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GALOIS ACTIONS OF FINITELY GENERATED GROUPS

RARELY HAVE MODEL COMPANIONS

ÖZLEM BEYARSLAN♣ AND PIOTR KOWALSKI♠

Abstract. We show that if G is a finitely generated group such that its

profinite completion pG is “far from being projective” (that is the kernel of

the universal Frattini cover of pG is not a small profinite group), then the
class of existentially closed G-actions on fields is not elementary. Since any
infinite, finitely generated, virtually free, and not free group is “far from being
projective”, the main result of this paper corrects an error in our paper Model

theory of fields with virtually free group actions, Proc. London Math. Soc., (2)
118 (2019), 221–256 by showing the negation of Theorem 3.26 in that paper.

1. Introduction

The aim of this paper is to correct an error which appeared in our paper [3].
Unfortunately, this error is extremely serious: in short, in the current paper we
prove the negation of [3, Theorem 3.26]. In fact, our main result (Theorem 3.7)
implies a “strong negation” of [3, Theorem 3.26], in the sense which is explained
below. The statement [3, Theorem 3.26] says that if G is a finitely generated and
virtually free group, then the theory of actions ofG on fields has a model companion.
This result had been previously known in the cases when G is free or finite. Theorem
3.7 implies that if G is finitely generated, infinite, virtually free, and not free, then
the theory of actions of G on fields does not have a model companion. Therefore,
Theorem 3.7 (more precisely: Corollary 3.8) can be considered as a “strongest
possible” negation of [3, Theorem 3.26].

We would like to describe briefly here the content of [3] as we see it now after
realizing our mistake. There are three main statements in [3]:

(1) a statement about companionability of actions of virtually free groups on
fields ([3, Theorem 3.26]),

(2) computations of certain profinite groups ([3, Theorem 4.6]),
(3) non-companionability of actions of Z ¸ Z on fields ([3, Corollary 5.7]).

The first statement is false (see Corollary 3.8). We use the second result above in
the current paper to show the negation of [3, Theorem 3.26]. We generalize the
third result above in the current paper to the case of nilpotent groups (see Corollary
4.3).

The mathematical reason for the error we made in [3] can be explained in very
simple terms: a tensor product of domains need not be a domain (e.g. C bR C –
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C ˆ C)! In the proof of [3, Theorem 3.26], we implicitly (and incorrectly) assumed
that a fiber product of K-irreducible algebraic varieties is again K-irreducible,
which need not be true even when K is algebraically closed. This error has its
roots already in the Introduction to [3], where we write: “Our prolongation process
may be seen as a constructive explanation ...”, however the constructive procedure
described in [3] gives only a canonical difference ring extension, where the bigger
ring need not be a domain. We can get a difference quotient which is a domain, but
finding this quotient corresponds to finding an appropriate difference prime ideal
and this is not constructive, since it requires Zorn’s Lemma.

In this paper, we show that the class of existentially closed G-fields, for some
finitely generated groups G, is not elementary by showing that such G-fields are not
bounded (as fields), but they still have absolute Galois groups of bounded cardi-
nality. Since a first-order theory cannot axiomatize any class of infinite structures
of bounded cardinality, assuming that a model companion exists leads to a con-
tradiction. More precisely, we show (Theorem 3.7) that if G is finitely generated

and the profinite completion pG is “far from being projective” (meaning that the

kernel of the universal Frattini cover of pG is not small, see Definition 2.1), then the
theory of actions of G on fields has no model companion. It was shown in [3] that
infinite, finitely generated, virtually free, and not free groups are “far from being
projective”, so Theorem 3.7 implies that for such groups G, the theory of actions
of G on fields has no model companion. However, Theorem 3.7 covers many more
cases, for example the group Z ˆ Z is “far from being projective”, so, as a special
case, we also give a new proof of a rather mysterious Hrushovski’s result about
non-companionability of the theory of partial difference fields, that is fields with
two commuting automorphisms.

In this paper, we give a counterexample (quite an unexpected one) to [3, Con-
jecture 5.9]. We also give a counterexample (see Remark 3.9(2)) to a conjecture
of Hoffmann ([10, Conjecture 5.2]) and to a conjecture about relations between
the free product of groups and companionability of the corresponding theories of
their actions on fields (see Remark 3.9(3)). Using [14, Theorem 1], we also give a
counterexample to [17, Theorem 6] (see Remark 2.5(3)).

The paper is organized as follows. In Section 2, we collect the necessary defini-
tions and results which are needed for the sequel. In Section 3, we show our main
non-companionability results. In Section 4, we deal with the nilpotent and the free
product cases and we also summarize what we know about the companionability
of the theories of group actions on fields.

We would like to thank Alexander Ivanov for fruitful discussions about geometric
group theory and Alexander Ol’shanskii for pointing out to us the example of the
group G which appears in Remark 2.5(3).

2. Absolute Galois groups of G-fields

In this section, we set our notation and present the necessary notions and results.
Let G be an arbitrary group. By

pG :“ limÐÝ
HPfG

G{H,

where H ranges over normal subgroups of G of finite index, we denote the profinite
completion of G considered as a profinite topological group.
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We recall (see [6, Definition 22.5.1]) that a continuous epimorphism of profinite
groups f : G Ñ H is a Frattini cover, if for any closed subgroup G0 ď G, we have that
G0 “ G if and only if fpG0q “ H. A Frattini cover f : G Ñ H is called a universal
Frattini cover, if the profinite group G is projective (see [6, Proposition 22.6.1]). A
universal Frattini cover f : G Ñ H is unique up to a topological isomorphism over
H and if f : G Ñ H is a universal Frattini cover, then we denote its domain G by
rH. A profinite group G is small, if for any n ą 0, there are only finitely many open
normal subgroups of G of index n. If G is a profinite group, then the rank of G
(denoted rkpGq) is the smallest cardinal κ such that there is A Ď G of cardinality κ

such that A converges to 1 P G and the subgroup generated by A is dense in G (see
[6, Section 17.1]).

In Section 4, we will use the following notions and facts from the theory of
profinite groups (proofs can be found in [6, Chapter 22.9]). The classical Sylow
theory for finite groups generalizes to the profinite case after replacing the notion
of a p-subgroup with the notion of a closed pro-p subgroup. In particular, for
a prime p and a profinite group G, p-Sylow subgroups of G exist and they are
conjugate. We also have the corresponding results about pronilpotent groups: a
profinite group is pronilpotent if and only if it is the product of its unique p-Sylow
subgroups. If G is a pronilpotent group and p is a prime number, then we denote
by Gp the unique p-Sylow subgroup of G. By “cl”, we denote the topological closure
(in an ambient profinite group). For a prime number p and a cardinal number κ,

we denote the free pro-p group of rank κ by pFκppq (see [6, Remark 17.4.7]).
We introduce below a notation for the most important profinite groups in this

paper.

Definition 2.1. Let G be an arbitrary group and G be a profinite group.

(1) We denote by

KG :“ ker
´

rG ÝÑ G

¯

the kernel of the universal Frattini cover of G.
(2) We also use the following notation:

KG :“ K pG.

(3) We sometimes say that “G is far from being projective”, if the profinite
group KG is not small.

We give below a few examples of the notions mentioned above. For any m ą 0,
we denote by Cm the cyclic group of order m written multiplicatively.

Example 2.2. Let p be a prime number and n ą 0.

(1) We have:
xCp “ Cp, ĂCp “ Zp.

We obtain that:
KCp

“ pZp – Zp,

which is a small profinite group. One can show that in general finite groups
are not “far from being projective”.

(2) The profinite completion of the free group xFn is a free profinite group,
therefore it is projective. Hence, we obtain:

ĂxFn “ xFn, KFn
“ t1u.
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(3) It is shown in [17, Section 9] that

KZˆZ –
ź

p:prime

pFωppq,

therefore {Z ˆ Z is “far from being projective”. We will generalize this result
to the nilpotent case in Section 4.

(4) Suppose that G is an infinite, finitely generated, virtually free, and not free
group. By [3, Theorem 4.6], the profinite group KG is not small, so G is
“far from being projective”.

For a field F , we denote by F sep a fixed separable closure of F , by F alg a fixed
algebraic closure of F , and by

GalpF q :“ GalpF sep{F q

the absolute Galois group of F (considered as a profinite group). We would like to
single out a standard result about actions on the absolute Galois groups.

Fact 2.3. Let K be a field and

AuttKu pKsepq :“ tσ P Aut pKsepq | σpKq “ Ku ď Aut pKsepq .

Then, GalpKq P AuttKupKsepq and the conjugation induces an action of AuttKupKsepq
on GalpKq by continuous automorphisms.

Let us fix a group G. By a G-field, we mean a field together with an action of G
by field automorphisms (see [11], [3], and [2]). A G-field K is G-closed if the action
of G does not extend to any proper algebraic extension of K. The class of G-fields
coincides with the class of models of the obvious theory of G-fields in the language
of rings extended by unary function symbols for the elements of G. We say that a
G-field is existentially closed (abbreviated e.c.), if it is an existentially closed model
of the theory of G-fields. If the class of e.c. G-fields is elementary, then we denote
the theory of this class (a model companion of the theory of G-fields) by G-TCF
and we say that “G-TCF exists”. Otherwise, we say that “G-TCF does not exist”.

We recall below some results about absolute Galois groups of G-fields. The
statements in the theorem below originate from [17] (Theorems 4,5, and 6 in [17]).
We use the formulations from [2] (Lemma 2.7, Corollary 2.13, and Corollary 2.14
in [2]), where the assumptions are a bit different and the proofs are more elaborate.
We give below a counterexample to [17, Theorem 6] (see Remark 2.5(3)).

Theorem 2.4 ([17] and [2]). Assume that the group G is finitely generated. Let K
be an e.c. G-field and C be the subfield of G-invariants.

(1) We have:

GalpCsep{K X Csepq – pG.

(2) We have:

GalpCq –
rpG.

(3) There is a natural continuous epimorphism (see Definition 2.1):

GalpKq ։ KG.

Remark 2.5. We would like to comment here on Theorem 2.4(3) and its relation
to [17, Theorem 6].
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(1) It is claimed in [17, Theorem 6] that after assuming that G is finitely
presented, the natural map GalpKq ։ KG is an isomorphism. We show in
Item (3) below that it need not be true. As it was discussed already in [2,
Remark 2.18(2)], this map is an isomorphism for a finite group G and for
a free group G.

(2) We can partially confirm the statement from [17, Theorem 6] for some
particular groups, we give details in Remark 3.6.

(3) Let us consider the group C2 ˚C3 “ xa, by which is hyperbolic (this is folk-
lore, see e.g. [7, Proposition 3.2.A] or [12, Corollary 3]). By [14, Theorem
1], the group C2 ˚ C3 has a finitely presented infinite quotient G such that
pG is trivial, hence KG is trivial as well. We will see below that this group
G is a counterexample to [17, Theorem 6].

Let b1 be the image of b in G. Clearly, b1 still has order 3, since otherwise
G would have order at most 2. If [17, Theorem 6] was true for this G, then
we would obtain a faithful action of G on an algebraically closed field (an
e.c. G-field), contradicting the Artin-Schreier Theorem, since b1 would give
an automorphism of order 3 of an algebraically closed field.

3. Groups with large universal Frattini kernels

In this section, we show the main result of this paper (Theorem 3.7) about non-
existence of the theory G-TCF in the case when the profinite group KG is not small
(see Section 2 for the necessary notions).

We note below an obvious result.

Lemma 3.1. Let G be a topological group, H be a countable group acting on G by
continuous automorphisms and A Ď G be a countable subset. Let us assume that
G is not topologically countably generated (that is: there is no countable subgroup
of G, which is dense in G). Then, there is a subgroup G ď G such that:

(1) for each h P H, we have hpGq “ G;
(2) A Ď G;
(3) G is closed and proper in G.

Proof. It is straightforward to check that the following subgroup:

G :“ cl

˜C ď

hPH

hpAq

G¸

satisfies Items p1q–p3q above. �

Remark 3.2. The above notion of “topologically countably generated” actually
coincides with the notion of “separable” (having a dense countable subset), which
also appears at the end of the proof of Theorem 3.6.

Lemma 3.3. Let G be a finitely generated group such that the profinite group KG

(see Definition 2.1) is not small and let K be an e.c. G-field. Then K is not
bounded, that is there is n ą 0 such that K has infinitely many extensions of degree
n (inside Ksep).

Proof. Since any continuous quotient of a small profinite group is again small, the
result follows directly from Theorem 2.4(3). �
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Remark 3.4. Let F be a field and n ą 0. It can be easily checked that the
following properties of F are equivalent.

(1) The field F has infinitely many extensions of degree n in F sep.
(2) The field F has infinitely many isomorphism classes of separable extensions

of degree n.
(3) There are infinitely many separable irreducible polynomials f1, f2, . . . P

F rXs of degree n such that for all i ‰ j and for all α, β P F sep, if fipαq “
0 “ fjpβq then F pαq ‰ F pβq.

Lemma 3.5. Let G be a countable group and K be a G-field. Assume that GalpKq
is not countably topologically generated. Then K is not G-closed.

Proof. Let us choose a presentation:

G “ xτi : i ă ω | wjpτ̄ q : j ă ωy,

where wj are words and τ̄ “ pτiqiăω . We identify G with a subgroup of AutpKq,
since without loss of generality the action of G on K is faithful. For any σ P G,
we choose σ1 P AuttKupKsepq (see Fact 2.3 for the notation) extending σ and we
define:

τ̄ 1 :“ pτ 1
iqiăω , A :“ twjpτ̄ 1q : j ă ωu Ď AuttKupKsepq, H :“ xτ̄ 1y ď AuttKupKsepq.

Since for each j ă ω, we have:

wjpτ̄ 1q|K “ wjpτ̄ q “ idK ,

we obtain that A Ď GalpKq. Therefore, using Fact 2.3, we can apply Lemma 3.1
for G “ GalpKq and H,A as above. By Lemma 3.1, we obtain a closed proper
subgroup G ă GalpKq such that A Ď G and for each h P H , we have hGh´1 “ G.
Let us take M :“ pKsepqG . Since for each h P H , we have hGh´1 “ G, we obtain
that H acts on M by field automorphisms. Since A Ď G, the above action of H on
M yields an action of G on M extending the action of G on K. Since G is a proper
subgroup of GalpKq, the algebraic extension K Ď M is proper as well, therefore
the G-field K is not G-closed. �

Remark 3.6. Our proof of Lemma 3.5 above has some similarities to Sjögren’s
argument towards [17, Theorem 6], which does not hold in general (see Remark
2.5(3)). Using some additional properties of profinite groups and the ideas from
the proof of Lemma 3.5, we can show the statement from [17, Theorem 6] in some
specific cases, for example if G is of the form Cp ˚ . . . ˚ Cp for a prime p (however,
we probably get an abstract isomorphism, rather than showing that the natural
epimorphism from Theorem 2.4(3) is an isomorphism).

Theorem 3.7. Let G be a finitely generated group such that the profinite group
KG is not small. Then, the theory G-TCF does not exist.

Proof. By Lemma 3.3, any e.c G-field is not bounded. We assume that the theory
G-TCF exists and we will reach a contradiction.

Claim

There is a model K of the theory G-TCF such that GalpKq is not topologically
countably generated.
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Proof of Claim. Let us take any e.c. G field M (so M is a model of G-TCF). By
Lemma 3.3, there is n ą 0 such that M has infinitely many extensions of degree n

(inside Ksep). For any field F and any ā “ pa0, . . . , an´1q P Fn, we set:

fā :“ a0 ` a1X ` . . . ` an´1X
n´1 ` Xn P F rXs.

By [4, Section 3: (3.3), (3.4), and (3.5)] and Remark 3.4, there is a formula ϕpx̄, ȳq
in the language of rings, where |x̄| “ |ȳ| “ n, such that for any field F and any
ā, b̄ P Fn, we have that F |ù ϕpā, b̄q if and only if the following two conditions hold:

(1) the polynomials fā, fb̄ are irreducible in F rXs;
(2) for any α, β P F sep, if fāpαq “ 0 “ fb̄pβq then F pαq ‰ F pβq.

For any cardinal number κ, let us consider the language Lκ which is the language
of G-fields extended by κ many n-tuples pc̄iqiăκ of constant symbols. Let Tκ be the
following Lκ-theory:

Tκ :“ G-TCF Y tϕpc̄i, c̄jq | i ă j ă κu.

By Compactness Theorem and Items p1q, p2q above, the theory Tκ is consistent.
Therefore, there are models of G-TCF with arbitrarily large absolute Galois groups,
in particular: there is a model K of the theory G-TCF such that GalpKq is not
topologically countably generated, since the cardinality of any topologically count-

ably generated profinite group is bounded by i2 “ 22
ℵ0

(see e.g. [15, Exercise
3.5.14] or much more generally: the maximum possible cardinality of a separable
Hausdorff space is i2 as well). �

We take the G-field K from Claim. By Lemma 3.5, K is not G-closed, therefore
K is not e.c., a contradiction. �

The result below can be considered as a “strong negation” to [3, Theorem 3.26].

Corollary 3.8. Let G be a finitely generated virtually free group. Then, the theory
G-TCF exists if and only if G is finite or G is free.

Proof. Since it is well-known that if G is finite or G is free, then the theory G-
TCF exists (see [11], [5], and [1]), it is enough to show the left-to-right implication.
Suppose that G is an infinite, finitely generated virtually free group, which is not
free. By [3, Theorem 4.6], the profinite group KG is not small. By Theorem 3.7,
the theory G-TCF does not exist. �

Remark 3.9. We discuss here some additional issues related to the results above.

(1) The assumption on finite generation of G was not used directly in the
arguments above, however, to be able to use the crucial Theorem 2.4, we
need to assume that G is finitely generated. It is still possible that Theorem
3.7 is true without the assumption that G is finitely generated, since we do
not have a counterexample for such a more general statement.

(2) Hoffmann conjectured ([10, Conjecture 5.2]) that if a theory T has a model
companion and a group G is finite, then the theory of G-actions on models
of T has a model companion as well. If we take for T the theory of difference
fields (which are Z-fields in our terminology) and forG any finite non-trivial
group, then the theory of G-actions on models of T is the same as the theory
of pZˆGq-fields. By Corollary 3.8, the theory pZˆGq-TCF does not exists,
so we get a counterexample to Hoffmann’s conjecture.
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(3) It was also conjectured (private communications) that ifG andH are groups
and the theories G-TCF and H-TCF exist, then the theory pG ˚ Hq-TCF
exists as well. Using Corollary 3.8, we can see that this not the case, for
example if one takes G “ H “ C2.

4. Nilpotent groups and summary

In this section, we give the full description of those finitely generated nilpotent
groups G for which the theory G-TCF exists and we also summarize what we know
about the companionability of the theories of group actions on fields.

4.1. Finitely generated nilpotent groups. We will use the fact that pronilpo-
tent groups are fully described by their pro-p Sylow subgroups (see Section 2). The
crucial preparatory result is the following, which may be a folklore.

Proposition 4.1. Assume N is an infinite finitely generated nilpotent group which

is not cyclic. Then, there is a prime number p such that pNp is infinite and rkp pNpq ě
2.

Proof. It is enough to find a quotient of N for which the result holds. We will often
use a fact saying that if a group H acts on a finitely generated group G, then we
have:

pG ¸ pH – {G ¸ H.

Since N is supersolvable, N has an infinite virtually cyclic quotient C. By [8,
Lemma 11.4], C is of the form G ¸ Z where G is finite and nilpotent or C projects
onto Z ¸ C2. Since we have: ´

{Z ¸ C2

¯
2

– Z2 ¸ C2,

we can assume that C “ G ¸ Z. If G is non-trivial, then we take a prime number
p dividing the order of G and obtain:

´
{G ¸ Z

¯
p

– Gp ¸ Zp.

The above pro-p group is infinite and rank at least 2.
Therefore, we can assume that C “ Z, so N – N0 ¸Z, where N0 is a non-trivial

finitely generated nilpotent group, since subgroups of finitely generated nilpotent
groups are again finitely generated. In this case, we can proceed as above taking a
prime p which divides the order of a non-trivial finite quotient of N0. �

We obtain the following.

Theorem 4.2. Assume N is an infinite, finitely generated nilpotent group which
is not cyclic. Then, the profinite group KN is not small.

Proof. By Proposition 4.1, there is a prime number p such that rkp pNpq ě 2. Since
for any pronilpotent group N , we have:

p rN qp “ ĆpNpq,

it is enough to show thatKxNp
is not small. However, since a pro-p group is projective

if and only if it is pro-p free (this is a result of Tate, see [6, Proposition 22.7.6]), we
get that:

ĂxNp – pFrppq,
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where r “ rkp pNpq ě 2. Since pNp is not only pronilpotent but also nilpotent, we get
that the universal Frattini cover map

ĂxNp ÝÑ pNp

is not an isomorphism ( pFrppq is not nilpotent for r ě 2, since it contains a free
group on two generators as a subgroup, see [15, Proposition 3.3.6]). Therefore,

KxNp
is a closed, normal, non-trivial, and infinite index subgroup of pFrppq. By [15,

Proposition 8.6.3], we obtain:

KxNp
– pFωppq,

so KxNp
is not small. �

Corollary 4.3. Let N be a finitely generated nilpotent group. Then, the theory
N -TCF exists if and only if N is finite or N is cyclic.

Proof. The proof is the same as the proof of Corollary 3.8, where we replace [3,
Theorem 4.6] with Theorem 4.2 �

Since the group ZˆZ is infinite, nilpotent, and not cyclic, Corollary 4.3 includes
Hrushovski’s result about the non-companionability of the theory of fields with two
commuting automorphisms.

4.2. Free products. This part is inspired by a question of Alexander Ivanov re-
garding the existence of the theory pZ2 ˚Zq-TCF. The motivation for this question
comes from the fact that the group Z2 ˚Z is fully residually free and we know that
for a free group F , the theory F -TCF exists.

To answer the question above, we need the following general result.

Theorem 4.4. For any groups G,H, we have a natural epimorphism:

KG˚H ÝÑ KG.

Proof. By [15, Exercise 9.1.1(a) and Corollary 9.1.4(a)], we get that pG is topolog-

ically isomorphic with a closed subgroup of {G ˚ H . By [3, Lemma 4.3], there is a
continuous epimorphism:

K{G˚H
ÝÑ K pG,

which gives the result. �

Corollary 4.5. For any finitely generated group H, the theory pZ2 ˚Hq-TCF does
not exist.

Proof. By Example 2.2(3), we have that the profinite group KZ2 is not small. By
Theorem 4.4, we obtain that the profinite group KZ2˚H is not small either. By
Theorem 3.7, the theory pZ2 ˚ Hq-TCF does not exists. �

4.3. Summary. In this final section, we give a summary of what we know regard-
ing existence of the theories G-TCF for different types of groups G.

If the group G is finitely generated, then we do not know any “new” (that
is: infinite and not free) types of groups G such that the theory G-TCF exists.
Therefore, it is reasonable to ask the following.

Question 4.6. Suppose that G is an infinite and finitely generated group. Does
the theory G-TCF exists if and only if G is free?
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Corollary 4.3 answers Question 4.6 positively in the case of a nilpotent group
G. Possibly, the methods of Section 4.1 could be extended to supersolvable or
even solvable groups. On a rather “orthogonal” side of the spectrum of finitely
generated groups, Question 4.6 has an affirmative answer for virtually free groups
by Corollary 3.8.

Remark 4.7. It is natural to start with checking for which finitely generated
groups G, the profinite group KG is not small. We know that:

(1) if G is finite or free, then KG is small;
(2) excluding Item (1) above, KG is not small in the case when G is virtually

free [3, Theorem 4.6.];

(3) KG is small (even trivial, since pG is trivial!) for very complicated groups
like Tarski monster groups (see e.g. [16, Section 1]) or the Higman group
(see [9]).

We do not have any counterexample for the following.

Question 4.8. Suppose that H ă G and the theory G-TCF exists. Does the
theory H-TCF exist as well?

We conjectured [2, Conjecture 6.6] that Question 4.8 has the affirmative answer
forH “ ZˆZ, but we were able to show only a slightly weaker (and a bit surprising)
result, which is [2, Corollary 6.9].

Remark 4.9. We would like to point out here an important difference between
Hrushovski’s proof of non-existence of the theory pZ ˆ Zq-TCF and our proof of
a more general result (Corollary 4.3). Hrushovski focused on p.e.c. (pseudo e.c.)
G-fields, that is G-fields which are existentially closed in those G-field extensions,
which are regular extensions of pure fields. It is rather clear that a G-field is e.c.
if and only if it is p.e.c. and G-closed (see [2, Remark 2.3(1)]). Hrushovski’s proof
gives that actually there are no saturated p.e.c. pZˆZq-fields (see [2, Theorem 6.7]),
which is a stronger statement comparing to our result (in the case of G “ Z ˆ Z).

The following question is related to Remark 4.9 above.

Question 4.10. Suppose that G is a finitely generated and virtually free group.
Is the class of p.e.c. G-fields elementary?

The methods from [3] could be used to attack Question 4.10, but we do not know
how to do it exactly.

A positive answer to Question 4.6 would be quite negative for the whole theory,
since there will be no “new” theories in the case of finitely generated groups. There-
fore, one can turn the attention to the arbitrary groups. The first non-free infinite
case was considered by Medvedev [13] who showed that (in our terminology) the
theory Q-TCF exists. In [2], we obtained the full classification of torsion Abelian
groups A such that the theory A-TCF exists. The next step could be to extend
this classification to arbitrary Abelian groups. Having in mind the results of this
paper, the following may be reasonable.

Question 4.11. Suppose that A is an Abelian group. Is it true that the theory
A-TCF exists if and only if none of the following groups embed in G (p is a prime
number below)?

‚ Z ˆ Z.
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‚ Z ˆ Cp.

‚ C
pωq
p , which is the infinite countable direct sum of Cp’s.

‚ Cp ˆ Cp8 , where Cp8 is the Prüfer p-group.

The last two types of groups are the “forbidden groups” from [2, Remark 1.2(1)].
The results from [2] can be possibly extended to locally finite nilpotent groups and
then one could appropriately generalize Question 4.11 above.
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♣Boǧaziçi Üniversitesi

Email address: ozlem.beyarslan@boun.edu.tr

♠Instytut Matematyczny, Uniwersytet Wroc lawski, Wroc law, Poland

Email address: pkowa@math.uni.wroc.pl

URL: http://www.math.uni.wroc.pl/~pkowa/

https://arxiv.org/abs/2003.02329
https://www.math.ens.psl.eu/~zchatzid/papiers/Helsinki.pdf
http://arxiv.org/abs/1508.06007
http://www2.math.su.se/reports/2005/7/

	1. Introduction
	2. Absolute Galois groups of G-fields
	3. Groups with large universal Frattini kernels
	4. Nilpotent groups and summary
	4.1. Finitely generated nilpotent groups
	4.2. Free products
	4.3. Summary

	References

