*x6^2 + 9*(333*x5^2

- 72*x5*x6\ + 4*x6^2)*x7^2 - 30*(33*x5^2*x6 - 4*x5*x6^2)*x7,x6)

sage: SS=solve(x5^2*x6^2*x7^2 + 25*x5^2*x6^2*x7 - 9*x5^2*x6*x7^2 + 12*x5*x6^2*x7^2

+ 125*x5^2*x6^2\ + 135*x5^2*x6*x7 + 120*x5*x6^2*x7 - 729*x5^2*x7^2 + 108*x5*x6*x7^2

+ 27*x6^2*x7^2,x6)

sage: S==SS

True

8.1.5. Computation for Remark 4.3.

sage: ddim=[1,5,5,5,6,x6,7]

sage: MM=sum((L[i].tensor_product(L[i])).tensor_product(L[i])/(ddim[i]) for i in range(7))

sage: MM.determinant().factor()

1/22136835840*(210556551*x6^4 - 966777308*x6^3 - 19784561832*x6^2 + 60951456720*x6

+ 306237561840)*(2495*x6^2 + 5544*x6 - 142884)^2/x6^8

sage: S=solve(210556551*x6^4 - 966777308*x6^3 - 19784561832*x6^2 + 60951456720*x6

+ 306237561840,x6)

sage: [s.rhs().n(digits=40) for s in S]

[-8.335767036491464773340488283566158298175 - 2.116481932246399247255558980887840928053e-42*I,

-2.911937593466257812583289613470318862572 + 2.116481932246399247255558980887840928053e-42*I,

6.245789619885724844645019429070095813233 - 3.429094729194210149876597305845817158163e-42*I,

9.593447799759457999876934309097061722308 + 3.429094729194210149876597305845817158163e-42*I]

The complex parts above are zero (they appear just due to numerical approximations).

8.1.6. Computation for Remark 4.4.

sage: R = ZZ[’x6’]

sage: x6 = R.gen()

sage: P=210556551*x6^4 - 966777308*x6^3 - 19784561832*x6^2 + 60951456720*x6 + 306237561840

sage: P.is_irreducible()

True

sage: a=421113102
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....: b=44334061169015601

....: c=250462485504

....: d=345734333761887148583413

....: e=5213988190704773354123819324759655

....: f=64964979666121194605838007808

....: g=149108026701745210176

....: h=3010843992410706004

....: i=16567558522416134464

....: j=4926006796557289

....: k=1151178558485955841275891856

....: l=6021687984821412008

....: m=241694327

....: n=210556551

....: A=(c/d*I*sqrt(e) + f/d)^(1/3)

....: B=sqrt(b*A + g/A + h)

....: alpha = 1/a*B+ 1/2*sqrt(-A - i/j/A - k/b/B+ l/b) + m/n

sage: str(S[3].rhs().expand())==str(alpha)

True

8.2. Principal Graphs. For the definition of fusion category and multifusion category, we refer the readers to
[7] and [6, Section 1.12]. The Grothendieck ring of a (multi)fusion category is a (multi)fusion ring. A unitary
(multi)fusion category is a (multi)fusion category with a unitary structure, see e.g. [6, Remark 9.4.7].

Let N ⊆ M be a finite index subfactor. Its subfactor planar algebra captures the bimodule category of the
subfactor, {NModN , NModM, MModM, MModN }. This bimodule category is a unitary multitensor category
with the 0-morphisms being factors N and M; the 1-morphisms being bimodules over factors; and the 2-
morphisms being the bimodule homomorphisms. The subcategories NModN and MModM are unitary tensor
categories. If they have finitely many simple objects, then the subfactor is called finite depth. Take the generating
bimodule τ = NMM. Its conjugate τ is the bimodule MMN . Moreover, γ = ττ = NMN . It defines a
Frobenius algebra (γ,m, ι) in NModN , where m ∈ hom(γ2, γ) is the multiplication on M and ι is the inclusion
from N to M. Moreover, γ̃ = ττ induces a Frobenius algebra in MModM. Conversely, given a Frobenius algebra
in a unitary tensor category, one can construct a subfactor planar algebra as above, see e.g. [32].

NModN NModM

⊗NMM

⊗MMN

The principal graph of the subfactor N ⊆ M is a bipartite graph. Its vertices are equivalence classes of
irreducible bimodules over (N ,N ) and (N ,M). The number of edges connecting two vertices, an (N ,N )
bimodule Y and an (N ,M) bimodule Z, is the multiplicity of the equivalence class of Z as a sub bimodule of
Y ⊗X , where X = NMM. The dimension vector of the bipartite graph is a function from the vertices of the
graph to R+. Its value at a vertex is defined to be the dimension of the corresponding bimodule. The dual
principal graph is defined similarly for (M,M) and (M,N ) bimodules. The adjacent matrix of the principal
graph is a submatrix of the fusion matrix of X .

8.3. Quantum Double Construction. Given a unitary fusion category, one can obtain a subfactor planar
algebra from the quantum double construction. Here, we recall the construction with notations in [30]. Let C

be a unitary fusion category and Irr = {X1 = 1, . . . , Xm} the set of all simple objects. For each object Xj , we
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denote by dj := FPdim(Xj) the Frobenius-Perron dimension of Xj . Denote by FPdim(C ) the dimension of C ,

which is

m∑

j=1

FPdim(Xj)
2. Let C op be the opposite category of C . Then

γ =
⊕

X∈Irr

X ⊠Xop

is a Frobenius *-algebra in C ⊠ C
op, where the multiplication m is given by

m = FPdim(C )1/4
m⊕

j,k,t=1

(djdkdt)
1/2

∑

α∈ONB(Xj ,Xk;Xt)

α⊠ α

and the canonical unit is ι : 1 ⊠ 1op → γ; ONB(Xj , Xk;Xt) is an orthonormal basis of homC (Xj ⊗ Xk, Xt).
One can construct a subfactor planar algebra P with a simple object τ associated to a single string such that
γ = ττ . The single quon space P2,+ := homP(ττ , ττ ) ∼= homC⊠C op(γ, γ) has an orthonormal basis {βj}mj=1,

where βj = d−1
j 1Xj⊠Xop

j
, and 1Xj⊠Xop

j
is the identity map on Xj ⊠X

op
j . The morphism βj is represented as a

square-like diagram in the planar algebra

βj = j .

The multiplication of the morphisms is a vertical composition and the convolution is a horizontal composition.
Moreover, (Propositions 4.1, 4.2 in [30])

βjβk = δj,kd
−1
j βj ,

βj ∗ βk = δ−1
m∑

s=1

N t
j,kβt ,

where δj,k is the Kronecker delta function, δ2 =

m∑

j=1

d2j is the Jones index of the subfactor planar algebra, identical

to the Frobenius-Perron dimension of C . Moreover, P2,− := homP(ττ, ττ) ∼= homZ(C )(γ̃, γ̃), where Z(C ) is the
Drinfeld center of C and γ̃ = ττ induces a Frobenius algebra in Z(C ). Furthermore, Z(C ) and C ⊠ C op are
Morita equivalent w. r. t. the Frobenius algebras, see e.g. [33].

The Fourier transform Fs : P2,± → P2,∓ is a clockwise 90◦ rotation, which intertwines the multiplication
and the convolution. Pictorially,

Fs(βj) =
j

,

and

Fs(βj) ∗ Fs(βk) = δj,kd
−1
j Fs(βj) , (8.1)

F
−1
s (βj)F

−1
s (βk) = δ−1

m∑

t=1

N t
j,kF

−1
s (βt) . (8.2)

By Equation (8.2), P2,− is isomorphic to the C∗ algebra R⊗Z C.
One can construct a subfactor planar algebra from a unitary multifusion categories following the quantum

double construction in a similar way.
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