C^* -IRREDUCIBILITY OF COMMENSURATED SUBGROUPS

KANG LI AND EDUARDO SCARPARO

ABSTRACT. Given a commensurated subgroup Λ of a group Γ , we completely characterize when the inclusion $\Lambda \leq \Gamma$ is C^* -irreducible and provide new examples of such inclusions. In particular, we obtain that $\mathrm{PSL}(n,\mathbb{Z}) \leq \mathrm{PGL}(n,\mathbb{Q})$ is C^* -irreducible for any $n \in \mathbb{N}$, and that the inclusion of a C^* -simple group into its abstract commensurator is C^* -irreducible.

The main ingredient that we use is the fact that the action of a commensurated subgroup $\Lambda \leq \Gamma$ on its Furstenberg boundary $\partial_F \Lambda$ can be extended in a unique way to an action of Γ on $\partial_F \Lambda$. Finally, we also investigate the counterpart of this extension result for the universal minimal proximal space of a group.

1. Introduction

A group Γ is said to be C^* -simple if its reduced C^* -algebra $C^*_r(\Gamma)$ is simple. After the breakthrough characterizations of C^* -simplicity in [KK17] and [BKKO17], several directions of research applying the new methods in different settings arose.

One of the recent interesting directions is investigating when inclusions of groups $\Lambda \leq \Gamma$ are C^* -irreducible, in the sense that every intermediate C^* -algebra B in $C^*_r(\Lambda) \subset B \subset C^*_r(\Gamma)$ is simple. In [Rør21], Rørdam started a systematic study of this property and provided a dynamical criterion for an inclusion of groups to be C^* -irreducible. Together with results in [Amr21], [Urs22] and [BO23], this has provided a complete characterization of C^* -irreducibility of an inclusion in the case that Λ is a normal subgroup of Γ .

Recall that a subgroup Λ of a group Γ is said to be *commensurated* if, for any $g \in \Gamma$, $\Lambda \cap g\Lambda g^{-1}$ has finite index in Λ . This is a much more flexible generalization of normal subgroups and finite-index subgroups. For example, for every $n \geq 2$, $\mathrm{PSL}(n,\mathbb{Z})$ is an infinite-index commensurated subgroup of the simple group $\mathrm{PSL}(n,\mathbb{Q})$.

In this work, we generalize the above characterization of C^* -irreducibility to commensurated subgroups (see Theorem 3.5). The main ingredient in our proof is the fact that the action of Λ on its Furstenberg boundary $\partial_F \Lambda$ can be uniquely extended to an action of Γ on $\partial_F \Lambda$ if Λ is a commensurated subgroup in Γ (see Theorem 3.1).

As one of the applications, we show that, if Γ is a C^* -simple group, then the inclusion of Γ in its abstract commensurator $Comm(\Gamma)$ is C^* -irreducible (see Corollary 3.14). To our best knowledge, this is also the first observation of the fact that, if Γ is a C^* -simple group, then $Comm(\Gamma)$ is C^* -simple as well.

Given a subgroup Λ of a group Γ , Ursu introduced in [Urs22] a universal Λ strongly proximal Γ -boundary $B(\Gamma, \Lambda)$ and showed that, if $\Lambda \leq \Gamma$, then $B(\Gamma, \Lambda) =$

1

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 817597).

 $\partial_F \Lambda$. In Section 4, we generalize this fact to commensurated subgroups and also observe that, in general, $B(\Gamma, \Lambda)$ is not extremally disconnected.

Finally, we also show that, given a commensurated subgroup Λ of a group Γ , the action of Λ on its universal minimal proximal space $\partial_p \Lambda$ can also be extended in a unique way to an action of Γ on $\partial_p \Lambda$ (see Theorem 5.1), and use this fact for concluding that, for a certain locally finite commensurated subgroup G of Thompson's group V, the resulting action of V on $\partial_p G$ is free (see Example 5.4).

2. Preliminaries

Given a compact Hausdorff space X, we denote by $\operatorname{Prob}(X)$ the space of regular probability measures on X. An action of a group Γ on X by homeomorphisms is said to be minimal if X does not contain any non-trivial closed invariant subset, and to be topologically free if, for any $g \in \Gamma \setminus \{e\}$, the set $\{x \in X : gx = x\}$ has empty interior (if Γ is countable, then $\Gamma \curvearrowright X$ is topologically free if and only if the set of points in X which are not fixed by any non-trivial element of Γ is dense in X). The action is said to be proximal if, given $x, y \in X$, there is a net $(g_i) \subset \Gamma$ such that the nets (g_ix) and (g_iy) converge and $\lim g_ix = \lim g_iy$. We say that the action is strongly proximal if the induced action $\Gamma \curvearrowright \operatorname{Prob}(X)$ is proximal. The action is called a boundary action (or X is a Γ -boundary) if it is both minimal and strongly proximal. We denote by $\partial_F\Gamma$ the Furstenberg boundary of Γ , i.e., the universal Γ -boundary (see [Gla76, Section III.1]). The group Γ is C^* -simple if and only if $\Gamma \curvearrowright \partial_F\Gamma$ is free ([BKKO17, Theorem 3.1]).

Given Γ -boundaries X and Y, if there exists $\varphi \colon X \to Y$ a homeomorphism which is Γ -equivariant (Γ -isomorphism), then it follows from [Gla76, Lemma II.4.1] that φ is the unique Γ -isomorphism between X and Y.

Let $\Lambda \leq \Gamma$ be a finite-index subgroup. Then any strongly proximal Γ -action is also Λ -strongly proximal ([Gla76, Lemma II.3.1]) and any Γ -boundary is also a Λ -boundary ([Gla76, Lemma II.3.2]). Furthermore, by [Gla76, Theorem II.4.4], which is stated for the universal minimal proximal space but whose proof also works for the Furstenberg boundary, the action $\Lambda \curvearrowright \partial_F \Lambda$ can be extended to $\Gamma \curvearrowright \partial_F \Lambda$ and $\partial_F \Lambda$ is Γ -isomorphic to $\partial_F \Gamma$. In particular, $\partial_F \Lambda$ and $\partial_F \Gamma$ are also Λ -isomorphic.

Given a group isomorphism $\psi \colon \Gamma_1 \to \Gamma_2$, by universality there is a unique homeomorphism $\tilde{\psi} \colon \partial_F \Gamma_1 \to \partial_F \Gamma_2$ such that $\tilde{\psi}(gx) = \psi(g)\tilde{\psi}(x)$ for any $g \in \Gamma_1$ and $x \in \partial_F \Gamma_1$.

Given a group Γ , let $\operatorname{Sub}(\Gamma)$ be the space of subgroups of Γ endowed with the pointwise convergence topology and with the Γ -action given by conjugation. Given a subgroup $\Lambda \leq \Gamma$, a Λ -uniformly recurrent subgroup (URS) is a non-empty closed Λ -invariant minimal set $\mathcal{U} \subset \operatorname{Sub}(\Gamma)$. Moreover, we say that \mathcal{U} is amenable if one (equivalently all) of its elements is amenable. By [Ken20, Theorem 4.1], a group Γ is C^* -simple if and only if it does not admit any non-trivial amenable Γ -uniformly recurrent subgroup.

An inclusion of groups $\Lambda \leq \Gamma$ is said to be C^* -irreducible if every intermediate C^* -algebra of $C_r^*(\Lambda) \subset C_r^*(\Gamma)$ is simple.

Given $\Lambda \leq \Gamma$ and $g \in \Gamma$, let $g^{\Lambda} := \{hgh^{-1} : h \in \Lambda\}$. We say that Γ is icc relatively to Λ if, for any $g \in \Gamma \setminus \{e\}$, $|g^{\Lambda}| < \infty$. The group Γ is said to be icc if it is icc relatively to itself.

3. C*-irreducibility of commensurated subgroups

Let Γ be a group. Two subgroups $\Lambda_1, \Lambda_2 \leq \Gamma$ are said to be *commensurable* if $[\Lambda_1 : \Lambda_1 \cap \Lambda_2] < \infty$ and $[\Lambda_2 : \Lambda_1 \cap \Lambda_2] < \infty$. Notice that this is an equivalence relation.

A subgroup $\Lambda \leq \Gamma$ is said to be *commensurated* if, for any $g \in \Gamma$, Λ is commensurable with $g\Lambda g^{-1}$. Equivalently, for any $g \in \Gamma$, $[\Lambda : \Lambda \cap g\Lambda g^{-1}] < \infty$. In this case, we write $\Lambda \leq_c \Gamma$. In the literature, this notion is also referred to by saying that Λ is an almost normal subgroup of Γ or that (Γ, Λ) is a Hecke pair.

The following result generalizes [Gla76, Theorem II.4.4] and [Oza14, Lemma 20].

Theorem 3.1. Let $\Lambda \leq_c \Gamma$. Then $\Lambda \curvearrowright \partial_F \Lambda$ extends in a unique way to an action of Γ on $\partial_F \Lambda$.

Proof. Given $g \in \Gamma$, let $\varphi_g \colon \partial_F \Lambda \to \partial_F (\Lambda \cap g \Lambda g^{-1})$ be the $(\Lambda \cap g \Lambda g^{-1})$ -isomorphism. Also let $\psi_g \colon \partial_F (\Lambda \cap g^{-1} \Lambda g) \to \partial_F (\Lambda \cap g \Lambda g^{-1})$ be the homeomorphism such that for all $h \in \Lambda \cap g^{-1} \Lambda g$ and $x \in \partial_F (\Lambda \cap g^{-1} \Lambda g)$ we have $\psi_g(hx) = ghg^{-1}\psi_g(x)$. Let $T_g := (\varphi_g)^{-1}\psi_g \varphi_{g^{-1}} \colon \partial_F \Lambda \to \partial_F \Lambda$. We claim that $g \mapsto T_g$ is a Γ -action which extends $\Lambda \cap \partial_F \Lambda$.

Given $h \in \Lambda \cap g^{-1}\Lambda g$ and $x \in \partial_F \Lambda$, one can readily check that $T_g(hx) = ghg^{-1}T_g(x)$.

Given $g,h \in \Gamma$, we have that $[\Lambda : \Lambda \cap h^{-1}\Lambda h \cap (gh)^{-1}\Lambda(gh)] < \infty$. Furthermore, given $k \in \Lambda \cap h^{-1}\Lambda h \cap (gh)^{-1}\Lambda(gh)$ and $x \in \partial_F \Lambda$, we have $T_{gh}(kx) = (gh)k(gh)^{-1}T_{gh}(x)$. On the other hand, $T_gT_h(kx) = (gh)k(gh)^{-1}T_gT_h(x)$. In particular, $(T_gT_h)^{-1}T_{gh}$ is a $(\Lambda \cap h^{-1}\Lambda h \cap (gh)^{-1}\Lambda(gh))$ -automorphism, hence $T_{gh} = T_gT_h$.

Finally, given $g \in \Lambda$, we have that $x \mapsto g^{-1}T_g(x)$ is a $(\Lambda \cap g^{-1}\Lambda g)$ -automorphism, so that $g^{-1}T_g = \mathrm{Id}_{\partial_F\Lambda}$.

Remark 3.2. The existence part of Theorem 3.1 was shown by Dai and Glasner in [DG19, Theorem 6.1] using a different method and assuming that Γ is countable.

Given a subset S of a group Γ , let $C_{\Gamma}(S)$ be the *centralizer* of S in Γ . In the next result, we follow the argument of [BKKO17, Lemma 5.3].

Lemma 3.3. Let $\Lambda \leq_c \Gamma$ and consider $\Gamma \curvearrowright \partial_F \Lambda$. Given $s \in \Gamma$, if $s \in C_{\Gamma}(\Lambda \cap s^{-1}\Lambda s)$, then $Fix(s) = \partial_F \Lambda$. Conversely, if $\Lambda \curvearrowright \partial_F \Lambda$ is free and $Fix(s) \neq \emptyset$, then $s \in C_{\Gamma}(\Lambda \cap s^{-1}\Lambda s)$.

Proof. If $s \in C_{\Gamma}(\Lambda \cap s^{-1}\Lambda s)$, then, given $h \in \Lambda \cap s^{-1}\Lambda s$ and $x \in \partial_F \Lambda$, we have s(hx) = hs(x). Since $[\Lambda : \Lambda \cap s^{-1}\Lambda s] < \infty$, we conclude that s acts trivially on $\partial_F \Lambda$.

Suppose now that $\Lambda \curvearrowright \partial_F \Lambda$ is free and $\operatorname{Fix}(s) \neq \emptyset$. Given $t \in A := \{t \in \Lambda \cap s^{-1}\Lambda s : t\operatorname{Fix}(s) \cap \operatorname{Fix}(s) \neq \emptyset\}$, we have that the action of sts^{-1} and t coincide on $\operatorname{Fix}(s) \cap t^{-1}\operatorname{Fix}(s)$. Since sts^{-1} , $t \in \Lambda$ and $\Lambda \curvearrowright \partial_F \Lambda$ is free, we obtain that $t = sts^{-1}$. Since, by [BKKO17, Lemma 5.1], A generates $\Lambda \cap s^{-1}\Lambda s$, we conclude that $s \in C_{\Gamma}(\Lambda \cap s^{-1}\Lambda s)$.

The proof of the following result is an adaptation of the argument in [Ken20, Remark 4.2] and its hypothesis is the same as in [Rør21, Theorem 5.3.(ii)].

Proposition 3.4. Let $\Lambda \leq \Gamma$. Suppose that there exists a Γ -boundary X such that, for any $\mu \in \operatorname{Prob}(X)$, there exists a net $(g_i) \subset \Lambda$ such that $g_i\mu$ converges to δ_x ,

for some $x \in X$, on which Γ acts freely. Then Γ does not admit any non-trivial amenable Λ -URS.

Proof. Suppose \mathcal{U} is a non-trivial amenable Λ -URS, and take $K \in \mathcal{U}$. Since K is amenable, there exists $\mu \in \operatorname{Prob}(X)$ fixed by K. Let $(g_i) \subset \Lambda$ be a net such that $g_i \mu \to \delta_x$, for some $x \in X$, on which Γ acts freely. By taking a subnet, we may assume that $g_i K g_i^{-1} \to L \in \operatorname{Sub}(\Gamma)$. Take $g \in L \setminus \{e\}$ and $(k_i) \subset K$ such that $g_i k_i g_i^{-1} = g$ for i sufficiently big. Then

$$\delta_x = \lim g_i \mu = \lim g_i k_i \mu = \lim g_i k_i g_i^{-1} g_i \mu = g \delta_x,$$

contradicting the fact that Γ acts freely on x.

The following result generalizes [Urs22, Theorems 1.3 and 1.9] and [BO23, Theorem 6.4], as well as the claim about finite-index subgroups in [R ϕ r21, Theorem 5.3].

Theorem 3.5. Let $\Lambda \leq_c \Gamma$. The following conditions are equivalent:

- (1) $\Lambda \leq \Gamma$ is C^* -irreducible;
- (2) Λ is C^* -simple and Γ is icc relatively to Λ ;
- (3) Λ is C^* -simple and, for any $s \in \Gamma \setminus \{e\}$, we have that $s \notin C_{\Gamma}(\Lambda \cap s^{-1}\Lambda s)$;
- (4) $\Gamma \curvearrowright \partial_F \Lambda$ is free;
- (5) There is no non-trivial amenable Λ -URS of Γ ;
- (6) Λ is C^* -simple and $\Gamma \curvearrowright \partial_F \Lambda$ is faithful.

Proof. (1) \Longrightarrow (2) follows from [Rør21, Remark 3.8 and Proposition 5.1].

(2) \Longrightarrow (3). Suppose that there is $s \in \Gamma \setminus \{e\}$ such that $s \in C_{\Gamma}(\Lambda \cap s^{-1}\Lambda s)$. Take $g_1, \ldots, g_n \in \Lambda$ left coset representatives for $\frac{\Lambda}{\Lambda \cap s^{-1}\Lambda s}$. Then

$$s^{\Lambda} = \{g_i k s k^{-1} g_i^{-1} : 1 \le i \le n, k \in \Lambda \cap s^{-1} \Lambda s\} = \{g_i s g_i^{-1} : 1 \le i \le n\}$$

is finite.

- $(3) \Longrightarrow (4)$ follows from Lemma 3.3.
- $(4) \Longrightarrow (1)$ follows from [Rør21, Theorem 5.3].
- (5) \Longrightarrow (2). If Λ is not C^* -simple, then it contains a non-trivial amenable Λ -uniformly recurrent subgroup. If Γ is not icc relatively to Λ , there exists $s \in \Gamma \setminus \{e\}$ such that s^{Λ} is finite. Hence the Λ -orbit of $\langle s \rangle$ is a finite non-trivial amenable Λ -uniformly recurrent subgroup.
 - $(4) \Longrightarrow (5)$ follows from Proposition 3.4.
 - $(3) \iff (6)$ follows from Lemma 3.3.

Remark 3.6. In [Rør21, Theorem 5.3], Rørdam showed that an inclusion $\Lambda \leq \Gamma$ satisfying the hypothesis of Proposition 3.4 is C^* -irreducible, and asked whether the converse holds. We do not know whether the converse of Proposition 3.4 holds and whether the absence of non-trivial amenable Λ -URS of Γ is equivalent to $\Lambda \leq \Gamma$ being C^* -irreducible in general.

Corollary 3.7. Given $n \in \mathbb{N}$, the inclusion

$$PSL(n, \mathbb{Z}) \leq PGL(n, \mathbb{Q})$$

is C^* -irreducible.

Proof. It was shown in [BCdlH94] that $PSL(n, \mathbb{Z})$ is C^* -simple.

Let $U(n, \mathbb{Z})$ be the group of units of the ring $M_n(\mathbb{Z})$. By [Kri90, Corollary V.5.3], $U(n, \mathbb{Z}) \leq_c \mathrm{GL}(n, \mathbb{Q})$. Since $[U(n, \mathbb{Z}) : \mathrm{SL}(n, \mathbb{Z})] = 2$, we conclude that $\mathrm{SL}(n, \mathbb{Z}) \leq_c \mathrm{SL}(n, \mathbb{Z}) \leq_c \mathrm{SL}(n, \mathbb{Z})$

 $GL(n, \mathbb{Q})$ as well. Since taking quotients preserves being commensurated, it follows that $PSL(n, \mathbb{Z}) \leq_c PGL(n, \mathbb{Q})$.

Let $(e_{ij})_{1 \leq i,j \leq n} \in M_n(\mathbb{Z})$ be the matrix units and fix $[a] \in \operatorname{PGL}(n,\mathbb{Q}) \setminus \{[\operatorname{Id}]\}$. By taking conjugates of [a] by elements of the form $[\operatorname{Id}+m \cdot e_{ij}] \in \operatorname{PSL}(n,\mathbb{Z}), m \in \mathbb{Z}, 1 \leq i \neq j \leq n$, it is easy to see that $[a]^{\operatorname{PSL}(n,\mathbb{Z})}$ is infinite, so that $\operatorname{PGL}(n,\mathbb{Q})$ is icc relatively to $\operatorname{PSL}(n,\mathbb{Z})$.

The conclusion then follows from Theorem 3.5.

Remark 3.8. Let us sketch a different proof of Corollary 3.7 which gives the stronger statement that $PSL(n, \mathbb{Z}) \leq PGL(n, \mathbb{R})$ is C^* -irreducible, where $PGL(n, \mathbb{R})$ is seen as a discrete group.

Clearly, it suffices to show that, for any countable group Γ such that $\mathrm{PSL}(n,\mathbb{Z}) \leq \Gamma \leq \mathrm{PGL}(n,\mathbb{R})$, the inclusion $\mathrm{PSL}(n,\mathbb{Z}) \leq \Gamma$ is C^* -irreducible. By the argument in [Bry17, Example 3.4.3], the action of $\mathrm{PGL}(n,\mathbb{R})$ on the projective space $P^{n-1}(\mathbb{R})$ is topologically free. Since $\mathrm{PSL}(n,\mathbb{Z}) \curvearrowright \mathrm{P}^{n-1}(\mathbb{R})$ is a boundary action, the result follows from [Rør21, Theorem 5.3].

Corollary 3.9. Let Λ be a finite-index subgroup of a group Γ . If Γ is C^* -simple, then $\Lambda \leq \Gamma$ is C^* -irreducible. Conversely, if Λ is C^* -simple, then Γ is icc if and only if $\Lambda \leq \Gamma$ is C^* -irreducible.

Proof. If Γ is C^* -simple, then $\Gamma \curvearrowright \partial_F \Gamma$ is free. Since $\partial_F \Gamma$ is Γ -isomorphic to $\partial_F \Lambda$, it follows that $\Lambda < \Gamma$ is C^* -irreducible.

If Γ is icc, then, since $[\Gamma : \Lambda] < \infty$, it is also icc relatively to Λ , hence $\Lambda \leq \Gamma$ is C^* -irreducible by Theorem 3.5. The last implication is immediate.

Example 3.10. The inclusion given by the Sanov subgroup $\mathbb{F}_2 \leq \mathrm{PSL}(2,\mathbb{Z})$ is finite-index, hence it is C^* -irreducible by Corollary 3.9.

Free groups. Fix $m, n \in \mathbb{N}$ such that $2 \leq m < n$ and consider the free groups $\mathbb{F}_m = \langle a_1, \dots, a_m \rangle \leq \langle a_1, \dots, a_n \rangle = \mathbb{F}_n$. In [Rør21, Example 5.4], Rørdam observed that $\mathbb{F}_m \leq \mathbb{F}_n$ is C^* -irreducible. Notice that \mathbb{F}_m is far from being commensurated in \mathbb{F}_n . In fact, given $g \in \mathbb{F}_n \setminus \mathbb{F}_m$, we have that $\mathbb{F}_m \cap g\mathbb{F}_m g^{-1} = \{e\}$ (i.e., \mathbb{F}_m is malnormal in \mathbb{F}_n). In particular, this example is not covered by Theorems 3.1 and 3.5. Nonetheless, there does exist an extension to \mathbb{F}_n of the action $\mathbb{F}_m \cap \partial_F \mathbb{F}_m$, but it is far from being unique, since the generators a_{m+1}, \dots, a_n can be mapped into any homeomorphisms on $\partial_F \mathbb{F}_m$.

Furthermore, we claim that $\mathbb{F}_m \leq \mathbb{F}_n$ satisfies condition (5) in Theorem 3.5. We will prove this by using Proposition 3.4.

Let

$$\partial \mathbb{F}_n := \{(x_i) \in \prod_{\mathbb{N}} \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\} : \forall i \in \mathbb{N}, x_{i+1} \neq x_i^{-1}\}$$

be the Gromov boundary of \mathbb{F}_n , and consider the action of \mathbb{F}_n on $\partial \mathbb{F}_n$ by left multiplication. Fix $\mu \in \text{Prob}(\partial \mathbb{F}_n)$ and we will show that there is $w \in \partial \mathbb{F}_n$ on which \mathbb{F}_n acts freely and such that $\delta_w \in \overline{\mathbb{F}_m \mu}$.

Let $z_+ := (a_1)_{i \in \mathbb{N}} \in \partial \mathbb{F}_n$ and $z_- := (a_1^{-1})_{i \in \mathbb{N}} \in \partial \mathbb{F}_n$. Notice that, for all $y \in \partial \mathbb{F}_n \setminus \{z_-\}$, we have that, as $k \to +\infty$, $a_1^k y \to z_+$. Furthermore, a_1 fixes z_- .

It follows from the dominated convergence theorem that

$$a_1^k \mu \to \mu(\{z_-\})\delta_{z_-} + (1 - \mu(\{z_-\})\delta_{z_+}),$$

as $k \to +\infty$. In particular, $\nu := \mu(\{z_-\})\delta_{z_-} + (1 - \mu(\{z_-\})\delta_{z_+} \in \overline{\mathbb{F}_n\mu}$.

Let $w:=a_1a_2^1a_1a_2^2a_1a_2^3\dots a_1a_2^la_1a_2^{l+1}\dots\in\partial\mathbb{F}_n$. Since w is not eventually periodic, we have that \mathbb{F}_n acts freely on w. Given $k\in\mathbb{N}$, let $g_k:=w_1\dots w_k\underline{a_2}\in\mathbb{F}_m$. We have that $g_kz_\pm=w_1\dots w_ka_2z_\pm\to w$, as $k\to+\infty$. Therefore, $\delta_w\in\overline{\mathbb{F}_m\nu}\subset\overline{\mathbb{F}_m\mu}$, thus showing the claim.

Abstract commensurator. Let Γ be a group and Ω be the set of isomorphisms between finite-index subgroups of Γ . Given $\alpha, \beta \in \Omega$, we say that $\alpha \sim \beta$ if there exists a finite-index subgroup $H \leq \operatorname{dom}(\alpha) \cap \operatorname{dom}(\beta)$ such that $\alpha|_H = \beta|_H$. Recall that the *abstract commensurator* of Γ , denoted by $\operatorname{Comm}(\Gamma)$, is the group whose underlying set is Ω/\sim , with product given by composition (defined up to finite-index subgroup).

Let Λ be a commensurated subgroup of Γ . Given $g \in \Gamma$, let

$$\beta_g \colon \Lambda \cap g^{-1} \Lambda g \to \Lambda \cap g \Lambda g^{-1}$$

$$h \mapsto g h g^{-1}$$

and $j_{\Lambda}^{\Gamma} \colon \Gamma \to \operatorname{Comm}(\Lambda)$ be the homomorphism given by $j_{\Lambda}^{\Gamma}(g) := [\beta_g]$. In order to ease the notation, we will sometimes denote j_{Λ}^{Γ} simply by j, and it will always be clear from the context what are the involved groups. Let us now collect a few elementary facts about j.

Lemma 3.11. Let Γ be a group. Then $j_{\Gamma}^{\Gamma}(\Gamma) \leq_c \operatorname{Comm}(\Gamma)$.

Proof. Fix $[\alpha] \in \text{Comm}(\Gamma)$. Given $g \in \text{dom}(\alpha)$, we have that $[\alpha]j(g)[\alpha]^{-1} = j(\alpha(g))$. In particular, $j(\Gamma) \cap [\alpha]j(\Gamma)[\alpha]^{-1} \supset j(\text{Im}(\alpha))$. Since $[\Gamma : \text{Im}(\alpha)] < \infty$, we conclude that $[j(\Gamma) : j(\Gamma) \cap [\alpha]j(\Gamma)[\alpha]^{-1}] < \infty$.

Lemma 3.12. Let $\Lambda \leq_c \Gamma$. Then $\ker j_{\Lambda}^{\Gamma} = \{g \in \Gamma : |g^{\Lambda}| < \infty\}$.

Proof. Given $g \in \ker j$, there exists a finite-index subgroup $H \leq \Lambda \cap g^{-1}\Lambda g$ such that, for all $h \in H$, $ghg^{-1} = h$, which implies that $|g^{\Lambda}| < \infty$. Conversely, if $|g^{\Lambda}| < \infty$, then $H := \{k \in \Lambda : kg = gk\}$ is a finite-index subgroup of Λ and $g \in \ker j$.

As a consequence of Lemma 3.12, if Γ is an icc group, then $j \colon \Gamma \to \operatorname{Comm}(\Gamma)$ is injective ([Kid11, Lemma 3.8.(i)]). The next result is known ([Kid11, Lemma 3.8.(iii)]). For the convenience of the reader, we provide the proof here.

Lemma 3.13. If Γ is an icc group, then $Comm(\Gamma)$ is icc relatively to Γ .

Proof. Given $[\alpha] \in \text{Comm}(\Gamma)$ and $g \in \text{dom}(\alpha)$, we have

$$j(g)[\alpha]j(g^{-1}) = j(g\alpha(g^{-1}))[\alpha].$$

If $[\alpha] \neq e$, then $H := \{g \in \text{dom}(\alpha) : g = \alpha(g)\}$ has infinite-index in $\text{dom}(\alpha)$. Given $g_1, g_2 \in \text{dom}(\alpha)$ such that $g_1H \neq g_2H$, one can readily check that $g_1\alpha(g_1)^{-1} \neq g_2\alpha(g_2)^{-1}$. From this, it follows immediately that $[\alpha]^{\Gamma}$ is infinite. \square

In [BO23, Corollary 6.6], Bédos and Omland showed that if Γ is a C^* -simple group, then $\Gamma \leq \operatorname{Aut}(\Gamma)$ is C^* -irreducible. The same conclusion holds when we consider the abstract commensurator:

Corollary 3.14. Given a C^* -simple group Γ , we have that $\Gamma \leq \operatorname{Comm}(\Gamma)$ is C^* -irreducible.

Proof. Recall that any C^* -simple group is icc (this follows, e.g., from Theorem 3.5). The result is then a consequence of Theorem 3.5 and Lemma 3.13.

Remark 3.15. Corollary 3.14 generalizes the fact proven in [LBMB18, Corollary 4.4] that, if Thompson's group F is C^* -simple, then Comm(F) is C^* -simple.

Remark 3.16. Let \mathbb{F}_n be a non-abelian free group of finite rank. Then Corollary 3.14 implies that $\text{Comm}(\mathbb{F}_n)$ is C^* -simple. In particular, it does not admit any non-trivial amenable normal subgroup. It is an open problem whether $\text{Comm}(\mathbb{F}_n)$ is a simple group ([CM18, Problem 7.2]).

4. Relative boundaries

Given groups $\Lambda \leq \Gamma$, Ursu introduced in [Urs22, Proposition 4.1] a Λ -strongly proximal Γ -boundary $B(\Gamma, \Lambda)$ which is universal with these properties.

Consider $\Gamma := \mathrm{PSL}(2,\mathbb{Z})$ and the boundary action $\Gamma \curvearrowright \mathbb{R} \cup \{\infty\}$. The stabilizer Γ_{∞} of ∞ is isomorphic to \mathbb{Z} and consists of the translations $g_n(x) := x + n, n \in \mathbb{Z}$, $x \in \mathbb{R}$.

Proposition 4.1. The action of $\Gamma = \mathrm{PSL}(2,\mathbb{Z})$ on $B(\Gamma,\Gamma_{\infty})$ is topologically free but non-free. In particular, $B(\Gamma,\Gamma_{\infty})$ is not extremally disconnected.

Proof. For any $x \in \mathbb{R} \cup \{\infty\}$, we have $g_n(x) \to \infty$ as $n \to +\infty$. As a consequence of the dominated convergence theorem, it follows easily that $\Gamma_\infty \curvearrowright \mathbb{R} \cup \{\infty\}$ is strongly proximal. Hence, there is a Γ -equivariant map $B(\Gamma, \Gamma_\infty) \to \mathbb{R} \cup \{\infty\}$. Since $\Gamma_\infty \curvearrowright B(\Gamma, \Gamma_\infty)$ is strongly proximal, it follows from amenability of Γ_∞ that Γ_∞ fixes some point in $B(\Gamma, \Gamma_\infty)$. In particular, $\Gamma \curvearrowright B(\Gamma, \Gamma_\infty)$ is not free. On the other hand, since $\Gamma \curvearrowright \mathbb{R} \cup \{\infty\}$ is topologically free, it follows from [BKKO17, Lemma 3.2] that $\Gamma \curvearrowright B(\Gamma, \Gamma_\infty)$ is topologically free. As a consequence of [Fro71, Theorem 3.1], $B(\Gamma, \Gamma_\infty)$ is not extremally disconnected.

Remark 4.2. Let Γ be a group. One of the key properties in the applications of $\partial_F \Gamma$ to C^* -simplicity of Γ is the fact that $C(\partial_F \Gamma)$ is injective, shown in [KK17, Theorem 3.12]. Proposition 4.1 implies that $C(B(\Gamma, \Lambda))$ is not injective, in general. We believe that this is an evidence that $B(\Gamma, \Lambda)$ is not likely to play the same role of the Furstenberg boundary in C^* -algebraic applications.

Our next aim is to show that, given $\Lambda \leq_c \Gamma$, it holds that $B(\Gamma, \Lambda) = \partial_F \Lambda$. We start with a result which we believe has its own interest.

Theorem 4.3. Let $\Lambda \leq_c \Gamma$ and $\Gamma \curvearrowright X$ a minimal action on a compact space such that $\Lambda \curvearrowright X$ is proximal. Then $\Lambda \curvearrowright X$ is minimal as well.

Proof. Let $M \subset X$ be a closed non-empty Λ -invariant set. For any $g \in \Gamma$, we have that gM is $g\Lambda g^{-1}$ -invariant.

Fix $g_1, \ldots, g_n \in \Gamma$. We have that $H := \Lambda \cap g_1 \Lambda g_1^{-1} \cap \cdots \cap g_n \Lambda g_n^{-1}$ has finite index in Λ . In particular, $H \cap X$ is proximal and admits a unique minimal component K. Since each $g_i M$ is $g_i \Lambda g_i^{-1}$ -invariant, we conclude that $K \subset \bigcap_{i=1}^n g_i M$.

By compactness of X, we obtain that $L := \bigcap_{g \in \Gamma} gM \neq \emptyset$. Since L is Γ -invariant, we have $X = L \subset M$.

The following is an immediate consequence of the previous theorem:

Corollary 4.4. Let $\Lambda \leq_c \Gamma$. If X is a Γ -boundary which is also Λ -strongly proximal, then X is a Λ -boundary.

By arguing as in [Urs22, Corollary 4.3], we conclude the following:

Corollary 4.5. If $\Lambda \leq_c \Gamma$, then $B(\Gamma, \Lambda) = \partial_F \Lambda$.

5. Commensurated subgroups and proximal actions

Given a group Γ , there exists a universal minimal proximal Γ -space $\partial_p\Gamma$ ([Gla76, Theorem II.4.2]). It was shown in [FTVF19, Proposition 2.12] and [GTWZ21, Theorem 1.5] that a countable group Γ is icc if and only if $\Gamma \curvearrowright \partial_p\Gamma$ is faithful, if and only if $\Gamma \curvearrowright \partial_p\Gamma$ is free.

One can easily check that the statements of Theorem 3.1 and Lemma 3.3 hold with $\partial_p \Lambda$ instead of $\partial_F \Lambda$, with the exact same proofs (in particular, [BKKO17, Lemma 5.1], which is needed in the proof of Lemma 3.3, uses only proximality). Thus, we obtain:

Theorem 5.1. Let $\Lambda \leq_c \Gamma$. Then $\Lambda \curvearrowright \partial_p \Lambda$ extends in a unique way to an action of Γ on $\partial_p \Lambda$. Furthermore, given $s \in \Gamma$, if $s \in C_{\Gamma}(\Lambda \cap s^{-1}\Lambda s)$, then $Fix(s) = \partial_p \Lambda$. Conversely, if $\Lambda \curvearrowright \partial_p \Lambda$ is free and $Fix(s) \neq \emptyset$, then $s \in C_{\Gamma}(\Lambda \cap s^{-1}\Lambda s)$.

As a consequence, we obtain the following:

Theorem 5.2. Let $\Lambda \leq_c \Gamma$ and suppose that $\Lambda \curvearrowright \partial_p \Lambda$ is free. The following conditions are equivalent:

- (1) Γ is icc relatively with Λ ;
- (2) For any $s \in \Gamma \setminus \{e\}$, we have that $s \notin C_{\Gamma}(\Lambda \cap s^{-1}\Lambda s)$;
- (3) $\Gamma \curvearrowright \partial_p \Lambda$ is free;
- (4) $\Gamma \curvearrowright \partial_p \Lambda$ is faithful.

Proof. The implications $(1) \Longrightarrow (2) \Longrightarrow (3) \Longrightarrow (4)$ are proven as in Theorem 3.5.

 $(4) \Longrightarrow (1)$. Suppose that there is $g \in \Gamma \setminus \{e\}$ such that $|g^{\Lambda}| < \infty$. Then $H := \{h \in \Lambda : gh = hg\}$ is a finite-index subgroup of Λ , hence $H \cap \partial_p \Lambda$ is also minimal and proximal. Since the homeomorphism on $\partial_p \Lambda$ given by g is H-equivariant, we conclude that g acts trivially on $\partial_p \Lambda$.

Remark 5.3. Given a group Γ , let $L(\Gamma)$ be its group von Neumann algebra. Given $\Lambda \leq \Gamma$, it follows from [Rør21, Proposition 5.1] and [BO23, Corollary 4.3] that Γ is icc relatively to Λ if and only if any intermediate von Neumann algebra of $L(\Lambda) \subset L(\Gamma)$ is a factor, if and only if any intermediate C^* -algebra of $C^*_r(\Lambda) \subset C^*_r(\Gamma)$ is prime.

Let us now apply Theorem 5.2 to a certain locally finite commensurated subgroup of Thompson's group V.

Example 5.4. Let $X := \{0,1\}$ and, given $n \geq 0$, let X^n be the set of words in X of length n. Given $w \in X^n$, let $\mathcal{C}(w) := \{(s_n) \in X^{\mathbb{N}} : s_{[1,n]} = w\}$. Recall that Thompson's group V is the group of homeomorphisms on $X^{\mathbb{N}}$ consisting of elements g for which there exist two partitions $\{\mathcal{C}(w_1), \ldots, \mathcal{C}(w_m)\}$ and $\{\mathcal{C}(z_1), \ldots, \mathcal{C}(z_m)\}$ of $\{0,1\}^{\mathbb{N}}$ such that $g(w_is) = z_is$ for every $1 \leq i \leq m$ and $s \in X^{\mathbb{N}}$.

Let us define inductively groups G_n acting by permutations on X^n .

Let $G_1 := \mathbb{Z}_2$ acting non-trivially on X and, for $n \in \mathbb{N}$,

$$G_{n+1} := \left(\bigoplus_{w \in X^n} \mathbb{Z}_2\right) \rtimes G_n,$$

where the action of G_{n+1} on X^{n+1} is defined as follows: given $v \in X^n$, $x \in X$, $\sigma \in G_n$ and $f \in \bigoplus_{X^n} \mathbb{Z}_2$,

$$(f,\sigma)(vx) := \sigma(v)f_{\sigma(v)}(x).$$

Let $G := \lim_{n \in \mathbb{N}} G_n$. Then G acts faithfully on $X^{\mathbb{N}}$ and, as observed in [LB17, Proposition 7.11], $G \leq_c V$.

We claim that V is icc relatively with G. Given $u \in X^n$, let the rigid stabilizer of u, denoted by $\mathrm{rist}_G(u)$, be the subgroup of G consisting of the elements which, for every $v \in X^n \setminus \{u\}$, act as the identity on C(v). Given $g \in G$, there is $\tilde{g} \in \mathrm{rist}_G(u)$ such that $\tilde{g}(us) = ug(s)$ for any $s \in X^{\mathbb{N}}$. Clearly, the map $g \mapsto \tilde{g}$ is an isomorphism from G to $\mathrm{rist}_G(u)$. Fix $h \in V \setminus \{e\}$ and take $w \in X^n$ and $z \in X^m$ such that $w \neq z$, $n \geq m$ and h(ws) = zs for any $s \in X^{\mathbb{N}}$. Furthermore, take $v \in X^{n-m}$ such that $zv \neq w$. Given $s \in X^{\mathbb{N}}$, we have that

(1)
$$\{\tilde{g}h\tilde{g}^{-1}(wvs): \tilde{g} \in \operatorname{rist}_G(zv)\} = \{zvg(s): g \in G\}.$$

Since $G \cap X^{\mathbb{N}}$ is faithful, it follows from (1) that $|h^G| = \infty$, thus proving the claim. From [GTWZ21, Theorem 1.5], we obtain that $G \cap \partial_p G$ is free and from Theorem 5.2, we conclude that $V \cap \partial_p G$ is free.

Remark 5.5. In [LBMB18, Theorem 1.5], Le Boudec and Matte Bon showed that Thompson's group V is C^* -simple, hence $V \curvearrowright \partial_F V$ is free. However, their proof is done by showing that V does not admit non-trivial amenable URS, not by exhibitting a concrete topologically free V-boundary. It seems as an interesting problem to determine whether $V \curvearrowright \partial_P G$ is strongly proximal, thus providing an alternative proof of C^* -simplicity of V.

Remark 5.6. In [BKKO17, Theorem 1.4], it was shown that the class of C^* -simple groups is closed by taking normal subgroups. Obviously, this class is not closed by taking commensurated subgroups, since any finite subgroup is commensurated. Moreover, Example 5.4 shows that, given $\Lambda \leq_c \Gamma$ such that Γ is icc relatively to Λ , C^* -simplicity of Γ does not pass to Λ in general.

References

- [Amr21] T. Amrutam, On intermediate subalgebras of C^* -simple group actions, Int. Math. Res. Not. IMRN **21** (2021), 16193–16204.
- [BCdlH94] M. Bekka, M. Cowling, and P. de la Harpe, Simplicity of the reduced C^* -algebra of $PSL(n, \mathbf{Z})$, Internat. Math. Res. Notices 7 (1994), 285ff., approx. 7 pp.
- [BKKO17] E. Breuillard, M. Kalantar, M. Kennedy, and N. Ozawa, C*-simplicity and the unique trace property for discrete groups, Publ. Math. Inst. Hautes Études Sci. 126 (2017), 35–71
 - [BO23] E. Bédos and T. Omland, C*-irreducibility for reduced twisted group C*-algebras, J. Funct. Anal. 284 (2023), no. 5, 31. Id/No 109795.
 - [Bry17] R. S. Bryder, Boundaries, injective envelopes, and reduced crossed products, Ph.D. Thesis, 2017.
 - [CM18] P.-E. Caprace and N. Monod, Future directions in locally compact groups: a tentative problem list, New directions in locally compact groups, 2018, pp. 343–355.
 - [DG19] X. Dai and E. Glasner, On universal minimal proximal flows of topological groups, Proc. Amer. Math. Soc. 147 (2019), no. 3, 1149–1164.
 - [Fro71] Z. Frolík, Maps of extremally disconnected spaces, theory of types, and applications, General Topology and its Relations to Modern Analysis and Algebra, III (Proc. Conf., Kanpur, 1968), 1971, pp. 131–142.
- [FTVF19] J. Frisch, O. Tamuz, and P. Vahidi Ferdowsi, Strong amenability and the infinite conjugacy class property, Invent. Math. 218 (2019), no. 3, 833–851.

- [Gla76] S. Glasner, Proximal flows, Lecture Notes in Mathematics, Vol. 517, Springer-Verlag, Berlin-New York, 1976.
- [GTWZ21] E. Glasner, T. Tsankov, B. Weiss, and A. Zucker, Bernoulli disjointness, Duke Math. J. 170 (2021), no. 4, 615–651.
 - [Ken20] M. Kennedy, An intrinsic characterization of C*-simplicity, Ann. Sci. Éc. Norm. Supér. (4) 53 (2020), no. 5, 1105–1119.
 - [Kid11] Y. Kida, Rigidity of amalgamated free products in measure equivalence, J. Topol. 4 (2011), no. 3, 687–735.
 - [KK17] M. Kalantar and M. Kennedy, Boundaries of reduced C*-algebras of discrete groups, J. Reine Angew. Math. 727 (2017), 247–267.
 - [Kri90] A. Krieg, Hecke algebras, Mem. Amer. Math. Soc. 87 (1990), no. 435, x+158.
 - [LB17] A. Le Boudec, Compact presentability of tree almost automorphism groups, Ann. Inst. Fourier (Grenoble) 67 (2017), no. 1, 329–365.
- [LBMB18] A. Le Boudec and N. Matte Bon, Subgroup dynamics and C*-simplicity of groups of homeomorphisms, Ann. Sci. Éc. Norm. Supér. (4) 51 (2018), no. 3, 557–602.
 - [Oza14] N. Ozawa, Lecture on the Furstenberg boundary and C*-simplicity, 2014. Available at http://www.kurims.kyoto-u.ac.jp/~narutaka/notes/yokou2014.pdf.
 - [Rør21] M. Rørdam, Irreducible inclusions of simple C^* -algebras, arXiv preprint arXiv:2105.11899 (2021).
 - [Urs22] D. Ursu, Relative C*-simplicity and characterizations for normal subgroups, J. Operator Theory 87 (2022), no. 2, 471–486.

KANG LI, FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG, GERMANY *Email address*: kang.li@fau.de

EDUARDO SCARPARO, CENTER FOR ENGINEERING, FEDERAL UNIVERSITY OF PELOTAS, BRAZIL $Email\ address$: eduardo.scarparo@ufpel.edu.br