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Abstract

This paper contributes to the study of relative martingales. Specifically, for a closed random set H , they are

processes null on H which decompose as M = m + v, where m is a càdlàg uniformly integrable martingale

and, v is a continuous process with integrable variations such that v0 = 0 and dv is carried by H . First, we

extend this notion to stochastic processes not necessarily null on H , where m is considered local martingale

instead of a uniformly integrable martingale. Thus, we provide a general framework for the new larger class of

relative martingales by presenting some structural properties. Second, as applications, we construct solutions

for skew Brownian motion equations using continuous stochastic processes of the above mentioned new class.

In addition, we investigate stochastic differential equations driven by a relative martingale.
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Introduction

In the theory of zeros of continuous martingales [2], Azéma and Yor have introduced two remarkable classes of

processes respectively named: R(H) and R. More precisely, they are processes satisfying the next both definitions:

Definition 0.1 (Definition 2.1 of Azéma and Yor[2]). Let H be a random optional closed set. We call R(H) the class

of processes (Xt; t ≥ 0) vanishing on H and admitting a decomposition of the form

Xt = Mt +At,

where (Mt; t ≥ 0) is a right continuous uniformly integrable martingale, (At; t ≥ 0) is a continuous and adapted

variation integrable process such that dA is carried by H.

Definition 0.2 (Definition 2.2 of Azéma and Yor[2]). We call R the class of processes (Xt; t ≥ 0) admitting a

decomposition of the form

Xt = Mt +At,
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where (Mt; t ≥ 0) is a right continuous uniformly integrable martingale, (At; t ≥ 0) is a continuous and adapted

variation integrable process such that dA is carried by H = {t ≥ 0 : Xt = 0}.

Meyer called processes of the class R(H), relative martingales because they are true martingales outside of the

random set H. Remark from Definition 0.1 that all relative martingales vanish on H. This allows to see that R(H) ⊂
R. These both classes have been extensively studied in [2].

On another hand, Yor has extended the notion of class R to semi-martingales by introducing in [20], an another

remarkable larger class (Σ) of processes. Specifically, they are processes X which decompose as X = M +A, where

M is a càdlàg local martingale with M0 = 0 and A is a finite variation process such that the signed measure dA is

carried by {t ≥ 0 : Xt = 0}. Such stochastic processes are strongly related to many studies in probability theory. For

instance, they play a capital role in the theory of Azéma-Yor martingales, the study of zeros of continuous martingales

[2], the study of Brownian local times, the balayage formulas for the progressive case [13]. They are used to resolve

Skorokhod’s reflection equation and embedding problem . This class has been studied extensively in several studies,

enriching the general framework by deriving characterization results, by studying their main properties, presenting

their applications, and relaxing more and more the original hypotheses. Note that the class (Σ) contains the other two

above mentioned classes. However, remark that R(H) is include in the class R and the class (Σ) only because the

fact that all elements of the class R(H) vanish on H. Thus, if we remove this cancellation condition on H we lose the

inclusion of R(H) in (Σ).
The aim of this paper is to extend the notion of class R(H) to càdlàg processes not necessarily null on H and

whose the martingale part is not necessarily uniformly integrable. We do this by considering a new class that we term

M(H) and define as follows:

Definition 0.3. We shall say that a process M is a relative martingale (M ∈ M(H)) if it decomposes as M = m+v,

where

1. m is a càdlàg local martingale, with m0 = 0;

2. v is an adapted continuous process with finite variations such that v0 = 0;

3.
∫
1Hc(s)dvs = 0.

Admittedly, this new class is not a subset of the class (Σ) and reciprocally. But, it also contains interesting

examples playing a key role in the stochastic analysis. For instance, if H is the set of zeros of a standard Brownian

motionD, hence for an other Brownian motionB independent of D, the geometric Itô-Mckean skew Brownian motion

with Azzalini skew normal distribution

Xδ =
√
1− δ2B + δ|D|

is a process of the class M(H). This process is used by several authors. For instance, Corns and Satchell () and Zhu

and He [24] worked on this type of skew Brownian motion and priced European style options. Recently, in the preprint

(), the authors consider an asset evolving as Xδ to formulate the wealth function under continuous time investment

strategy of insurance companies. In this last mentioned reference, the authors investigate the next stochastic differential

equation:

dSt =

(
µ+

σ2

2

)
Stdt+ σStdX

δ
t .

Thus, it would be useful to provide a general framework and develop techniques to manipulate the processes of this

new class of relative martingales. This could open new perspectives in applications and in other areas of probability

theory.

The remainder of this paper is organized as follows. In Section 1, we present some useful preliminaries. Section

2 is devoted to the study of the class M(H), where we give some examples and explore some general properties.

Section 3 focuses on the construction of solutions for skew Brownian motion equations using stochastic processes of

the class M(H). Finally, in Section 4, we investigate stochastic differential equations driven by a relative martingale.
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1 Notations and recall of some useful results

In this section, we provide notations and recall some useful results that will be used throughout this work. Thus, we

start by giving some notations.

1.1 Notations

Throughout we fix a filtered probability space (Ω, (Ft)t≥0,F ,P) satisfying the usual conditions. We shall always

consider that H is the zero set of a continuous martingale D. And we shall use the following notations:

• ∀t ≥ 0, γt = sup{s ≤ t : Ds = 0};

• γ = sup{t ≥ 0 : Ds = 0};

• For any other process X , we will denote gt = sup{s ≤ t : Xs = 0} and g = sup{t ≥ 0 : Xs = 0};

• Q = |D∞|

E(|D∞|)
P.

We consider in this paper that

P(0 < γ < ∞) = 1.

Remark that the random time γ is not a stopping time with respect to (Ft)t≥0 but an honest time. Hence, we shall

denote (Gt)t≥0 the smallest right continuous filtration containing (Ft)t≥0 for which γ is a stopping time.

On another hand, it is known that for any continuous semi-martingale Y , the set W = {t ≥ 0;Yt = 0} cannot be

ordered. However, the set R+ \W can be decomposed as a countable union ∪n∈NJn of intervals Jn. Each interval Jn
corresponds to some excursion of Y . In other words, if Jn =]gn, dn[, Yt 6= 0 for all t ∈]gn, dn[ and Ygn = Ydn

= 0.

For any constant α ∈ [0, 1], we consider a sequence (ξn) of i.i.d. Bernoulli variables such that

P(ζn = 1) = α and P (ζn = −1) = 1− α.

Now, let us define the process ZY as follows.

ZY
t =

+∞∑

n=0

ζn1]gn,dn[(t). (1)

If we assume that α is a piecewise constant function associated with a partition (0 = t0 < t1 < · · · < tn−1 < tm),
i.e., α is of the form

α(t) =

m∑

i=0

αi1[ti,ti+1)(t),

where αi ∈ [0, 1] for all i = 0, 1, · · · ,m, then we shall consider the process

ZY
t =

+∞∑

n=0

m∑

i=0

ζin1]gn,dn[∩[t−i,ti+1)(t), (2)

where (ζin)n≥0, i = 1, 2, · · · ,m, are m independent sequences of independent variables such that

P(ζin = 1) = αi and P(ζin = −1) = 1− αi.

1.2 Some useful results of enlargement filtrations

Now, we shall recall some results of the theory of enlargement filtrations which are useful in the current work.

3



Fulgence EYI OBIANG et al. (2022)

Proposition 1 (Proposition 3.1 of Azéma and Yor[2]). Let H be a random optional closed set. Denote g = supH
and represent by (Gt)t≥0, the progressive enlargement of the filtration (Ft)t≥0 with respect to g. Let (Vt)t≥0 be a

(Gg+t)t≥0− optional process. There exists a unique (Ft)t≥0− optional process (Ut)t≥0 which vanishes on H such

that ∀t ≥ 0, Ug+t = Vt and U0 = V0 on {g = 0}. That defines a function ρ : V 7−→ U . ρ is linear, non-negative and

preserves products.

Theorem 1. [Quotient theorem: Theorem 3.2 of Azéma and Yor [2]]

1. If (Xt; t ≥ 0) is a stochastic process of the class R(H), hence, the process (χt; t > 0) defined by χt =
Xg+t

Yg+t
is

a (Q, (Gg+t)t > 0) uniformly integrable martingale.

2. Reciprocally, let (χt; t > 0) a (Q, (Gg+t)t > 0) uniformly integrable martingale; the stochastic process X =

(Ytρ(χ·)t; t ≥ 0) is the unique process of R(H) such that χt =
Xg+t

Yg+t
for all t > 0.

Theorem 2. [Theorem 4.1.2 of Azéma and Yor [2]] Let X = m+ v be a (P, (Ft)t≥0)- semi-martingale, where m is

a local martingale and v is a process with finite variations such that dv is carried by H . The process X̃ defined by

X̃t = Xγ+t −Xγ −
∫ γ+t

γ

d〈X, |D|〉s
|Ds|

is then a (Q, (Gγ+t)t≥0)- local martingale and 〈X̃, X̃〉t = 〈X,X〉γ+t − 〈X,X〉γ .

Remark that X̃ holds the next:

X̃t = Xγ+t −Xγ −
∫ γ+t

γ

d〈X,D〉s
Ds

.

Lemma 1 (Lemma 5.7 of Jeulin [11]). Let g be an honest variable with respect to (Ft)t≥0. Let (Gt)t≥0 be the

progressive enlargement of the filtration (Ft)t≥0 with respect to g. If τ is a stopping time with respect to (Gt)t≥0 such

that g < τ on {g < ∞}, hence

Gτ = Fτ .

1.3 Recall of some useful balayage formulas

Balayage formulas are power tools in this work. In next, we recall some balayage results we use in this paper. Thus,

we start by the predictable case for continuous semimartingales.

Proposition 2. Let X be a continuous semimartingale and define gt = sup{s ≤ t : Xs = 0}. If k is a locally

bounded predictable process, then

kgtXt = kg0X0 +

∫

0

kgsdXs.

In next, we provide the result for càdlàg semimartingales.

Proposition 3. Let X be a continuous semimartingale and define gt = sup{s ≤ t : Xs = 0}. If k is a bounded

predictable process, then

kgtXt = kg0X0 +

∫

0

kgsdXs.

The balayage formulas for continuous semi-martingales in the progressive case, are critical tools in this study. We

recall these results below.

Proposition 4. Let Y be a continuous semi-martingale and γ
′

t = sup{s ≤ t : Ys = 0}. Let k be a bounded

progressive process, where pk· denotes its predictable projection. Then,

kγ′

t
Yt = k0Y0 +

∫ t

0

pkγ′

s
dYs +Rt,

where R is an adapted, continuous process with bounded variations such that dRt is carried by the set {Ys = 0}.
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Proposition 4 is a powerful and interesting tool. However, the fact that we know nothing about the form of the

process R can be limiting. The processes ZY and ZY are critical to this study. Bouhadou and Ouknine [4] identified

the process R of Proposition 4 when the progressive process k is equal to Zα or Zα. We recall these results below.

Proposition 5 (Ouknine and Bouhadou [4]). Let Y be a continuous semi-martingale and ZY be the process defined

in (1). Then,

ZY
t Yt =

∫ t

0

ZY
s dYs + (2α− 1)L0

t (Z
Y Y ),

where L0
· (Z

Y Y ) is the local time of the semi-martingale ZY Y .

Proposition 6 (Ouknine and Bouhadou [4]). Let Y be a continuous semi-martingale and ZY be the process defined

in (1). Then,

ZY
t Yt =

∫ t

0

ZY
s dYs +

∫ t

0

(2α(s)− 1)dL0
s(ZY Y ),

where L0
· (ZY Y ) is the local time of the semi-martingale ZY Y .

2 A general framework for a larger family of relative martingales

In this section, we bring contributions to the study of stochastic processes of the form: M = m + v, where m is

a martingale and v is a process with finite variations such that dv is carried by H . Note that a known subfamily

of such processes is the class of relative martingales, R(H). Here, we extend this notion of relative martingales

to semimartingales which don’t necessary vanish on H and whose the martingale part is not necessary uniformly

integrable. More precisely, we provide a general framework to a larger class of processes that we shall name, class

M(H).

2.1 Some examples

Now, we shall provide some examples of the class M(H). First remark a natural example which is, the process M =
|D|. In fact, all processes of the class R(H) and all elements, X of the class (Σ) such that {t ≥ 0 : Xt = 0} ⊂ H ,

are in the class M(H). However, there also exist stochastic processes which don’t necessary vanish on H . In next,

we provide some such examples.

Example 2.1. Any semimartingale M = m + v such that M0 = 0 and DM − 〈D,M〉 is a local martingale, is an

element of the class M(H). Indeed, We have from integration by parts that

DtMt =

∫ t

0

MsdDs +

∫ t

0

Dsdms +

∫ t

0

Dsdvs + 〈D,M〉t.

Hence, it follows that
∫ t

0 Dsdvs = 0. That is, dv is carried by H . This proves that M ∈ M(H).

Example 2.2. Let m be a càdlàg local martingale which vanishes at zero and X be a continuous process of the class

(Σ) such that {t ≥ 0 : Xt = 0} ⊂ H . Hence, the following processes are in the class M(H):

• X1 = min (m,m−X);

• X2 = min (m,m+X);

• X3 = min (m−X,m+X);

• X4 = max (m,m−X);

• X5 = max (m,m+X),

• X6 = max (m−X,m+X).

5
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2.2 Some structural properties

Here, we shall explore some general properties satisfied by stochastic processes of the class M(H). Hence, we start

by the next remark:

Remark 2.1. The class M(H) is a vector space.

In what follows, we derive some properties related to the notion of stochastic integral.

Lemma 2. Let M = m+ v be a process of the class M(H). The following hold:

1. For any locally bounded predictable process h,
∫ ·

0 hsdMs is an element of the class M(H).

2. If h is a locally bounded predictable process null onH . Hence,
∫ ·

0 hsdMs and
∫ ·

0 hs−dMs are local martingales.

Proof. We have ∀t ≥ 0, ∫ t

0

hsdMs =

∫ t

0

hsdms +

∫ t

0

hsdvs

and ∫ t

0

hs−dMs =

∫ t

0

hs−dms +

∫ t

0

hs−dvs.

But,
∫ t

0
hs−dvs =

∫ t

0
hsdvs because h is continuous.

1. Hence,
∫ ·

0 hsdMs ∈ M(H) since
∫ ·

0 hsdms is a local martingale and it is obvious to see that A =
∫ ·

0 hsdvs is

a process with finite variations such that dA is carried by H .

2. Since h vanishes on H and dv is carried by H , we obtain that
∫ t

0 hsdvs = 0. Consequently,
∫ ·

0 hsdMs and∫ ·

0 hs−dMs are local martingales.

Lemma 3. For any processes M and W of the class M(H), MW − [M,W ]· is also an element of the class M(H).

Proof. Through integration by parts, we have:

MtWt =

∫ t

0

Ms−dWs +

∫ t

0

Ws−dMs + [M,W ]t.

Hence,

MtWt − [M,W ]t =

∫ t

0

Ms−dWs +

∫ t

0

Ws−dMs.

Then, we obtain the result from Remark 2.1 and Lemma 2.

In what follows, we derive a series of corollaries of Lemma 3 which show that the process MW − [M,W ]· can be

a local martingale under some assumptions.

Corollary 1. If M and W are processes of the class M(H) which vanish on H , hence MW − [M,W ]· is a local

martingale.

Proof. Let M and W be processes of the class M(H). According to Lemma 3, MW − [M,W ]· is an element of the

class M(H). Moreover, we have:

MtWt − [M,W ]t =

∫ t

0

Ms−dWs +

∫ t

0

Ws−dMs.

But, we know from Lemma 2 that
∫ t

0
Ms−dWs and

∫ t

0
Ws−dMs are local martingales because M and W vanish on

H . This completes the proof.

6
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Corollary 2. If M is a local martingale vanishing on H and W is a process of the class M(H). Hence, MW −
[M,W ]· is a local martingale.

Proof. According to Lemma 3, MW − [M,W ]· is also an element of the class M(H) and ∀t ≥ 0,

MtWt − [M,W ]t =

∫ t

0

Ms−dWs +

∫ t

0

Ws−dMs.

We can remark that
∫ ·

0
Ws−dMs is a local martingale. Moreover, we deduce from Lemma 2 that

∫ ·

0
Ms−dWs is also

a local martingale since M vanishes on H .

Corollary 3. For any process M of the class M(H), the process MD − [M,D]· is a local martingale.

Proof. It is enough to notice that M is a process of the class M(H) and D is by definition, a martingale which

vanishes on H . Thus, we obtain the result from Corollary 2.

In next corollary, we show that the product of the processes of class M(H) with vanishing quadratic covariations

is again a relative martingale and in particular under some assumptions, a local martingale.

Corollary 4. Let (X1
t )t≥0, · · · , (Xn

t )t≥0 be processes of the class M(H) such that [X i, Xj] = 0 for i 6= j. Hence,

the following hold:

1. (Πn
i=1X

i
t)t≥0 is also of class M(H).

2. If ∀i ∈ {1, · · · , n}, X i vanishes on H . Hence, (Πn
i=1X

i
t)t≥0 is a local martingale.

3. If ∃l ∈ {1, · · · , n} such that X l is a local martingale null on H . Hence, (Πn
i=1X

i
t)t≥0 is a local martingale.

Proof. 1. Let us first take n = 2. Through Lemma 3, we obtain that X1X2 − [X1, X2] is a process of the class

M(H). That is, X1X2 ∈ M(H) since [X1, X2] = 0. Hence, we obtain by induction that for any family

(X1
t )t≥0, · · · , (Xn

t )t≥0 of the class M(H) such that [X i, Xj ] = 0 for i 6= j, the process (Πn
i=1X

i
t)t≥0 is also

of class M(H).

2. We proceed in the same way as 1) by using Corollary 1 instead of Lemma 3 to show that (Πn
i=1X

i
t)t≥0 is a local

martingale.

3. Now, we assume that there exists l ∈ {1, · · · , n} such that X l is a local martingale null on H . Remark that:

Πn
i=1X

i
t = X l ×Πn

i=1,i6=lX
i
t .

But, we can see from 1) that Πn
i=1,i6=lX

i
t ∈ M(H). Hence, we obtain the result by using Corollary 2.

Now, we shall derive the result from which Example 2.2 follows.

Lemma 4. Let M and W be processes of the class M(H) such that W is continuous and {t ≥ 0 : Wt = 0} ⊂ H .

Hence, next processes are elements of the class M(H):

1. X1 = min (M,M −W );

2. X2 = min (M,M +W );

3. X3 = min (M −W,M +W );

4. X4 = max (M,M −W );

5. X5 = max (M,M +W );

6. X6 = max (M −W,M +W ).

7
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Proof. Firstly, we obtain by using formulas min(x, y) = x+y−|x−y|
2 , max(x, y) = x+y+|x−y|

2 that:

1. X1
t = Mt − 1

2Wt − 1
2 |Wt|;

2. X2 = Mt +
1
2Wt − 1

2 |Wt|;

3. X3 = Mt − |Wt|;

4. X4 = Mt − 1
2Wt +

1
2 |Wt|;

5. X5 = Mt +
1
2Wt +

1
2 |Wt|;

6. X6 = Mt + |Wt|.

Moreover, we have from Tanaka’s formula that

|Wt| =
∫ t

0

sign(Ws)dWs + L0
t (W ).

We can see that dL0
· (W ) is carried by H because {t ≥ 0 : Wt = 0} ⊂ H . Hence, |W | ∈ M(H) since according to

Lemma 2,
∫ ·

0
sign(Ws)dWs ∈ M(H). Consequently, we obtain from Remark 2.1 that the above mentioned processes

are elements of the class M(H).

Now, we shall derive some properties using the balayage formulas. Hence, we start by the predictable case.

Lemma 5. Let M be a continuous process of the class M(H), and let gt = sup{s ≤ t : Ms = 0}. Then, for any

locally bounded predictable process k, kg·M is also an element of class M(H).

Proof. By applying the balayage formula, we obtain the following:

kgtMt = kg0M0 +

∫ t

0

kgsdMs =

∫ t

0

kgsdMs.

But, we know from Lemma 2 that
∫ ·

0 kgsdMs ∈ M(H). This completes the proof.

The following Corollary present us a situation under which relative martingales are also processes of the class (Σ).

Corollary 5. Any non-negative process M = m + v of the class M(H) which vanishes on H , is an element of the

class (Σ).

Proof. Since M vanishes on H , we obtain from Lemma 4 that for any locally bounded borel function f , (f(vγt
)Mt :

t ≥ 0) ∈ M(H), where γt = sup{s ≤ t : s ∈ H}. In addition, we have from balayage formula’s that

f(vγt
)Mt =

∫ t

0

f(vγs
)dMs.

But, vγt
= vt since dv is carried by H . Then,

f(vt)Mt =

∫ t

0

f(vs)dms +

∫ t

0

f(vs)dvs.

Therefore, the process
(
f(vt)Mt −

∫ t

0
f(vs)dvs : t ≥ 0

)
is a local martingale. Consequently, we obtain from Theo-

rem 2.4 of [14] that M ∈ (Σ). This completes the Proof.

Remark 2.2. In fact, all continuous relative martingales of the class M(H) which vanish on H , are processes of the

class (Σ). Indeed, it suffices to apply the above corollary to |M | and to recall that |M | ∈ (Σ) ⇔ M ∈ (Σ).

Now, we shall use the balayage formula in progressive case to construct processes of the class (Σ) from relative

martingales.

8
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Lemma 6. Let M be a continuous process of class M(H), and let gt = sup{s ≤ t : Ms = 0}. Then, for any càdlàg

bounded progressive process k which vanishes on H , kg·M is an element of class (Σ).

Proof. The balayage formula in progressive case through that ∀t ≥ 0,

kgtMt =

∫ t

0

p(kgs)dMs +Rt,

where p(kgs) is the predictable projection of kgs and R is a continuous process with finite variations such dR is carried

by {t ≥ 0 : Mt = 0}. Since k is càdlàg, we have p(kgs) = ks−. Hence, we obtain:

kgtMt =

∫ t

0

ks−dMs +Rt

Which implies the following:

kgtMt =

∫ t

0

ksdMs +Rt

because M is continuous. But, we have from Lemma 2 that
∫ ·

0
ksdMs is a local martingale because h vanishes on H .

Consequently, the result holds.

2.3 Relationship with the Azéma-Yor relative martingales

Now, we shall state some relationship between the classes M(H) and R(H). More precisely, we derive some results

which permit to decompose a process M of the class M(H) as:

M = M1 +M2, (3)

where M1 ∈ R(H) and M2 ∈ M(H). Hence, we start by the following proposition:

Proposition 7. Let M be a process of the class M(H) such that its martingale part is uniformly integrable and

〈M,D〉 = 0. Hence, the process (Mt −Mγt
: t ≥ 0) is a relative martingale of the class R(H).

Proof. According to Corollary 3, DM −〈D,M〉 = DM is a uniformly integrable martingale. Hence, we obtain from

quotient theorem that (Mt+γ)t≥0 is a uniformly integrable martingale with respect to (Gγ+t)t≥0. Which entails that

(Mt+γ−Mγ)t≥0 is also a uniformly integrable martingale with respect to the filtration (Gγ+t)t≥0. Hence, there exists

a random variable M∞ such that Mγ+t −Mγ → M∞ and ∀t > 0, we have:

Mt+γ −Mγ = E[M∞|Gγ+t].

But, we know thanks to Lemma 5.7 of [11] that Gγ+t = Fγ+t. Then,

Mt+γ −Mγ = E[M∞|Fγ+t].

Hence, it follows that

ρ(M·+γ −Mγ)t = ρ(E[M∞|Fγ+·])t.

Now, let Zt = Mt −Mγt
and Z

′

t = E[M∞1{γ<t}|Ft]. We can remark that Z and Z
′

vanish on H and ∀t ≥ 0,

Zγ+t = Mt+γ −Mγ and Z
′

t+γ = E[M∞|Fγ+t].

Consequently, we obtain from uniqueness that

Mt −Mγt
= E[M∞1{γ<t}|Ft].

Consequently, we conclude from Proposition 2.2 of [2] that the process (Mt −Mγt
: t ≥ 0) is an element of the class

R(H).

9
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Remark 2.3. We retain that under assumptions of Proposition 7, there exists a random variable M∞ such that Mγ+t−
Mγ → M∞ as t → ∞ and for any stopping time 0 < T < ∞, we have:

MT −MγT
= E[M∞1{γ<T}|FT ].

Hence, in the particular case where M vanishes on H , we obtain the representation result given in Proposition 2.2 of

[2]. That is,

MT = E[M∞1{γ<T}|FT ].

Next corollary permit us to see that under assumptions of Proposition 7, the process (Mγt
: t ≥ 0) is also in the

class M(H).

Corollary 6. Let M be a process of the class M(H) such that its martingale part is uniformly integrable and

〈M,D〉 = 0. Hence, the process (Mγt
: t ≥ 0) is a relative martingale of the class M(H).

Proof. We have ∀t ≥ 0, Mγt
= (Mγt

−Mt) +Mt. But, according to Proposition 7, (Mt −Mγt
: t ≥ 0) ∈ R(H).

Hence, we obtain from Remark 2.1 that (Mγt
: t ≥ 0) ∈ M(H).

Remark 2.4. We obtain from Proposition 7 and Corollary 6 that any process M satisfying assumptions of Proposition

7 admits the decomposition given in (3), where M1 = (Mt −Mγt
: t ≥ 0) and M2 = (Mγt

: t ≥ 0).

In the following, we denote M̃ to represent the process defined by ∀t ≥ 0,

M̃t = Mγ+t −Mγ −
∫ γ+t

γ

d〈M,D〉s
Ds

.

Recall that from Theorem 4.1.2 of [2], M̃ is a local martingale with respect to the filtration (Gγ+t)t≥0 when M is a

process of the class M(H). Hence, we derive an another decomposition of the form (3) for M in the case where M̃ is

a true martingale.

Proposition 8. Let M be a process of the class M(H) such that M̃ is a (Gγ+t)t≥0 uniformly integrable martingale.

Hence, the process
(
Mt −Mγt

−
∫ t

γt

d〈M,D〉s
Ds

: t ≥ 0
)

is an element of the class R(H).

Proof. Since M̃ is a uniformly integrable martingale with respect to the filtration (Gγ+t)t≥0. Hence, there exists an

integrable random variable M∞ such that M̃t → M∞ as t → ∞ and ∀t ≥ 0,

M̃t = E[M∞|Gγ+t] = E[M∞|Fγ+t].

Hence, it follows that

ρ(M̃)t = ρ(E[M∞|Fγ+·])t.

Now, let

Zt = Mt −Mγt
−
∫ t

γt

d〈M,D〉s
Ds

and Z
′

t = E[M∞1{γ<t}|Ft].

We can remark that Z and Z
′

vanish on H and ∀t ≥ 0,

Zγ+t = M̃t and Z
′

t+γ = E[M∞|Fγ+t].

Hence, we obtain that

Mt −Mγt
−
∫ t

γt

d〈M,D〉s
Ds

= E[M∞1{γ<t}|Ft].

Consequently, we conclude from Proposition 2.2 of [2] that the process

(
Mt −Mγt

−
∫ t

γt

d〈M,D〉s
Ds

: t ≥ 0

)

is an element of the class R(H).

10
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Corollary 7. Let M be a process of the class M(H) such that M̃ is a (Gγ+t)t≥0 uniformly integrable martingale.

Hence, the process
(
Mγt

+
∫ t

γt

d〈M,D〉s
Ds

: t ≥ 0
)

is also an element of the class M(H).

Proof. We have ∀t ≥ 0,

Mγt
+

∫ t

γt

d〈M,D〉s
Ds

=

(
Mγt

+

∫ t

γt

d〈M,D〉s
Ds

−Mt

)
+Mt.

But, according to Proposition 8,

(
Mγt

+

∫ t

γt

d〈M,D〉s
Ds

−Mt : t ≥ 0

)
∈ R(H).

Hence, we obtain from Remark 2.1 that
(
Mγt

+
∫ t

γt

d〈M,D〉s
Ds

: t ≥ 0
)
∈ M(H).

Corollary 8. Let M be a process of the class M(H) such that M̃ is a (Gγ+t)t≥0 uniformly integrable martingale and

d〈M,D〉 is carried by H . Hence, the following hold:

1. (Mt −Mγt
: t ≥ 0) is an element of the class R(H);

2. (Mγt
: t ≥ 0) is an element of the class M(H).

Proof. We obtain respectively from Proposition 8 and Corollary 7 that

(
Mt −Mγt

−
∫ t

γt

d〈M,D〉s
Ds

: t ≥ 0

)
∈ R(H)

and (
Mγt

+

∫ t

γt

d〈M,D〉s
Ds

: t ≥ 0

)
∈ M(H).

However, ∀t ≥ 0,
∫ t

γt

d〈M,D〉s
Ds

= 0 since d〈M,D〉 is carried by H . Which completes the proof.

3 Applications to skew brownian motion equations

In this section, weak solutions to time-homogeneous and time-inhomogeneous skew Brownian motions starting form

zero are constructed on the one hand, with the help of a geometric Itô-Mckean skew Brownian motion with Azzalini

skew normal distribution Xδ =
√
1− δ2B+δ|W | and on the other hand, we do it from arbitrary continuous processes

of the class M(H). More precisely, we talk about of the two next equations:

Xt = x+Bt + (2α− 1)L0
t (X) (4)

and

Xt = x+Bt +

∫ t

0

(2α(s)− 1)dL0
s(X), (5)

where B is a standard Brownian motion and x = 0. It must be remark that solutions had already been built from the

processes of the class (Σ) (see [8]). This should not be seen as a redundancy because the above mentioned processes

are not necessary in the class (Σ). Indeed, it is only when Xδ vanishes on {t ≥ 0 : Wt = 0} that Xδ ∈ (Σ). And on

another hand, an element X of the class M(H) is in the class (Σ) only when X vanishes on H .

11
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3.1 Construction of solution from Itô-Mckean skew brownian motion

Recall that we presented Xδ in Section 1 as an element of the class M(H). In fact, this is true only when W

vanishes on H . In this subsection, we shall consider Xδ in general case. That is, W does not necessarily vanish

on H . Thus, under these assumptions, we construct from Xδ =
√
1− δ2B + δ|W |, solutions for Equations 4

and 5. For this purpose, we shall set ZW and Z1 to represent processes constructed in (1) with respect to W and

(ZW
gt
Xδ

t ; t ≥ 0) respectively and Z2 is the process defined in (2) with respect to (ZW
gt
Xδ

t ; t ≥ 0). We shall also set

gt = sup {t ≥ 0 : Xδ
t = 0}.

Proposition 9. The process Y δ,1 defined by ∀t ≥ 0, Y
δ,1
t = Z1

t Z
W
gt
Xδ

t is a weak solution of (4) with the parameter

α and starting from 0.

Proof. By applying the balayage formula in the progressive case, we get

ZW
gt
Xδ

t =

∫ t

0

p(ZW
gs
)dXδ

s +Rt,

where R is a continuous process with finite variations such that dR is carried by {t ≥ 0 : Xδ
t = 0}. Since W is

continuous, we have: p(ZW
gs
) = ZW

gs−
= ZW

s−. Thus, it follows from the continuity of Xδ that

ZW
gt
Xδ

t =

∫ t

0

ZW
s dXδ

s +Rt.

Now, remark from Tanaka’s formula that

dXδ
s =

√
1− δ2dBs + δsign(Ws)dWs + δdL0

s(W ).

Hence, we obtain:

ZW
gt
Xδ

t =
√
1− δ2

∫ t

0

ZW
s dBs + δ

∫ t

0

ZW
s sign(Ws)dWs + δ

∫ t

0

ZW
s dL0

s(W ) +Rt.

Which becomes

ZW
gt
Xδ

t =
√
1− δ2

∫ t

0

ZW
s dBs + δ

∫ t

0

ZW
s sign(Ws)dWs +Rt

since dL0(W ) is carried by {t ≥ 0 : Wt = 0} = {t ≥ 0 : ZW
t = 0}. Hence, through Proposition 5, we get

Y
δ,1
t =

√
1− δ2

∫ t

0

Z1
sZ

W
s dBs + δ

∫ t

0

Z1
sZ

W
s sign(Ws)dWs +

∫ t

0

Z1
sdRs + (2α− 1)L0

0(Y
δ,1).

But, dR is carried by {t ≥ 0 : Xδ
t = 0} and {t ≥ 0 : Xδ

t = 0} ⊂ {t ≥ 0 : ZW
gt
Xδ

t = 0} = {t ≥ 0 : Z1
t = 0}.

Therefore,

Y
δ,1
t =

√
1− δ2

∫ t

0

Z1
sZ

W
s dBs + δ

∫ t

0

Z1
sZ

W
s sign(Ws)dWs + (2α− 1)L0

t (Y
δ,1).

Now, remark that the process M defined by ∀t ≥ 0,

Mt =
√
1− δ2

∫ t

0

Z1
sZ

W
s dBs + δ

∫ t

0

Z1
sZ

W
s sign(Ws)dWs

is a continuous local martingale. In addition, we have thanks to the continuity of processes B and W :

Mt =
√
1− δ2

∫ t

0

k1sk
W
s dBs + δ

∫ t

0

k1sk
W
s sign(Ws)dWs,

12
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where k1 and kW are progressive processes constructed in (1) with respect to W and (ZW
gt
Xδ

t ; t ≥ 0) respectively.

On another hand, we have:

〈M,M〉t = (1− δ2)

∫ t

0

(k1sk
W
s )2ds+ δ2

∫ t

0

(k1sk
W
s sign(Ws))

2ds.

Which implies: 〈M,M〉t = t because k1s ∈ {−1, 1}, kWs ∈ {−1, 1} and sign(Ws) ∈ {−1, 1}. Consequently, M is a

Brownian motion. This completes the proof.

Proposition 10. The process Y δ,2 defined by ∀t ≥ 0, Y
δ,2
t = Z2

t Z
W
gt
Xδ

t is a weak solution of (5) with the parameter

α and starting from 0.

Proof. We have yet showed in the above last proof that

ZW
gt
Xδ

t =
√
1− δ2

∫ t

0

ZW
s dBs + δ

∫ t

0

ZW
s sign(Ws)dWs +Rt.

Hence, from Proposition 6, we get

Y
δ,2
t =

√
1− δ2

∫ t

0

Z2
sZ

W
s dBs + δ

∫ t

0

Z2
sZ

W
s sign(Ws)dWs +

∫ t

0

Z2
sdRs +

∫ t

0

(2α(s)− 1)dL0
s(Y

δ,2).

But, dR is carried by {t ≥ 0 : Xδ
t = 0} and {t ≥ 0 : Xδ

t = 0} ⊂ {t ≥ 0 : ZW
gt
Xδ

t = 0} = {t ≥ 0 : Z2
t = 0}.

Therefore,

Y
δ,2
t =

√
1− δ2

∫ t

0

Z2
sZ

W
s dBs + δ

∫ t

0

Z2
sZ

W
s sign(Ws)dWs +

∫ t

0

(2α(s)− 1)dL0
s(Y

δ,2).

Now, remark that the process M defined by ∀t ≥ 0,

M
′

t =
√
1− δ2

∫ t

0

Z2
sZ

W
s dBs + δ

∫ t

0

Z2
sZ

W
s sign(Ws)dWs

is a continuous local martingale. In addition, we have thanks to the continuity of processes B and W :

M
′

t =
√
1− δ2

∫ t

0

k2sk
W
s dBs + δ

∫ t

0

k1sk
W
s sign(Ws)dWs,

where k2 and kW are progressive processes constructed in () with respect to W and (ZW
gt
Xδ

t ; t ≥ 0) respectively. On

another hand, we have:

〈M ′

,M
′〉t = (1− δ2)

∫ t

0

(k2sk
W
s )2ds+ δ2

∫ t

0

(k2sk
W
s sign(Ws))

2ds.

Which implies: 〈M ′

,M
′〉t = t because k2s ∈ {−1, 1}, kWs ∈ {−1, 1} and sign(Ws) ∈ {−1, 1}. Consequently, M

′

is a Brownian motion. This completes the proof.

3.2 Construction of solutions from relative martingales

Now, we shall derive solutions by using continuous processes of the class M(H). Thus, for any continuous process

X of the last mentioned class, we let gt = sup{s ≤ t : Xt = 0} and τt = inf{s ≥ 0 : 〈X,X〉s > t}. Let ZD and

Z1 be progressive processes defined in (1) with respect to D and (ZD
gt
Xt : t ≥ 0) respectively. Z2 is the progressive

process defined in (2) with respect to (ZD
gt
Xt : t ≥ 0).

Proposition 11. The process Y1 defined by ∀t ≥ 0, Y1
t = Z1

tZ
D
gτt

Xτt is a weak solution of (4) with the parameter α

and starting from 0.

13
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Proof. First remark that ZD is a continuous bounded progressive process which vanishes on H . Hence, we obtain

from Lemma 9 that (ZD
gt
Xt : t ≥ 0) is a continuous process of the class (Σ). Hence, we obtain the result by applying

Proposition 8 of [8] on the process (ZD
gt
Xt : t ≥ 0).

Proposition 12. The process Y2 defined by ∀t ≥ 0, Y2
t = Z2

tZ
D
gτt

Xτt is a weak solution of (5) with the parameter α

and starting from 0.

Proof. We obtain the result by applying Proposition 9 of [8] on the process (ZD
gt
Xt : t ≥ 0).

4 Stochastic differential equations driven by a relative martingale

In this section, we study stochastic differential equations driven by a relative martingale. More precisely, we investigate

stochastic differential equations of the form:

dXt = σ(t,Xt)dWt + b(t,Xt)dt, 0 ≤ t ≤ T , X0 = Z (6)

where W = B + v is a continuous sub-martingale of the class M(H) such that B is a standard Brownian motion.

The study of such equations can have good applications in finance engineering. For instance, one of such equations

has recently appeared in [12] to propose an investment strategy for insurance companies. Specifically, that is next

equation:

dSt =

(
µ+

σ2

2

)
Stdt+ σStdX

δ
t ,

where Xδ is the Itô-Mckean skew Brownian motion presented in Section 2 as a process of the class M(H). In

particular, the present investigations will be do under next hypothesis:

Hypothesis 4.1. Let T > 0 and b : [0, T ]× R → R, σ : [0, T ]× R → R be measurable functions satisfying

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|); t ∈ [0, T ], x ∈ R (7)

for some constant C and such that

|b(t, x)− b(t, y)|+ |σ(t, x) − σ(t, y)| ≤ K|x− y|; t ∈ [0, T ], x, y ∈ R (8)

for some constant K . Let Z be a random variable which is independent of the σ− algebra F∞ generated by Bt, t ≥ 0
and such that

E[|Z|2] < ∞ and E[VT |Z|2] < ∞.

Under the above hypothesis, the classical stochastic equation:

dYt = σ(t, Yt)dBt + b(t, Yt)dt, Y0 = Z (9)

admits a unique continuous solution (see Theorem 5.2.1 of [16]). Throughout the rest of this paper, we shall denote

this solution Y . The study of Equation (6) strongly depends on the random set H . Indeed, the novelty in this equation

comes from the integral
∫ t

0
σ(s,Xs)dvs whose behaviour depends on H since dv is carried by H . Hence, the present

section consists of two principal subsections. In the first one, we investigate (6) according to the structure of H . In the

second part, we approach the study in a more general way without taking into account the structure on H .

4.1 Relationship with the classical equation

We first remark that dW = dB outside set H . Hence, under some conditions, the solution X of (6) behaves like the

solution Y of (9). In this subsection, we investigate situations where the solution Y of (9) satisfies (6). Thus, we start

by show that Y is also solution of (6) when t 7→ σ(t, x) vanishes on H .

14
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Proposition 13. If in addition to Hypothesis 4.1, the function σ is such that ∀s ∈ H and ∀x ∈ R, σ(s, x) = 0. Hence,

the unique solution of the equation:

Xt = Z +

∫ t

0

σ(s,Xs)dBs +

∫ t

0

b(s,Xs)ds

is also the unique solution of the next equation:

Xt = Z +

∫ t

0

σ(s,Xs)dWs +

∫ t

0

b(s,Xs)ds.

Proof. Firstly, we have: ∀t ≥ 0,

∫ t

0

σ(s,Xs)dWs =

∫ t

0

σ(s,Xs)dBs +

∫ t

0

σ(s,Xs)dvs.

But,
∫ t

0
σ(s,Xs)dvs = 0 because, s 7→ σ(s,Xs) vanishes on H and dv is carried by H . Which proves that the two

above equations are equivalent. This completes the proof.

Now, recall that H is the zero set of a continuous martingaleD. Hence, H cannot be ordered. HoweverR+\H can

be decomposed as a countable union ∪n∈NJn of intervals Jn. Each interval Jn corresponds to some excursion of D.

Specifically, if Jn =]gn, dn[, dWt = dBt for all t ∈]gn, dn[ and gn, dn ∈ H . In the following, we explore situations

where the solution Y of (9) satisfies (6). Let τ1 = g0 be the first zero of D and denote N = inf{n ≥ 0 : dn 6= gn+1}
and τ = dN .

In the following, we show that Equation (6) admits a unique solution before the first entry time in H , τ1. And that

this solution is the same which verifies (9).

Proposition 14. Let T be a real such that T < τ1 a.s. Under Assumptions 4.1, there exists a unique continuous

process X such that ∀t ∈ [0, T ],

Xt = Z +

∫ t

0

σ(s,Xs)dWs +

∫ t

0

b(s,Xs)ds.

It is the same solution of (9).

Proof. First remark that v is constant on [0, T ] because, dv is carried by H and [0, T ] ⊂ [0, τ1[⊂ Hc. That is, we

have: dWs = dBs, ∀s ≤ T . Hence, (6) coincides with the following standard stochastic differential equation:

Xt = Z +

∫ t

0

σ(s,Xs)dBs +

∫ t

0

b(s,Xs)ds. (10)

Consequently, we obtain the existence from Theorem 5.2.1 of [16]. Which completes the proof.

In the next proposition, we show that the above result is again true on [0, τ2[, where τ2 = inf{t > τ1 : t ∈ H}.

Proposition 15. For all T > 0 such that γT = τ1, we have under Assumption 4.1, that there exists a unique continuous

process X such that ∀t ≤ T ,

Xt = Z +

∫ t

0

σ(s,Xs)dWs +

∫ t

0

b(s,Xs)ds.

Proof. We know from Theorem 5.2.1 of [16] that the classic Equation:

Xt = Z +

∫ t

0

σ(s,Xs)dBs +

∫ t

0

b(s,Xs)ds

admits a unique continuous solution X . According to Proposition 14, X is also a solution of (6) on [0, τ1[. Further-

more, ∀t ∈ [τ1, T ],

Xt = Z +

∫ τ1

0

σ(s,Xs)dBs +

∫ t

τ1

σ(s,Xs)dBs +

∫ t

0

b(s,Xs)ds.
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But,∀t ∈ [τ1, T ], γt = γT because γT = τ1. Hence, we get:

Xt = Z +

∫ τ1

0

σ(s,Xs)dBs +

∫ t

γt

σ(s,Xs)dBs +

∫ t

0

b(s,Xs)ds.

However, dB = dW on [0, τ1[ and on [γt, t]. Which implies:

Xt = Z +

∫ τ1

0

σ(s,Xs)dWs +

∫ t

γt

σ(s,Xs)dWs +

∫ t

0

b(s,Xs)ds.

That is,

Xt = Z +

∫ t

0

σ(s,Xs)dWs +

∫ t

0

b(s,Xs)ds.

Consequently, X is also solution of (6).

Now, we show that Equation (6) admits a unique solution on [0, τ ] and that this solution is also the same which

verifies (9).

Proposition 16. Let T be a real such that T ≤ τ a.s. If in addition, τ1 < τ . Hence, under Assumptions 4.1, there

exists a unique continuous process X such that ∀t ∈ [0, T ],

Xt = Z +

∫ t

0

σ(s,Xs)dWs +

∫ t

0

b(s,Xs)ds.

It is the same solution of (9).

Proof. First remark that ∀T ≤ τ , [0, T ]∩H is a finite and countable set. That is, ∀t ≤ T , there exist an integer d and

reals, t1, · · · , td such that [0, t] ∩H = {t1, · · · , td}, where τ1 = t1 < t2 < · · · < td = γt. Thus, we have:

∫ t

0

σ(s,Xs)dWs =

∫ t1

0

σ(s,Xs)dWs +
d−1∑

k=1

∫ tk+1

tk

σ(s,Xs)dWs +

∫ t

γt

σ(s,Xs)dWs.

But, v is constant on [0, t1[, [γt, t] and on [tk, tk+1[, ∀k ∈ {1, · · · , d − 1} because D does not vanish on intervals

[0, t1[, ]γt, t] and on ]tk, tk+1[. Hence,

∫ t

0

σ(s,Xs)dWs =

∫ t1

0

σ(s,Xs)dBs +

d−1∑

k=1

∫ tk+1

tk

σ(s,Xs)dBs +

∫ t

γt

σ(s,Xs)dBs =

∫ t

0

σ(s,Xs)dBs.

Which means that the equation

Xt = Z +

∫ t

0

σ(s,Xs)dWs +

∫ t

0

b(s,Xs)ds

is equivalent to

Xt = Z +

∫ t

0

σ(s,Xs)dBs +

∫ t

0

b(s,Xs)ds.

This completes the proof.

Now, we shall explore what happens after the honest time γ = sup{t ≥ 0 : t ∈ H}. In particular, we show that

we have the previous result in the enlarged filtration (Gγ+t)t≥0.

Proposition 17. Under Assumptions 4.1, there exists a unique continuous process Y , adapted to the filtration

(Gγ+t)t≥0 such that ∀t ≥ 0,

Yt = Z +

∫ t

0

σ(s, Ys)dW̃s +

∫ t

0

b(s, Ys)ds,

where W̃t = Wγ+t −Wγ −
∫ γ+t

γ

d〈W,D〉s
Ds

.
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Proof. We obtain from Theorem 2.4.1 of [2] that
(
Wγ+t −Wγ −

∫ γ+t

γ

d〈W,|D|〉s
|Ds|

: t ≥ 0
)

is a local martingale with

respect to (Gγ+t)t≥0. But, we have:

∫ γ+t

γ

d〈W, |D|〉s
|Ds|

=

∫ γ+t

γ

d〈W,D〉s
Ds

.

Hence, W̃ is a local martingale adapted to (Gγ+t)t≥0. Moreover,

〈W̃ , W̃ 〉t = 〈W,W 〉γ+t − 〈W,W 〉γ = t.

Then, W̃ is a Brownian motion with respect to (Gγ+t)t≥0. Consequently, we obtain from Theorem 5.2.1 of [16] that

there exists a unique continuous process Y adapted to filtration (Gγ+t)t≥0 such that

Yt = Z +

∫ t

0

σ(s, Ys)dW̃s +

∫ t

0

b(s, Ys)ds.

Corollary 9. Let W = B + v be a (Ft)t≥0- adapted and continuous process of the class M(H) such that B is a

standard Brownian motion and d〈W,D〉 is carried by H . Under Hypothesis 4.1, there exists a process X such that

∀t ≥ 0,

Xt = Xγt
+

∫ t

γt

σ(Xs)dWs +

∫ t

γt

b(Xs)ds. (11)

Proof. We first remark that W̃t = Wt+γ −Wγ since
∫ γ+t

γ

d〈W,D〉s
Ds

= 0. Indeed, d〈W,D〉 is carried by H . Moreover,

we know from Proposition 17 that there exists a unique continuous process Y adapted to (Gγ+t)t≥0 such that ∀t ≥ 0,

Yt = Y0 +

∫ t

0

σ(Ys)dW̃s +

∫ t

0

b(Ys)ds.

On another hand, we get from Chapter V [11] that there exists a process X adapted to (Ft)t≥0 such that ∀t ≥ 0,

Yt = Xγ+t. Hence, we obtain:

Xγ+t = Xγ +

∫ t

0

σ(Xγ+s)dW̃s +

∫ t

0

b(Xγ+s)ds.

Then, it follows:

Xγ+t −Xγ =

∫ γ+t

γ

σ(Xs)dWs +

∫ γ+t

γ

b(Xs)ds.

Which implies that

ρ(Xγ+· −Xγ)t = ρ

(∫ γ+·

γ

σ(Xs)dWs +

∫ γ+·

γ

b(Xs)ds

)

t

.

Now, let us consider processes Z and Z
′

defined by ∀t ≥ 0, Zt = Xt −Xγt
and Z

′

t =
∫ t

γt
σ(Xs)dWs +

∫ t

γt
b(Xs)ds.

We can see that Z and Z
′

vanish on H and that ∀t ≥ 0,

Zγ+t = Xγ+t −Xγ and Z
′

γ+t =

∫ γ+t

γ

σ(Xs)dWs +

∫ γ+t

γ

b(Xs)ds.

Consequently, we obtain by uniqueness that

Xt −Xγt
=

∫ t

γt

σ(Xs)dWs +

∫ t

γt

b(Xs)ds.

This proves the existence of solutions for (11).
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Note that any solution of the equation:

Xt = X0 +

∫ t

0

σ(Xs)dWs +

∫ t

0

b(Xs)ds, (12)

verifies also (11). But, we cannot always affirm the reciprocal. In next corollary, we give a sufficient condition under

which a solution of (11) is also a solution of (12).

Corollary 10. Let X be a solution of Equation (11) such that ∀t ∈ H , Xt = X0 +
∫ t

0
σ(Xs)dWs +

∫ t

0
b(Xs)ds.

Hence, X is a solution of (12) for every t ≥ 0.

Proof. We have: ∀t ≥ 0,

Xt = Xγt
+

∫ t

γt

σ(Xs)dWs +

∫ t

γt

b(Xs)ds

since X is solution of (11). In addition, ∀t ∈ H ,

Xt = X0 +

∫ t

0

σ(Xs)dWs +

∫ t

0

b(Xs)ds.

Which means that

Xγt
= X0 +

∫ γt

0

σ(Xs)dWs +

∫ γt

0

b(Xs)ds.

This implies that ∀t ≥ 0,

Xt = X0 +

∫ γt

0

σ(Xs)dWs +

∫ t

γt

σ(Xs)dWs +

∫ γt

0

b(Xs)ds+

∫ t

γt

b(Xs)ds.

Consequently, we obtain that ∀t ≥ 0,

Xt = X0 +

∫ t

0

σ(Xs)dWs +

∫ t

0

b(Xs)ds.

This completes the proof.

4.2 Study in the general case

Now, we shall investigate next equation:

Xt = ζ1H(t) +

[
Z +

∫ t

0

σ(s,Xs)dWs +

∫ t

0

b(s,Xs)ds

]
1Hc(t), (13)

where W = B + v is a sub-martingale of the class M(H) such that B is a standard Brownian motion. Thus, we shall

consider next assumptions:

We prove existence of solutions for (13) in what follows.

Proposition 18. Under the above assumptions, there exist solutions for (13).

Proof. Define Y (0) = X0 and Y (p) = Y (p)(w) inductively as follows

Y
(p+1)
t = ζ1H(t) +

[
Z +

∫ t

0

σ(s, Y (p)
s )dWs +

∫ t

0

b(s, Y (p)
s )ds

]
1Hc(t).

We have ∀t ≤ T and p ≥ 1,

E
[
|Y (p+1)

t − Y
(p)
t |2

]
≤ 2E

[∫ t

0

(σ(s, Y (p)
s )− σ(s, Y (p−1)

s ))dWs

]2
+ 2E

[∫ t

0

(b(s, Y (p)
s )− b(s, Y (p−1)

s ))ds

]2
.

18
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Let αs = σ(s, Y
(p)
s )− σ(s, Y

(p−1)
s ) and βs = b(s, Y

(p)
s )− b(s, Y

(p−1)
s ). Thus, we obtain:

E

[∫ t

0

βsds

]2
≤ K2t

∫ t

0

E[|Y (p)
s − Y (p−1)

s |2]ds.

And,

E

[∫ t

0

αsdWs

]2
≤ 2E

[∫ t

0

αsdBs

]2
+ 2E

[∫ t

0

αsdvs

]2

≤ 2

∫ t

0

E(αs)
2ds+ 2E

[∫ t

0

|αs|dvs
]2

.

Hence, we get by assumptions the following:

E

[∫ t

0

αsdWs

]2
≤ 2K2

∫ t

0

E[|Y (p)
s − Y (p−1)

s |2]ds+ 2K2E

[∫ t

0

|Y (p)
s − Y (p−1)

s |dvs
]2

.

But ∀s ∈ H ,
∫ t

0
|Y (p)

s − Y
(p−1)
s |dvs = 0 since Y

(p)
s − Y

(p−1)
s = 0. Which implies:

E

[∫ t

0

αsdWs

]2
≤ 2K2

∫ t

0

E[|Y (p)
s − Y (p−1)

s |2]ds.

Therefore, we get:

E
[
|Y (p+1)

t − Y
(p)
t |2

]
≤ 2K2(2 + t)

∫ t

0

E[|Y (p)
s − Y (p−1)

s |2]ds.

In addition, we have:

E
[
|Y (1)

t − Y
(0)
t |2

]
≤ E

[∣∣∣∣ζ +
∫ t

0

σ(s,X0)dWs +

∫ t

0

b(s,X0)ds

∣∣∣∣
2
]

≤ 3E[ζ2] + 3E

[∣∣∣∣
∫ t

0

σ(s,X0)dWs

∣∣∣∣
2
]
+ 3E

[∣∣∣∣
∫ t

0

b(s,X0)ds

∣∣∣∣
2
]

≤ 3E[ζ2] + 6E

[∣∣∣∣
∫ t

0

σ(s,X0)dBs

∣∣∣∣
2
]
+ 6E

[∣∣∣∣
∫ t

0

σ(s,X0)dvs

∣∣∣∣
2
]
+ 3E

[∣∣∣∣
∫ t

0

b(s,X0)ds

∣∣∣∣
2
]

≤ 3E[ζ2] + 6E

[∫ t

0

|σ(s,X0)|2ds
]
+ 6E

[∣∣∣∣
∫ t

0

σ(s,X0)dvs

∣∣∣∣
2
]
+ 3tE

[∫ t

0

|b(s,X0)|2ds
]
.

Then,

E
[
|Y (1)

t − Y
(0)
t |2

]
≤ 3E[ζ2] + 6C2t(1 + E[|X0|2]) + 6C2E

[
|(1 + |X0|)vT |2

]
+ 3C2t2(1 + E[|X0|2]).

Hence,

E
[
|Y (1)

t − Y
(0)
t |2

]
≤ A0 +A1t,

where A0 = 3E[ζ2]+6C2E
[
|(1 + |X0|)vT |2

]
and A1 = 6C2(1+E[|X0|2])+3C2T (1+E[|X0|2]). So by induction

on p we obtain :

E
[
|Y (p+1)

t − Y
(p)
t |2

]
≤ B

p+1
0 × tp

p!
+

B
p+1
1 × tp+1

(p+ 1)!
; p ≥ 0, t ∈ [0, T ],
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where B0 and B1 are some suitable constants depending only on C,K, T,Γ and E
[
|X0|2

]
. Now, let λ be Lebesgue

measure on [0, T ] and m > n ≥ 0. Hence, we get:

||Y (m)
t − Y

(n)
t ||

L2(λ×P) =

∣∣∣∣∣

∣∣∣∣∣

m−1∑

p=n

Y
(p+1)
t − Y

(p)
t

∣∣∣∣∣

∣∣∣∣∣
L2(λ×P)

≤
m−1∑

p=n

∣∣∣
∣∣∣Y (p+1)

t − Y
(p)
t

∣∣∣
∣∣∣
L2(λ×P)

≤
m−1∑

p=n

√√√√E

[∫ T

0

|Y (p+1)
t − Y

(p)
t |2dt

]

≤
m−1∑

p=n

√√√√
∫ T

0

(
B

p+1
0 × tp

p!
+

B
p+1
1 × tp+1

(p+ 1)!

)
dt.

Hence, we obtain:

||Y (m)
t − Y

(n)
t ||

L2(λ×P) ≤
m−1∑

p=n

√
B

p+1
0 × T p+1

(p+ 1)!
+

B
p+1
1 × T p+2

(p+ 2)!
−→ 0

as n,m −→ ∞. Therefore, {Y (n)
t : n ≥ 0} is Cauchy sequence in L2(λ × P). Hence, {Y (n)

t : n ≥ 0} is convergent

in L2(λ× P). Let

Xt = lim
n→∞

Y
(n)
t in L2(λ× P).

Now, we shall show that Xt is solution of (13). We have ∀n ≥ 0, and all t ∈ [0, T ],

Y
(n+1)
t = ζ1H(t) +

[
Z +

∫ t

0

σ(s, Y (n)
s )dBs +

∫ t

0

σ(s, Y (n)
s )dvs +

∫ t

0

b(s, Y (n)
s )ds

]
1Hc(t).

But as n → ∞, we obtain from the Hölder inequality that

∫ t

0

b(s, Y (n)
s )ds −→

∫ t

0

b(s,Xs)ds in L2(λ× P).

And through Itô’s isometry, we get:

∫ t

0

σ(s, Y (n)
s )dBs −→

∫ t

0

σ(s,Xs)dBs in L2(λ× P).

Furthermore, we have:

∣∣∣∣
∣∣∣∣
∫ t

0

σ(s,Xs)dvs −
∫ t

0

σ(s, Y (n)
s )dvs

∣∣∣∣
∣∣∣∣
2

L2(λ×P)

= E

[∣∣∣∣
∫ t

0

[σ(s,Xs)− σ(s, Y (n)
s )]dvs

∣∣∣∣
2
]

≤ K2E

[∣∣∣∣
∫ t

0

|Xs − Y (n)
s |dvs

∣∣∣∣
2
]
.

But,
∫ t

0 |Xs − Y
(n)
s |dvs = 0 since ∀s ∈ H , Xs = Y

(n)
s = ζ and dv is carried by H . Then,

∫ t

0

σ(s, Y (n)
s )dvs −→

∫ t

0

σ(s,Xs)dvs in L2(λ× P).
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Consequently, ∀t ∈ [0, T ] we have

Xt = ζ1H(t) +

[
Z +

∫ t

0

σ(s,Xs)dBs +

∫ t

0

σ(s,Xs)dvs +

∫ t

0

b(s,Xs)ds

]
1Hc(t).

Lemma 7. Let X and Y be solutions of (6) such that ∀t ∈ H , Xt = Yt. If X0 = Y0 hence, X and Y are

indistinguishable.

Proof. We have ∀t ≥ 0,

E
[
|Yt −Xt|2

]
≤ 3E

[
|Y0 −X0|2

]
+3E

[∣∣∣∣
∫ t

0

(σ(s, Ys)− σ(s,Xs))dWs

∣∣∣∣
2
]
+3E

[∣∣∣∣
∫ t

0

(b(s, Ys)− b(s,Xs))ds

∣∣∣∣
2
]
.

But,

E

[∣∣∣∣
∫ t

0

(σ(s, Ys)− σ(s,Xs))dWs

∣∣∣∣
2
]
≤ 2E

[∣∣∣∣
∫ t

0

(σ(s, Ys)− σ(s,Xs))dBs

∣∣∣∣
2
]
+2E

[∣∣∣∣
∫ t

0

(σ(s, Ys)− σ(s,Xs))dvs

∣∣∣∣
2
]

We obtain from Itô isometry and Cauchy-Swarz’s inequality the following:

E

[∣∣∣∣
∫ t

0

(σ(s, Ys)− σ(s,Xs))dWs

∣∣∣∣
2
]
≤ 2

∫ t

0

E
[
|σ(s, Ys)− σ(s,Xs)|2

]
ds+2E

[
vt

∫ t

0

|σ(s, Ys)− σ(s,Xs)|2dvs
]
.

Hence, according to Lipschitz property, we get:

E

[∣∣∣∣
∫ t

0

(σ(s, Ys)− σ(s,Xs))dWs

∣∣∣∣
2
]
≤ 2K2

∫ t

0

E|Ys −Xs|2ds+ 2K2E

[
vt

∫ t

0

|Ys −Xs|2dvs
]
.

Which implies that

E

[∣∣∣∣
∫ t

0

(σ(s, Ys)− σ(s,Xs))dWs

∣∣∣∣
2
]
≤ 2K2

∫ t

0

E|Ys −Xs|2ds.

Indeed
∫ t

0 |Ys −Xs|2dvs = 0 since dv is carried by H and Y − X = 0 on H . On another hand, through Cauchy-

Shwarz’s inequality and Lipschitz property, we get:

E

[∣∣∣∣
∫ t

0

(b(s, Ys)− b(s,Xs))ds

∣∣∣∣
2
]
≤ tK2

∫ t

0

E|Ys −Xs|2ds.

Then, we obtain the following:

E
[
|Yt −Xt|2

]
≤ 3E

[
|Y0 −X0|2

]
+ 3K2(2 + t)

∫ t

0

E|Ys −Xs|2ds.

Thus, the function ϕ defined by ∀t ∈ [0, T ], ϕ(t) = E
[
|Yt −Xt|2

]
satisfies,

ϕ(t) ≤ F +A

∫ t

0

ϕ(s)ds,

where F = 3E
[
|Y0 −X0|2

]
and A = 3K2(2 + t). By, the Gronwall Inequality, we get that

ϕ(t) ≤ F exp(At).

Now, assume that X0 = Y0. That is, F = 0. And then, ϕ(t) = 0 for all t ∈ [0, T ]. Consequently, X = Y a.s.

Corollary 11. Under assumptions H1, the stochastic differential equation (13) has a unique solution.

Proof. Let Y and X be two solutions of (13). Hence, ∀t ≥ 0, Yt = Xt = ζ. Hence, X and Y are solutions of (6)

such that X = Y on H . Consequently, we obtain the result by applying Lemma 7
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Mathématiques, vol.137(7): 835-850, 2013.

[5] P. Cheridito, A. Nikeghbali, E. Platen, Processes of class sigma, last passage times, and drawdowns, SIAM J.

Financ. Math., 3(1) (2012) 280–303.

[6] F. Eyi Obiang, Resolution of the skew Brownian motion equations with stochastic calculus for signed measures,

Stochastic Analysis and Applications, https://doi.org/10.1080/07362994.2020.1844022.

[7] F. Eyi-Obiang, Y. Ouknine and O. Moutsinga. New classes of processes in Stochastic calculus for signed mea-

sures. Stochastics, 86(1): 70-86, 2014.

[8] F. Eyi Obiang, O. Moutsinga and Y. Ouknine. An ideal class to construct solutions for skew Brownian motion

equations. Journal of Theoretical Probability,DOI:10.1007/s10959-021-01078-5,2021

[9] F. Eyi Obiang, Y. Ouknine, O. Moutsinga, G. Trutnau, Some contributions to the study of stochastic processes

of the classes Σ(H) and (Σ), Stochastics, 89, 8:1253-1269, 2017.

[10] C. Dellacherie, P.A. Meyer, Probabilités et Potentiel. Chapitres V à VIII. Théorie des Martingales. Revised
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