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We study properties of the central path underlying a nonlinear semidefinite optimization problem, called NSDP for short.
The latest radical work on this topic was contributed by Yamashita and Yabe (2012): they proved that the Jacobian
of a certain equation-system derived from the Karush-Kuhn-Tucker (KKT) conditions of the NSDP is nonsingular at
a KKT point under the second-order sufficient condition (SOSC), the strict complementarity condition (SC), and the
nondegeneracy condition (NC). This yields uniqueness and existence of the central path through the implicit function
theorem. In this paper, we consider the following three assumptions on a KKT point: the enhanced SOSC, the SC,
and the Mangasarian-Fromovitz constraint qualification. Under the absence of the NC, the Lagrange multiplier set is
not necessarily a singleton and the nonsingularity of the above-mentioned Jacobian is no longer valid. Nonetheless, we
establish that the central path exists uniquely, and moreover prove that the dual component of the path converges to the
so-called analytic center of the Lagrange multiplier set. As another notable result, we clarify a region around the central
path where Newton’s equations relevant to primal-dual interior point methods are uniquely solvable.

Key words: nonlinear semidefinite optimization, primal-dual interior-point method, central path, nondegeneracy
condition

1. Introduction We consider the following nonlinear semidefinite optimization problem:

Minimize f (x)

subject to G(x) ∈ Sm
+ ,

h(x) = 0,

(1.1)

where f :Rn→R, G : Rn→ Sm, and h : Rn→ Rs are twice continuously differentiable functions. Moreover,

Sm denotes the set of real m×m symmetric matrices and Sm
++ (resp. Sm

+) stands for the set of m×m real sym-

metric positive definite (resp. semidefinite) matrices. Throughout the paper, we often refer to problem (1.1)

as NSDP. NSDP (1.1) contains a wide class of optimization problems. Indeed, when all the functions are

affine with respect to x, it reduces to a linear semidefinite optimization problem (Vandenberghe and Boyd

[56], Wolkowicz et al. [57]). When the function G is of the diagonal matrix form, it is regarded as a conven-

tional nonlinear optimization problem (Mangasarian [37], Luenberger and Ye [35]). Moreover, it contains

nonlinear second-order cone optimization problems (Kato and Fukushima [26], Bonnans and Ramı́rez [6])

by restricting the form of G appropriately.

The recent advance of researches on the NSDP is remarkable. Abundant practical applications of the

NSDP can be found in a wide variety of fields, for example, structural optimization (Kočvara and Stingl
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[28], Thore et al. [54], Takezawa et al. [52], Thore [53]), control (Scherer [46], Kočvara et al. [27], Hoi

et al. [18], Leibfritz and Volkwein [33]), statistics (Qi and Sun [45]), finance (Konno et al. [30], Leibfritz

and Maruhn [31]), positive semidefinite factorization (Vandaele et al. [55]), and so on. Elegant theoretical

results on optimality conditions for the NSDP have been also developed. For example, the Karush-Kuhn-

Tucker (KKT) conditions and the second-order conditions for the NSDP were studied in detail by Shapiro

[47] and Forsgren [10]. Further examples are: the strong second-order conditions by Sun [49], sequential

optimality conditions by Andreani et al. [2], the local duality by Qi [44], and the optimality conditions via

squared slack variables by Lourenço et al. [34]. Along with such theoretical results, various algorithms have

been proposed for solving the NSDP, for example, augmented Lagrangian methods (Kočvara and Stingl

[28], Sun et al. [51, 50], Andreani et al. [2, 1], Fukuda and Lourenço [12], Huang et al. [20], Wu et al. [59]),

sequential linear semidefinite optimization methods (Kanzow et al. [24]), sequential quadratic semidefinite

optimization methods (Correa and Ramirez C [8], Freund et al. [11], Zhao and Chen [67, 68], Yamakawa and

Okuno [60]), sequential quadratically constrained quadratic semidefinite optimization methods (Auslender

[4]), exact penalty methods (Auslender [5]), interior point-type methods (Arahata et al. [3], Jarre [21], Kato

et al. [25], Leibfritz and Mostafa [32], Okuno and Fukushima [43, 42], Okuno [41], Yamashita and Yabe

[63], Yamashita et al. [64, 65], Yamakawa and Yamashita [62, 61]), homotopy methods (Yang and Yu [66]),

and so forth.

In this paper, we study properties of the central path for the NSDP. The central path is a path formed by

stationary points of the log-barrier penalized problem, and is a key concept of interior-point methods, abbre-

viated as IPMs, in solving a wide class of optimization problems including the NSDP. Many IPMs share the

strategy of approaching a KKT point by following the central path approximately. Since the geometry of

the central path is related to the performance of IPMs, it has been well studied under various settings. For

example, Megiddo [38] presented an early work in this line for linear optimization or linear programming.

Kojima et al. [29] and Monteiro and Tsuchiya [39] studied the central path for monotone complementarity

problems under the absence of strict complementarity condition. Monteiro and Zou [40] worked with the

existence of the central path for convex optimization problems. Wright and Orban [58] considered non-

linear optimization problems and analyzed the properties of the central path under the absence of linear

independence constraint qualification.

We briefly review the history of the central path of semidefinite optimization problems (SDPs). Concern-

ing linear SDPs, Luo et al. [36] showed that the (primal-dual) central path converges to the analytic center

under the presence of the strict complementarity condition. Sturm and Zhang [48] further proved that the

derivative of the central path is convergent. Halická et al. [16] proved that the central path is convergent

regardless of the strict complementarity, by means of the curve selection lemma from algebraic geometry,

although it can fail to converge to the analytic center in the absence of the strict complementarity. Halická

[15] established that the central path is analytic including the boundary. See also other works by Goldfarb

and Scheinberg [13], Halická et al. [17], Kakihara et al. [22, 23], da Cruz Neto et al. [9], and so forth. More

generally, Graña Drummond and Peterzil [14] worked with the existence and convergence of the central

path of convex smooth SDP by assuming that the functions organizing the problem are analytic. While there

are many such studies concerning linear and convex SDPs, those for the general NSDP (1.1) are very scarce.

The latest radical work for NSDP (1.1) along this research-topic was presented by Yamashita and Yabe

[63]. The authors analyzed the local convergence property of the primal-dual IPM, called PDIPM for short,

that was proposed in another article of theirs (Yamashita et al. [64]). This PDIPM is explained briefly as

follows: in the algorithm, the barrier KKT (BKKT) conditions are derived by perturbing the KKT condi-

tions, and the degree of perturbation is controlled by the so-called barrier parameter. See Section 2.3 for the

precise definition of the BKKT conditions. The PDIPM approaches a KKT point by generating a sequence

of approximate BKKT points while driving the barrier parameter to zero. To compute a BKKT point, the

Newton method combined with scaling techniques is applied to an equation-system equivalent to the BKKT

conditions. In [63], Yamashita and Yabe proved that the Jacobian of this equation-system is nonsingular at

a KKT point under the following three conditions: the strict complementarity condition (SC), the second-

order sufficient condition (SOSC), and the nondegeneracy condition (NC). Along with the classical implicit
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function theorem, this fact yields that there exists a unique smooth path, i.e., a central path, passing through

the focused KKT point, and this path is formed by BKKT points.

Contribution The main contribution of this paper is summarized as follows:

1. We prove that there exists a smooth central path under the SC, the enhanced SOSC, and the

Mangasarian-Fromovitz constraint qualification (MFCQ) at a KKT point of the NSDP. We also prove that

the central path converges to the KKT point and the analytic center of the corresponding Lagrange multi-

plier set. Since the NC is not assumed therein, the Lagrange multiplier set is compact and convex, but not

necessarily a singleton, although the KKT point is a strict local optimum due to the enhanced SOSC. In

such a situation, it is difficult (or impossible) to prove existence of the central path straightforwardly by

means of the implicit function theorem.

2. Under the same conditions as above, we give a region around the central path where the Newton

equation is solvable uniquely when applying the PDIPM.

Many of the analyses in literature on SDPs exploit the fact that the functions are analytic and thus so is the

underlying central path. However, this methodology is no longer available in our setting since the functions

of the NSDP are not assumed to be analytic. The manner of our analysis conducted in this paper is motivated

from Wright and Orban [58] for nonlinear optimization, but ours is more complicated because the SOSC of

the NSDP involves difficulty arising from the so-called sigma term. Furthermore, we deal with the nonlinear

equality constraints together, whereas [58] does not.

Notations and terminologies Throughout the paper, we use the following notations as necessary: for

a set S , we denote by int S , cl S , and bd S the topological interior, closure, and boundary of S , respectively.

We denote the identity matrix in Rm×m by I, and for A ∈ Rm×m, we define Sym(A) := (A+ A⊤)/2 and ‖A‖F :=√
trace(A⊤A). For B ∈ Rm×n, we denote the kernel and image spaces of B by Ker B and Im B, respectively,

that is, Ker B := {x ∈Rn | Bx = 0} and Im B := {By | y ∈ Rn}. For X,Y ∈ Sm, we define the inner product X • Y

by X •Y := trace(XY). We also define the linear operator LX : Sm→ Sm by

LX(Y) := XY +YX.

Denote the smallest eigenvalue of X ∈ Sm by λmin(X). For X ∈ Sm
+ and r > 0, we denote by X

1
r the unique

solution U ∈ Sm
+ of Ur = X. For a function g : Rn → R, we denote by ∇g(x) or ∇xg(x) the gradient of g,

namely, ∇g(x) := (
∂g(x)

∂x1
, . . . ,

∂g(x)

∂xn
)⊤ ∈ Rn and, also denote by ∇2

xxg(x) the hessian of g, namely, ∇2
xxg(x) =

(
∂2g(x)

∂xi∂x j
)1≤i, j≤n ∈ Rn×n. For {Ak} in a normed vector space with norm ‖ · ‖ and {bk} ⊆ R, we write Ak = O(bk) if

there exists some M > 0 such that ‖Ak‖ ≤ M|bk| for all k sufficiently large, and write Ak = o(bk) if there exists

some nonnegative sequence {αk} ⊆ R such that limk→∞ αk = 0 and ‖Ak‖ ≤ αk|bk| for all k sufficiently large.

We also say Ak =Θ(bk) if there exist M1,M2 > 0 such that M1|bk| ≤ ‖Ak‖ ≤ M2|bk| for all k sufficiently large.

We also denote R++ := {a ∈R | a> 0},W :=Rn ×Sm ×Rs,

W++ := {(x,Y, z) ∈W |G(x) ∈ Sm
++,Y ∈ Sm

++}, W+ := {(x,Y, z) ∈W |G(x) ∈ Sm
+ ,Y ∈ Sm

+ }.

For w := (x,Y, z) ∈W, we define ‖w‖ :=

√
‖x‖2

2
+ ‖Y‖2

F
+ ‖z‖2

2
, where ‖ · ‖2 denotes the Euclidean norm.

Lastly, relevant to the function G in NSDP (1.1), we define the following notations. For i = 1,2, . . . ,n, we

write

Gi(x) :=
∂G(x)

∂xi

.

For any x,d ∈Rn and Y ∈ Sm, we write

∆G(x; d) :=

n∑

i=1

diGi(x) ∈ Sm, JG(x)∗Y := [G1(x) •Y,G2(x) •Y, . . . ,Gn(x) •Y]⊤ ∈Rn.

Some more notations and symbols will be introduced for the main analysis. See the paragraph Additional

notations and symbols used hereafter at the end of subsection 3.1.
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Organization of the paper The rest of the paper is organized as follows. In section 2, we review some

important concepts related to the NSDP such as the KKT conditions. In section 3, the main analysis is

presented. In section 4, we conclude this paper with some remarks.

2. Preliminaries

2.1. KKT conditions for NSDP We introduce the KKT conditions for NSDP (1.1).

Definition 1. We say that the the Karush-Kuhn-Tucker (KKT) conditions for NSDP (1.1) hold at x ∈Rn

if there exist a Lagrange multiplier matrix Y ∈ Sm and vector z ∈Rs such that

∇xL(w) =∇ f (x)−JG(x)∗Y +∇h(x)z = 0, (2.1)

G(x) •Y = 0, G(x) ∈ Sm
+ , Y ∈ Sm

+ , (2.2)

h(x) = 0, (2.3)

where w := (x,Y, z) ∈W and L :W→R denotes the Lagrange function for the NSDP, that is,

L(w) := f (x)−G(x) •Y + h(x)⊤z

for any w ∈W. Particularly, we call a triplet w = (x,Y, z) satisfying the KKT conditions a KKT triplet of

NSDP (1.1), and also call x a KKT point of the NSDP. Moreover, given a KKT point x, we denote by Λ(x)

the set of Lagrange multiplier pairs (Y, z) satisfying the KKT conditions at x, namely,

Λ(x) := {(Y, z) satisfying (2.1)-(2.3)}.

As can be checked easily, Λ(x) is convex. Below, we define the Mangasarian-Fromovitz constraint qualifi-

cation (MFCQ), under which the KKT conditions are ensured to be necessary optimality conditions for the

NSDP.

Definition 2. ([7, Definition 2.8.6]) Let x ∈ Rn be a feasible point of NSDP (1.1). We say that the

Mangasarian-Fromovitz constraint qualification (MFCQ) holds at x if ∇h(x) is of full column rank and there

exists a vector d ∈Rn such that G(x)+∆G(x; d) ∈ Sm
++ and ∇h(x)⊤d = 0.

Remark 1. The MFCQ is equivalent to the following Robinson’s constraint qualification at a feasible

point x ∈Rn [7, Corollary 2.101]:

[
O

0

]
∈ int

({ [
G(x)+∆G(x; d)

∇h(x)⊤d

] ∣∣∣∣∣∣ d ∈Rn

}
−

[
Sm
++

{0}

])
.

Remark 2. Let x ∈ Rn be a local optimum of NSDP (1.1). Under the MFCQ, the KKT conditions hold

at x, thus Λ(x) , ∅. In particular, the MFCQ implies that Λ(x) is compact. Conversely, when f is convex, h

is affine, and G is matrix-convex in the sense of Bonnans and Shapiro [7, Section 5.3.2], a KKT point is a

global optimum of (1.1).

There are several equivalent reformulations for the semidefinite complementarity condition (2.2), among

which the simplest one is

G(x)Y =O, G(x) ∈ Sm
+ , Y ∈ Sm

+ , (2.4)

and two other formulations are

Sym (G(x)Y) =O, G(x) ∈ Sm
+ , Y ∈ Sm

+ , (2.5)

G(x)
1
2 YG(x)

1
2 =O, G(x) ∈ Sm

+ , Y ∈ Sm
+ . (2.6)

Based on the above two formulations, primal-dual interior point methods (PDIPMs) have been developed

for solving NSDPs so far. For example, see Yamashita et al. [64] and Yamashita and Yabe [63] for PDIPM

with (2.5) and also see Okuno [41] for that with (2.6).
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Other fundamental properties of the complementarity condition Let x∗ ∈ Rn be a KKT point for the

NSDP. With an appropriate orthogonal matrix P∗ ∈ Rm×m, the matrix G(x∗) and an arbitrary dual matrix

Y ∈ Sm
+ such that G∗Y =O holds can be factorized as

G(x∗) = P∗

[
O O

O GFF
∗

]
P⊤∗ , Y = P∗

[
YEE O

O O

]
P⊤∗ , (2.7)

where GFF
∗ ∈ Sr∗

++ is a diagonal matrix with r∗ := rankG(x∗), the positive real eigenvalues of G(x∗) are aligned

on the diagonal line, and YEE ∈ Sm−r∗
+ . YEE ∈ Sm−r∗

++ does not necessarily hold. Without loss of generality, we

may assume that the eigenvalues are placed in the ascending order on the diagonal. Needless to say, P∗ is a

matrix whose columns are eigenvectors of G(x∗). Partition the matrix P∗ as

P∗ = [E∗,F∗],

where E∗ ∈ Rm×(m−r∗) and F∗ ∈ Rm×r∗ . Note that each column of E∗ represents an eigenvector of G∗ :=G(x∗)

which corresponds to the zero-eigenvalue of G(x∗), while that of F∗ does to a positive eigenvalue of G∗. In

terms of E∗ and F∗, the two equations in (2.7) are transformed as

[
E⊤∗G∗E∗ E⊤∗G∗F∗
F⊤∗G∗E∗ F⊤∗G∗F∗

]
=

[
O O

O GFF
∗

]
,

[
E⊤∗ YE∗ E⊤∗ YF∗
F⊤∗ YE∗ F⊤∗ YF∗

]
=

[
YEE O

O O

]
. (2.8)

We will often make use of formulation (2.8). For later use, we define the following notations: for the above

P∗ = [E∗,F∗] and given x,d ∈Rn and Y∗ ∈ Sm, we write

[
YEE
∗ YEF

∗
YFE
∗ YFF

∗

]
:=

[
E⊤∗ Y∗E∗ E⊤∗ Y∗F∗
F⊤∗ Y∗E∗ F⊤∗ Y∗F∗

]
,

[
GEE GEF

GFE GFF

]
:=

[
E⊤∗G(x)E∗ E⊤∗G(x)F∗
F⊤∗G(x)E∗ F⊤∗G(x)F∗

]
, (2.9)

[
∆GEE(x; d) ∆GEF(x; d)

∆GFE(x; d) ∆GFF(x; d)

]
:=

[
E⊤∗ ∆G(x; d)E∗ E⊤∗ ∆G(x; d)F∗
F⊤∗ ∆G(x; d)E∗ F⊤∗ ∆G(x; d)F∗

]
. (2.10)

2.2. Second-order optimality conditions and relevant properties In this subsection, we review the

second-order necessary/sufficient conditions for the NSDP. Subsequently, we will describe the relevant

properties briefly. For more detailed explanations, we refer readers to, e.g., [63, 47] or [7].

Definition 3. Let x∗ be a KKT point for the NSDP and consider the corresponding Lagrange multi-

plier set Λ(x∗). Then, the nondegeneracy condition, strict complementarity conditions, and second-order

condition are defined as follows:

Nondegeneracy condition Let r∗ := rankG(x∗) and let {e1, e2, . . . , em−r∗} be an orthonormal basis of the null

space of G(x∗). Moreover, denote

vi j := (e⊤i G1(x∗)e j, · · · , e⊤i Gn(x∗)e j)
⊤ ∈Rn (1 ≤ i ≤ j ≤m− r∗).

We say that the nondegeneracy condition holds at x∗ if the vectors vi j ∈Rn (1 ≤ i ≤ j≤m−r∗) and∇hi(x∗) (i =

1,2, . . . , ℓ) are linearly independent.

Strict complementarity condition Let Y ∈ Sm
+ be a Lagrange multiplier matrix at x∗, which means that

G(x∗) and Y satisfies the complementarity condition (2.2). We say that the strict complementarity condition

holds at (x∗,Y) if G(x∗)+Y ∈ Sm
++, which is equivalent to rankG(x∗)+ rank Y =m under (2.2).

Second-order conditions We say that the second-order necessary (resp., sufficient) condition holds at x∗ if

sup
(Y,z)∈Λ(x∗)

d⊤
(
∇2

xxL(x∗,Y, z)+Ω(x∗,Y)
)
d ≥ (resp., >)0, ∀d ∈C(x∗) \ {0}, (2.11)

where C(x∗) is the critical cone at x∗ and specifically represented as

C(x∗) =
{
d ∈Rn | ∇ f (x∗)⊤d = 0,∇h(x∗)⊤d = 0, ∆G(x∗; d) ∈ TSm

+
(G(x∗))

}
. (2.12)
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Here, TSm
+
(G(x∗)) denotes the tangent cone of Sm

+ at G(x∗) and is represented specifically as

TSm
+
(G(x∗)) =

{
X ∈ Sm | E⊤∗ XE∗(= XEE) ∈ S r∗

+

}
.

Moreover, for any x ∈Rn and Y ∈ Sm, Ω(x,Y) denotes the matrix in S n whose (i, j)-th entry is given as

(Ω(x,Y))i, j := 2Y •Gi(x)G(x)†G j(x)

for i, j = 1,2, . . . ,n, where G(x)† denotes the Moore-Penrose inverse matrix of G(x).

Remark 3. The nondegeneracy condition at x∗ is a constraint qualification for the NSDP and yields the

MFCQ. It reduces to the linear independence constraint qualification (LICQ) when nonlinear optimization

is considered. As with the LICQ, the Lagrange multiplier set Λ(x∗) is a singleton under the nondegeneracy

condition.

The term d⊤Ω(x∗,Y)d in (2.11) is called the sigma term for the semi-definite constraint G(x) ∈ Sm
+ . We

refer readers to [7] for a precise description of its background and properties. In the following lemma, the

sigma term is expressed more specifically, thereby being ensured to be nonnegative.

Lemma 1. For Y ∈ Sm
+ such that G∗Y =O and a direction d ∈Rn, it holds that

d⊤Ω(x∗,Y)d = 2Tr
(
YEE∆GFE(x∗; d)(GFF

∗ )−1∆GEF(x∗; d)
)

= 2
∥∥∥∥(YEE)

1
2∆GFE(x∗; d)(GFF

∗ )−
1
2

∥∥∥∥
2

F
,

where YEE and GFF
∗ are defined in (2.8), and moreover ∆GFE and ∆GEF in (2.10).

Proof. By straightforward calculation. See Appendix A.1 for details. �

When we consider the standard nonlinear optimization where the nonnegative cone is set in the NSDP

in place of the semidefinite cone, the sigma term always vanishes because ∆GFE(x∗; d) = O holds for any

d in the above lemma, and thus it never appears in the second-order conditions. In contrast, in the NSDP,

the sigma term reflects curvature of Sm
+ and is nonnegative for any d , 0 and Y ∈ Sm

+ as shown in Lemma 1.

With the help of this term, the second-order condition is more likely to hold even when ∇2
xxL is not positive

semidefinite over the critical cone. However, this term makes the analysis for the NSDP more complicated

than in nonlinear optimization.

Lastly, we mention useful facts associated with the second-order conditions in the following two neces-

sary and sufficient optimality conditions.

Second-order necessary optimality for the NSDP [7, Theorem 3.45,5.88] Let x∗ ∈ Rn be a local opti-

mum of NSDP (1.1) and suppose that the MFCQ holds there. Then, the second-order necessary condition

holds at x∗.

Second-order sufficient optimality for the NSDP [7, Theorem 5.89] Suppose that x∗ is a KKT point of

NSDP (1.1) and, furthermore, the second-order sufficient condition holds. Then, x∗ is a strict local optimum

of NSDP (1.1). In particular, the quadratic growth condition holds, that is, there exists some q > 0 and

vicinity N(x∗) of x∗ such that f (x)− f (x∗) ≥ q‖x− x∗‖2 for all x ∈N(x∗)∩F .

2.3. BKKT conditions and central path In this section, we introduce the barrier KKT (BKKT) con-

ditions for the NSDP. The BKKT conditions are composed of (2.1), (2.3), and the following perturbed

conditions for (2.4): for µ > 0,

G(x)Y = µI, G(x) ∈ Sm
++, Y ∈ Sm

++. (2.13)

The parameter µ is often referred to as barrier parameter, and x and (x,Y, z) satisfying the BKKT conditions

are called a BKKT point and BKKT triplet, respectively. It is worth mentioning that condition (2.13) is

equivalent to the condition obtained by replacing O with µI in (2.5) or (2.6). As µ gets closer to 0, BKKT

points are expected to approach the set of KKT points for the NSDP. A basic algorithmic policy of primal-

dual interior point methods is to track BKKT triplets while driving µ to 0, so as to reach a KKT triplet. In

this paper, we will refer to a path formed by BKKT triplets as a central path.
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3. Main analysis

3.1. Assumptions and outline of analysis Throughout Section 3, x∗ denotes a KKT point of the NSDP,

and is assumed to satisfy the following:

Assumption 1. The KKT point x∗ satisfies the following three conditions:

1. There exists a Lagrange multiplier matrix Y ∈ Sm
+ satisfying the strict complementarity condition.

2. The enhanced second-order sufficient condition (ESOSC) holds: for all (Y, z) ∈ Λ(x∗), it holds that

d⊤
(∇2

xxL(x∗,Y, z)+Ω(x∗,Y)
)
d > 0, ∀d ∈C(x∗) \ {0}.

3. The MFCQ holds at x∗.

The above ESOSC is indeed stronger than the second-order sufficient condition (SOSC) defined in

(2.11), because, with arbitrarily chosen (Y , z̄) ∈ Λ(x∗), we have sup(Y,z)∈Λ(x∗) d⊤
(∇2

xxL(x∗,Y, z)+Ω(x∗,Y)
)
d ≥

d⊤
(
∇2

xxL(x∗,Y, z̄)+Ω(x∗,Y)
)
d > 0 for any d ∈ C(x∗) \ {0}, where the last inequality is due to the ESOSC.

Under the ESOSC, x∗ is a strict local optimum of the NSDP since the SOSC follows from the ESOSC as

shown above. See also Second-order sufficient optimality for the NSDP at the end of subsection 2.2. The

ESOSC holds, for example, when f is strongly convex and G and h are affine. It can be seen as a straightfor-

ward generalization of the strong second-order condition (SSOSC) considered by Wright and Orban [58]

for nonlinear optimization. Though one may think it natural to refer to the condition as SSOSC, we call

it ESOSC so as to distinguish it from the SSOSC for the NSDP studied by Sun [49]. Under the presence

of the MFCQ, we ensure compactness and convexity of the Lagrange multiplier set Λ(x∗), but Λ(x∗) is not

necessarily a singleton(cf. Remark 3). Note that ∇2
xxL is continuous, and so is Ω(x∗,Y) with respect to Y ∈ Sm

+

such that G(x∗)Y = O from Lemma 1. This fact, the compactness of Λ(x∗), and the ESOSC guarantee that

there exists some κ > 0 such that

inf
(Y,z)∈Λ(x∗)

d⊤
(
∇2

xxL(x∗,Y, z)+Ω(x∗,Y)
)
d≥ κ‖d‖2, ∀d ∈C(x∗) \ {0}. (3.1)

Goal and outline of the analysis: The goal of the whole analysis we will conduct is to prove that under

the above assumptions, there exists a unique and smooth central path converging to the KKT triplet

wa := (x∗,Ya, z
a), (3.2)

where (Ya, z
a) ∈ Λ(x∗) is called an analytic center at x∗, defined formally in the next subsection. In order to

achieve this goal, we will prove the following claims in order:

Claim (i) There exists a sequence of BKKT triplets
{
wk = (xk,Yk, z

k)
}

converging to the KKT triplet wa (cf.

Theorem 1 in subsection 3.3).

Claim (ii) Any sequence of BKKT points {xk} approaches the KKT point x∗ asymptotically along a certain

nonzero direction ξ∗ ∈ Rn in the sense that limk→∞
x∗−xk

‖x∗−xk‖ =
ξ∗

‖ξ∗‖ (cf. Theorem 2 and Corollary 1 in subsec-

tion 3.4). This ξ∗ is a unique x-component solution of a certain linear equation system related to the BKKT

conditions.

Claim (iii) For any sufficiently small barrier parameter µ, a corresponding BKKT point x(µ) exists uniquely

in the open ball {x ∈ Rn | ‖x − x∗ − µξ∗‖ < ρµ‖ξ∗‖}, where ρ > 0 is a certain small constant. Moreover, the

Hessian of a certain barrier function is nonsingular at x(µ). (cf. Theorem 3 in subsection 3.6).

With the help of the above claims and the classical implicit function theorem, we will prove our main

claim of the goal (cf. Theorem 4 in subsection 3.7 and Theorem 5 in subsection 3.8). Mind that henceforth,

several proofs are deferred to the Appendix for the sake of readability.
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Additional notations and symbols used hereafter In the remaining of Section 3 and the Appendix, we

will use the symbols and the notations defined in (2.7)-(2.10) in addition to those introduced at the end of

Section 1. In particular, P∗ = [E∗,F∗] is an arbitrarily chosen orthogonal matrix defined for G(x∗) so that

(2.7) holds. For the sake of simplicity, we often write

G∗ :=G(x∗), Gk :=G(xk).

Besides, we will make use of Gind
∗ and Gind

k
(ind ∈ {EE,FE,EF,FF}) defined by replacing G and Y in (2.9)

with G∗and Gk, respectively. Furthermore, Y ind
k

and Y ind
a (ind ∈ {EE,FE,EF,FF}) are defined in the same way

using Yk and Ya.

3.2. Existence of analytic center for NSDP The analytic center for the NSDP at x∗ is formally defined

as follows:

Definition 4 (Analytic center for NSDP (1.1)). We say that (Ya, z
a) ∈ Λ(x∗) is an analytic center of

NSDP (1.1) at x∗ if it is an optimum of

min − log det YEE s.t. (Y, z) ∈Λ(x∗). (3.3)

Here, we define log 0 := −∞ by convention.

In the next proposition, we ensure existence and uniqueness of the analytic center at x∗. In other words,

the KKT triplet wa defined in (3.2) is well-defined.

Proposition 1. Suppose that Assumption 1 holds. Then, an analytic center of NSDP (1.1) at x∗ exists

uniquely. In particular, (Ya, z
a) ∈ Sm ×Rs is the analytic center at x∗ if and only if (Ya, z

a) ∈ Λ(x∗) and there

exists some vector v ∈Rn such that

∆GEE(x∗; v) = (YEE
a )−1, ∇h(x∗)⊤v = 0. (3.4)

Proof. See Appendix A.2. �

3.3. Proof of Claim (i): convergence of BKKT triplets to KKT triplet with analytic center In this

subsection, we will prove that there exists a sequence of BKKT points which converges to the KKT point

x∗. Moreover, we will show that the corresponding dual sequence converges to the analytic center (Ya, z
a).

Let us define the following log-barrier function for the NSDP: for each µ > 0

ψµ(x) := f (x)− µ log detG(x). (3.5)

The following proposition states that there exists a sequence of local optima of barrier penalized NSDPs

converging to x∗. Such local optima are BKKT points of the NSDP locally around x∗.

Proposition 2. Let Assumption 1 hold and {µk} ⊆ R++ be an arbitrary decreasing sequence converging

to 0. Then, there exists a sequence {xk} ⊆Rn such that limk→∞ xk = x∗ and, for any k ≥ K with K sufficiently

large, xk is a local optimum of

min ψµk
(x) s.t. h(x) = 0, G(x) ∈ Sm

++. (3.6)

Proof. The proof is analogous to those of classical results as to penalty methods [35], although it is

different in dealing with the log determinant function and the semidefinite constraint. Nonetheless, the

precise proof is given in Appendix A for completeness. �
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In Proposition 2, as ∇h(x∗) is of full column rank, so is ∇h(xk) for any k ≥ K with K large enough, and

thus the KKT conditions for (3.6) holds at xk. From the KKT conditions together with ∇ψµ(x) = ∇ f (x) −
µJG(x)∗G(x)−1, there exists zk ∈Rs such that

∇ f (xk)− µkJG(xk)∗G−1
k +∇h(xk)zk = 0, h(xk) = 0, Gk ∈ Sm

++,

which together with Yk := µkG
−1
k
∈ Sm

++ implies that xk and wk := (xk,Yk, z
k) ∈ W++ are BKKT point and

BKKT triplet for each k ≥ K, respectively.

In summary, as a consequence of Proposition 2, given a decreasing sequence {µk} ⊆R++ converging to 0,

there exists an integer K > 0 and
{
wk

} ⊆W++ with wk = (xk,Yk, z
k) such that

lim
k→∞

xk = x∗, Yk = µkG
−1
k ∈ Sm

++ (3.7)

and, for each k ≥ K,

∇h(xk) : full column rank, wk : BKKT triplet with barrier parameter µk.

In what follows, for the sake of brevity, we assume K = 0. Moreover, we suppose that xk
, x∗ for all k

without loss of generality and define

dk := xk − x∗. (3.8)

Hereafter, we focus on those sequences {wk} and {dk}.
Remark 4. In a quite similar manner to the proof of Yamashita et al. [64, Theorem 1], we ensure that,

under the MFCQ at x∗, the sequence {(Yk, z
k)} is bounded, and its accumulation point together with x∗ fulfills

the KKT conditions of NSDP (1.1).

In fact, the whole sequence {(Yk, z
k)} converges to the analytic center (Ya, z

a). To prove this claim, we first

present the following proposition, which claims that the convergence speeds of {µk} and {‖dk‖} towards zero

are equivalent.

Proposition 3. Suppose that Assumption 1 holds. Then, we have

µk =Θ(‖dk‖).

Proof. See Appendix A.4. �

Using this proposition, the convergence to the analytic center can be established.

Theorem 1. Suppose that Assumption 1 holds. Then, the whole sequence
{
(Yk, z

k)
}

converges to the ana-

lytic center (Ya, z
a) of NSDP (1.1) at x∗, that is, limk→∞wk =wa.

Proof. Note that limk→∞ dk = 0 from (3.7) and (3.8). Also, note that {(Yk, z
k)} is bounded as was explained

in Remark 4, and let (Y∗, z
∗) be an arbitrary accumulation point of {(Yk, z

k)}. For each k ≥ 0, define d̃k := dk

‖dk‖ .

Since {d̃k} is bounded, it has at least one accumulation point, say d̃∗. Choose an arbitrary subsequence

{d̃k}k∈K which converges to d̃∗. From Proposition 3,
{
µk

‖dk‖

}
k∈K

is bounded and any accumulation point, say

ᾱ ∈R, is positive. Without loss of generality, we assume that
{
µk

‖dk‖

}
k∈K

and {(Yk, z
k)}k∈K to ᾱ > 0 and (Y∗, z

∗),

respectively, by taking a subsequence further if necessary.

Recalling that P∗ =
[
E∗, F∗

]
is orthogonal, we have

µkIm

‖dk‖ =
P⊤∗GkYkP∗

‖dk‖
=

P⊤∗
(
G(x∗)+∆G(x∗; dk)+O(‖dk‖2)

)
P∗P

⊤
∗ YkP∗

‖dk‖
=

[
O O

1

‖dk‖G
FF
∗ YEF

k
1

‖dk‖G
FF
∗ YFF

k

]
+ P⊤∗ ∆G(x∗; d̃k)P∗

(
P⊤∗ YkP∗

)
+O(‖dk‖). (3.9)
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Taking into account that limk∈K→∞ P⊤∗ YkP∗ =

[
YEE
∗ O

O O

]
with YEE

∗ = E⊤∗ Y∗E∗ and driving k ∈ K → ∞ in the

(1,1)-block component of (3.9), we obtain ∆GEE(x∗; d̃∗)YEE
∗ = ᾱIr∗ , implying

(YEE
∗ )−1 = ∆GEE(x∗; ᾱ−1d̃∗). (3.10)

Moreover, for each k ∈K , it holds that

0 =
h(xk)

‖dk‖ =
h(x∗)+∇h(x∗)⊤dk +O(‖dk‖2)

‖dk‖ =∇h(x∗)⊤d̃k +O(‖dk‖),

which along with driving k(∈ K )→∞ and multiplying ᾱ−1 implies ∇h(x∗)⊤(ᾱ−1d̃∗) = 0. Comparing this

fact and (3.10) to condition (3.4) with v := ᾱd̃∗, we ensure that (Y∗, z
∗) is an analytic center of the NSDP at

x∗, leading to (Ya, z
a) = (Y∗, z

∗) due to the uniqueness of analytic center by Proposition 1. Finally, recalling

that (Y∗, z
∗) is an arbitrary accumulation point of

{
(Yk, z

k)
}
, we conclude that the whole sequence

{
(Yk, z

k)
}

converges to (Ya, z
a). The proof is complete. �

Before moving on to the next subsection, we show that ‖YEF
k
‖F and ‖YFF

k
‖F are bounded by O(µk).

Proposition 4. Suppose that Assumption 1 holds. Then, we have

‖YEF
k ‖F =O(µk), ‖YFF

k ‖F =O(µk).

Proof. Note that {(Yk, z
k)} is convergent by Theorem 1 and thus Yk = O(1) and zk = O(1). Moreover,

∆G(x∗; dk) =
∑n

i=1 dk
i

∂G(x∗)
∂xi
=O(‖dk‖). Applying Taylor’s expansion to Gk around x∗ and using GkYk = µkI and

G∗Y∗ =G∗Ya =O give

µkI =
(
G∗ +∆G(x∗; dk)+O(‖dk‖2)

)
Yk

=G∗(Yk −Ya)+G∗Ya +∆G(x∗; dk)Yk +O(‖dk‖2)

=G∗(Yk −Ya)+O(‖dk‖)

= P⊤∗

[
O O

GFF
∗ YFE

k
GFF
∗ YFF

k

]
P∗ +O(‖dk‖),

where the third equality holds from G∗Ya = O, ∆G(x∗; dk)Yk = O(‖dk‖), and O(‖dk‖2) = O(‖dk‖). Recall that

P∗ is an orthogonal matrix. Divide both the sides of the above by µk and drive k→∞. From Proposition 3,

we obtain
‖GFF
∗ YFE

k
‖F

µk

=O(1),
‖GFF
∗ YFF

k
‖F

µk

=O(1),

which together with GFF
∗ ∈ Sm−r∗

++ implies the desired assertions. �

3.4. Proof of Claim (ii): convergence of BKKT points along a specific direction Let {wk =

(xk,Yk, z
k)} ⊆W++ be a sequence of BKKT triplets as described right after Proposition 2. From Theorem 1,

{wk} converges to the KKT triplet w∗ = (x∗,Ya, z
a) with the analytic center (Ya, z

a). In this subsection, we

study how dk/µk behaves asymptotically, wherein dk is defined in (3.8).

We begin by considering the following equation-system that comes from the BKKT conditions of the

symmetric form:

∇xL(w) = 0, G(x)Y +YG(x) = 2µI, h(x) = 0, (3.11)

where w = (x,Y, z) ∈W++. Suppose at this moment1 that there exists a smooth function w(·) : (0, µ̄]→W++

with some µ̄ > 0 such that w(µ) is a BKKT triplet for each µ ∈ (0, µ̄] and we stand at w=w(µ). Differentiating

equations (3.11) with respect to µ results in

∇2
xxL(w)ẋ−JG(x)∗Ẏ +∇h(x)ż = 0, (3.12)

LG(x)Ẏ +LY∆G(x; ẋ) = 2I, (3.13)

∇h(x)⊤ ẋ = 0. (3.14)

1 In Theorem 4, this assumption will be verified.
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As for the definition of L(·)(·), refer to the section of notations. For later use, in terms of the matrix function

A(w) :=


∇2

xxL(w) −JG(x)∗ ∇h(x)

LYG1(x) · · ·LYGn(x) LG(x) 0

∇h(x)⊤ 0 0

 , (3.15)

we express the above equation-system (3.12)-(3.14) as

A(w)ẇ =


0

2I

0

 . (3.16)

Remark 5. The Newton equation to the BKKT system (3.11) is expressed as

A(w)∆w =


−∇xL(w)

2µI −LG(x)Y

−h(x)

 . (3.17)

This is often solved in the primal-dual interior point method for the NSDP [64, 65, 62, 61].

Now, relevant to equation (3.16), we consider the following equations defined at the KKT triplet wa =

(x∗,Ya, z
a):

U⊤
x∗

(∇2
xxL(wa)∆x−JG(x∗)∗∆Y

)
= 0, (3.18)

LG∗∆Y +LYa
∆G(x∗;∆x)= 2I, (3.19)

∇h(x∗)⊤∆x = 0, (3.20)

where Ux∗ denotes an arbitrary matrix whose columns form an orthonormal basis of the subspace

U∗ := {d ∈Rn | ∆GEE(x∗; d) =O,∇h(x∗)⊤d = 0} (3.21)

and we can write Ux∗ ∈ Rn×p∗ by letting p∗ be the dimension ofU∗. Notice that the above equations (3.18)-

(3.20) are derived by changing the variables in (3.12)-(3.14), pre-multiplying (3.12) by the matrix U⊤
x∗ , and

using the relation ∇h(x∗)⊤Ux∗ = 0. The following proposition holds as to the solution set of equations (3.18)-

(3.20):

Proposition 5. Suppose that Assumption 1 holds. Let

S := {(∆x,∆Y) ∈Rn ×Sm: solution to (3.18)-(3.20) } .

If S , ∅, then the following properties hold:

1. ∆x-component in S is unique, written as ξ∗ ∈Rn;

2. ∆YFF = (GFF
∗ )−1, ∆GEE(x∗; ξ∗) = (YEE

a )−1, ∆YEF = −YEE
a ∆GEF(x∗; ξ∗)(GFF

∗ )−1.

Proof. See Appendix A.5. �

The following theorem shows that the limit of dk/µk is actually equal to the direction ξ∗, which is defined

in the above proposition.

Theorem 2. Suppose that Assumption 1 holds. Let dk be the vector defined in (3.8) and ξ∗ be the one

defined in Proposition 5. Then, we have

lim
k→∞

dk

µk

= ξ∗.

In particular, ξ∗ , 0 and ∇h(x∗)⊤ξ∗ = 0.
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Proof. First, recall limk→∞ dk = 0. From Proposition 3, {dk/µk} is bounded. Let ξ̃ ∈ Rn be an arbitrary

accumulation point of {dk/µk}. In order to prove the assertion, it suffices to show that ξ̃ is a ∆x-component

of the solution set of equations (3.18)-(3.20) because of item 1 of Proposition 5. Altering Yk as

Ŷk := P∗

[
YEE

a YEF
k

YFE
k

YFF
k

]
P⊤∗

for each k, we obtain

‖Ŷk −Ya‖F =
∥∥∥∥∥∥

[
YEE

a −YEE
a YEF

k
−YEF

a

YFE
k
−YFE

a YFF
k
−YFF

a

]∥∥∥∥∥∥
F

=

∥∥∥∥∥∥

[
O YEF

k

YFE
k

YFF
k

]∥∥∥∥∥∥
F

=O(‖YEF
k ‖F + ‖YFF

k ‖F)

=O(µk),

where the last equality follows from Proposition 4, and thus
{

1

µk
(Ŷk −Ya)

}
is bounded and has at least one

accumulation point, say ∆Y∗. Without loss of generality, we assume that

lim
k→∞

1

µk

(Ŷk −Ya) = ∆Y∗. (3.22)

Note that

∇xL(wk) =∇xL(xk,Ya, z
a)−JG(xk)∗(Yk −Ya)+∇h(xk)(zk − za)

=
(
∇xL(wa)+∇2

xxL(wa)dk +O(‖dk‖2)
)
−JG(xk)∗(Yk −Ya)+∇h(xk)(zk − za)

=∇2
xxL(wa)dk −JG(xk)∗(Yk −Ya)+∇h(xk)(zk − za)+O(‖dk‖2)

=∇2
xxL(wa)dk −JG(x∗)∗(Yk −Ya)+∇h(x∗)(zk − za)+ o(‖dk‖), (3.23)

where the second equality follows from applying Taylor’s expansion to ∇xL(xk,Ya, z
a) around x∗ with respect

to x and the third one from ∇xL(wa) = 0. Moreover, the last one holds because o(‖dk‖)+O(‖dk‖2) = o(‖dk‖)
and

−JG(xk)∗(Yk −Ya)+∇h(xk)(zk − za) = −JG(x∗)∗(Yk −Ya)+∇h(x∗)(zk − za)+ o(‖dk‖)

follows from Taylor’s expansion ofJG(xk) and ∇h(xk) around x∗ again and limk→∞(Yk −Ya, z
k− za) = (O,0).

Then, it holds that

0 =
1

µk

U⊤x∗∇xL(wk)

=
1

µk

U⊤x∗
(
∇2

xxL(wa)dk −JG(x∗)∗(Yk −Ya)
)
+

1

µk

o(‖dk‖)

=U⊤x∗

∇2
xxL(wa)

dk

µk

−JG(x∗)∗
(Ŷk −Ya)

µk

+
1

µk

o(‖dk‖),

where the first equality follows from ∇xL(wk) = 0, the second one does from (3.23) and U⊤
x∗∇h(x∗) = 0, and

the third one does from U⊤
x∗JG(x∗)∗Yk =U⊤

x∗JG(x∗)∗Ŷk. Driving k→∞ above and using Proposition 3 and

(3.22) imply

U⊤x∗
(
∇2

xxL(wa)ξ̃ −JG(x∗)∗∆Y∗
)
= 0,

which is nothing but (3.18) with (∆x,∆Y)= (̃ξ,∆Y∗).
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Next, by GkYk = µkI from the BKKT conditions and also by noting G∗Ŷk =G∗Yk together with G∗Ya =O,

there holds that

I =
1

µk

(GkYk −G∗Ya)

=
1

µk

((
G∗ +∆G(x∗; dk)+O(‖dk‖2)

)
Yk −G∗Ya

)

=
1

µk

(
G∗(Ŷk −Ya)+∆G(x∗; dk)Yk

)
+O(‖dk‖),

wherein by driving k→∞, symmetrizing, and using limk→∞ Yk = Ya, we gain (3.19) with (∆x,∆Y)= (̃ξ,∆Y∗).

Finally, we can prove (3.20) with (∆x,∆Y)= (̃ξ,∆Y∗) by driving k to∞ in the relation

0 =
1

µk

(h(xk)− h(x∗)) =∇h(x∗)⊤
dk

µk

+O(‖dk‖). (3.24)

Consequently, (̃ξ,∆Y∗) solves (3.18)-(3.20). Hence, ξ̃ = ξ∗, namely, limk→∞ dk/µk = ξ
∗ is ensured by using

item 1 of Proposition 5. The remaining assertions ξ∗ , 0 and ∇h(x∗)⊤ξ∗ = 0 follow immediately since ‖dk‖ =
Θ(µk) from Proposition 3 and (3.24) holds. The proof is complete. �

It is worth noting that we have multiple choices for {(dk, µk)}, while ξ∗ is the constant vector that is

uniquely determined as a ∆x-component of the solution set to the equation-system (3.18)-(3.20). Neverthe-

less, according to Theorem 2, any {dk/µk} converges to ξ∗.

Theorem 2 yields the following corollary, a clear picture about how xk approaches x∗.

Corollary 1. Under Assumption 1, we obtain limk→∞
xk−x∗

‖xk−x∗‖ =
ξ∗

‖ξ∗‖ . This indicates that xk approaches x∗

along the direction −ξ∗ asymptotically.

Proof. From Theorem 2, we have

lim
k→∞

xk − x∗

‖xk − x∗‖ = lim
k→∞

xk − x∗

µk

µk

‖xk − x∗‖ =
ξ∗

‖ξ∗‖ .

The proof is complete. �

For ρ ∈ (0,1) and µ≥ 0, define

Pρ(µ) := {x ∈Rn | ‖x∗ + µξ∗ − x‖ < ρµ‖ξ∗‖}.

3.5. Some properties on Pρ(µ) In this subsection, we will present some propositions about properties

relevant to Pρ(µ). The following proposition concerns the existence of a BKKT point in Pρ(µ).

Proposition 6. Choose ρ ∈ (0,1) arbitrarily.

1. There exists some µ̄ρ > 0 such that, for any 0 < µ ≤ µ̄ρ, a BKKT point xµ with barrier parameter µ

exists in Pρ(µ), but never on the boundary bdPρ(µ) := {x ∈Rn | ‖x∗ + µξ∗ − x‖ = ρµ‖ξ∗‖}.
2. Let {µk} ⊆ R++ and {x(µk)} be arbitrary sequences of barrier parameters converging to 0 and corre-

sponding BKKT points converging to the KKT point x∗, respectively. Then, x(µk) ∈ Pρ(µk) for any k large

enough.

Proof. See Appendix A.6. �

The next proposition shows existence and properties of µG(x)−1 for x ∈ Pρ(µ).

Proposition 7. Choose ρ̄1 ∈ (0,1] and µ̄1 > 0 sufficiently small. Then, the following properties hold:

1. G(x) ∈ Sm
++ holds for any µ ∈ (0, µ̄1] and x ∈ clPρ̄1

(µ), and
{
µG(x)−1 ∈ Sm

++

∣∣∣ x ∈ clPρ̄1
(µ), µ ∈ (0, µ̄1]

}
is

bounded.
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2. For any (µ, ρ) ∈ (0, µ̄1]× (0, ρ̄1] and x ∈ clPρ(µ), there exists some K1 > 0 such that ‖µG(x)−1 − Ya‖F ≤
K1(ρ+ µ)

Proof. See Appendix A.7. �

As ∇h(x∗) is of full column rank since the MFCQ holds at x∗ and ∇h is continuous, there exists some

closed ball B⊆Rn centered at x∗ such that

x∗ ∈ B ⊆ { x ∈Rn | ∇h(x) is of full-column rank } . (3.25)

With sufficiently small µ and ρ, clPρ(µ) ⊆B holds, which together with the first-half assertion of item 1 of

Proposition 7 yields that, by re-taking smaller µ̄1 and ρ̄1 if necessary,

clPρ(µ) ⊆ {
x ∈Rn

∣∣∣ G(x) ∈ Sm
++

}∩B, ∀(µ, ρ) ∈ (0, µ̄1]× (0, ρ̄1]. (3.26)

Next, we consider the following conditions:

x ∈ clPρ(µ), (3.27)

‖Y − µG(x)−1‖F ≤ γ1µ, (3.28)

‖z+ (∇h(x)⊤∇h(x))−1∇h(x)⊤ (∇ f (x)−JG(x)∗Y) ‖ ≤ γ2µ. (3.29)

As discussed in subsection 3.8, the set of (x,Y, z) which satisfies the above conditions is a neighborhood of

the central path leading to the KKT triplet wa. The following two propositions give crucial properties on

this set. They will play important roles in proving Proposition 10 and Theorem 3 in subsection 3.6.

Proposition 8. Let γ1, γ2 > 0 and choose (µ̄2, ρ̄2) ∈ (0, µ̄1] × (0, ρ̄1] sufficiently small. There exists some

K2 > 0 such that

‖x− x∗‖ ≤ K2µ, max (‖Y −Ya‖F, ‖z− za‖, ‖∇xL(w)‖) ≤ K2(ρ+ µ) (3.30)

for all (µ, ρ) ∈ (0, µ̄2]× (0, ρ̄2] and (x,Y, z) ∈Rn ×Sm ×Rs satisfying (3.27), (3.28), and (3.29).

Proof. See Appendix A.8. �

Proposition 9. Suppose that Assumption 1 holds. Let γ1, γ2 > 0. Choose (µ̄3, ρ̄3) ∈ (0, µ̄2] × (0, ρ̄2] suffi-

ciently small. For any (µ, ρ) ∈ (0, µ̄3] × (0, ρ̄3] and w = (x,Y, z) ∈ Rn × Sm ×Rs satisfying (3.27), (3.28), and

(3.29), we have

d⊤∇2
xxL(w)d +∆G(x; d) •L−1

G(x)LY (∆G(x; d))≥ κ
2
‖d‖2, ∀d ∈Rn \ {0} :∇h(x)⊤d = 0, (3.31)

where κ > 0 is the constant defined in (3.1).

Proof. See Appendix A.9. �

3.6. Proof of Claim (iii): uniqueness of BKKT point for each barrier parameter In this section,

in order to derive the smoothness of the central path by means of the classical implicit function theorem,

we first transform NSDP (1.1) into an equivalent problem without equality constraints locally. Let M :=

{ x ∈Rn | h(x) = 0 }. Under the presence of the full column rank of ∇h(x∗) and twice continuous differentia-

bility of h, there exists an open set U ⊆ Rn−s together with a C2-diffeomorphism Φ : U→Φ(U)(⊆ Rn) such

that x∗ ∈ Φ(U) ⊆M.2 Then, we can take an open ball V such that cl V ( U, x∗ ∈ Φ(V), and ∇h(Φ(v)) is of

full column rank for all v ∈ cl V . Thus, there exists (∇h(x)⊤∇h(x))−1 with x =Φ(v) for all v ∈ cl V .

2 More strictly speaking, there exists a C2 mapping Φ : U → Rn such that Φ(U) and U are diffeomorphic and furthermore

h((Φ(v)⊤, v⊤)⊤)= 0 (v ∈U) holds by re-ordering the variables in x if necessary. Then, we let Φ(v) := (Φ(v)⊤, v⊤)⊤.
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Let us give some relevant properties of Φ for later use. Since V is bounded and Φ is smooth on the open

set U() cl V), there exists a Lipshitz constant M1 > 0 such that

‖Φ(u)−Φ(v)‖ ≤ M1‖u− v‖, ∀u, v ∈ cl V . (3.32)

Moreover, by noting that Φ is a diffeomorphism, there exists M2 > 0 such that

‖Φ−1(x)−Φ−1(y)‖ ≤M2‖x− y‖, ∀x, y ∈Φ(cl V).

Since h(Φ(v)) = 0 (v ∈ V), by differentiation with respect to v, we have

∇Φ(v)∇xhi(Φ(v)) = 0, (3.33)∑n
j=1

∂hi(Φ(v))

∂x j
∇2Φ j(v)+∇Φ(v)∇2

xxhi(Φ(v))∇Φ(v)⊤ =O (3.34)

for each i = 1,2, . . . , s, where Φi(v) stands for the i-th element of Φ(v) ∈ Rn. Note that ∇Φ(v)⊤ is of full

column rank for any v ∈ U because Φ is a diffeomorphism on U and cl V is bounded by definition. From

this fact, there exist some M3,M4 > 0 such that

M3 ≤ ‖∇Φ(v)⊤y‖ ≤ M4, ∀(v, y) ∈ cl V ×Rn−s : ‖y‖ = 1. (3.35)

Since cl V is bounded and ∇2Φ is continuous on cl V , there exists some M5 > 0 such that

max
i=1,2,...,s

‖∇2Φi(v)‖F ≤ M5, ∀v ∈ cl V. (3.36)

Let dist (x,M) :=miny∈M ‖x− y‖ for x ∈Rn. The following lemma holds.

Lemma 2. It holds that

dist (x̌(µ),M) =O(µ2), (3.37)

where x̌(µ) := x∗ + µξ∗ (µ ≥ 0).

Proof. See Appendix A.10. �

In terms of Φ, NSDP (1.1) is reformulated as the following problem without equality constraints locally

around v∗ :=Φ−1(x∗) ∈ V:

min
v∈V

f (Φ(v)) s.t. G(Φ(v)) ∈ Sm
+ .

Accordingly, we obtain the following barrier penalized problem for each µ > 0:

min
v∈V
Ψµ(v) := ψµ(Φ(v)) s.t. G(Φ(v)) ∈ Sm

++, (3.38)

where ψµ(x)= f (x)− µ log detG(x) as defined in (3.5). The gradient and Hessian of Ψµ are expressed as

∇Ψµ(v) =∇Φ(v)∇xψµ(Φ(v)), (3.39)

∇2Ψµ(v) =
∑n

j=1

∂ψµ(Φ(v))

∂x j
∇2Φ j(v)+∇Φ(v)∇2

xxψµ(Φ(v))∇Φ(v)⊤, (3.40)

respectively. From (3.33) and the fact that ∇h1(x),∇h2(x), · · · ,∇hs(x) are linearly independent at x = Φ(v)

and the dimension of Ker∇Φ(v) is s, ∇h1(x), . . . ,∇hs(x) form a basis of Ker∇Φ(v). From this fact and

equation (3.39), we see that ∇Ψµ(v) = 0 if and only if ∇xψµ(Φ(v)) = ∇ f (Φ(v)) − µJG(Φ(v))G(Φ(v))−1 ∈
Im∇h(x). Namely,

∇Ψµ(v) = 0⇔Φ(v) is a BKKT point with barrier parameter µ. (3.41)
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Proposition 10. Suppose that Assumption 1 holds. Choose (ρ̄4, µ̄4) ∈ (0, ρ̄3] × (0, µ̄3] sufficiently small,

where ρ̄3 and µ̄3 are the constants defined in Proposition 9. Then, for any (ρ, µ) ∈ (0, ρ̄4]× (0, µ̄4] and y ∈Rn−s

with ‖y‖ = 1, we have

y⊤∇2Ψµ(v)y ≥
κM2

3

4
, ∀v ∈ V ∩Φ−1(clPρ(µ)), (3.42)

where κ and M3 are defined in (3.1) and (3.35), respectively.

Proof. See Appendix A.11. �

Theorem 3. Suppose that Assumption 1 holds. Choose ρ ∈ (0, ρ̄4] arbitrarily, where ρ̄4 is the constant

defined in Proposition 10. Then, there exists some µ̄ρ ∈ (0, µ̄4] such that, for any µ ∈ (0, µ̄ρ] a unique BKKT

point x(µ) with barrier parameter µ exists in Φ(V)∩Pρ(µ). In particular, Φ−1(x(µ)) is a unique solution of

the equation ∇Ψµ(v) = 0 in the open set V ∩Φ−1(Pρ(µ)). Moreover,∇2Ψµ(Φ
−1(x(µ))) is positive definite, thus

Φ−1(x(µ)) is a strict local optimum of problem (3.38).

Proof. For a fixed ρ ∈ (0, ρ̄4], according to item 1 of Proposition 6, x(µ) ∈ Pρ(µ) holds for any suffi-

ciently small µ > 0. Since h(x(µ)) = 0 holds as x(µ) is a BKKT point, we have x(µ) ∈ Φ(V). Then, noting

limµ→0 x(µ) = x∗ ∈Φ(V), we ensure x(µ) ∈Φ(V)∩Pρ(µ) for any µ small enough.

Next, by deriving a contradiction, we prove that such x(µ) is unique in Φ(V)∩Pρ(µ) for any sufficiently

small µ. Assume to the contrary that there exists an infinite sequence {µℓ} ⊆ (0, µ̄4] which converges to 0 and

moreover accompanies two sequences {xℓ}, {yℓ} ⊆Φ(V)∩Pρ(µℓ) such that for each ℓ, xℓ , yℓ, but xℓ and yℓ

are both BKKT points with barrier parameter µℓ. Hence,

vℓ :=Φ−1(xℓ), θℓ :=Φ−1(yℓ)

exist in V , and in addition (3.41) yields

∇Ψµℓ (vℓ) =∇Ψµℓ (θℓ) = 0, (3.43)

where Ψµ is defined in (3.38). Moreover, we have

xℓ, yℓ ∈Φ(V)∩Pρ(µℓ)

for sufficiently large ℓ. Let x̌M(µℓ) ∈ arg miny∈M ‖x̌(µℓ)− y‖, where x̌(·) is defined in Lemma 2, and let

vµℓ := Φ−1(x̌M(µℓ)), Vℓ :=

{
v ∈ V

∣∣∣∣∣ ‖v− vµℓ‖ <
ρµℓ

2M1

}
(3.44)

for each ℓ. Then, by (3.37) in Lemma 2,

dist (x̌(µℓ),M)= ‖x̌M(µℓ)− x̌(µℓ)‖ =O(µ2
ℓ). (3.45)

For any v ∈ Vℓ,

‖Φ(v)− x̌(µℓ)‖ ≤ ‖Φ(v)− x̌M(µℓ)‖+ ‖x̌M(µℓ)− x̌(µℓ)‖
≤ ‖Φ(v)−Φ(vµℓ )‖+O(µ2

ℓ)

≤ M1‖v− vµℓ‖+O(µ2
ℓ)

≤ ρµℓ
2
+O(µ2

ℓ ),

where the second inequality follows from (3.44) and (3.45), the third from (3.32), and the fourth from (3.44)

and v ∈ Vℓ. Hence, it holds that ‖Φ(v)− x̌(µ)‖ ≤ ρµℓ, ∀v ∈ Vℓ for sufficiently large ℓ, which yields that

Φ(Vℓ) ⊆Pρ(µℓ). (3.46)
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Furthermore, since both xℓ and yℓ converge to x∗ as ℓ tends to ∞ because of xℓ, yℓ ∈ Pρ(µℓ), Theorem 2

implies

‖x̌(µℓ)− xℓ‖ = ‖x∗ + µℓξ∗ − xℓ‖ = µℓ
∥∥∥∥∥∥ξ
∗ − xℓ − x∗

µℓ

∥∥∥∥∥∥= o(µℓ), (3.47)

and also ‖x̌(µℓ) − yℓ‖ = o(µℓ) in a similar way. These relations along with the triangle inequality and (3.45)

yield

max
(
‖x̌M(µℓ)− xℓ‖, ‖x̌M(µℓ)− yℓ‖

)
= o(µℓ),

which implies that for sufficiently large ℓ ≥ 0, max
(‖x̌M(µℓ)− xℓ‖, ‖x̌M(µℓ)− yℓ‖) ≤ µℓρ

4M1 M2
, thus

‖vµℓ − vℓ‖ = ‖Φ−1(x̌M(µℓ))−Φ−1(xℓ)‖ ≤ M2‖x̌M(µℓ)− xℓ‖ ≤ ρµℓ

4M1

.

Therefore, we gain vℓ ∈ Vℓ for ℓ large enough. In a similar way, we can show θℓ ∈ Vℓ. In short, from the

above arguments we obtain that

{vℓ, θℓ} ⊆ Vℓ (3.48)

for sufficiently large ℓ.

From (3.46) together with Vℓ ⊆ V , Vℓ ⊆ V ∩Φ−1(Pρ(µℓ)) holds. Then, according to Proposition 10, when

ρ ≤ ρ̄4 and ℓ is so large that µℓ ≤ µ̄4, ∇2Ψµℓ (v) is positive definite for all v ∈ Vℓ ⊆ V ∩ Φ−1(Pρ(µℓ)). Thus,

problem (3.38) with V replaced by Vℓ can be viewed as a strongly convex problem for any large ℓ. Therefore,

a point v ∈ Vℓ which fulfills ∇Ψµℓ (v) = 0 must be unique, which together with (3.43) and (3.48) implies

θℓ = vℓ. This gives xℓ = yℓ, a contradiction. With this, we ensure that by setting µ to be small enough, a

BKKT point x(µ) exists uniquely in Φ(V)∩Pρ(µ). Moreover, we also seeΦ(x(µ)) is a unique local optimum

of (3.38) in V ∩Φ−1(Pρ(µ)). The positive definiteness of ∇2Ψµ(Φ
−1(x(µ))) is clear from Proposition 10 along

with Φ−1(x(µ)) ∈ V ∩Φ−1(Pρ(µ)). We thus obtain the desired assertion. �

3.7. Main claim I: existence and uniqueness of central path By Theorem 3, we have ensured the

uniqueness and existence of BKKT points around the KKT point x∗. In the following theorem, we prove

that these BKKT points together with the corresponding Lagrange multiplier vectors and matrices form a

smooth central path leading to the KKT triplet wa = (x∗,Ya, z
a), and moreover show such a path is uniquely

determined.

Theorem 4. Suppose that Assumption 1 holds. For a sufficiently small µ̄ > 0, there exists a unique central

path w : (0, µ̄)→W++ such that

1. it is smooth and, for each µ ∈ (0, µ̄), w(µ) is a BKKT triplet of the NSDP with barrier parameter µ.

Moreover,

2. lim
µ→0

w(µ) =wa.

Proof. We first show that there exists a unique smooth path v(·) such that ∇Ψµ(v(µ)) = 0 and v(µ) ∈
V ∩Φ−1(Pρ(µ)) for each µ ∈ (0, µ̄) with some µ̄. Choose ρ ∈ (0, ρ̄4] arbitrarily and consider µ̄ρ > 0 defined

as in Theorem 3. From Theorem 3, for each µ ∈ (0, µ̄ρ], there exists a unique vµ ∈ V ∩Φ−1(Pρ(µ)) such that

∇Ψµ(vµ) = 0. Moreover, ∇2Ψµ(vµ) is positive definite, thus nonsingular. By applying the implicit function

theorem to the equation ∇Ψµ(v) = 0, there exist some lµ ∈ (0, µ) and uµ ∈
(
µ,min

(
2µ, µ̄ρ

))
together with a

smooth path vµ : (lµ,uµ)→ V ∩Φ−1(Pρ(µ)) satisfying vµ(µ) = vµ and ∇Ψt(vµ(t)) = 0 for each t ∈ (lµ,uµ). In

fact, Φ(vµ(t)) ∈ Pρ(t) holds for each t ∈ (lµ,uµ) by re-taking smaller µ̄ρ if necessary. For the proof, see the

footnote3. Thus, due to Theorem 3 again, for each t ∈ (lµ,uµ), vµ(t) is the unique solution to ∇Ψt(v) = 0 in the

3 Suppose to the contrary that there exists a sequence {µℓ} converging to 0 along with {tℓ} such that tℓ ∈ (lµℓ ,uℓ) and Φ(vµℓ (tℓ)) ∈
Pρ(µℓ) \Pρ(tℓ). By noting lµℓ < tℓ < uµℓ ≤ 2µℓ, (3.41), and the fact of Φ(vµℓ (tℓ)) ∈ Pρ(µℓ), it follows that limℓ→∞ tℓ = 0, Φ(vµℓ (tℓ)) is a

BKKT point with barrier parameter tℓ and limℓ→∞Φ(vµℓ (tℓ))= x∗. However, according to item 2 of Proposition 6, Φ(vµℓ (tℓ)) ∈Pρ(tℓ)
must hold for any ℓ large enough, a contradiction to the assumption of Φ(vµℓ (tℓ)) ∈Pρ(µℓ) \Pρ(tℓ).
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open set V ∩Φ−1(Pρ(t)) and ∇2Ψt(vµ(t)) is positive definite. Taking this fact into account and connecting the

paths vµ(·) constructed in the above way for each µ ∈ (0, µ̄) with µ̄ := µ̄ρ, we can ensure there exists a unique

smooth path v : (0, µ̄)→ V such that ∇Ψµ(v(µ)) = 0 and v(µ) ∈ V ∩Φ−1(Pρ(µ)) for each µ ∈ (0, µ̄).

By letting x(µ) :=Φ(v(µ)) for each µ ∈ (0, µ̄), x(·) is smooth on (0, µ̄) as v(·) is smooth and Φ : V→M is a

diffeomorphism. Furthermore, x(µ) is a BKKT point with barrier parameter µ because of ∇Ψµ(Φ(v(µ))) = 0

and (3.41). Since x(µ) =Φ(v(µ)) ∈ Pρ(µ), it is clear from the definition of Pρ(µ) that

lim
µ→0

x(µ) = x∗. (3.49)

From (3.25) and (3.26), G(x(µ)) ∈ Sm
++ and ∇h(x(µ)) is of full column rank, and therefore G(x(µ))−1 and

(∇h(x(µ))⊤∇h(x(µ)))−1 exist. Since x(µ) is a BKKT point as shown above, there exists zµ ∈Rs such that

∇xL(x(µ), µG(x(µ))−1, zµ) =∇ f (x(µ))− µJG(x(µ))∗G(x(µ))−1 +∇h(x(µ))zµ = 0.

Therefore, by premultiplying this equation with (∇h(x(µ))⊤∇h(x(µ)))−1∇h(x(µ))⊤, we obtain zµ =

−(∇h(x(µ))⊤∇h(x(µ)))−1∇h(x(µ))⊤( f (x(µ)) −JG(x(µ))∗Y(µ)) for each µ ∈ (0, µ̄). Thus, we can define w(·) :

(0, µ̄)→W++ by Y(µ) := µG(x(µ))−1 and z(µ) := zµ. Since x(·) is smooth, so is w(·), and w(µ) is a BKKT

triplet with (3.49). Recall that Theorem 1 implies any sequence of BKKT triplets {wk = (xk,Yk, z
k)} such that

limk→∞ xk = x∗ converges to wa. Therefore, limµ→0 w(µ) = wa follows. Finally, since x(·) is uniquely deter-

mined as shown above and Y(·) and z(·) are uniquely constructed from x(·), we can conclude the uniqueness

of w(·). The proof is complete. �

3.8. Main claim II: unique solvability of the Newton equation in the primal-dual interior point

method As remarked in remark 5, A(w) is the coefficient matrix of the Newton equation to the BKKT

system (3.11). In the following theorem,A(w) is shown to be nonsingular near the central path.

Theorem 5. Let the same assumptions as in Proposition 9 hold. For any w = (x,Y, z) ∈ W satisfying

(3.27), (3.28), and (3.29), the matrixA(w) defined in (3.15) is nonsingular.

Proof. We have only to show that A(w)dw = 0 when x ∈ clPρ(µ) for dw := (dx,dY,dz)⊤ ∈ W implies

dw = 0. FromA(w)dw = 0, it holds that

∇2
xxL(w)dx−JG(x)∗dY +∇h(x)dz = 0, (3.50)

LG(x)dY +LY∆G(x; dx)=O, (3.51)

∇h(x)⊤dx = 0. (3.52)

Note that (G(x),Y) ∈ Sm
++ × Sm

++ and ∇h(x) is of full column rank due to x ∈ clPρ(µ), (3.25), and (3.26).

Pre-multiplying (3.50) with dx⊤ and substituting (3.52) and dY = −L−1
G(x)LY∆G(x; dx) from (3.51) into it,

we have dx⊤∇2
xxL(w)dx+∆G(x; dx) •L−1

G(x)LY (∆G(x; dx)) = 0. Then, because of Proposition 9, dx = 0 must

hold, which together with (3.51) implies dY = O. Moreover, (3.50) and the full column rank of ∇h(x) give

dz = 0. Hence, we obtain dw = 0 and thus the second assertion is obtained. �

The set of w = (x,Y, z) ∈W++ which fulfills (3.27)-(3.29), write N ⊆W++, contains any BKKT triplets

with sufficiently small barrier parameters. Indeed, from item 2 of Proposition 6, (3.27) holds at any BKKT

points x(µ) with sufficiently small barrier parameter µ, and (∇h(x(µ))∇h(x(µ))⊤)
−1

exists from (3.25) and

(3.26). Moreover, the expressions on the left-hand sides of (3.28) and (3.29) are both equal to 0 because

∇xL(w) = 0 and G(x)Y = µI hold on the central path, and hence (3.28) and (3.29) hold true. Therefore, N
contains the central path. Thus, Theorem 5 indicates that the Newton equation (3.17) is uniquely solvable

when w is close to the central path. This fact would be useful particularly when applying the Newton method

in the primal-dual interior point method.
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4. Concluding remarks and future work In this paper, we have studied properties of a central path

for nonlinear semidefinite optimization problems (NSDPs). Specifically, we have proven that, under the

strict complementarity condition, strong second-order sufficient condition, and Mangasarian-Fromovitz

constraint qualification, there exists a smooth central path which converges to a KKT triplet with an ana-

lytic center. In particular, given a KKT triplet, a central path leading to that KKT triplet is uniquely deter-

mined. Unlike the past results concerning the central path for the NSDP, the nondegeneracy condition is not

assumed. The author believes that the results obtained in this paper will play a substantial role for further

development of the primal-dual interior point method for the NSDP.

There exist two directions for future works. The first one is concerned with limiting behavior of the

tangential direction ẋ(µ) in the x-space as µ→ 0. We have the following conjecture:

lim
µ→0

ẋ(µ) = ξ∗,

where ξ∗ was defined in Proposition 5. For nonlinear optimization, the corresponding result was proven

by Wright and Orban [58, Theorem 12]. The second direction of future works is to mitigate the strict

complementarity (SC) condition from our assumptions. The SC actually plays a key role in our analysis,

particularly when establishing Proposition 3, a base for proving the subsequent theorems. Indeed, the fol-

lowing example, which is obtained from [58, Section 4] with slight modification, shows that Proposition 3

does not hold when the SC condition fails:

min
x1,x2,x3

1

2
(x2

1 + x2
2 + x2

3) s.t.



x1 − 1 x3

x3 x2

x1 − 1 x3

x3 x2


∈ S4

+.

Its optimum x∗ is only (1,0,0)⊤, and the set of corresponding dual matrices is





λ1 0

0 0

λ2 0

0 0



∣∣∣∣∣∣∣∣∣∣∣
λ1 + λ2 = 1, λ1 ≥ 0, λ2 ≥ 0


.

It is easy to find that neither the SC nor the nondegeneracy condition holds, while both the MFCQ and

ESOSC hold at x∗. For barrier parameter µ > 0, the BKKT point is x(µ) = (
1+
√

8µ+1

2
,
√

2µ,0)⊤, which con-

verges to the optimum x∗ as µ→ 0. However, ‖x(µ) − x∗‖ =
√

8µ+1−
√

8µ+1

2
≤ 2
√
µ , Θ(µ), and therefore

Proposition 3 cannot hold without the SC.
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A. Omitted Proofs In this appendix, we give the proofs which are not shown in the main part of this

paper.

A.1. Proof of Lemma 1 The second equality follows from the direct calculation along with the fact of

∆GEF = (∆GFE)⊤, and the first one is derived from the following transformation:

d⊤Ω(x∗,Y)d =2Tr


n∑

j=1

n∑

i=1

did jYG∗i G†∗G∗j



=2Tr


(
P⊤∗ YP∗

)


n∑

i=1

diP
⊤
∗G∗i P∗


(
P⊤∗G

†
∗P∗

)


n∑

j=1

d jP
⊤
∗G∗jP∗
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2Tr

([
YEE O

O O

] [
∆GEE(x∗; d) ∆GEF(x∗; d)

∆GFE(x∗; d) ∆GFF(x∗; d)

] [
O O

O (GFF
∗ )−1

] [
∆GEE(x∗; d) ∆GEF(x∗; d)

∆GFE(x∗; d) ∆GFF(x∗; d)

])

=2Tr
(
YEE∆GFE(x∗; d)(GFF

∗ )−1∆GEF(x∗; d)
)
.

The proof is complete. �

A.2. Proof of Proposition 1 We first show the first assertion: the unique existence of the analytic center

at x∗. Note that because of relation (2.7) for (Y, z) ∈Λ(x∗), (3.3) is equivalent to the following problem with

respect to only Y:

min
Y∈Sm

− log det YEE

s.t. ∇ f (x∗)−JGEE(x∗)∗YEE ∈ Im∇h(x∗),

YEF = YFE =O, YFF =O,

YEE ∈ Sm−r∗
+ ,

(A.1)

where JGEE(x∗)∗Z :=
[(

E⊤∗ Gi(x∗)E∗
) •Z

]n

i=1 ∈Rn for Z ∈ Sm−r∗ .

We establish existence of optima of (3.3). By the strict complementarity condition as for the NSDP, there

exists (Y, z) ∈ Λ(x∗) such that Y +G∗ ∈ Sm
++, which implies YEE ∈ Sm−r∗

++ . This means that a finite objective

value of (A.1) is attained at such a matrix Y . Moreover, as Λ(x∗) is convex and bounded from the MFCQ at

x∗ for the NSDP, so is the feasible region of (A.1). By combining these facts, (A.1) is ensured to have an

optimum, say Ya ∈ Sm
+ . From the full column rankness of ∇h(x∗), we see that the linear equation ∇ f (x∗) −

JGEE(x∗)∗YEE
a +∇h(x∗)z = 0 has a unique solution z ∈Rs, written za. This (Ya, z

a) is nothing but an optimum

of (3.3).

Next, consider the following problem:

min
Z

− log det Z

s.t. ∇ f (x∗)−JGEE(x∗)∗Z ∈ Im∇h(x∗),

Z ∈ Sm−r∗
+ .

(A.2)

For a feasible point Y of (A.1), YEE is clearly feasible to (A.2), and hence so is YEE
a to (A.2). Furthermore,

we can ensure that YEE
a is optimal to (A.2). Indeed, if not, there exists Z such that Z is feasible to (A.2)

and − log det Z < − log det YEE
a . Since Y := E∗ZE⊤∗ ∈ Sm

+ is feasible to (A.1) and log det YEE = log det Z, we

gain − log det YEE < − log det YEE
a , a contradiction to the optimality of YEE

a for (A.1). Lastly, since (A.2) is a

strictly convex problem, we see that YEE
a is a unique optimum of (A.2).

In turn, we establish the uniqueness of (Ya, z
a) ∈ Sm

+ ×Rℓ as optimum of (3.3). To derive a contradiction,

assume that there exist two distinct optima (Ya, z
a) and (Ỹa, z̃a) at x∗, which yields that Ya and Ỹa are both

optima of (A.1) by the preceding argument. Thus, so are YEE
a and Ỹa

EE
to (A.2), in particular YEE

a = Ỹa

EE
,

according to the preceding argument again. Hence, we have

P⊤∗ (Ya − Ỹa)P∗ =

[
YEE

a − Ỹa

EE
O

O O

]
=O.

Since P∗ is nonsingular, we obtain Ya = Ỹa, which together with the full column rankness of ∇h(x∗) implies

za = z̃a. Hence we ensure (Ya, z
a) = (Ỹa, z̃a), which is a contradiction. Consequently, (3.3) has a unique opti-

mum, and thus we obtain the first claim.

There remains to verify the second claim as for (3.4). If (Ya, z
a) is the analytic center at x∗, (Ya, z

a) ∈Λ(x∗)

holds by definition, and from the above proof, YEE
a is the unique optimum of (A.2). Hence, by the KKT

conditions of (A.2), there exists v ∈Rs such that (3.4) holds. Conversely, if such v exists and (Ya, z
a) ∈Λ(x∗),

YEE
a solves (A.2), and hence E∗Y

EE
a E⊤∗ = Ya does (A.1). This means that (Ya, z

a) is the analytic center. The

whole proof is complete. �
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A.3. Proof of Proposition 2 Since x∗ is a strict local optimum because of the ESOSC, we can take a

compact set B⊆Rn with nonempty interior such that x∗ ∈ int B and it is a unique optimum of the problem

min f (x) s.t. h(x) = 0, G(x) ∈ Sm
+ , x ∈ B. (A.3)

Consider the sequence of the relevant barrier problems parameterized with µk as in the following:

min f (x)− µk log detG(x) s.t. h(x)= 0, G(x) ∈ Sm
++, x ∈ B, (A.4)

and let xk be an optimum of problem (A.4) for each k.

We will prove the theorem by showing that the above-defined sequence {xk} is nothing but the desired

one. To this end, it suffices to prove that {xk} converges to x∗. Indeed, because x∗ ∈ int B, the constraint x ∈ B

for problem (A.4) is inactive at xk for sufficiently large k, and thus xk eventually becomes a local optimum

of (3.6).

We write fk := f (xk) for each k and f∗ := f (x∗) for the sake of simplicity. Recall Gk =G(xk) and G∗ =G(x∗).

We first consider the case (i) where G∗ ∈ Sm
+ \Sm

++, i.e., G∗ is on the boundary of Sm
+ and thus det G∗ = 0. The

proof for the other case (ii) where G∗ ∈ Sm
++ will be given later. Letting ϕk := fk −µk log detGk for each k, the

first goal is to prove

lim
k→∞

ϕk = f∗. (A.5)

Without loss of generality, by re-taking a smaller B with int B ∋ x∗ if necessary, we can suppose that

detG(x) < 1 for all x ∈ B because of detG∗ = 0, yielding

− log detG(x) > 0, ∀x ∈ B, (A.6)

which together with the feasibility of xk for (A.3) implies

−µk log detGk > 0> f∗ − fk. (A.7)

Using the two inequalities in (A.7) yields

f∗ < fk

< fk − µk log detGk (= ϕk)

≤ fk−1 − µk log detGk−1

≤ fk−1 − µk−1 log detGk−1 (= ϕk−1), (A.8)

where the third inequality follows from the optimality of xk for problem (A.4) and the fourth one is due to

µk ≤ µk−1 and − log detGk−1 > 0 from (A.6) and xk−1 ∈ B. From the above inequalities, we find that {ϕk} is

a nonincreasing sequence such that it is bounded by f∗ from below. Therefore, we ensure the existence of

limk→∞ ϕk and moreover obtain

f∗ ≤ lim
k→∞

ϕk. (A.9)

To verify (A.5), there remains to prove the converse inequality. Related to {xk}, under the MFCQ at x∗, we

can construct another sequence {xℓ(k)} feasible to problem (A.3) such that it converges to x∗ and also satisfies

detGℓ(k) = µk for each k ≥ K with sufficiently large K > 0.4 We then obtain limk→∞ ϕk ≤ f∗ since a log a→ 0

as a→ 0+ and ϕk ≤ fℓ(k) − µk log detGℓ(k) holds by the definition of xk. Together with (A.9), it derives the

target equation (A.5).

4 This fact is verified as follows: From the MFCQ at x∗, there exists d ∈ Rn such that G∗ + ∆G(x; d) ∈ Sm
++ and ∇h(x∗)⊤d = 0.

By the full column rankness of ∇h(x∗), we can ensure existence of a smooth curve x(·) : [0, t̄]→ Rs with some t̄ > 0 such that

x(0) = x∗, ẋ(0) = d, and x(t) is feasible to (A.4), ∀t ∈ (0, t̄]. Particularly, G(x(t)) ∈ Sm
++ holds for all t ∈ (0, t̄]. Therefore, as detG(x(t))

is continuous w.r.t. t ≥ 0 and takes 0 at t = 0 by the assumption G∗ ∈ Sm
+ \ Sm

++, we conclude that for any sufficiently small α > 0,

detG(x(t))= α is attained by some t ∈ (0, t̄]. The proof is complete.
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The convergence of {xk} to x∗ is not difficult to derive from (A.5). Letting x̄ be an arbitrary accumulation

point of {xk} and taking into consideration −µk log detGk > 0 in ϕk, we get lim supk→∞ ϕk ≥ f (x̄), which

combined with (A.5) implies f∗ ≥ f (x̄). By the feasibility of x̄ and the unique optimality of x∗ for (A.3), we

gain x∗ = x̄. Finally, since x̄ was an arbitrary accumulation point of {xk}, we conclude that limk→∞ xk = x∗.

We next consider case (ii) where G∗ ∈ Sm
++. Note that log detG∗ is finite in this case. Without loss of

generality, we may assume that detG(x) > 0 for all x ∈ B, by taking a smaller B(∋ x∗) if necessary. Let x̄ be

an arbitrary accumulation point of {xk} and note that log detG(x̄) is also finite since detG(x̄) > 0 by virtue

of x̄ ∈ B. By the optimality of xk and feasibility of x∗ to (A.4), it follows that

fk − µk log detGk ≤ f∗ − µk log detG∗,

where driving k→∞ and taking a subsequence if necessary imply f (x̄) ≤ f∗. Then, in virtue of feasibility

of x̄ and unique optimality of x∗ for (A.3), we have x∗ = x̄. We hence conclude that limk→∞ xk = x∗ as for

case(ii). Consequently, the desired result is obtained and the proof is complete. �

A.4. Proof of Proposition 3 We use the notations described before Proposition 3. In particular, recall

(2.9) and (2.10).

Proof of Proposition 3: To begin with, for each k ≥ 0, let

d̃k :=
dk

‖dk‖ .

Since {d̃k} is bounded, it has at least one accumulation point, say d̃∗. Choose an arbitrary subsequence {d̃k}k∈K
which converges to d̃∗. From remark 4, {wk}k∈K has an accumulation point, say w∗ := (x∗,Y∗, z

∗). Without

loss of generality, we assume limK∋k→∞wk =w∗.

We prove the assertion by two steps. As the first step, we prove

lim inf
k→∞

µk

‖dk‖ > 0. (A.10)

In order to derive a contradiction, suppose to the contrary that there exists a subsequence of
{
µk

‖dk‖

}
k∈K

such

that it converges to 0. We may assume limk(∈K)→∞
µk

‖dk‖ = 0 by retaking K if necessary. Since limk(∈K)→∞ d̃k =

d̃∗, d̃∗ satisfies (
E⊤∗ ∆G(x∗; d̃∗)E∗ =

)
∆GEE(x∗; d̃∗) ∈ Sr∗

+ , ∇h(x∗)⊤d̃∗ = 0, (A.11)

where these relations are derived from dividing the following equations by ‖dk‖ and passing to the limit:

Sr
++ ∋ E⊤∗GkE∗ = E⊤∗ (Gk −G∗) E∗ = ∆GEE(x∗; dk)+O(‖dk‖2),

0 = h(xk) = h(x∗)+∇h(x∗)⊤dk +O(‖dk‖2).

As wk = (xk,Yk, z
k) satisfies the BKKT conditions and P∗ = [E∗,F∗] is an orthogonal matrix, we obtain,

for each k ∈K ,

µkIr∗

‖dk‖ =
E⊤∗GkYkE∗

‖dk‖

=

E⊤∗
(
G∗ +∆G(x∗; dk)+O(‖dk‖2)

) [
E∗ F∗

] [E⊤∗
F⊤∗

]
YkE∗

‖dk‖ ,

which together with driving k(∈K )→∞ yields

∆GEE(x∗; d̃∗)YEE
∗ =O, (A.12)
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where we have used the relations GEE
∗ =O and YFE

∗ =O from (2.8).

As w∗ = (x∗,Y∗, z
∗) and (x∗,Ya, z

a) satisfy the KKT conditions, it follows that

∇ f (x∗) =JG(x∗)∗Y∗ −∇h(x∗)z∗, (A.13)

=JG(x∗)∗Ya −∇h(x∗)za. (A.14)

Pre-multiplying both (A.13) and (A.14) by (d̃∗)⊤ and noting (A.12) lead to

∇ f (x∗)⊤d̃∗ = Tr
(
∆GEE(x∗; d̃∗)YEE

a

)
= Tr

(
∆GEE(x∗; d̃∗)YEE

∗

)
= 0. (A.15)

From (A.15) and (A.11), we ensure

d̃∗ ∈C(x∗), (A.16)

where C(x∗) is defined in (2.12). As YEE
a is positive definite by definition and ∆GEE(x∗; d̃∗) ∈ Sm

+ follows from

(A.11) again, Tr
(
∆GEE(x∗; d̃∗)YEE

a

)
= 0 in (A.15) yields

∆GEE(x∗; d̃∗) =O. (A.17)

Next, we transform (d̃∗)⊤JG(x∗)∗(Yk −Y) as

(d̃∗)⊤JG(x∗)∗(Yk −Y∗) = ∆G(x∗; d̃∗) • (Yk −Y∗)

= Tr

([
E⊤∗
F⊤∗

]
∆G(x∗; d̃∗)

[
E∗ F∗

] [E⊤∗
F⊤∗

]
(Yk −Y∗)

[
E∗ F∗

])

=

[
∆GEE(x∗; d̃∗) ∆GEF(x∗; d̃∗)

∆GFE(x∗; d̃∗) ∆GFF(x∗; d̃∗)

]
•
[
YEE

k
−YFF

∗ YEF
k

YFE
k

YFF
k

]

=

[
O ∆GEF(x∗; d̃∗)

∆GFE(x∗; d̃∗) ∆GFF(x∗; d̃∗)

]
•
[
YEE

k
−YFF

∗ YEF
k

YFE
k

YFF
k

]

= 2Tr
(
∆GEF(x∗; d̃∗)YFE

k

)
+Tr

(
∆GFF(x∗; d̃∗)YFF

k

)
, (A.18)

where the second equality follows from the fact that [E∗,F∗](= P∗) is an orthogonal matrix and the fourth

one is due to (A.17).

Since wk and w∗ satisfy the BKKT and KKT conditions, respectively, we have ∇xL(w∗) =∇xL(wk) = 0 for

each k ∈K , yielding

0 = (d̃∗)⊤
(∇xL(wk)−∇xL(w∗)

)

‖dk‖
= (d̃∗)⊤

∇2
xxL(w∗)(dk)−JG(x∗)(Yk −Y∗)+∇h(x∗)⊤(zk − z∗)+O(‖dk‖2)

‖dk‖

=
(d̃∗)⊤∇2

xxL(w∗)(dk)−∆G(x∗; d̃∗) • (Yk −Y∗)+O(‖dk‖2)

‖dk‖

= (d̃∗)⊤∇2
xxL(w∗)

dk

‖dk‖ −
2Tr

(
∆GEF(x∗; d̃∗)YFE

k

)
+Tr

(
∆GFF(x∗; d̃∗)YFF

k

)

‖dk‖ +O(‖dk‖), (A.19)

where the last equality follows from (A.18). Notice that the off-diagonal elements of P⊤∗GkYkP∗(= µkI) are

zeros for all k. Hence, for each k(∈K ) ≥ 0, we have

O = F⊤∗GkYkE∗

= F⊤∗Gk

[
E∗,F∗

] [E⊤∗
F⊤∗

]
YkE∗

= F⊤∗GkE∗Y
EE
k + F⊤∗ GkF∗Y

FE
k
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for each k ∈K . Substituting Taylor’s expansion Gk =G∗+∆G(x∗; dk)+O(‖dk‖2) into the last equation yields

(GFE
∗ +∆GFE(x∗; dk))YEE

k +
(
GFF
∗ +∆GFF(x∗; dk)

)
YFE

k =O(‖dk‖2),

where ‖Yk‖F =O(1) was used for the last equality. Noting GFE
∗ =O and dividing both the sides of the above

by ‖dk‖ give

∆GFE(x∗; dk)

‖dk‖ YEE
k +

(
GFF
∗

YFE
k

‖dk‖ +
∆GFF(x∗; dk)

‖dk‖ YFE
k

)
=O(‖dk‖) (A.20)

for k ∈K . Note that limk→∞ YFE
k
=O holds, which implies limk→∞

∆GFF(x∗;dk)

‖dk‖ YFE
k
=O. Moreover, together with

letting k(∈K )→∞, equation (A.20) implies

lim
k→∞

YFE
k

‖dk‖ = −(GFF
∗ )−1∆GFE(x∗; d̃∗)YEE

∗ . (A.21)

On the other hand, the (2,2)-block matrix of P⊤∗GkYkP∗/‖dk‖(= µkI/‖dk‖) is calculated as

1

‖dk‖
(
F⊤∗

(
G∗ +∆G(xk; dk)

)
E∗Y

EF
k + F⊤∗

(
G∗ +∆Gk(xk; dk)

)
F∗Y

FF
k

)
+

O(‖dk‖2)

‖dk‖
=

1

‖dk‖
(
F⊤∗ ∆G(xk; dk)E∗Y

EF
k +

(
GFF
∗ + F⊤∗ ∆Gk(xk; dk)F∗

)
YFF

k

)
+O(‖dk‖), (A.22)

where we have used

GFE
∗ =O, GFF

∗ =O (A.23)

from (2.8). In particular, from limk→∞∆G(xk; dk)/‖dk‖ = ∆G(x∗; d̃∗) and limk→∞(YEF
k
,YFF

k
) = (O,O), we see

lim
k→∞

F⊤∗ ∆G(xk; dk)E∗Y
EF
k
+ F⊤∗ ∆G(xk; dk)F∗Y

FF
k

‖dk‖ =O.

Since the limit of (A.22) is zero by the assumption limk→∞ µk/‖dk‖ = 0 again and recalling that (A.22) is

the (2,2)-block of µkI/‖dk‖, the above equation yields limk→∞GFF
∗ YFF

k
/‖dk‖ = O, which combined with the

nonsingularity of GFF
∗ induces

lim
k→∞

YFF
k

‖dk‖ =O. (A.24)

By taking (A.21) and (A.24) into consideration and driving k→∞ in the equation in (A.19), it holds that

(d̃∗)⊤∇2
xxL(w∗)d̃∗ = −2Tr

(
YEE
∗ ∆GEF(x∗; d̃∗)(GFF

∗ )−1∆GFE(x∗; d̃∗)
)
.

Combined with Lemma 1, this equation further implies

(d̃∗)⊤∇2
xxL(w∗)d̃∗ + (d̃∗)⊤Ω(x∗,Y∗)d̃

∗ = 0.

However, in view of d̃∗ ∈ C(x∗) by (A.16) and d̃∗ , 0 and by noting (Y∗, z
∗) ∈ Λ(x∗), the above equation

contradicts the ESOSC. Therefore, we conclude (A.10).

In turn, we show
µk

‖dk‖ =O(1) as the second step. As wk satisfies the BKKT conditions, we obtain, for each

k,

µkIr∗

‖dk‖ =
E⊤∗GkYkE∗

‖dk‖ =

E⊤∗
(
G∗ +JG(x∗)(dk)+O(‖dk‖2)

) [
E∗ F∗

] [E⊤∗
F⊤∗

]
YkE∗

‖dk‖ ,

which together with (A.23) yields

lim
k→∞

µkIr∗

‖dk‖ = ∆GEE(x∗; d̃∗)YEE
∗ .

This means that the sequence
{
µk

‖dk‖

}
is bounded, and we thus obtain the desired consequence. By combining

(A.10) and this fact, the proof is complete. �
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A.5. Proof of Proposition 5 To start with, decompose a vector ∆x ∈ Rn into orthogonal component

vectors as follows:

∆x =Ux∗η
1 +V∗η

2, (A.25)

where (η1, η2) ∈ Rp∗ ×Rn−p∗ and V∗ ∈ Rn×(n−p∗) is a matrix whose columns form an orthonormal basis of the

orthogonal complement subspace ofU∗, whereU∗ is defined in (3.21).

Let U i
x∗ be the i-th column of Ux∗ for each i = 1,2, . . . , p∗. From (3.19), we have

Sym

([
YEE

a ∆GEE(x∗;∆x) YEE
a ∆GEF(x∗;∆x)

GFF
∗ ∆YFE GFF

∗ ∆YFF

])
= I,

of which the block components together with GFF
∗ ∈ Sm−r∗

++ and YEE
a ∈ Sr∗

++ yield

∆YFF = (GFF
∗ )−1, (A.26)

∆GEE(x∗;∆x)= (YEE
a )−1, (A.27)

YEE
a ∆GEF(x∗;∆x)+∆YEFGFF

∗ =O. (A.28)

By (3.18), we obtain

U⊤x∗∇2
xxL(wa)∆x−

([
O ∆GEF(x∗; U i

x∗)

∆GFE(x∗; U i
x∗) ∆GFF(x∗; U i

x∗)

]
•P⊤∗ ∆YP∗

)p∗

i=1

= 0,

leading to

U⊤x∗∇2
xxL(wa)∆x−

(
∆GFE(x∗; U i

x∗) •∆YEF +∆GEF(x∗; U i
x∗) •∆YFE +∆GFF(x∗; U i

x∗) •∆YFF
)p∗

i=1
= 0,

which is moreover rephrased as

U⊤x∗∇2
xxL(wa)∆x−

(
2∆GFE(x∗; U i

x∗) •∆YEF +∆GFF(x∗; U i
x∗) •∆YFF

)p∗

i=1
= 0.

Combined with (A.26) and (A.28), this equation yields

U⊤x∗∇2
xxL(wa)∆x+ 2

(
Tr

(
∆GFE(x∗; U i

x∗)Y
EE
a ∆GEF(x∗;∆x)(GFF

∗ )−1
))p∗

i=1
=

(
∆GFF(x∗; U i

x∗) • (GFF
∗ )−1

)p∗

i=1
.

Decomposing ∆x as in (A.25), we obtain from the above equation that

U⊤x∗∇2
xxL(wa)Ux∗η

1 + 2


p∗∑

j=1

η1
jTr

(
∆GFE(x∗; U i

x∗)Y
EE
a ∆GEF(x∗; U

j

x∗)(G
FF
∗ )−1

)


p∗

i=1

=−U⊤x∗∇2
xxL(wa)V∗η

2 − 2
(
Tr

(
∆GFE(x∗; U i

x∗)Y
EE
a ∆GEF(x∗; V∗η

2)(GFF
∗ )−1

))p∗

i=1

+
(
−∆GEF(x∗; U i

x∗) • (YEE
a )−1 +

(
∆GEF(x∗; U i

x∗)−∆GFF(x∗; U i
x∗)

)
• (GFF

∗ )−1
)p∗

i=1
, (A.29)

where η1 := (η1
1, η

1
2, . . . , η

1
p∗)
⊤.

Next, we prove that η1 and η2 are uniquely determined. To this end, note that V∗η
2 ∈ U⊥∗ by definition,

and ∆GEE(x∗; V∗η
2) = (YEE

a )−1 follows from (A.27) and ∆GEE(x∗; Ux∗η
1) =O. From this, V∗η

2 turns out to be

unique,5 which together with the full column rank of V∗ yields the uniqueness of η2. In view of this fact and

(A.29), η1 is also uniquely determined, because the matrix

U⊤x∗∇2
xxL(wa)Ux∗ + 2

(
Tr

(
∆GFE(x∗; U i

x∗)Y
EE
a ∆GEF(x∗; U

j

x∗)(G
FF
∗ )−1

))
1≤i≤ j≤p∗

is actually positive definite by virtue of the ESOSC.

As a result, ∆x =Ux∗η
1+V∗η

2 is the unique ∆x-component of solutions to equations (3.18)-(3.20). There-

fore, we ensure Item 1. Item 2 follows immediately from (A.26)-(A.28) with ∆x = ξ∗. �

5 More precisely speaking, to derive the uniqueness of V∗η
2, we have made use of the following fundamental result from linear

algebra: given A ∈Rq1×q2 and b ∈Rq1 , assume that the linear equation Aθ = b has a nonempty solution set. Pick a solution u arbitrarily

and decompose it as u = u1 + u2 with u1 ∈ Ker A and u2 ∈ (Ker A)⊥, where Ker A denotes the kernel or null space of the matrix A.

Then, u2 is uniquely determined regardless of choice for u, whereas u1 is free in Ker A. In the proof, there exist correspondences

between Au= b and ∆GEE(x∗; Ux∗η
1 +V∗η

2)= (YEE
a )−1, u1 and Ux∗η

1, u2 and V∗η
2, and Ker A andU∗, respectively.
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A.6. Proof of Proposition 6 We show item 1. We first consider the first-half claim. For contradiction,

assume that there exists an infinite sequence {µk} ⊆R++ converging to 0 such that Pρ(µk) does not contain a

BKKT point with barrier parameter µk for each k. According to Proposition 2, {µk} accompanies a sequence

of BKKT points {x(µk)} which converges to the KKT point x∗. By the above assumption, x(µk) <Pρ(µk) for

each k, implying ‖x(µk)− x∗ − µkξ
∗‖/µk ≥ ρ‖ξ∗‖ > 0. However, Theorem 2 implies

‖x(µk)− x∗ − µkξ
∗‖ = o(µk). (A.30)

This is a contradiction. Hence, the first-claim claim is obtained. The second-half one can be also established

by deriving a contradiction. Suppose to the contrary that there exist BKKT points {x(µk)} with x(µk) ∈
bdPρ(µk). By the definition of bdPρ(µk), we see limk→∞ x(µk) = x∗, thus (A.30) holds again. However, this

contradicts (x(µk)− x∗)/µk = ρ,∀k from x(µk) ∈ bdPρ(µk). Item 2 also follows readily since the same relation

as (A.30) is obtained from Theorem 2 again. �

A.7. Proof of Proposition 7 We prove the first assertion in item 1. Write X̃ := P⊤∗ XP∗ for any X ∈ Sm

by convension. In particular, we set G(·) and ∆G(x∗; ·) to X. Denote

R(x, µ) := G̃(x)− G̃(x∗)− µ∆̃G(x∗; ξ∗).

We next consider to bound the magnitude of R(x, µ) when (x, µ) is varied. Recall GEE
∗ = O, GEF

∗ =GFE
∗ =O,

and GFF
∗ ∈ Sr∗

++. It follows that

1

µ
G̃(x) =

1

µ
G̃(x∗)+ ∆̃G(x∗; ξ∗)+

1

µ
R(x, µ)

=

[
(YEE

a )−1 + 1

µ
R1(x, µ) ∆GEF(x∗; ξ∗)+ 1

µ
R2(x, µ)

∆GFE(x∗; ξ∗)+ 1

µ
R2(x, µ)⊤ ∆GFF(x∗; ξ∗)+ 1

µ
GFF
∗ +

1

µ
R3(x, µ)

]
, (A.31)

where Ri(x, µ) (i = 1,2,3) represent block submatrices of R(x, µ) with appropriate sizes and the second

equality follows from ∆GEE(x∗; ξ∗) = (YEE
a )−1 by item-2 of Proposition 5. Taylor’s expansion of G̃ at x∗ gives

R(x, µ) = ∆̃G (x∗, x− x∗ − µξ∗)+O(‖x− x∗‖2)

=O(µρ‖ξ∗‖+ ‖x− x∗‖2)

=O(µρ+ µ2) (A.32)

for x ∈ clPρ(µ), where the last equality follows since ‖x − x∗‖ ≤ µ(ρ + 1)‖ξ∗‖ by x ∈ clPρ(µ). By (A.32),

the fact that (YEE
a )−1 ∈ Sm−r∗

++ , and taking µ1 > 0 and ρ1 > 0 so small, 1

µ
‖R(x, µ)‖ can be so small that the

(1,1)-block matrix of 1

µ
G̃(x) is symmetric positive definite for any (ρ, µ) ∈ (0, ρ1]× (0, µ1], that is to say,

Q(x, µ) := (YEE
a )−1 +

1

µ
R1(x, µ) ∈ Sm−r∗

++ , ∀(ρ, µ) ∈ (0, ρ1]× (0, µ1], x ∈ clPρ(µ), (A.33)

which along with (A.32) implies

Q(x, µ)−1 = YEE
a (I +O (ρ+ µ))−1 . (A.34)

Meanwhile, the Schur complement of 1

µ
G̃(x) is expressed as

S c(x, µ) := ∆GFF(x∗; ξ∗)+
1

µ
GFF
∗ +

1

µ
R3 −

(
∆GFE(x∗; ξ∗)+

1

µ
R⊤2

)
Q−1

(
∆GEF(x∗; ξ∗)+

1

µ
R2

)
,

where we have dropped the arguments (x, µ) from the functions R1, R2, R3, and Q for simplicity. From

(A.32), by re-taking (µ1, ρ1) sufficiently small if necessary, we find that the above S c is symmetric positive
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definite for any µ ∈ (0, µ1] because 1

µ
GFF
∗ ∈ Sr∗

++ is eventually dominant therein as µ > 0 gets smaller and

x ∈ clPρ(µ) holds by assumption. Hence,

S c(x, µ)−1 =O(µ) (x ∈ clPρ(µ)). (A.35)

Moreover, in view of (A.31), from (A.33) and S c ∈ Sr∗
++ shown above, we conclude 1

µ
G̃(x) ∈ Sm

++ for any

(ρ, µ) ∈ (0, ρ1] × (0, µ1] and x ∈ clPρ(µ), implying G(x) ∈ Sm
++. Setting (µ̄1, ρ̄1) := (µ1, ρ1), we ensure the first

assertion.

We next prove the second assertion in item 1. Taking the inverse of µ−1G̃(x) by applying the formula of

the inverse of a partitioned matrix (e.g., Horn and Johnson [19, Section 0.7.3]) to (A.31), we obtain

µG̃(x)−1 =

[
M11 M12

M⊤
12

M22

]
, (A.36)

where each block component is defined as

M11 := Q(x, µ)−1 +Q(x, µ)−1

(
∆GEF(x∗; ξ∗)+

1

µ
R2(x, µ)

)
S c(x, µ)−1

(
∆GEF(x∗; ξ∗)+

1

µ
R2(x, µ)

)⊤
Q(x, µ)−1,

M12 := −Q(x, µ)−1

(
∆GEF(x∗; ξ∗)+

1

µ
R2(x, µ)

)
S c(x, µ)−1,

M22 := S c(x, µ)−1.

Moreover, we have 1

µ
Ri(x, µ) = O(ρ + µ) (i = 1,2,3) from (A.32). These facts together with (A.34), (A.35),

and (A.36) yield

M11 = YEE
a (I +O (ρ+ µ))−1

+O(µ),M12 =O(µ), M22 =O(µ), (A.37)

which together with µG̃(x)−1 = µP⊤∗G(x)−1P∗ implies that
{
µG(x)−1

∣∣∣ x ∈ clPρ̄1
(µ), µ ∈ (0, µ̄1]

}
is bounded.

In turn, we prove item 2. First, in view of (A.37), we obtain

M11 −YEE
a = YEE

a (I +O (ρ+ µ))−1 (I − (I +O (ρ+ µ)))+O(µ)

=O(ρ+ µ). (A.38)

We drive (x, µ)→ (x∗,0) along with satisfying x ∈ clPρ(µ). From (A.37) and (A.38), it follows that

µG̃(x)−1 − Ỹa =

[
M11 −YEE

a M12

M⊤
12 M22

]
=

[
O(ρ+ µ) O(µ)

O(µ) O(µ)

]
,

where Ỹa = P⊤∗ YaP∗. Thus, we have ‖µG(x)−1 − Ya‖F = ‖µG̃(x)−1 − Ỹa‖F = O(ρ + µ). This means that there

exists some K1 > 0 such that ‖µG(x)−1 −Ya‖F ≤ K1(ρ+ µ) as claimed. �

A.8. Proof of Proposition 8 First, from x ∈ clPρ(µ), it follows that ‖x− x∗‖ ≤ ‖x− x∗ − µξ∗‖+ µ‖ξ∗‖ ≤
(ρ+ 1)‖ξ∗‖µ. Second, it follows that ‖Y − Ya‖F ≤ ‖Y − µG(x)−1‖F + ‖Ya − µG(x)−1‖F ≤ (γ1 + K1)µ+ K1ρ from

(3.28) and item 2 of Proposition 7. Moreover, since these inequalities yield

‖za + (∇h(x)⊤∇h(x))−1∇h(x)⊤ (∇ f (x)−JG(x)∗Y) ‖
=‖(∇h(x)⊤∇h(x))−1∇h(x)⊤ (∇ f (x)−JG(x)∗Y +∇h(x)za) ‖
=‖(∇h(x)⊤∇h(x))−1∇h(x)⊤ (∇xL(wa)+O(‖Y −Ya‖F + ‖x− x∗‖)) ‖
=O(ρ+ µ),

where the second and third equalities are derived from applying Taylor’s expansion to ∇xL(x,Y, za) at wa

and the facts that ∇xL(wa) = 0 and ‖(∇h(x)⊤∇h(x))−1∇h(x)⊤‖F =O(1) for x ∈ B, where B is the ball defined

in (3.25), we obtain

‖z− za‖ ≤ ‖z+ (∇h(x)⊤∇h(x))−1∇h(x)⊤ (∇ f (x)−JG(x)∗Y) ‖+
‖za + (∇h(x)⊤∇h(x))−1∇h(x)⊤ (∇ f (x)−JG(x)∗Y) ‖

=O(ρ+ µ),
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where we have used the assumption ‖z+ (∇h(x)⊤∇h(x))−1∇h(x)⊤ (∇ f (x)−JG(x)∗Y) ‖ ≤ γ2µ. Finally, using

the above facts together with ∇xL(wa) = 0, we have

∇xL(w) =∇xL(wa)+O (‖x− x∗‖+ ‖Y −Ya‖F + ‖z− za‖)=O(ρ+ µ)

where the first equality follows from Taylor’s expansion of ∇xL at wa. As a consequence, by taking K2 > 0

sufficiently small, we ensure the desired inequalities. �

A.9. Proof of Proposition 9 To start with, choose ρ ≤ ρ̄2 and consider an arbitrary sequence {wℓ =

(xℓ,Yℓ, z
ℓ)} and {µℓ} ⊆ (0, µ̄2] such that µℓ→ 0 as ℓ→∞ and (3.27), (3.28), and (3.29) are fulfilled for each ℓ.

Write Gℓ :=G(xℓ) for each ℓ. From Proposition 8, we see that {wℓ} is bounded and limℓ→∞ xℓ = x∗. Note that

G−1
ℓ

exists by virtue of xℓ ∈ clPρ(µℓ) and (3.26) along with µ̄2 ≤ µ̄1 and ρ̄2 ≤ ρ̄1, and also note that {µℓG−1
ℓ
} are

bounded from item 1 of Proposition 7. Moreover, (3.28) implies that {Yℓ} and {µℓG−1
ℓ } accumulate at identical

points in Sm
+ . Denote an arbitrary accumulation point of {(Yℓ, z

ℓ)} by (Y∗, z
∗). From the above argument and

the fact that ‖GℓYℓ − µℓI‖F = ‖Gℓ(Yℓ − µℓG−1
ℓ

)‖F ≤ ‖Gℓ‖F‖Yℓ − µℓG−1
ℓ
‖F ≤ γ1µℓ‖Gℓ‖, we obtain

G∗Y∗ =O, Y∗ ∈ Sm
+ . (A.39)

Moreover, from Proposition 8, for any ℓ, we have max
(‖Yℓ −Ya‖F, ‖zℓ − za‖) ≤ K2(ρ + µℓ), where K2 > 0 is

the constant defined in Proposition 8. Then by driving ℓ→∞, we obtain

max (‖Y∗ −Ya‖F, ‖z∗ − za‖) ≤ K2ρ. (A.40)

For X ∈ S m, define λmin(X) as the least eigenvalue of X. From G∗ + Ya ∈ Sm
++ and (A.40), it follows that

λmin(G∗+Y∗) ≥ λmin(G∗+Ya)+λmin(Y∗−Ya) ≥ λmin (G∗ +Ya)−‖Y∗−Ya‖F ≥ λmin (G∗ +Ya)−K2ρ,which together

with λmin (G∗ +Ya) > 0 from G∗ +Ya ∈ Sm
++ implies

G∗ +Y∗ ∈ Sm
++ when 0< ρ ≤ λmin(G∗+Ya)

2K2
. (A.41)

Next, let K̃ :=
∑s

i=1 ‖∇2hi(x∗)‖F + n(n+1)

2
max1≤i, j≤n

∥∥∥∥ ∂
2G(x∗)
∂xi∂x j

∥∥∥∥
F
+ n‖(GFF

∗ )−1‖F max1≤i≤n ‖E∗Gi(x∗)F∗‖2F > 0 and

recall that C(x∗) is a critical cone defined in (2.12). For any d ∈C(x∗), we have

d⊤
(
∇2

xxL(x∗,Y∗, z
∗)+Ω(x∗,Y∗)

)
d

=d⊤

∇2
xxL(wa)+

(
∂2G(x∗)

∂xi∂x j

• (Y∗ −Ya)

)

1≤i, j≤n

+

s∑

i=1

∇2hi(x∗)(z∗i − za
i )

d

+ d⊤Ω(x∗,Ya)d+ 2Tr
((

YEE
∗ −YEE

a

)
∆GFE(x∗; d)(GFF

∗ )−1∆GEF(x∗; d)
)

≥d⊤
(
∇2

xxL(wa)+Ω(x∗,Ya)
)
d − ‖z∗ − za‖‖d‖2

s∑

i=1

‖∇2hi(x∗)‖F −
n(n+ 1)

2
‖Y∗ −Ya‖F‖d‖2 max

1≤i, j≤n

∥∥∥∥∥∥
∂2G(x∗)

∂xi∂x j

∥∥∥∥∥∥
F

− n‖d‖2‖YEE
∗ −YEE

a ‖F‖(GFF
∗ )−1‖F max

1≤i≤n
‖E∗Gi(x∗)F∗‖2F

≥d⊤
(
∇2

xxL(wa)+Ω(x∗,Ya)
)
d − ρK̃K2‖d‖2

≥(κ− ρK̃K2)‖d‖2,

where the first equality follows from Lemma 1 and (A.39), and the third inequality follows from (A.40)

and ‖YEE
∗ − YEE

a ‖F ≤ ‖Y∗ − Ya‖F and the last inequality from ESOSC (3.1) with (Y, z) = (Ya, z
a). Thus, the last

inequality implies

d⊤
(
∇2

xxL(x∗,Y∗, z
∗)+Ω(x∗,Y∗)

)
d ≥ κ‖d‖

2

2
when 0< ρ ≤ κ

2K̃K2

. (A.42)
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Hereafter, we set 0< ρ ≤min

(
λmin(G∗+Ya)

2K2
, κ

2K̃K2
, ρ̄2

)
so that (A.41) and (A.42) hold. Notice that this choice of

ρ is independent from the sequence {wℓ}.
To prove the desired claim, we derive a contradiction by assuming to the contrary, that is, there exists

infinite sequences6

{µℓ} ⊆R++, {wℓ := (xℓ,Yℓ, z
ℓ)} ⊆W++, {vℓ} ⊆Rn

such that limℓ→∞ µℓ = 0 and, for each ℓ, it holds that ‖vℓ‖ = 1, ∇h(xℓ)⊤vℓ = 0, (3.27), (3.28), and (3.29) are

fulfilled with (µ,w) := (µℓ,w
ℓ), and

Hℓ := (vℓ)⊤∇2
xxL(wℓ)vℓ +∆G(xℓ; vℓ) •L−1

Gℓ
LYℓ

(
∆G(xℓ; vℓ)

)
<
κ

2
. (A.43)

By calculation, we have

Hℓ = (vℓ)⊤∇2
xxL(wℓ)vℓ +∆G(xℓ; vℓ) •L−1

Gℓ
LµℓG

−1
ℓ

(
∆G(xℓ; vℓ)

)
+∆G(xℓ; vℓ) •L−1

Gℓ
LYℓ−µℓG−1

ℓ

(
∆G(xℓ; vℓ)

)

= (vℓ)⊤∇2
xxL(wℓ)vℓ + µℓ∆G(xℓ; vℓ) •G−1

ℓ ∆G(xℓ; vℓ)G−1
ℓ +∆G(xℓ; vℓ) •L−1

Gℓ
LYℓ−µℓG−1

ℓ

(
∆G(xℓ; vℓ)

)

= (vℓ)⊤∇2
xxL(wℓ)vℓ + µℓ

∥∥∥∥∥G
− 1

2

ℓ
∆G(xℓ; vℓ)G

− 1
2

ℓ

∥∥∥∥∥
2

F

+∆G(xℓ; vℓ) •L−1
Gℓ
LYℓ−µℓG−1

ℓ

(
∆G(xℓ; vℓ)

)
. (A.44)

As will be verified later on, we actually have the following relationships:

lim
ℓ→∞
∆G(xℓ; vℓ) •L−1

Gℓ
LYℓ−µℓG−1

ℓ

(
∆G(xℓ; vℓ)

)
= 0, (A.45)

lim inf
ℓ→∞

(
(vℓ)⊤∇2

xxL(wℓ)vℓ + µℓ

∥∥∥∥∥G
− 1

2

ℓ
∆G(xℓ; vℓ)G

− 1
2

ℓ

∥∥∥∥∥
2

F

)
≥ κ

2
. (A.46)

From these results and (A.44), lim infℓ→∞Hℓ ≥ κ

2
holds. However, this contradicts hypothesis (A.43). There-

fore, we have reached the first assertion. �

Proofs of (A.45) and (A.46) For making the above proof complete, it remains to prove (A.45) and

(A.46). We also suppose the same assumptions as those made for contradiction at the beginning of the above

proof. In particular, we will use the same notations and symbols, such as {wℓ}, {vℓ}, and {µℓ}.
Before starting the proofs of (A.45) and (A.46), we shall give some preliminary results. First, note that

{wℓ} is bounded as described at the beginning of this section. Let w∗ denote an accumulation point of {wℓ}.
Then, notice that the x-component of w∗ is the KKT point x∗ and denote the (Y, z)-component of w∗ by

(Y∗, z
∗). Moreover, let v∗ be an accumulation point of {vℓ}. Choose an orthogonal matrix Pℓ for each ℓ so that

Gℓ is diagonalized with Pℓ and the eigenvalues of the resultant diagonal matrix is aligned in the ascending

order. By re-choosing P∗ and taking a subsequence of {(xℓ, vℓ,Pℓ)} if necessary, we can suppose, w.l.o.g7,

lim
ℓ→∞

(wℓ, vℓ,Pℓ) = (w∗, v∗,P∗). (A.47)

Note that, as ∇h(xℓ)⊤vℓ = 0, ‖vℓ‖ = 1 for each ℓ, it follows that

‖v∗‖ = 1, ∇h(x∗)⊤v∗ = 0. (A.48)

Next, so as to match P∗ = [E∗,F∗], we partition Pℓ as

Pℓ = [Eℓ,Fℓ],

6 To abuse notation, we use wℓ and µℓ again to denote a sequence.

7 Recall that P∗ was an arbitrary orthogonal matrix such that (2.7) holds. Even if P∗ is reset as the limit of {Pℓ} here, it satisfies (2.7)

again, and thus never affects the theoretical results established so far.
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which along with (A.47) implies limℓ→∞(Eℓ,Fℓ) = (E∗,F∗). Let the resultant diagonal matrix obtained from

Gℓ ∈ Sm
++ using Pℓ be DGℓ

, and also let D0
Gℓ

and D++Gℓ
be the block diagonal matrices of DGℓ

that converge to

the (m − r∗) × (m − r∗) zero matrix and the positive diagonal matrix GFF
∗ , respectively. Moreover, we often

write simply

G̃ℓ := PℓGℓP
⊤
ℓ

for each ℓ. In summary, it holds that

G̃ℓ = PℓGℓP
⊤
ℓ =

[
D0

Gℓ
O

O D++Gℓ

]
, lim

ℓ→∞
(D0

Gℓ
,D++Gℓ

) = (O,GFF
∗ ).

Accordingly, we denote

Ỹℓ := PℓYℓP
⊤
ℓ , ∆̃Gℓ := Pℓ∆GℓP

⊤
ℓ

with ∆Gℓ := ∆G(xℓ; vℓ). Furthermore, so as to match the partition pattern of
[

O O

O GFF∗

]
, partition a given matrix

Z ∈ Sm as

Z =
[

Z11 Z12

Z⊤
12

Z22

]
, Z11 ∈ Sm−r∗ , Z12 ∈R(m−r∗)×r∗ , Z22 ∈ Sr∗ .

Now, we start proving (A.45) and (A.46).

Proof of (A.45) First, recall that LXY = XY + YX for X,Y ∈ Sm. If X ∈ Sm
++, the linear operator LX is

invertible, namely, L−1
X exists. Next, note that, given W ∈ Sm, a solution Z ∈ Sm to LG̃ℓ

Z =W satisfies

Z11 =L−1

D0
Gℓ

W11, Z22 =L−1

D++
Gℓ

W22, (A.49)

Z12(i, j) =
1

D0
Gℓ

(i, i)+D++
Gℓ

( j, j)
W12(i, j) (1 ≤ i ≤m− r∗,1≤ j ≤ r∗), (A.50)

which are verified by representing LG̃ℓ
Z =W as

[
D0

Gℓ
Z11 +Z11D0

Gℓ
−W11 D0

Gℓ
Z12 +Z12D++Gℓ

−W12

D++Gℓ
Z⊤12 +Z⊤12D0

Gℓ
−W⊤

12 D++Gℓ
Z22 +Z22D++Gℓ

−W22

]
=O.

We have that ‖Yℓ − µℓG−1
ℓ
‖F ≤ γ1µℓ from (3.28) and {Pℓ} is bounded since Pℓ is an orthogonal matrix. These

facts yield

Ỹℓ − µℓG̃−1
ℓ =O(µℓ). (A.51)

In view of (A.49) and (A.50) with W :=LỸℓ−µℓG̃−1
ℓ
∆̃Gℓ, the solution Z satisfies

Z11 =O(‖∆̃Gℓ‖F), Z22 =O(µℓ‖∆̃Gℓ‖F), Z12(i, j) =O(µℓ‖∆̃Gℓ‖F) (1 ≤ i ≤m− r∗,1≤ j ≤ r∗), (A.52)

where the first equation in (A.52) is derived from the fact

Z = µℓL−1

G̃ℓ
L 1

µℓ
(Ỹℓ−µℓG̃−1

ℓ
)∆̃Gℓ =O(‖∆̃Gℓ‖F),

which is ensured by (A.51) and the boundedness of µℓL−1

G̃ℓ
. (For the proof of the boundedness of µℓL−1

G̃ℓ
,

see the footnote 8.) Moreover, the second and third equations in (A.52) are implied by (A.50) and the right

equation in (A.49). Using (A.52) again and noting that {∆̃Gℓ} is bounded, we obtain

∆Gℓ •L−1
Gℓ
LYℓ−µℓG−1

ℓ
∆Gℓ =∆̃Gℓ •L−1

G̃ℓ
LỸℓ−µℓG̃−1

ℓ
∆̃Gℓ

8 Note that, for any X ∈ Sm having m eigenvalues α1 ≤ α2 ≤ · · · ,≤ αm, the linear operator LX is symmetric and has m(m +

1)/2 eigenvalues α1, α2, . . . , αm, {(αi + α j)/2}i, j. Letting (0 <)λ
(ℓ)

1
≤ λ

(ℓ)

2
≤ · · ·λ(ℓ)

m be the eigenvalues of G̃ℓ ∈ Sm
++ for each

ℓ, the eigenvalues of the symmetric linear operator µℓL−1

G̃ℓ

are µℓ/λ
(ℓ)

1
, µℓ/λ

(ℓ)

2
, · · ·µℓ/λ(ℓ)

m , and
{
(µℓ/λ

(ℓ)

i
+ µℓ/λ

(ℓ)

j
)/2

}
i, j

. Since
{
µG(x)−1

∣∣∣ x ∈ clPρ̄1
(µ), µ ∈ (0, µ̄1]

}
is bounded from item 1 of Proposition 7, so are {µℓG−1

ℓ
} and {µℓG̃ℓ

−1}. Hence, {µℓ/λ(ℓ)

i
} is also

bounded for each i, which together with ‖µℓL−1

G̃ℓ
‖2 := max

Z∈Sm:‖Z‖F=1
‖µℓL−1

G̃ℓ
Z‖F ≤ µℓ/λ(ℓ)

1
yields the boundedness of {µℓL−1

G̃ℓ
}.



Author: Article Short Title

Article submitted to Mathematics of Operations Research; manuscript no. (Please, provide the manuccript number!) 31

=∆̃Gℓ •Z

=Tr
(
(∆̃Gℓ)11Z11 + 2(∆̃Gℓ)12Z⊤12 + (∆̃Gℓ)22Z22

)

=O
(
‖(∆̃Gℓ)11‖F + µℓ

)
. (A.53)

In order to prove the desired equation (A.45), it suffice to verify

∆GEE(x∗; v∗) =O, (A.54)

because (A.45) is verified by using (A.53) together with the fact that limℓ→∞(∆̃Gℓ)11 = ∆GEE(x∗; v∗) = O

following from (A.54). To this end, we evaluate µℓ

∥∥∥∥∥G
− 1

2

ℓ
∆GℓG

− 1
2

ℓ

∥∥∥∥∥
2

F

in (A.44) as follows:

µℓ

∥∥∥∥∥G
− 1

2

ℓ
∆GℓG

− 1
2

ℓ

∥∥∥∥∥
2

F

=µℓTr
(
G−1
ℓ ∆GℓG

−1
ℓ ∆Gℓ

)

=µℓTr


{[

(D0
Gℓ

)−1 O

O (D++Gℓ
)−1

] [
(∆̃Gℓ)11 (∆̃Gℓ)12

(∆̃Gℓ)21 (∆̃Gℓ)22

]}2

=µℓTr




(D0

Gℓ
)−1(∆̃Gℓ)11 (D0

Gℓ
)−1(∆̃Gℓ)12

(D++Gℓ
)−1(∆̃Gℓ)21 (D++Gℓ

)−1(∆̃Gℓ)22


2

=µℓTr
(
(D0

Gℓ
)−1(∆̃Gℓ)11(D0

Gℓ
)−1(∆̃Gℓ)11

)
︸                                          ︷︷                                          ︸

(aℓ)

+2µℓTr
(
(D0

Gℓ
)−1(∆̃Gℓ)12(D++Gℓ

)−1(∆̃Gℓ)
⊤
12

)
︸                                            ︷︷                                            ︸

(bℓ)

+ µℓTr
(
(D++Gℓ

)−1(∆̃Gℓ)22(D++Gℓ
)−1(∆̃Gℓ)22

)
︸                                           ︷︷                                           ︸

(cℓ)

,

and herein we obtain

lim
ℓ→∞

(cℓ) = 0 (A.55)

because limℓ→∞ µℓ = 0 and the matrices in the trace-part of (cℓ) are convergent. It holds that limℓ→∞ µℓG
−1
ℓ
=

Y∗ since µℓG
−1
ℓ and Yℓ accumulate at identical points due to (3.28), thus which together with (A.41) yields

lim
ℓ→∞

µℓ(D
0
Gℓ

)−1 = E⊤∗ Y∗E∗ = (Ỹ∗)11 ∈ Sm
++, (A.56)

which yields

lim
ℓ→∞

(bℓ) = 2Tr
(
(GFF
∗ )−1∆GFE(x∗; v∗)(Ỹ∗)11∆GEF(x∗; v∗)

)
= (v∗)⊤Ω(x∗,Y∗)v

∗, (A.57)

where the last equality follows from Lemma 1. Therefore, in view of (A.43), the last equality in (A.44),

and (A.53), by noting that (vℓ)⊤∇2
xxL(wℓ)vℓ is bounded, we find that µℓ

∥∥∥∥∥G
− 1

2

ℓ
∆GℓG

− 1
2

ℓ

∥∥∥∥∥
2

F

is bounded, which

together with (A.55) and (A.57) implies that {(aℓ)} is also bounded. From this fact together with (A.56), we

ensure ∆GEE(x∗; v∗) = limℓ→∞(∆̃Gℓ)11 =O thus (A.54). The proof of (A.45) is complete.

Proof of (A.46) From (A.54) and (A.48), v∗ ∈ C(x∗) holds, where C(x∗) is the critical cone and

expressed as in (2.12). Let

Ξℓ := (vℓ)⊤∇2
xxL(wℓ)vℓ + µℓ

∥∥∥∥∥G
− 1

2

ℓ
∆G(xℓ; vℓ)G

− 1
2

ℓ

∥∥∥∥∥
2

F

for each ℓ. Since (aℓ) ≥ 0 for each ℓ and {(aℓ)} is bounded as shown in the proof of (A.45), any accumulation

point of {(aℓ)} is nonnegative. Combining this fact with (A.55), (A.57), and (A.42) with d := v∗ yields

lim inf
ℓ→∞

Ξℓ = (v∗)⊤
(
∇2

xxL(w∗)+Ω(x∗,Y∗)
)

v∗ + lim inf
ℓ→∞

(aℓ)≥
κ

2
‖v∗‖2 = κ

2
,

which implies (A.46). The proof is complete.

�
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A.10. Proof of Lemma 2 First, we show that

dist (x̌(µ),M) =O(‖h(x̌(µ))‖) (A.58)

for x̌(µ) ∈ B. Note that (3.25) holds as forB. To prove (A.58), assume to the contrary: there exists a sequence

{µℓ} converging to 0 such that

dist (x̌(µℓ),M) , 0, ∀ℓ, lim
ℓ→∞

‖h(x̌(µℓ))‖
dist (x̌(µℓ),M)

= 0. (A.59)

For each l, let yℓ ∈ arg miny∈M∩B ‖x̌(µℓ)− y‖. Then, we have that, for any ℓ large enough,

dist (x̌(µℓ),M) = ‖x̌(µℓ)− yℓ‖ (A.60)

since limℓ→∞ x̌(µℓ) = x∗ ∈ intB, limℓ→∞ x̌(µℓ)− yℓ = 0, and thus yℓ ∈ intB. In what follows, we consider only

ℓ large enough and assume yℓ ∈ intB. Since yℓ solves miny∈M
1

2
‖x̌(µ) − y‖2 and the LICQ holds at yℓ from

(3.25), the KKT conditions holds, namely there exists ηℓ such that

x̌(µℓ)− yℓ =∇h(yℓ)ηℓ.

From (A.59) and (A.60), x̌(µℓ) − yℓ = ∇h(yℓ)ηℓ , 0. Letting v̄ be an accumulation point of{
(x̌(µℓ)− yℓ)/‖x̌(µℓ)− yℓ‖}, we may assume that

(x̌(µℓ)− yℓ)

‖x̌(µℓ)− yℓ‖ =
∇h(yℓ)ηℓ

‖∇h(yℓ)ηℓ‖ → v̄ (l→∞) (A.61)

without loss of generality. It follows that ‖v̄‖ = 1. As

‖h(x̌(µℓ))‖
dist (x̌(µℓ),M)

=
‖h(x̌(µℓ))− h(yℓ)‖
‖x̌(µℓ)− yℓ‖ =

‖∇h(yℓ)⊤(x̌(µℓ)− yℓ)+O(‖x̌(µℓ)− yℓ‖2)‖
‖x̌(µℓ)− yℓ‖ ,

driving ℓ→∞ herein yields

∇h(x∗)⊤v̄ = 0. (A.62)

Since ∇h(x∗) is of full column rank, ∇h is continuous, and limℓ→∞ yℓ = x∗, (A.62) actually implies that there

exists {vℓ} such that it converges to v̄ and, for each ℓ,

∇h(yℓ)⊤vℓ = 0. (A.63)

Meanwhile, with (A.61) and liml→∞ vℓ = v̄, we gain

lim
ℓ→∞

(vℓ)⊤∇h(yℓ)ηℓ

‖∇h(yℓ)ηℓ‖ = ‖v̄‖
2,

which combined with (A.63) gives ‖v̄‖2 = 0. However, this contradicts ‖v̄‖ = 1. We thus obtain (A.58).

We next prove the desired relation (3.37). Note that h(x̌(µ)) = h(x∗ + µξ∗) = O(µ2) holds by Taylor’s

expansion together with h(x∗) = 0 = ∇h(x∗)⊤ξ∗, where the last equality follows from Theorem 2. With this

fact along with (A.58), (3.37) is ensured. The proof is complete. �
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A.11. Proof of Proposition 10 In order to prove Proposition 10, we start by showing the following

lemma:

Lemma A.1. For v ∈ V and y ∈Rn−s, let (x,Y,d) := (Φ(v), µG(Φ(v))−1,∇Φ(v)⊤y) and suppose G(x) ∈ Sm
++.

Moreover, let z ∈Rs and µ > 0. Then, we have

y⊤∇2Ψµ(v)y = d⊤∇2
xxL(x,Y, z)d+

n∑

j=1

(
∂L(x,Y, z)

∂x j

y⊤∇2Φ j(v)y

)
+∆G(x; d) •L−1

G(x)LY (∆G(x; d)) . (A.64)

Proof. By calculation, as regards the function ψµ defined in (3.5), we have

∇ψµ(x) =∇ f (x)− µJG(x)∗G(x)−1 =∇xL(x, µG(x)−1, z)−∇h(x)z, (A.65)

d⊤∇2ψµ(x)d =d⊤∇2 f (x)d − µ


n∑

i=1

n∑

j=1

did j

∂2G(x)

∂xi∂x j

 •G(x)−1 + µ‖G(x)−
1
2∆G(x; d)G(x)−

1
2 ‖2F

=d⊤∇2
xxL(x, µG(x)−1, z)d− d⊤


s∑

i=1

zi∇2hi(x)

d + µ‖G(x)−
1
2∆G(x; d)G(x)−

1
2 ‖2F. (A.66)

Moreover, it follows from (3.34) that

n∑

j=1


s∑

i=1

zi

∂hi(Φ(v))

∂x j

∇2Φ j(v)+∇Φ(v)


s∑

i=1

zi∇2
xxhi(Φ(v))

∇Φ(v)⊤ =O. (A.67)

Then, with (x,Y,d)=
(
Φ(v), µG(Φ(v))−1,∇Φ(v)⊤y

)
, equation (3.40) yields

y⊤∇2Ψµ(v)y =d⊤∇2
xxL(x,Y, z)d+

n∑

j=1

∂ψµ(Φ(v))

∂x j

y⊤∇2Φ j(v)y− d⊤


s∑

i=1

zi∇2hi(x)

d + µ‖G(x)−
1
2∆G(x; d)G(x)−

1
2 ‖2F

=d⊤∇2
xxL(x,Y, z)d+

n∑

j=1


∂ψµ(x)

∂x j

+

s∑

i=1

zi

∂hi(x)

∂x j

 y⊤∇2Φ j(v)y+ µ‖G(x)−
1
2∆G(x; d)G(x)−

1
2 ‖2F

=d⊤∇2
xxL(x,Y, z)d+

n∑

j=1

(
∂L(x,Y, z)

∂x j

y⊤∇2Φ j(v)y

)
+∆G(x; d) •L−1

G(x)LY (∆G(x; d))

where the first equality follows from (3.34) and (A.66), the second from (A.67), the third from (A.65)

and µ‖G(x)−
1
2∆G(x; d)G(x)−

1
2 ‖2F = µ∆G(x; d) •G(x)−1∆G(x; d)G(x)−1 = ∆G(x; d) •L−1

G(x)LµG(x)−1 (∆G(x; d)) =

∆G(x; d) •L−1
G(x)LY (∆G(x; d)) . �

Proof of Proposition 10 First, let K2,M3,M4 > 0 be the constants defined in Proposition 8 and (3.35),

and (ρ̄4, µ̄4) ∈ (0, ρ̄3] × (0, µ̄3] be such that max(ρ̄4, µ̄4) ≤ κM2
3/(8nK2M2

4 M5). Choose (ρ, µ) ∈ (0, ρ̄4] × (0, µ̄4]

and v ∈ V ∩ Φ−1(clPρ(µ)) arbitrarily. Let x := Φ(v) ∈ clPρ(µ) and recall µ̄4 ≤ µ̄1 and ρ̄4 ≤ ρ̄1. Then, from

(3.26), it holds that G(x) ∈ Sm
++ and (∇h(x)∇h(x)⊤)−1 exists. Thus, we can define Y := µG(x)−1 and z :=

−(∇h(x)∇h(x)⊤)−1∇h(x)⊤(∇ f (x) − JG(x)∗Y), and these (x,Y, z) fulfills the conditions (3.27), (3.28), and

(3.29). Letting d :=∇Φ(v)⊤y, we obtain ∇h(x)⊤d =
∑s

i=1∇hi(x)⊤∇Φ(v)⊤y = 0 from (3.33). It holds that

y⊤∇2Ψµ(v)y =d⊤∇2
xxL(x,Y, z)d+∆G(x; d) •L−1

G(x)LY∆G(x; d)+

n∑

j=1

(
∂L(x,Y, z)

∂x j

d⊤∇2Φ j(v)d

)

≥d⊤∇2
xxL(x,Y, z)d+∆G(x; d) •L−1

G(x)LY∆G(x; d)−
n∑

j=1

‖∇xL(x,Y, z)‖‖∇2Φ j(v)‖F‖d‖2

≥ κ
2

M2
3 − nK2M2

4 M5(µ+ ρ) ≥
κM2

3

4
,

where the first equality follows from Lemma A.1, the third inequality from Proposition 8, Proposition 9,

and (3.35) with d =∇Φ(v)⊤y, and the last inequality from the above-mentioned definitions of µ̄4 and ρ̄4. The

proof is complete. �
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[17] Halická M, de Klerk E, Roos C (2005) Limiting behavior of the central path in semidefinite optimization. Opti-

mization Methods and Software 20(1):99–113.
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