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C∗-IRREDUCIBILITY OF COMMENSURATED SUBGROUPS

KANG LI AND EDUARDO SCARPARO

Abstract. Given a commensurated subgroup Λ of a group Γ, we completely
characterize when the inclusion Λ ≤ Γ is C∗-irreducible and provide new exam-
ples of such inclusions. In particular, we obtain that PSL(n,Z) ≤ PGL(n,Q)
is C∗-irreducible for any n ∈ N, and that the inclusion of a C∗-simple group
into its abstract commensurator is C∗-irreducible.

The main ingredient that we use is the fact that the action of a commen-
surated subgroup Λ ≤ Γ on its Furstenberg boundary ∂FΛ can be extended
in a unique way to an action of Γ on ∂FΛ. Finally, we also investigate the
counterpart of this extension result for the universal minimal proximal space
of a group.

1. Introduction

A group Γ is said to be C∗-simple if its reduced C∗-algebra C∗
r (Γ) is simple.

After the breakthrough characterizations of C∗-simplicity in [KK17] and [BKKO17],
several directions of research applying the new methods in different settings arose.

One of the recent interesting directions is investigating when inclusions of groups
Λ ≤ Γ are C∗-irreducible, in the sense that every intermediate C∗-algebra B in
C∗

r (Λ) ⊂ B ⊂ C∗
r (Γ) is simple. In [Rør21], Rørdam started a systematic study

of this property and provided a dynamical criterion for an inclusion of groups to
be C∗-irreducible. Together with results in [Amr21], [Urs22] and [BO23], this has
provided a complete characterization of C∗-irreducibility of an inclusion in the case
that Λ is a normal subgroup of Γ.

Recall that a subgroup Λ of a group Γ is said to be commensurated if, for any
g ∈ Γ, Λ ∩ gΛg−1 has finite index in Λ. This is a much more flexible general-
ization of normal subgroups and finite-index subgroups. For example, for every
n ≥ 2, PSL(n,Z) is an infinite-index commensurated subgroup of the simple group
PSL(n,Q).

In this work, we generalize the above characterization of C∗-irreducibility to
commensurated subgroups (see Theorem 3.5). The main ingredient in our proof
is the fact that the action of Λ on its Furstenberg boundary ∂FΛ can be uniquely
extended to an action of Γ on ∂FΛ if Λ is a commensurated subgroup in Γ (see
Theorem 3.1).

As one of the applications, we show that, if Γ is a C∗-simple group, then the
inclusion of Γ in its abstract commensurator Comm(Γ) is C∗-irreducible (see Corol-
lary 3.14). To our best knowledge, this is also the first observation of the fact that,
if Γ is a C∗-simple group, then Comm(Γ) is C∗-simple as well.

Given a subgroup Λ of a group Γ, Ursu introduced in [Urs22] a universal Λ-
strongly proximal Γ-boundary B(Γ,Λ) and showed that, if Λ E Γ, then B(Γ,Λ) =
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∂FΛ. In Section 4, we generalize this fact to commensurated subgroups and also
observe that, in general, B(Γ,Λ) is not extremally disconnected.

Finally, we also show that, given a commensurated subgroup Λ of a group Γ, the
action of Λ on its universal minimal proximal space ∂pΛ can also be extended in a
unique way to an action of Γ on ∂pΛ (see Theorem 5.1), and use this fact for con-
cluding that, for a certain locally finite commensurated subgroup G of Thompson’s
group V , the resulting action of V on ∂pG is free (see Example 5.4).

2. Preliminaries

Given a compact Hausdorff space X , we denote by Prob(X) the space of regular
probability measures on X . An action of a group Γ on X by homeomorphisms is
said to be minimal if X does not contain any non-trivial closed invariant subset,
and to be topologically free if, for any g ∈ Γ \ {e}, the set {x ∈ X : gx = x} has
empty interior (if Γ is countable, then ΓyX is topologically free if and only if the
set of points in X which are not fixed by any non-trivial element of Γ is dense in
X). The action is said to be proximal if, given x, y ∈ X , there is a net (gi) ⊂ Γ
such that the nets (gix) and (giy) converge and lim gix = lim giy. We say that the
action is strongly proximal if the induced action Γ y Prob(X) is proximal. The
action is called a boundary action (or X is a Γ-boundary) if it is both minimal
and strongly proximal. We denote by ∂FΓ the Furstenberg boundary of Γ, i.e., the
universal Γ-boundary (see [Gla76, Section III.1]). The group Γ is C∗-simple if and
only if Γy∂FΓ is free ([BKKO17, Theorem 3.1]).

Given Γ-boundariesX and Y , if there exists ϕ : X → Y a homeomorphism which
is Γ-equivariant (Γ-isomorphism), then it follows from [Gla76, Lemma II.4.1] that
ϕ is the unique Γ-isomorphism between X and Y .

Let Λ ≤ Γ be a finite-index subgroup. Then any strongly proximal Γ-action is
also Λ-strongly proximal ([Gla76, Lemma II.3.1]) and any Γ-boundary is also a Λ-
boundary ([Gla76, Lemma II.3.2]). Furthermore, by [Gla76, Theorem II.4.4], which
is stated for the universal minimal proximal space but whose proof also works for
the Furstenberg boundary, the action Λy ∂FΛ can be extended to Γy ∂FΛ and
∂FΛ is Γ-isomorphic to ∂FΓ. In particular, ∂FΛ and ∂FΓ are also Λ-isomorphic.

Given a group isomorphism ψ : Γ1 → Γ2, by universality there is a unique home-
omorphism ψ̃ : ∂FΓ1 → ∂FΓ2 such that ψ̃(gx) = ψ(g)ψ̃(x) for any g ∈ Γ1 and
x ∈ ∂FΓ1.

Given a group Γ, let Sub(Γ) be the space of subgroups of Γ endowed with the
pointwise convergence topology and with the Γ-action given by conjugation. Given
a subgroup Λ ≤ Γ, a Λ-uniformly recurrent subgroup (URS) is a non-empty closed
Λ-invariant minimal set U ⊂ Sub(Γ). Moreover, we say that U is amenable if one
(equivalently all) of its elements is amenable. By [Ken20, Theorem 4.1], a group Γ
is C∗-simple if and only if it does not admit any non-trivial amenable Γ-uniformly
recurrent subgroup.

An inclusion of groups Λ ≤ Γ is said to be C∗-irreducible if every intermediate
C∗-algebra of C∗

r (Λ) ⊂ C∗
r (Γ) is simple.

Given Λ ≤ Γ and g ∈ Γ, let gΛ := {hgh−1 : h ∈ Λ}. We say that Γ is icc

relatively to Λ if, for any g ∈ Γ \ {e}, |gΛ| < ∞. The group Γ is said to be icc if it
is icc relatively to itself.
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3. C*-irreducibility of commensurated subgroups

Let Γ be a group. Two subgroups Λ1,Λ2 ≤ Γ are said to be commensurable if
[Λ1 : Λ1 ∩ Λ2] < ∞ and [Λ2 : Λ1 ∩ Λ2] < ∞. Notice that this is an equivalence
relation.

A subgroup Λ ≤ Γ is said to be commensurated if, for any g ∈ Γ, Λ is commen-
surable with gΛg−1. Equivalently, for any g ∈ Γ, [Λ : Λ∩gΛg−1] <∞. In this case,
we write Λ ≤c Γ. In the literature, this notion is also referred to by saying that Λ
is an almost normal subgroup of Γ or that (Γ,Λ) is a Hecke pair.

The following result generalizes [Gla76, Theorem II.4.4] and [Oza14, Lemma 20].

Theorem 3.1. Let Λ ≤c Γ. Then Λy∂FΛ extends in a unique way to an action

of Γ on ∂FΛ.

Proof. Given g ∈ Γ, let ϕg : ∂FΛ → ∂F (Λ∩gΛg−1) be the (Λ∩gΛg−1)-isomorphism.
Also let ψg : ∂F (Λ ∩ g−1Λg) → ∂F (Λ ∩ gΛg−1) be the homeomorphism such that
for all h ∈ Λ ∩ g−1Λg and x ∈ ∂F (Λ ∩ g−1Λg) we have ψg(hx) = ghg−1ψg(x). Let
Tg := (ϕg)

−1ψgϕg−1 : ∂FΛ → ∂FΛ. We claim that g 7→ Tg is a Γ-action which
extends Λy∂FΛ.

Given h ∈ Λ ∩ g−1Λg and x ∈ ∂FΛ, one can readily check that Tg(hx) =
ghg−1Tg(x).

Given g, h ∈ Γ, we have that [Λ : Λ ∩ h−1Λh ∩ (gh)−1Λ(gh)] < ∞. Further-
more, given k ∈ Λ ∩ h−1Λh ∩ (gh)−1Λ(gh) and x ∈ ∂FΛ, we have Tgh(kx) =
(gh)k(gh)−1Tgh(x). On the other hand, TgTh(kx) = (gh)k(gh)−1TgTh(x). In
particular, (TgTh)

−1Tgh is a (Λ ∩ h−1Λh ∩ (gh)−1Λ(gh))-automorphism, hence
Tgh = TgTh.

Finally, given g ∈ Λ, we have that x 7→ g−1Tg(x) is a (Λ∩g−1Λg)-automorphism,
so that g−1Tg = Id∂FΛ. �

Remark 3.2. The existence part of Theorem 3.1 was shown by Dai and Glasner
in [DG19, Theorem 6.1] using a different method and assuming that Γ is countable.

Given a subset S of a group Γ, let CΓ(S) be the centralizer of S in Γ. In the
next result, we follow the argument of [BKKO17, Lemma 5.3].

Lemma 3.3. Let Λ ≤c Γ and consider Γy∂FΛ. Given s ∈ Γ, if s ∈ CΓ(Λ∩s−1Λs),
then Fix(s) = ∂FΛ. Conversely, if Λ y ∂FΛ is free and Fix(s) 6= ∅, then s ∈
CΓ(Λ ∩ s−1Λs).

Proof. If s ∈ CΓ(Λ ∩ s−1Λs), then, given h ∈ Λ ∩ s−1Λs and x ∈ ∂FΛ, we have
s(hx) = hs(x). Since [Λ : Λ ∩ s−1Λs] < ∞, we conclude that s acts trivially on
∂FΛ.

Suppose now that Λ y ∂FΛ is free and Fix(s) 6= ∅. Given t ∈ A := {t ∈
Λ ∩ s−1Λs : tFix(s) ∩ Fix(s) 6= ∅}, we have that the action of sts−1 and t coincide
on Fix(s) ∩ t−1 Fix(s). Since sts−1, t ∈ Λ and Λ y ∂FΛ is free, we obtain that
t = sts−1. Since, by [BKKO17, Lemma 5.1], A generates Λ ∩ s−1Λs, we conclude
that s ∈ CΓ(Λ ∩ s−1Λs). �

The proof of the following result is an adaptation of the argument in [Ken20,
Remark 4.2] and its hypothesis is the same as in [Rør21, Theorem 5.3.(ii)].

Proposition 3.4. Let Λ ≤ Γ. Suppose that there exists a Γ-boundary X such that,

for any µ ∈ Prob(X), there exists a net (gi) ⊂ Λ such that giµ converges to δx,
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for some x ∈ X, on which Γ acts freely. Then Γ does not admit any non-trivial

amenable Λ-URS.

Proof. Suppose U is a non-trivial amenable Λ-URS, and take K ∈ U . Since K is
amenable, there exists µ ∈ Prob(X) fixed by K. Let (gi) ⊂ Λ be a net such that
giµ → δx, for some x ∈ X , on which Γ acts freely. By taking a subnet, we may
assume that giKg

−1
i → L ∈ Sub(Γ). Take g ∈ L \ {e} and (ki) ⊂ K such that

gikig
−1
i = g for i sufficiently big. Then

δx = lim giµ = lim gikiµ = lim gikig
−1
i giµ = gδx,

contradicting the fact that Γ acts freely on x. �

The following result generalizes [Urs22, Theorems 1.3 and 1.9] and [BO23, The-
orem 6.4], as well as the claim about finite-index subgroups in [Rør21, Theorem
5.3].

Theorem 3.5. Let Λ ≤c Γ. The following conditions are equivalent:

(1) Λ ≤ Γ is C∗-irreducible;

(2) Λ is C∗-simple and Γ is icc relatively to Λ;
(3) Λ is C∗-simple and, for any s ∈ Γ \ {e}, we have that s /∈ CΓ(Λ ∩ s−1Λs);
(4) Γy∂FΛ is free;

(5) There is no non-trivial amenable Λ-URS of Γ;
(6) Λ is C∗-simple and Γy∂FΛ is faithful.

Proof. (1) =⇒ (2) follows from [Rør21, Remark 3.8 and Proposition 5.1].
(2) =⇒ (3). Suppose that there is s ∈ Γ \ {e} such that s ∈ CΓ(Λ ∩ s−1Λs).

Take g1, . . . , gn ∈ Λ left coset representatives for Λ
Λ∩s−1Λs

. Then

sΛ = {giksk
−1g−1

i : 1 ≤ i ≤ n, k ∈ Λ ∩ s−1Λs} = {gisg
−1
i : 1 ≤ i ≤ n}

is finite.
(3) =⇒ (4) follows from Lemma 3.3.
(4) =⇒ (1) follows from [Rør21, Theorem 5.3].
(5) =⇒ (2). If Λ is not C∗-simple, then it contains a non-trivial amenable Λ-

uniformly recurrent subgroup. If Γ is not icc relatively to Λ, there exists s ∈ Γ\{e}
such that sΛ is finite. Hence the Λ-orbit of 〈s〉 is a finite non-trivial amenable
Λ-uniformly recurrent subgroup.

(4) =⇒ (5) follows from Proposition 3.4.
(3) ⇐⇒ (6) follows from Lemma 3.3. �

Remark 3.6. In [Rør21, Theorem 5.3], Rørdam showed that an inclusion Λ ≤ Γ
satisfying the hypothesis of Proposition 3.4 is C∗-irreducible, and asked whether
the converse holds. We do not know whether the converse of Proposition 3.4 holds
and whether the absence of non-trivial amenable Λ-URS of Γ is equivalent to Λ ≤ Γ
being C∗-irreducible in general.

Corollary 3.7. Given n ∈ N, the inclusion

PSL(n,Z) ≤ PGL(n,Q)

is C∗-irreducible.

Proof. It was shown in [BCdlH94] that PSL(n,Z) is C∗-simple.
Let U(n,Z) be the group of units of the ringMn(Z). By [Kri90, Corollary V.5.3],

U(n,Z) ≤c GL(n,Q). Since [U(n,Z) : SL(n,Z)] = 2, we conclude that SL(n,Z) ≤c
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GL(n,Q) as well. Since taking quotients preserves being commensurated, it follows
that PSL(n,Z) ≤c PGL(n,Q).

Let (eij)1≤i,j≤n ∈ Mn(Z) be the matrix units and fix [a] ∈ PGL(n,Q) \ {[Id]}.
By taking conjugates of [a] by elements of the form [Id+m ·eij] ∈ PSL(n,Z), m ∈ Z,

1 ≤ i 6= j ≤ n, it is easy to see that [a]PSL(n,Z) is infinite, so that PGL(n,Q) is icc
relatively to PSL(n,Z).

The conclusion then follows from Theorem 3.5. �

Remark 3.8. Let us sketch a different proof of Corollary 3.7 which gives the
stronger statement that PSL(n,Z) ≤ PGL(n,R) is C∗-irreducible, where PGL(n,R)
is seen as a discrete group.

Clearly, it suffices to show that, for any countable group Γ such that PSL(n,Z) ≤
Γ ≤ PGL(n,R), the inclusion PSL(n,Z) ≤ Γ is C∗-irreducible. By the argument in
[Bry17, Example 3.4.3], the action of PGL(n,R) on the projective space Pn−1(R)
is topologically free. Since PSL(n,Z)y Pn−1(R) is a boundary action, the result
follows from [Rør21, Theorem 5.3].

Corollary 3.9. Let Λ be a finite-index subgroup of a group Γ. If Γ is C∗-simple,

then Λ ≤ Γ is C∗-irreducible. Conversely, if Λ is C∗-simple, then Γ is icc if and

only if Λ ≤ Γ is C∗-irreducible.

Proof. If Γ is C∗-simple, then Γy∂FΓ is free. Since ∂FΓ is Γ-isomorphic to ∂FΛ,
it follows that Λ ≤ Γ is C∗-irreducible.

If Γ is icc, then, since [Γ : Λ] < ∞, it is also icc relatively to Λ, hence Λ ≤ Γ is
C∗-irreducible by Theorem 3.5. The last implication is immediate.

�

Example 3.10. The inclusion given by the Sanov subgroup F2 ≤ PSL(2,Z) is
finite-index, hence it is C∗-irreducible by Corollary 3.9.

Free groups. Fix m,n ∈ N such that 2 ≤ m < n and consider the free groups
Fm = 〈a1, . . . , am〉 ≤ 〈a1, . . . , an〉 = Fn. In [Rør21, Example 5.4], Rørdam observed
that Fm ≤ Fn is C∗-irreducible. Notice that Fm is far from being commensurated
in Fn. In fact, given g ∈ Fn \ Fm, we have that Fm ∩ gFmg

−1 = {e} (i.e., Fm is
malnormal in Fn). In particular, this example is not covered by Theorems 3.1 and
3.5. Nonetheless, there does exist an extension to Fn of the action Fm y ∂FFm,
but it is far from being unique, since the generators am+1, . . . , an can be mapped
into any homeomorphisms on ∂FFm.

Furthermore, we claim that Fm ≤ Fn satisfies condition (5) in Theorem 3.5. We
will prove this by using Proposition 3.4.

Let

∂Fn := {(xi) ∈
∏

N

{a1, a
−1
1 , . . . , an, a

−1
n } : ∀i ∈ N, xi+1 6= x−1

i }

be the Gromov boundary of Fn, and consider the action of Fn on ∂Fn by left
multiplication. Fix µ ∈ Prob(∂Fn) and we will show that there is w ∈ ∂Fn on
which Fn acts freely and such that δw ∈ Fmµ.

Let z+ := (a1)i∈N ∈ ∂Fn and z− := (a−1
1 )i∈N ∈ ∂Fn. Notice that, for all

y ∈ ∂Fn \ {z−}, we have that, as k → +∞, ak1y → z+. Furthermore, a1 fixes z−.
It follows from the dominated convergence theorem that

ak1µ→ µ({z−})δz− + (1− µ({z−})δz+ ,
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as k → +∞. In particular, ν := µ({z−})δz− + (1− µ({z−})δz+ ∈ Fnµ.

Let w := a1a
1
2a1a

2
2a1a

3
2 . . . a1a

l
2a1a

l+1
2 · · · ∈ ∂Fn. Since w is not eventually peri-

odic, we have that Fn acts freely on w. Given k ∈ N, let gk := w1 . . . wka2 ∈ Fm. We
have that gkz± = w1 . . . wka2z± → w, as k → +∞. Therefore, δw ∈ Fmν ⊂ Fmµ,
thus showing the claim.

Abstract commensurator. Let Γ be a group and Ω be the set of isomorphisms
between finite-index subgroups of Γ. Given α, β ∈ Ω, we say that α ∼ β if there
exists a finite-index subgroup H ≤ dom(α) ∩ dom(β) such that α|H = β|H . Recall
that the abstract commensurator of Γ, denoted by Comm(Γ), is the group whose
underlying set is Ω/∼, with product given by composition (defined up to finite-index
subgroup).

Let Λ be a commensurated subgroup of Γ. Given g ∈ Γ, let

βg : Λ ∩ g−1Λg → Λ ∩ gΛg−1

h 7→ ghg−1

and jΓΛ : Γ → Comm(Λ) be the homomorphism given by jΓΛ(g) := [βg]. In order
to ease the notation, we will sometimes denote jΓΛ simply by j, and it will always
be clear from the context what are the involved groups. Let us now collect a few
elementary facts about j.

Lemma 3.11. Let Γ be a group. Then jΓΓ(Γ) ≤c Comm(Γ).

Proof. Fix [α] ∈ Comm(Γ). Given g ∈ dom(α), we have that [α]j(g)[α]−1 =
j(α(g)). In particular, j(Γ) ∩ [α]j(Γ)[α]−1 ⊃ j(Im(α)). Since [Γ : Im(α)] < ∞, we
conclude that [j(Γ) : j(Γ) ∩ [α]j(Γ)[α]−1] <∞. �

Lemma 3.12. Let Λ ≤c Γ. Then ker jΓΛ = {g ∈ Γ : |gΛ| <∞}.

Proof. Given g ∈ ker j, there exists a finite-index subgroup H ≤ Λ ∩ g−1Λg such
that, for all h ∈ H , ghg−1 = h, which implies that |gΛ| < ∞. Conversely, if
|gΛ| < ∞, then H := {k ∈ Λ : kg = gk} is a finite-index subgroup of Λ and
g ∈ ker j. �

As a consequence of Lemma 3.12, if Γ is an icc group, then j : Γ → Comm(Γ)
is injective ([Kid11, Lemma 3.8.(i)]). The next result is known ([Kid11, Lemma
3.8.(iii)]). For the convenience of the reader, we provide the proof here.

Lemma 3.13. If Γ is an icc group, then Comm(Γ) is icc relatively to Γ.

Proof. Given [α] ∈ Comm(Γ) and g ∈ dom(α), we have

j(g)[α]j(g−1) = j(gα(g−1))[α].

If [α] 6= e, then H := {g ∈ dom(α) : g = α(g)} has infinite-index in dom(α). Given
g1, g2 ∈ dom(α) such that g1H 6= g2H , one can readily check that g1α(g1)

−1 6=
g2α(g2)

−1. From this, it follows immediately that [α]Γ is infinite. �

In [BO23, Corollary 6.6], Bédos and Omland showed that if Γ is a C∗-simple
group, then Γ ≤ Aut(Γ) is C∗-irreducible. The same conclusion holds when we
consider the abstract commensurator:

Corollary 3.14. Given a C∗-simple group Γ, we have that Γ ≤ Comm(Γ) is C∗-

irreducible.
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Proof. Recall that any C∗-simple group is icc (this follows, e.g., from Theorem 3.5).
The result is then a consequence of Theorem 3.5 and Lemma 3.13. �

Remark 3.15. Corollary 3.14 generalizes the fact proven in [LBMB18, Corollary
4.4] that, if Thompson’s group F is C∗-simple, then Comm(F ) is C∗-simple.

Remark 3.16. Let Fn be a non-abelian free group of finite rank. Then Corollary
3.14 implies that Comm(Fn) is C∗-simple. In particular, it does not admit any
non-trivial amenable normal subgroup. It is an open problem whether Comm(Fn)
is a simple group ([CM18, Problem 7.2]).

4. Relative boundaries

Given groups Λ ≤ Γ, Ursu introduced in [Urs22, Proposition 4.1] a Λ-strongly
proximal Γ-boundary B(Γ,Λ) which is universal with these properties.

Consider Γ := PSL(2,Z) and the boundary action ΓyR ∪ {∞}. The stabilizer
Γ∞ of ∞ is isomorphic to Z and consists of the translations gn(x) := x+ n, n ∈ Z,
x ∈ R.

Proposition 4.1. The action of Γ = PSL(2,Z) on B(Γ,Γ∞) is topologically free

but non-free. In particular, B(Γ,Γ∞) is not extremally disconnected.

Proof. For any x ∈ R ∪ {∞}, we have gn(x) → ∞ as n → +∞. As a consequence
of the dominated convergence theorem, it follows easily that Γ∞ y R ∪ {∞} is
strongly proximal. Hence, there is a Γ-equivariant map B(Γ,Γ∞) → R∪{∞}. Since
Γ∞ yB(Γ,Γ∞) is strongly proximal, it follows from amenability of Γ∞ that Γ∞

fixes some point in B(Γ,Γ∞). In particular, ΓyB(Γ,Γ∞) is not free. On the other
hand, since ΓyR ∪ {∞} is topologically free, it follows from [BKKO17, Lemma
3.2] that ΓyB(Γ,Γ∞) is topologically free. As a consequence of [Fro71, Theorem
3.1], B(Γ,Γ∞) is not extremally disconnected. �

Remark 4.2. Let Γ be a group. One of the key properties in the applications of
∂FΓ to C∗-simplicity of Γ is the fact that C(∂FΓ) is injective, shown in [KK17,
Theorem 3.12]. Proposition 4.1 implies that C(B(Γ,Λ)) is not injective, in general.
We believe that this is an evidence that B(Γ,Λ) is not likely to play the same role
of the Furstenberg boundary in C∗-algebraic applications.

Our next aim is to show that, given Λ ≤c Γ, it holds that B(Γ,Λ) = ∂FΛ. We
start with a result which we believe has its own interest.

Theorem 4.3. Let Λ ≤c Γ and ΓyX a minimal action on a compact space such

that ΛyX is proximal. Then ΛyX is minimal as well.

Proof. Let M ⊂ X be a closed non-empty Λ-invariant set. For any g ∈ Γ, we have
that gM is gΛg−1-invariant.

Fix g1, . . . , gn ∈ Γ. We have that H := Λ∩g1Λg
−1
1 ∩· · ·∩gnΛg

−1
n has finite index

in Λ. In particular, HyX is proximal and admits a unique minimal component
K. Since each giM is giΛg

−1
i -invariant, we conclude that K ⊂

⋂n

i=1 giM .
By compactness of X , we obtain that L :=

⋂

g∈Γ gM 6= ∅. Since L is Γ-invariant,
we have X = L ⊂M . �

The following is an immediate consequence of the previous theorem:

Corollary 4.4. Let Λ ≤c Γ. If X is a Γ-boundary which is also Λ-strongly proxi-

mal, then X is a Λ-boundary.
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By arguing as in [Urs22, Corollary 4.3], we conclude the following:

Corollary 4.5. If Λ ≤c Γ, then B(Γ,Λ) = ∂FΛ.

5. Commensurated subgroups and proximal actions

Given a group Γ, there exists a universal minimal proximal Γ-space ∂pΓ ([Gla76,
Theorem II.4.2]). It was shown in [FTVF19, Proposition 2.12] and [GTWZ21,
Theorem 1.5] that a countable group Γ is icc if and only if Γy ∂pΓ is faithful, if
and only if Γy∂pΓ is free.

One can easily check that the statements of Theorem 3.1 and Lemma 3.3 hold
with ∂pΛ instead of ∂FΛ, with the exact same proofs (in particular, [BKKO17,
Lemma 5.1], which is needed in the proof of Lemma 3.3, uses only proximality).
Thus, we obtain:

Theorem 5.1. Let Λ ≤c Γ. Then Λy∂pΛ extends in a unique way to an action

of Γ on ∂pΛ. Furthermore, given s ∈ Γ, if s ∈ CΓ(Λ ∩ s−1Λs), then Fix(s) = ∂pΛ.
Conversely, if Λy∂pΛ is free and Fix(s) 6= ∅, then s ∈ CΓ(Λ ∩ s−1Λs).

As a consequence, we obtain the following:

Theorem 5.2. Let Λ ≤c Γ and suppose that Λ y ∂pΛ is free. The following

conditions are equivalent:

(1) Γ is icc relatively with Λ;
(2) For any s ∈ Γ \ {e}, we have that s /∈ CΓ(Λ ∩ s−1Λs);
(3) Γy∂pΛ is free;

(4) Γy∂pΛ is faithful.

Proof. The implications (1) =⇒ (2) =⇒ (3) =⇒ (4) are proven as in Theorem 3.5.
(4) =⇒ (1). Suppose that there is g ∈ Γ \ {e} such that |gΛ| < ∞. Then

H := {h ∈ Λ : gh = hg} is a finite-index subgroup of Λ, hence H y ∂pΛ is
also minimal and proximal. Since the homeomorphism on ∂pΛ given by g is H-
equivariant, we conclude that g acts trivially on ∂pΛ. �

Remark 5.3. Given a group Γ, let L(Γ) be its group von Neumann algebra. Given
Λ ≤ Γ, it follows from [Rør21, Proposition 5.1] and [BO23, Corollary 4.3] that Γ is
icc relatively to Λ if and only if any intermediate von Neumann algebra of L(Λ) ⊂
L(Γ) is a factor, if and only if any intermediate C∗-algebra of C∗

r (Λ) ⊂ C∗
r (Γ) is

prime.

Let us now apply Theorem 5.2 to a certain locally finite commensurated subgroup
of Thompson’s group V .

Example 5.4. Let X := {0, 1} and, given n ≥ 0, let Xn be the set of words in
X of length n. Given w ∈ Xn, let C(w) := {(sn) ∈ XN : s[1,n] = w}. Recall that

Thompson’s group V is the group of homeomorphisms on XN consisting of elements
g for which there exist two partitions {C(w1), . . . C(wm)} and {C(z1), . . . , C(zm)} of
{0, 1}N such that g(wis) = zis for every 1 ≤ i ≤ m and s ∈ XN.

Let us define inductively groups Gn acting by permutations on Xn.
Let G1 := Z2 acting non-trivially on X and, for n ∈ N,

Gn+1 :=

(

⊕

w∈Xn

Z2

)

⋊Gn,
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where the action of Gn+1 on Xn+1 is defined as follows: given v ∈ Xn, x ∈ X ,
σ ∈ Gn and f ∈

⊕

Xn Z2,

(f, σ)(vx) := σ(v)fσ(v)(x).

Let G := limn∈NGn. Then G acts faithfully on XN and, as observed in [LB17,
Proposition 7.11], G ≤c V .

We claim that V is icc relatively with G. Given u ∈ Xn, let the rigid stabilizer of
u, denoted by ristG(u), be the subgroup of G consisting of the elements which, for
every v ∈ Xn \ {u}, act as the identity on C(v). Given g ∈ G, there is g̃ ∈ ristG(u)
such that g̃(us) = ug(s) for any s ∈ XN. Clearly, the map g 7→ g̃ is an isomorphism
from G to ristG(u). Fix h ∈ V \{e} and take w ∈ Xn and z ∈ Xm such that w 6= z,
n ≥ m and h(ws) = zs for any s ∈ XN. Furthermore, take v ∈ Xn−m such that
zv 6= w. Given s ∈ XN, we have that

(1) {g̃hg̃−1(wvs) : g̃ ∈ ristG(zv)} = {zvg(s) : g ∈ G}.

Since GyXN is faithful, it follows from (1) that |hG| = ∞, thus proving the claim.
From [GTWZ21, Theorem 1.5], we obtain thatGy∂pG is free and from Theorem

5.2, we conclude that V y∂pG is free.

Remark 5.5. In [LBMB18, Theorem 1.5], Le Boudec and Matte Bon showed
that Thompson’s group V is C∗-simple, hence V y ∂FV is free. However, their
proof is done by showing that V does not admit non-trivial amenable URS, not
by exhibitting a concrete topologically free V -boundary. It seems as an interesting
problem to determine whether V y ∂pG is strongly proximal, thus providing an
alternative proof of C∗-simplicity of V .

Remark 5.6. In [BKKO17, Theorem 1.4], it was shown that the class of C∗-simple
groups is closed by taking normal subgroups. Obviously, this class is not closed
by taking commensurated subgroups, since any finite subgroup is commensurated.
Moreover, Example 5.4 shows that, given Λ ≤c Γ such that Γ is icc relatively to Λ,
C∗-simplicity of Γ does not pass to Λ in general.
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