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Abstract

Our main result is a recognition principle for iterated suspensions as coalgebras over the little
cubes operads. Given a topological operad, we construct a comonad in pointed topological spaces
endowed with the wedge product. We then prove an approximation theorem that shows that the
comonad associated to the little n-cubes operad is weakly equivalent to the comonad ΣnΩn arising
from the suspension-loop space adjunction. Finally, our recognition theorem states that every
little n-cubes coalgebra is homotopy equivalent to an n-fold suspension. These results are the
Eckmann–Hilton dual of May’s foundational results on iterated loop spaces.

1 Introduction

Since the invention of operads by May, they have played an important role in many parts of
mathematics and physics. The first application and the original motivation for their invention
was for the study of iterated loop spaces (see [16] and [5]). Operads provide a way of, and a
coherent framework for, studying objects equipped with many "multiplications", i.e. operations
with multiple inputs and one output, satisfying certain homotopical coherences. An important
class of such objects are n-fold loop spaces, which are algebras over the little n-cubes operad.
May showed in his recognition principle a homotopical converse, namely that every little n-cubes
algebra is weakly equivalent to an n-fold loop space; and further proved an approximation theorem
which asserts that the monad associated to the little n-cubes operad is weakly equivalent to the
monad ΩnΣn . This approximation theorem reduced the study of operations on the homology of
iterated loop spaces to the combinatorics of the little cubes operads, a perspective which unravelled
their complete algebraic structure (see [7]).

The goal of this paper is to prove the Eckmann–Hilton dual results of May’s work on iterated
loop spaces. First of all, we construct a comonad in the category of pointed spaces associated to an
operad. Next, we show that n-fold suspensions are coalgebras over the little n-cubes operad Cn .
More precisely we prove the following theorem.

Theorem A. The n-fold reduced suspension of a pointed space X is a Cn-coalgebra. More precisely,
there is a natural and explicit operad map

∇ : Cn →CoEndΣn X ,

where CoEndΣn X is the coendomorphism operad of Σn X . The map ∇ encodes the homotopy coas-
sociativity and homotopy cocommutativity of the classical pinch map Σn X → Σn X ∨Σn X . In
particular, the pinch map is an operation associated to an element of Cn(2). Furthermore, for any
based map X → Y , the induced map Σn X →ΣnY extends to a morphism of Cn-coalgebras.

All details will be explained later on. Bearing the above result in mind, it is natural to wonder if
the Eckmann–Hilton dual of May’s celebrated recognition of iterated loop spaces is true in this new
setting. This is indeed the case, as the following result shows.

Theorem B. Let X be a Cn-coalgebra. Then there is a pointed space Γn(X ), naturally associated to
X , together with a weak equivalence of Cn-coalgebras
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ΣnΓn(X ) X ,'

which is a retract in the category of pointed spaces. Therefore, every Cn-coalgebra has the homotopy
type of an n-fold reduced suspension.

Together, our theorems A and B provide the following intrinsic characterization of n-fold
reduced suspensions as Cn-coalgebras.

Corollary. Every n-fold suspension is a Cn-coalgebra, and if a pointed space is a Cn-coalgebra then
it is homotopy equivalent to an n-fold suspension.

It is worth noting that this result already exists at the level of ΣnΩn coalgebras , see Theorem 4.9.
Another celebrated result in [16] is the approximation theorem. It constitutes an essential step for
proving the recognition principle for n-fold loop spaces, and it is also the key for unlocking certain
computations on the homology of iterated loop spaces. Roughly speaking, the approximation
theorem for loop spaces asserts that the free Cn-algebra on a pointed space X is weakly equivalent
to ΩnΣn X . We also prove the Eckmann–Hilton dual of this result. It reads as follows.

Theorem C. For every n ≥ 1, there is a natural morphism of comonads

αn :ΣnΩn −→Cn .

Furthermore, for every pointed space X , there is an explicit natural homotopy retract of pointed
spaces

ΣnΩn X Cn(X )

In particular, αn(X ) is a weak equivalence.

The comonad Cn in the statement above is constructed in a natural way from the little n-cubes
operad. Essentially, it is an Eckmann–Hilton dualization of May’s monad associated to Cn . To
our knowledge, this comonad has not been studied elsewhere, and it seems to be an exciting new
object that might shed light on further understanding n-fold reduced suspensions, as well as on
other objects that support a coaction of the little n-cubes operad.

Let us place our work in historical context. It has been known for a long time that any (n −1)-
connected CW complex of dimension less than or equal to (2n −1) has the homotopy type of a
(1-fold) suspension. In [3], [19], [10] and finally [14], this result was successively improved on. In
modern language, these authors showed that an (n −1)-connected co-H-space equipped with an
Ak comultiplication which is of dimension less than or equal to k(n −1)+3 is a suspension. The
case of k =∞ in [14] can be thought of as the E1-version of Theorem B, although our proof strategy
is very different. From a different angle, the case of iterated suspensions considered as coalgebras
over (a homotopical version of) the ΣnΩn-comonad was recently treated in [4], where the authors
obtained a recognition principle for (n +1)-connected, n-fold (simplicial) suspensions. This last
result differs from our Theorem B in several key respects. Firstly; our notions of coalgebra differ
as they pass to a derived functor in the homotopy category of pointed spaces, while we consider
only ΣnΩn-coalgebras in the classical sense of coalgebras over comonads. Secondly; our result
has the sharpest possible connectivity requirement. The most striking difference with all previous
scholarship is that we make heavy use of the little n-cubes operad and the comonad Cn ; whereas
these objects do not seem to have appeared in previous literature on the homotopy theory of
iterated suspensions (with the exception of [11] in a very different context). In particular, there is
no approximation theorem in [4].

One of the main contributions of this article is therefore providing a link between iterated
suspensions and the combinatorics of the little cubes operads. Potentially, this connection can be
exploited further.

To conclude, a few remarks are in order. The first remark is that to prove our theorems B and
C , we do not follow an Eckmann–Hilton dual approach to May’s proof in the case of iterated loop
spaces. While we believe it may be possible to pursue this approach, we have found a framework
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and proof which depends on explicit homotopies and hence avoids the use of quasi-fibrations
and the construction of auxiliary spaces. In this sense, our approach is technically simpler. The
approximation of suspensions is an independent result that we believe might have potential side
applications. Finally, most of the results of this paper could have been stated using little n-disks
instead of little n-cubes. However, using cubes significantly simplify many of the explicit formulae
that appear when proving our results, and therefore we choose to present things this way.

1.1 Notation and conventions

All topological spaces are compactly generated and Hausdorff. We denote by I the unit interval in
R and by J its interior:

J = (0,1) ⊆ [0,1] = I .

The symmetric group on n letters is denoted Sn .

For X = (X ,∗) a pointed space, it will be convenient to identify the r -fold wedge X ∨r as a
subspace of the cartesian product X ×r . To do so, consider

X ∨r =
r⋃

i=1
{∗}×·· ·× X︸︷︷︸

i

×·· ·× {∗} ⊂ X ×r .

A point x in the i -th factor of the wedge X ∨r is therefore identified with the point (∗, ...,∗, x,∗, ...,∗)
having x at its i -th component and the base point at all others. We further use the convention that
both X ∨0 and X ×0 are equal to the base point. Given pointed maps ϕ1, ...,ϕr : X → Y , we denote by(
ϕ1, ...,ϕr

)
the induced map X → Y ×r to the product. Here, we implicitly used the diagonal map

d : X → X ×r given by d(x) = (x, ..., x). To simplify the notation we will omit the diagonal from the
notation when this is clear from the context. If the image of this map lands in the wedge subspace
Y ∨r , we denote the corresponding restriction by

{
ϕ1, ...,ϕr

}
. Thus, the curly brackets notation

emphasizes that the map lands in the wedge rather than the product. We reserve the notation
ϕ1 ∨·· ·∨ϕr for the induced map X ∨r → Y ∨r given by(

ϕ1 ∨·· ·∨ϕr
)

(∗, ...,∗, xi ,∗, ...,∗) = (∗, ...,∗,ϕi (xi ) ,∗, ...,∗)
.

We frequently use the identification Σn X = Sn ∧X for the n-fold reduced suspension of a pointed
space X . Thus, points in Σn X will be denoted [t , x], where t ∈ Sn and x ∈ X . Since points in
the suspensions are equivalence classes, we use the square brackets notation. From now on, we
implicitly assume all suspensions are reduced.

We assume the reader is familiar with operad theory, especially in topological spaces, and we
refer to [9]. We use the following conventions. An operad P in a symmetric monoidal category
M = (M ,⊗,1) is unitary if P (0) = 1, and non-unitary if P (0) is not defined (i.e., the underlying
symmetric sequence of P starts in arity 1). We borrow this nomenclature from [9, Section 2.2].
We will make heavy use of the operad of little n-cubes Cn , considered as a unitary operad where
Cn(0) =∗ is a single point.

Acknowledgments: The authors would like to thank Sergey Mozgovoy and Jim Stasheff for useful
conversations and comments. The second author has been partially supported by the MICINN
grant PID2020-118753GB-I00. The third author was supported by the Dutch Research Organisation
(NWO) grant number VI.Veni.202.046. This project has received funding from the European
Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie
grant agreement No 945322.

MSC 2020: 18M75, 55P40, 55P48
Key words and phrases: Little cubes operad, Suspensions, Coalgebras, Recognition principle.

2 Coalgebras over topological operads

Given a unitary topological operad P , we construct an explicit comonad CP in pointed spaces.
In Section 2.1, we carefully construct this comonad and study some of its basic properties. The

3



comonad CP gives rise to the category of coalgebras over P , also called P -coalgebras. There is a
second way of defining P -coalgebras by using the coendomorphism operad that does not require
the explicit construction of the comonad CP . This alternative construction has the advantage that
it can be defined for all operads even when they are not necessarily unitary. The disadvantage is
that it is not clear how to get an explicit comonad out of this definition. We explain this alternative
construction and show that in the case of unitary operads it gives an equivalent notion of P -
coalgebras in Section 2.2. We specialize to the case in which P is the operad Cn of little n-cubes in
Section 2.3, producing the central comonad of this paper. Finally, we prove Theorem A in Section
2.4 - that the n-fold reduced suspension of a pointed space is naturally a Cn coalgebra. Therefore,
the n-fold reduced suspensions are the paradigmatic examples of Cn-coalgebras.

Remark 2.1. In our constructions of coalgebras, we are mixing pointed and unpointed spaces. All
our operads live in the category of unpointed spaces while the coalgebras over the operads and
associated comonads live in the category of pointed spaces.

2.1 Construction of topological comonads

In this section, we construct the mentioned comonad CP in pointed spaces out of a unitary operad
P in unpointed spaces.

Let us first establish some preliminary notation. Denote

Top= (
Top,×, {∗}

)
and Top∗ = (

Top∗,∨, {∗}
)

the symmetric monoidal categories of spaces endowed with the cartesian product ×, and pointed
spaces endowed with the wedge product ∨, respectively. Let P be a unitary operad in Top with
composition map γ and denote the unitary operation by ∗ ∈P (0). Define the restriction operators,
for all n ≥ 1 and 1 ≤ i ≤ n, by inserting the unique point ∗ ∈P (0) at the i -th component:

P (n) P (n −1)

θ γ (θ; id, ...,∗, ..., id) .

di

Let X ∈Top∗. The wedge collapse maps, defined for all n ≥ 1 and 1 ≤ i ≤ n, are given by collapsing
the i -th factor in the wedge as follows:

X ∨n X ∨(n−1)

(x1, ..., xn) (x1, ..., x̂i , ..., xn).

πi

Here, the r -fold wedge is seen inside the r -fold cartesian product, and the notation x̂i means that
we are sending the i -th component to the basepoint.

Notation 2.2. If P is a unitary operad and X is a pointed space, we denote

Tot(P , X ) := ∏
n≥0

MapSn

(
P (n), X ∨n)

.

Each space MapSn

(
P (n), X ∨n

)
consists of the equivariant maps from the arity n component

of P equipped with its usual Sn-action to the n-fold wedge of X with itself endowed with the
Sn-action that permutes the coordinates of its points by σ · (x1, ..., xn) = (

xσ(1), ..., xσ(n)
)
. We fre-

quently disregard the 0-th component in the infinite product above, since the mapping space
Map(P (0), X ∨0) is just a point. It can therefore be ignored in all computations that follow. Thus,
the point

(
f0, f1, f2, ...

) ∈ Tot(P , X ) will be denoted
(

f1, f2, ...
)
. The topology on the space Tot(P , X )

is the usual product topology.

We are ready to define the underlying endofunctor of our comonad CP .

Definition 2.3. Let P be a unitary operad in Top. Define the endofunctor in pointed spaces

CP :Top∗ Top∗

X CP (X ) ,
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where

CP (X ) = {
α= (

f1, f2, ...
) ∈ Tot(P , X ) | πi fn = fn−1di for all n ≥ 2 and 1 ≤ i ≤ n

}
is the subspace of Tot(P , X ) formed by those sequences

(
f1, f2, ...

)
that commute with the restric-

tion operators and wedge collapse maps. That is, for all n ≥ 2 and 1 ≤ i ≤ n, the following diagram
commutes:

P (n) X ∨n

P (n −1) X ∨(n−1)

di

fn

πi

fn−1

The base point of CP (X ) is the sequence α= (
f1, f2, ...

)
where each fr has image the base point of

X ∨r . Since the base point of the wedge X ∨r is fixed by the Sr -action, the base point is well-defined.
If f : X → Y is a pointed map, then CP

(
f
)

: CP (X ) →CP (Y ) is defined by

CP

(
f
)

(α) = (
f ◦ f1,

(
f ∨ f

)◦ f2, ...,
(

f ∨ ...∨ f
)◦ fn , ...

)
.

The nth term in the sequence above is given by(
f ∨ ...∨ f

)◦ fn : P (n)
fn−−→ X ∨n f ∨...∨ f−−−−−−→ Y ∨n .

Remarks 2.4.

1. The idea of defining CP above as a subspace of Tot(P , X ) arises from an Eckmann–Hilton
dualization of May’s definition of the monad associated to an operad [16]. Recall that the
monad Mn in pointed spaces defined in loc. cit. by using the little n-cubes operad is given by

Mn(X ) =
(∐

r≥0
Cn(r )×X ×r

)
/ ∼,

where ∼ is the equivalence relation that glues level r to level r +1 by combining the restric-
tion operators with the insertion of the base point, (di (c), y) ∼ (c, si (y)), and imposing the
compatibility with the group action, (c ·σ, y) ∼ (c,σ · y). 1

2. The compatibility condition of a sequence α ∈ Tot(P , X ) with the restriction operators and
wedge collapse maps,

πi fn = fn−1di , for all n ≥ 1 and 1 ≤ i ≤ n (1)

is the precise condition needed to incorporate a counit to the coalgebras in pointed spaces
that result from the comonad CP . See Remark 2.17 for further details.

3. The comonad CP can be constructed in more general symmetric monoidal categories. For
the applications that we give in this paper, we are only interested in the category of topological
spaces.

Our next goal is to endow the endofunctor CP with a comonad structure. Before doing so, we
make two elementary observations that will simplify some of our proofs later on. We will use the
following notation: if h1, ...,hr is a family of maps such that the composition

h1 ◦ · · · ◦hi−1 ◦hi+1 ◦ · · · ◦hr

makes sense, then we denote the expression above by

h1 · · · ĥi · · ·hr .

That is, the hat (̂−) on top of the i -th map indicates that this component is removed from the
composition. The first observation is the following.

1Here, (c, y) ∈Cn (r )×X×(r−1), si (y) is the point of X×r where we insert the base point at the i -th component, and σ ∈ Sr .
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Lemma 2.5. A sequence
(

f1, f2, ...
) ∈CP (X ) is determined by its first component f1 : P (1) → X . That

is, we can recursively write, for all r ≥ 2,

fr =
{

f1d̂1d2 · · ·dr , f1d1d̂2d3 · · ·dr , ..., f1d1d2 · · ·dr−1d̂r

}
,

where the di ’s are the maps that insert ∗ ∈P (0) into the i th entry.

Recall that the term on the right hand side above follows the notation from Section 1.1.

Proof. Let α= (
f1, f2, ...

) ∈CP (X ) . Before we give a general proof of the lemma we first work out
the the r = 2 case since this makes the general argument clearer. Let

f2 : P (2) → X ∨X

be the second component of α. Denote by qi : X ∨ X → X the projection onto the i -th factor
of the wedge, for i = 1,2. There are identifications qi = π3−i , where π1,π2 : X ∨ X → X are the
corresponding wedge collapse maps. Then,

f2 =
{

q1 f2, q2 f2
}= {

π2 f2,π1 f2
}= {

f1d2, f1d1
}= {

f1d̂1d2, f1d1d̂2

}
.

In the third equality above, we used the Equation (1) for n = 2. The proof for general fr follows a
slight generalization of the case just proven, where we recursively use the identities of Equation (1)
for all n between 2 and r . Thus, let

fr : P (r ) → X ∨r

be the r th component ofα. Denote by qi : X ∨r → X the projection onto the i -th factor of the wedge,
for i = 1, ...,r . There are identifications

qi =π1π2 · · · π̂i · · ·πr , for all i = 1, ...,r.

Recall the hat π̂i indicates that we omit the i -th term. There is a slight but harmless abuse of
notation above, since the π j ’s that appear in the expression of qi have different domains. Then,

fr =
{

q1 fr , q2 fr , ..., qr fr
}

= {
π̂1π2π3 · · ·πr fr , π1π̂2π3π4 · · ·πr fr , ...,π1π2 · · ·πr−1π̂r fr

}
= {

π̂1π2π3 · · ·
(
πr fr

)
, π1π̂2π3π4 · · ·

(
πr fr

)
, ...,π1π2 · · ·

(
πr−1 fr

)}
= {

π̂1π2π3 · · ·
(

fr−1dr
)

, π1π̂2π3π4 · · ·
(

fr−1dr
)

, ...,π1π2 · · ·
(

fr−1dr−1
)}

= ·· ·

=
{
π̂1π2

(
f2d3 · · ·dr

)
, π1π̂2

(
f2d3 · · ·dr

)
, π1 f2

(
d2d̂3d4 · · ·dr

)
, π1 f2

(
d2 · · ·dr−1d̂r

)}
=

{
f1d̂1d2 · · ·dr , f1d1d̂2d3 · · ·dr , ..., f1d1d2 · · ·dr−1d̂r

}
.

This completes the proof.

The result above tells us that any sequence α= (
f1, f2, ...

) ∈CP (X ) can be written as

α= (
f1, f2, f3, ...

)= (
f1,

{
f1d2, f1d1

}
,
{

f1d2d3, f1d1d3, f1d1d2
}

, ...
)

.

However, it does not assert that any map P (1) → X can be extended to a sequence in CP (X )
whose first component is the given map. In fact, that is usually not the case. Below, we give a
characterization when P is a unitary operad in topological spaces.

Let us point out the second observation. We need the following notation. If X is a pointed space,
and f : P (1) → X is any map, define for all r ≥ 2 and 1 ≤ i ≤ r the collection of maps

f i
r := f

(
d1 · · · d̂i · · ·dr

)
: P (r ) → X .
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The map
fr := {

f 1
r , ..., f r

r

}
: P (r ) → X ∨r

is then defined by first applying the diagonal map P (r ) →P (r )×r and then the product of the f i
r .

The map above usually lands in the product but it restricts to the wedge if, and only if, the map
belongs to the underlying space of the comonad.

Proposition 2.6. Let X be a pointed space. Then the space CP (X ) is homeomorphic to the subspace
of Map (P (1), X ) given by all those maps f1 : P (1) → X such that for any fixed r ≥ 2, the maps f i

r
are all the base point except for at most a single index i . In particular, the image of the map

fr := (
f 1

r , ..., f r
r

)
: P (r ) → X ×r

is contained in the subspace X ∨r ⊆ X ×r . Furthermore, each

fr : P (r ) → X ∨r

is Sr -equivariant. Under this identification, the value CP

(
φ

)
on a pointed map φ : X → Y is the

postcomposition with φ:

CP (X ) CP (Y )

f CP

(
φ

)(
g
)=φ◦ f .

CP (φ)

Proof. The fact that for a fixed r ≥ 2, the map f i
r is the base point for all indexes i except for at

most one, implies that the map

fr =
(

f 1
r , ..., f r

r

)
: P (r ) → X ×r

has its image in the wedge. Thus, it is correct to write fr =
{

f 1
r , ..., f r

r

}
.

⇒ Let
(

f1, f2, ...
) ∈CP (X ), then we want to show that f i

r is the base point for all i except for at
most one. It is a straightforward consequence of Lemma 2.5 that the component f1 of the sequence
gives rise to the family of maps

{
f i

r

}
of the statement, with fr = {

f 1
r , ..., f r

r

}
. So, the implication

follows.
⇐ Let f1 : P (1) → X be a map giving rise to the family of maps

{
f i

r

}
and fr satisfying the

hypotheses of the statement. Then we want to show that this indeed belongs to CP (X ). Form the
sequence (

f1, f2, ...
) ∈ Tot(P , X ) .

It suffices to check that for every r ≥ 2 and 1 ≤ i ≤ r , the identity fr−1di = πi fr holds. To do so,
we will make use of the following fact and notation for maps induced onto a wedge of pointed
spaces: given pointed spaces W,Y , Z and maps ϕ1, ...,ϕn : Y → Z such that

{
ϕ1, ...,ϕr

}
: Y → Z∨n

is well-defined, then for any map g : W → Y , we have{
ϕ1, ...,ϕr

}◦ g = {
ϕ1 ◦ g , ...,ϕr ◦ g

}
: W → Z∨n .

Thus, fix some r ≥ 2 and 1 ≤ i ≤ r . On the one hand,

πi fr =πi

{
f1d̂1 · · ·dr , ... , f1d1 · · · d̂r

}
=

{
f1d̂1 · · ·dr , ... ,(((((((

f1d1 · · · d̂i · · ·dr , ... , f1d1 · · · d̂r

}
. (2)

Above, the strike-through indicates that the i -th component is not part of the sequence. On the
other hand,

fr−1di =
{

f1d̂1 · · ·dr−1 , ... , f1d1 · · ·�dr−1

}
◦di =

{
f1d̂1 · · ·dr−1 ◦di , ... , f1d1 · · ·�dr−1 ◦di

}
. (3)

It suffices to check that, for any j with 1 ≤ j ≤ r −1, the j -th component of the sequence (2) is
equal to the j -th component of the sequence (3). This is a straightforward check, taking into
account whether j ≤ i or j ≥ i , and using the simplicial identities satisfied by the dk ’s - namely,
that di d j = d j−1di for i < j .
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Proposition 2.6 above is very useful, as we will see in Section 3. Remark that this result identifies
the space CP (X ) as the subspace of Map (P (1), X ) formed by those maps satisfying an extra
property. Bear in mind that, under this identification, the evaluation of CP on a morphism
φ : X → Y corresponds to the postcomposition with φ.

Before going on, we introduce some notation that will be useful later.

Notation 2.7. We will occasionally use the following notation for the composition of the restriction
operators:

Di = d1 · · · d̂i · · ·dr : P (r ) →P (1).

These choices will simplify the formulae in what follows, making our results more readable. Remark
also that, for any operation θ ∈P (r ), the resulting operation Di (θ) ∈P (1) is exactly

Di (θ) = γ(θ;∗, ...,∗, idP︸︷︷︸
i

,∗, ...,∗),

where γ is the composition map of P , the element idP ∈P (1) is the operadic unit, and ∗ ∈P (0)
is the unitary operation. In other words, Di (θ) retains the unary operation determined by the
i -th input of θ. For example, if P =Cn is the little n-cubes operad and θ = (c1, ...,cr ) ∈Cn(r ) is a
configuration of r little n-cubes, then Di (θ) = ci is the i -th little n-cube of the configuration, seen
as an element of Cn(1).

Let us finally equip the endofunctor CP with natural transformations ε : CP → idTop∗ and
∆ : CP →CP ◦CP that makes it a comonad. From now on, to lighten notation, we denote C =CP ,
assuming that the operad P is understood.

Definition 2.8. Let C =CP :Top∗ →Top∗ be the endofunctor of Definition 2.3. Define the natural
transformations

ε : C → idTop∗ and ∆ : C →C ◦C

level-wise as follows.
• The counit structure map is defined by

εX : C (X ) X

α= (
f1, f2, ...

)
εX (α) := f1(idP ).

Here, idP ∈P (1) is the operadic unit.
• We next define the coproduct structure map

∆X : C (X ) →C (C (X )).

To do so, let α= (
f1, f2, ...

) ∈C (X ). Then ∆x (α) = (
f̄1, f̄2, ...

)
is an element of the space C (Z ), with

Z =C (X ). Thus, it is formed by a sequence of maps

f̄r : P (r ) →C (X )∨r

satisfying the compatibility conditions

πi f̄r = f̄r−1di , for r ≥ 2 and 1 ≤ i ≤ r.

Because of Lemma 2.5 we only need to define the arity one component f̄1 : P (1) → C (X ), and
extend it as a sequence by the formula

f̄r =
{

f̄1D1, ..., f̄1Dr
}

,

where Di = d1 · · · d̂i · · ·dr .

For the definition above to be complete and correct, we require two steps:

Step 1. Define f̄1 : P (1) →C (X ).
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Step 2. Check that f̄1Di =∗ is the base point for all indexes i , except for at most a single one.

Where Step 2 follows from Proposition 2.6.
Step 1 Denote by γ the operadic composition map of P . Define f̄1 : P (1) →C (X ) by

f̄1(µ) = (
gµ1 , gµ2 , ...

)
for all µ ∈P (1),

where the maps gµr : P (r ) → X ∨r in the sequence are as follows. The first one is:

gµ1 : P (1) → X , gµ1 (θ) := f1
(
γ

(
µ;θ

))
,

for θ ∈ P (1). That is, gµ1 = f1
(
γ

(
µ;−))

. The rest of the maps gµr are recursively defined by the
formula

gµr : P (r ) → X ∨r

gµr (θ) = {
gµ1 D1(θ), ..., gµ1 Dr (θ)

}= {gµ1 (γ(θ; idP ,∗, ..,∗), ..., gµ1 (γ(θ;∗, ..,∗, idP ))

For θ ∈P (r ). We will check below that the image of gµr is indeed contained in the wedge X ∨r . The
family of maps gµr can be explicitly described. Let us first describe gµ2 : P (2) → X ∨X . Using, in the
order given, the recursive definition of gµ2 , the definitions of Di and of gµ1 , and the associativity of
γ, we can write

gµ2 (θ) = {
gµ1 D1(θ), gµ1 D2(θ)

}= {
gµ1

(
γ (θ; idP ,∗)

)
, gµ1

(
γ (θ;∗, idP )

)}
= {

f1
(
γ

(
µ;γ (θ; idP ,∗)

))
, f1

(
γ

(
µ;γ (θ;∗, idP )

))}
= {

f1
(
γ

(
γ

(
µ;θ

)
; idP ,∗))

, f1
(
γ

(
γ

(
µ;θ

)
;∗, idP

))}
.

Thus,
gµ2 = {

f1D1
(
γ(µ;−)

)
, f1D2

(
γ(µ;−)

)}
.

Next we need to show that f2 has its image in the wedge C (X )∨C (X ). Since α = (
f1, f2, ...

)
is an

element of C (X ), it follows that all f1Di =∗ are the base point, except for at most a single index i .
Therefore, indeed, gµ2 has its image in the wedge. Furthermore, so defined, gµ2 is S2-equivariant. In
general, exactly the same steps as for the r = 2 case show that the explicit formula for gµr is

gµr (θ) = {
f1

(
γ

(
γ(µ;θ); idP ,∗, ...,∗))

, ..., f1
(
γ
(
γ(µ;θ);∗, ...,∗, idP︸︷︷︸

j

,∗, ...,∗))
, ..., f1

(
γ

(
γ(µ;θ);∗, ...,∗, idP

))}
.

Above, the j -th component in the wedge has the identity idP ∈P (1) at the j -th component.

Step 2 Let us check that f̄1Di =∗ is the base point for all indexes i except for at most a single one.
Recall that for fixed i , the map

f̄1Di : P (r ) →C (X )

evaluated at some operation µ ∈P (r ) is the previously defined sequence

f̄1Di (µ) =
(
g Di (µ)

1 , g Di (µ)
2 , ...

)
.

First, observe that for any θ ∈P (1) and index i , with 1 ≤ i ≤ r, we have

γ
(
Di (µ);θ

)= Di
(
γ(µ; idP , ..,θ, ..., idP )

)
.

Therefore, the first component of the sequence f̄1D1(µ) can be written as

g Di (µ)
1 = f1

(
Di

(
γ

(
µ;−)))

.

Since the sequence
(

f1, f2, ...
)

is an element of the space C (X ), it follows that f1Di is the base point

for all i except for at most one, and therefore, the same holds for the family
{

g D1(µ)
1 , ..., g Di (µ)

1 , ...
}

,

which implies that f̄1Di =∗ is the base point for almost all i .
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Remark 2.9. In Proposition 2.6, we gave an identification of C (X ) as a certain subspace of
Map(P (1), X ). From this point of view, the comultiplication ∆ = ∆X : C (X ) → CC (X ) is given
as follows. Let f ∈C (X ) ⊆ Map(P (1), X ). Then, ∆

(
f
)

is given by:

∆
(

f
)

: P (1) C (X )

c ∆
(

f
)

(c) : P (1) X

d f
(
γ (c;d)

)
.

That is, given f ∈C (X ), and c,d ∈P (1), the map ∆
(

f
)

is explicitly given by

∆
(

f
)

(c)(d) = f
(
γ (c;d)

)
.

Proposition 2.10. With the notation before, the triple (C ,ε,∆) is a comonad in Top∗.

Proof. We prove the coassociativity and counit axioms object-wise. For a pointed space X , these
axioms are described by the following diagrams:

C (X ) C (C (X )) C (X ) C (C (X ))

C (C (X )) C (C (C (X ))) C (C (X )) C (X ),

∆X

∆X ∆C (X )

∆X

id
∆X εC (X )

C (∆X ) C (εX )

where the left diagram gives the coassociativity condition and the right diagram the counit condi-
tion.

Let α= (
f1, f2, ...

) ∈C (X ) then we will check that it satisfies the diagrams.

. Coassociativity. We must check that

(C (∆X )◦∆X ) (α) = (
∆C (X ) ◦∆X

)
(α). (4)

We analyze ∆X (α) first, given that it appears on both sides of the equation above, and then look at
each of the sides of the equation above. By Lemma 2.5, it suffices to check that the arity one term
of the sequences arising from both sides of Equation (4) agree. This will ultimately follow from the
associativity of the operadic composition γ of the operad P .

• Description of ∆X (α).

∆X : C (X ) C (C (X ))

α ∆X (α) = (
f̄1, f̄2, ...

)
By Lemma 2.5, the sequence

(
f̄1, f̄2, ...

)
is determined by its first component f̄1. It is given as follows:

f̄1 : P (1) C (X ) gµ1 : P (1) X

µ f̄1(µ) = (
gµ1 , gµ2 , ...

)
θ gµ1 (θ) = f1

(
γ(µ;θ)

)
• The left hand side of Equation (4) reads:

(C (∆X )◦∆X ) (α) =C (∆X ) (∆X (α)) =C
(

f̄1, f̄2, ...
)= (

∆X ◦ f̄1, {∆X ,∆X }◦ f̄2, ...
)

.

Here, given maps ϕi : Xi → Y , we are denoting the induced map by {ϕ1, ...,ϕn} : X1 ∨ ...∨Xn → Y .
We have:

∆X ◦ f̄1 : P (1) C (X ) C (C (X ))

µ f̄1(µ) = (
gµ1 , gµ2 , ...

) (
ḡµ1 , ḡµ2 , ...

)
The map ḡµ1 above is determined by:
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ḡµ1 : P (1) C (X ) h1 : P (1) X

θ ḡµ1 (θ) := (h1,h2, ...) λ h1(λ) = gµ1
(
γ(θ;λ)

)
• The right hand side of Equation (4) reads:(

∆C (X ) ◦∆X
)

(α) =∆C (X ) (∆X (α)) =∆C (X )
(

f̄1, f̄2, ...
)= (

¯̄f1
¯̄f2, ...

)
.

Here,

¯̄f1 : P (1) C (C (X )) lµ1 : P (1) C (X )

µ ¯̄f1(µ) = (
lµ1 , lµ2 , ...

)
θ lµ1 (θ) = f̄1

(
γ(µ;θ)

)
As mentioned, to check the coassociativity condition it suffices to check that ¯̄f1 = ∆X ◦ f̄1.

By Lemma 2.5 again, our problem reduces to checking that `µ1 = ḡµ1 . And once more, using the
same lemma, this reduces to checking that the sequence f̄1

(
γ

(
µ;θ

))
has first term equal to h1(λ)

described before. The first term is explicitly given by

f1
(
γ

(
γ

(
µ;θ

)
;λ

))
. (5)

On the right hand side, the first nested term of gµ1
(
γ (θ;λ)

)
is explicitly given by

f1
(
γ

(
µ;γ (θ;λ)

))
. (6)

By the associativity of the operadic composition γ, the term inside f1 in Equation (5) is the same as
the term inside f1 in Equation (6). Thus, these two maps are equal. This proves the coassociativity
of the comultiplication.

. Counit. We must check two identities:

1. (C (εX )◦∆X ) (α) =α.

Indeed,

(C (εX )◦∆X ) (α) =C (εX ) (∆X (α)) =C (εX )
(

f̄1, f̄2, ...
)= (

εX ◦ f̄1, {εX ,εX }◦ f̄2, ...
)

.

Let us check that εX ◦ f̄1 = f1 as maps P (1) → X . If µ ∈P (1), then:(
εX ◦ f̄1

)
(µ) = εX

(
f̄1(µ)

)= εX
(
gµ1 , gµ2 , ...

)= gµ1 (idP ) = f1
(
γ(µ; idP )

)= f1(µ).

2.
(
εC (X ) ◦∆X

)
(α) =α.

In this case, (
εC (X ) ◦∆X

)
(α) = εC (X ) (∆X (α)) = εC (X )

(
f̄1, f̄2, ...

)= f̄1(idP ).

We must check that f̄1(idP ) = f1 as maps P (1) → X . Indeed, if θ ∈P (1), then

f̄1(id)(θ) = g 1
1 (θ) = f1

(
γ(id;θ)

)= f1(θ).

The proposition is therefore proven.

For the sake of completeness, we recall here the well-known fact that comonads explicitly create
the cofree coalgebras of the underlying category (see for instance [18, Corollary 5.4.23]).

Theorem 2.11. Let X be a pointed space. Then, C (X ) is the cofree C -coalgebra on X . That is, for
any C -coalgebra A in pointed spaces, there is a natural bijection

HomTop∗ (A, X ) ∼= HomC−Coalg (A,C (X )) .

In Section 2.3 we will give a few explicit examples of how this comonad looks like in the case of
the associative operad and the little n-cubes operad.
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2.2 Alternative definitions of coalgebra over an operad

Let P be a unitary operad in Top. The comonad C =CP constructed in Section 2.1 naturally gives
rise to a category of coalgebras in Top∗. The objects in this category are pointed spaces X together
with a coalgebra structure map c : X → C (X ). We call the objects of this category P -coalgebras.
There is an equivalent way of defining a P -coalgebra by using the coendomorphism operad that
does not require the explicit construction of the comonad C . In this alternative definition, the
objects are pointed spaces X together with an operad map P → CoEndX , where CoEndX is the
coendomorphism operad asssociated to the pointed space X . In this section, we present the
alternative definition of P -coalgebra in terms of coendomorphisms, and show that for unitary
operads this is equivalent to the comonadic definition. The definition of P -coalgebras in terms of
the coendomorphism operad is much more intuitive and defines the coalgebra structure in terms
of explicit cooperations, i.e. maps X → X ∨r . On the other hand, the comonad definition has the
benefit that it will be much easier to compare it to the ΣnΩn-comonad, making it more suitable for
proving the approximation and recognition theorems later in this paper.

We start by defining the category of P -coalgebras using the comonad CP .

Definition 2.12. Let P be a unitary operad in Top. The category CP −Coalg of coalgebras in Top∗
associated to the comonad CP is called the category of (comonadic) P -coalgebras. The objects in
this category are triples (X ,c,ε), where c : X →C (X ), called the coalgebra structure map of X and
ε : CP (X ) → X the counit, are maps of pointed spaces satisfying counit and coassociativity axioms:

X C (X ) X C (X )

X C (X ) C (C (X ))

c

id
εX

c

c C (c)
∆X

The morphisms between these objects are pointed maps X → Y that make the obvious square
commute.

Before giving the alternative definition of P -coalgebras, we must give the definition of the
coendomorphism operad associated with a pointed space.

Definition 2.13. Let X be a pointed space. The coendomorphism operad CoEndX in pointed
topological spaces with the wedge sum, has arity r component

CoEndX (r ) :=Map∗
(
X , X ∨r )

,

the based mapping space from X to the r -fold wedge sum of X with itself. For r = 0, set CoEndX (0) =
∗. The operadic composition maps are defined as

γ :Map∗
(
X , X ∨n)×Map∗

(
X , X ∨m1

)×·· ·×Map∗
(
X , X ∨mn

)→Map∗
(

X , X ∨∑
mi

)
,

γ
(

f , g1, ..., gn
)

:= (
g1 ∨ ...∨ gn

)◦ f .

The symmetric group action on CoEndX (r ) permutes the wedge factors in the output of a map
f : X → X ∨r . The unit η : I → CoEndX is determined by mapping the base point in I (1) = {∗} to the
identity map in CoEndX (1) =Map∗ (X , X ).

It is straightforward to check that CoEndX is an operad in pointed spaces and we leave this to
the reader. The coendomorphism operad gives an alternative definition of P -coalgebras.

Definition 2.14. Let P be a not necessarily unitary operad in Top. A P -coalgebra is a pointed
topological space X together with an operad map P → CoEndX . A morphism of P -coalgebras is a
pointed map f : X → Y such that the following diagram commutes for all n:

P (n)×X X ∨ ...∨X

P (n)×Y Y ∨ ...∨Y

id× f

∆n

f ∨...∨ f

∆′
n

12



Here, ∆n and ∆′
n are the coalgebra structure maps of X and Y , respectively, which are written

arity-wise by using the mapping space-product adjunctions

Map
(
P (n)×Z , Z∨r )∼=Map

(
P (n),Map

(
Z , Z∨r ))

,

where Z is any pointed topological space. Note that since we are mixing pointed and unpointed
spaces we are viewing Map∗(X , X ∨r ) as a subspace of the unpointed mapping space so that we are
able to use the ×−Map-adjunction.

Remark 2.15. Note that this definition of a P -coalgebra is more general than the one using the
comand from the previous section. In particular, we do not require the operad to be unitary so
these coalgebras are defined for a larger class of operads.

By using the mapping space-product adjunction for Sr -spaces, we see that there are several
equivalent ways of unpacking the definition of a coendomorphism P -coalgebra. The definition of
a coalgebra as a sequence of coproduct maps

∆r : P (r )×X → X ∨r

is also equivalent to a sequence of maps

∆′
r : X →Map

(
P (r ), X ∨r )Sr ,

satisfying certain conditions. Here Map(P (r ), X ∨r )Sr is the subspace of Sr -invariant maps.

Versions of the coendomorphism operad have been explicitly used before in for example [1] in
the category of chain complexes. The notion of coalgebra in the category of pointed spaces with the
wedge product has also appeared before in [14], however they do do not use the coendomorphism
operad or construct an explicit comonad.

The following result asserts that for unitary operads both definitions of P -coalgebras are
equivalent.

Proposition 2.16. Let P be a unitary operad in Top. Then the definition of a P -coalgebra via the
comonad from Section 2.1 is equivalent to definition of a P -coalgebra via the coendomorphism
operad from Definition 2.14.

Proof. Indeed, we can identify operad maps ρ : P → CoEndX with coalgebra structure maps
c : X →C (X ) by the following rule: for any θ ∈P (r ) and x ∈ X ,

ρr (θ)(x) = f x
r (θ).

Here, ρr is the arity r component of ρ, and f x
r is the r th-term of the sequence c(x) = (

f x
1 , f x

2 , ...
)
.

The formula above turns a coendomorphism coalgebra into a comonad coalgebra and vice versa.
It is further straightforward to check that this definition commutes with morphisms.

From now on, we always use the shorter notation P −Coalg for the category of P -coalgebras.

Remark 2.17. The P -coalgebras defined in this section are canonically counital. That is, they
come equipped with the unique map ε : X →∗, and this map behaves as a counit with respect to
the rest of the structure. This explains the compatibility conditions of Equation (1). Indeed, if X is
a P -coalgebras, then the following diagram commutes:

P (n)×X X ∨r X ∨(r−1)

P (n −1)×X X ∨(r−1)

∆r

di×id

id∨···∨ε∨···∨id

id

∆r−1

In the diagram above, ∆r is the arity r coalgebra structure map of X , and id∨·· ·∨ε∨ ·· ·∨ id is
precisely πi . Note that the counit of a coalgebra is unique, i.e. since ∗ is the terminal object there is
only one possible map from X to X ∨0 =∗. This is in high contrast with the (unpointed) algebra
case in which there are many possibilities for a unit, i.e. there are many maps from X ×0 =∗ to X
since ∗ is not the initial object in unpointed spaces.
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2.3 The comonad associated to the little n-cubes operad

In this section, we take a closer look at the comonad constructed in Section 2.1, in the particular
case of P =Cn being the little n-cubes operad. Although we assume familiarity with this operad,
there are a number of small variations in the literature. We give a brief summary below in order
to carefully fix our conventions and establish the notation. We will consistently denote by Cn the
comonad in pointed spaces associated to the little n-cubes operad Cn . In Proposition 2.18, we give
a geometric characterization of Cn (X ) as an explicit subspace of Map (Cn(1), X ).

Denote by I n the unit n-cube of Rn and by J n its interior. A little n-cube is a rectilinear embed-
ding h : I n → I n of the form h = h1 ×·· ·×hn , where each component hi is given by

hi (t ) = (yi −xi )t +xi , for 0 ≤ xi < yi ≤ 1. (7)

The image h (J n) of the interior of I n under a rectilinear embedding h will be denoted h̊. So
although the operad is called the little n-cubes operad it is technically the little n-rectangle operad.

For each n ≥ 1, the little n-cubes operad Cn is an operad inTop. It was introduced independently
by Boardman–Vogt and May [5, 16] for studying iterated loop spaces. A comprehensive modern
reference is [9]. We consider the unitary version of this operad, i.e., Cn(0) = ∗ is the one-point
space. For each r ≥ 1, the arity r component Cn(r ) of Cn is the subspace of the mapping space

Cn(r ) ⊆Map

(∐
r

I n , I n
)

given by those rectilinear embeddings for which the images of the interiors of different cubes are
pairwise disjoint. That is,

Cn(r ) = {
(c1, ...,cr ) | each ci is a little n-cube, and c̊i ∩ c̊ j =; for all i 6= j

}
.

The symmetric group Sr acts on a configuration c = (c1, ...,cr ) of little cubes by permuting its
components, (c1, ...,cr ) ·σ = (

cσ−1(1), ...,cσ−1(r )

)
. The operadic unit 1 ∈ Cn(1) is the identity map

I n → I n , and the partial composition products are explicitly given by

(c1, ...,cr )◦i (d1, ...,ds ) = (c1, ...,ci−1,ci ◦d1, ...,ci ◦ds ,ci+1, ...,cr ) .

That is: we re-scale and insert the little n-cubes d1, ...,ds in place of the little n-cube ci , which is
removed, and then relabel accordingly.

Recall from Proposition 2.6 that the underlying space of the comonad CP (X ) associated to
a unitary topological operad P and a pointed space X is characterized as a certain subspace of
Map (P (1), X ). In the particular case of the comonad Cn associated to the little n-cubes operad,
there is a very geometrical characterization. We need the following preliminary notation. First,
recall that

Di = d1 · · · d̂i · · ·dr : Cn(r ) →Cn(1)

denotes the composition of the restriction operators omitting the i -th term, which evaluated at
a configuration θ = (c1, ...,cn) ∈ Cn(r ), recovers the i -th little n-cube ci . Now, let X be a pointed
space. Given f : Cn(1) → X any map, define for all r ≥ 2 and 1 ≤ i ≤ r the collection of maps

f i
r := f ◦Di : P (r ) → X and fr := (

f 1
r , ..., f r

r

)
: P (r ) → X ×r . (8)

The mentioned characterization is the following.

Proposition 2.18. Let X be a pointed space, and Cn the comonad associated to the little n-cubes
operad. Then a map f : Cn(1) → X belongs to Cn(X ) if, and only if, f satisfies the following property:

(D) If c1,c2 ∈Cn(1) are little n-cubes such that c̊1 ∩ c̊2 =;, then f (c1) =∗ or f (c2) =∗.

That is, taking f = f1, each map fr in (8) has its image in the r -fold wedge X ∨r , it is Sr -equivariant,
and the compatibility conditions fr−1di =πi fr are satisfied for all r ≥ 2 and 1 ≤ i ≤ r.
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Proof. Assume f = f1 : Cn(1) → X satisfies property (D). Fix an arbitrary r ≥ 2, and some 1 ≤ i ≤ r .
Define fr : Cn(r ) → X ×r by

fr =
(

f1D1, ..., f1Dr
)

.

Let us check that fr has its image in the wedge. Indeed, for any θ = (c1, ...,cr ) ∈ Cn(r ), it follows
from the definition of the space Cn(r ) that c̊k ∩ c̊ j =; for all j 6= k. Furthermore, for each index j
between 1 and r , we can write

c j =
(
d1 ◦ · · · d̂i · · · ◦dr

)
(θ) = Di (θ).

Therefore, condition (D) applied to each pair ( j ,k) with j 6= k implies that at most a single com-
ponent f1(c j ) is not the basepoint. Said differently: fr has its image in the wedge. The map fr is
Sr -equivariant. Indeed, for any σ ∈ Sr , one has

fr ·σ= {
f1D1, ..., f1Dr

} ·σ= {
f1D1 ·σ, ..., f1Dr ·σ

}= {
f1Dσ(1), ..., f1Dσ(r )

}=σ ·{ f1D1, ..., f1Dr
}

.

Since σ permutes the coordinates of the wedge factors, the claim is proven.
For the converse, assume that

(
f1, f2, ...

) ∈Cn(X ), and that c1,c2 ∈Cn(1) are little n-cubes such
that c̊1 ∩ c̊2 =;. This is precisely the condition needed to ensure that (c1,c2) is an element of Cn(2).
Consider f2 (c1,c2) ∈ X ∨X . From the comonadic compatibility conditions, one has

f1 (c1) =π1 f2 (c1,c2)

f1 (c2) =π2 f2 (c1,c2)

and therefore one of f1 (c1) or f1 (c2) must be the base point. Therefore f1 satisfies property (D).

In the next remark, we point out the obvious fact that non-trivial strictly coassociative coalgebras
do not exist in pointed spaces.

Remark 2.19. Recall that a pointed space X is a co-H-space if it comes equipped with a map
c : X → X ∨X that is a factorization up to homotopy of the identity map X → X :

X X ∨X

X

c

id
qi

That is, q1c ' id ' q2c, where qi : X ∨X → X is the projection onto the i th factor of the wedge. If
we try to strictify this diagram, considering q1c = id = q2c, then for any x ∈ X we would have the
following situation. The coproduct c(x) is either a point in the first wedge factor, (x1,∗), or it is a
point in the second wedge factor, (∗, x2). Without loss of generality, we may assume that it is of the
form c(x) = (x1,∗), we would then have

q2c(x) = q2(x1,∗) =∗.

If X has more than one point, we will not have q2c(x) = x for x 6= ∗. Thus, the unique strictly
coassociative counital coalgebra is the one point space. This is a significant contrast with the
algebra case, where for example, the James construction [13] gives a strictly associative monoid in
pointed spaces modelling ΣΩX . The classical Moore loop space is another important example of a
pointed space endowed with a strictly associative product. We conclude that there is no possible
"rectification" of a counital homotopy coassociative-coalgebra into a counital strictly coassociative
coalgebra. Aside from the elementary proof given here, the non-existence of strictly coassociative
coalgebras in Top∗ will also follow from Proposition 2.21, a more general statement asserting that
reduced operads produce trivial comonads, leaving no place for non-trivial counital coassociative
coalgebras. Remark that it is the counit that is causing all the problems in the discussion above.
Since there are non-trivial non-counital strictly coassociative coalgebras, the argument above does
not apply. It is therefore not known whether strictly coassociative rectifications exist in the case of
non-counital coalgebras, but this is beyond the scope of this paper.

The particular instance of Theorem 2.11 in this case gives the following important observation.

Theorem 2.20. Let X be a pointed space. Then, Cn (X ) is the cofree Cn-coalgebra on X . That is, for
any Cn-coalgebra A, there is a natural bijection

HomTop∗ (A, X ) ∼= HomCn−Coalg (A,C (X )) .

15



2.3.1 Reduced topological operads and weak equivalences

In this section, we prove that for reduced unitary topological operads (i.e. P (1) = {∗}) , the comonad
CP is always the trivial one-point comonad. Therefore, the associated category of P -coalgebras is
trivial (Proposition 2.21). This is a striking difference with the construction of Cn in the case of the
little n-cubes operad Cn , whose category of coalgebras is rich and interesting. As a consequence,
we readily see that the comonad construction does not respect weak equivalences in the Berger–
Moerdijk model structure [2] on topological operads. That is, if P →Q is a morphism of unitary
operads in Top∗ which is a weak equivalence in each arity, it does not necessarily follow that
the induced map CP (X ) →CQ(X ) is a weak equivalence for each pointed space X . For example,
the associative operad Ass is reduced, producing a trivial category of coalgebras, but there is a
a well-known weak equivalence of operads C1 � Ass. Said differently, a weak equivalence of
unitary operads does not imply an equivalence of categories of coalgebras (even of up to homotopy
algebras)

Proposition 2.21. If P is a reduced unitary topological operad, then CP is the trivial comonad.
That is, CP (X ) is the one-point space for all pointed spaces X . In particular, the comonads CAss and
CCom produced respectively from the associative and commutative operads are trivial.

Proof. Let P be an operad as in the statement. Fix a pointed space X , and consider an arbitrary
sequence α= (

f1, f2, ...
) ∈CP (X ). Then,

f1 : P (1) → X

specifies some point f1(∗) = x0 ∈ X . Recall (Lemma 2.5) that the higher terms fr in the sequence α
are determined by the recursive formula

fr =
{

f1D1, ..., f1Dr
}

. (9)

In particular, for any θ ∈P (2),

f2(θ) = {
f1d2(θ), f1d1(θ)

}= {x0, x0}.

Therefore, for f2 to be well-defined (i.e., having its image in the wedge), the point x0 must be the
base point of X . It then follows from the recursive formula (9) that for all r ≥ 2 and θ ∈P (r ), we
have

fr (θ) = {
f1D1(θ), ..., f1Dr (θ)

}= {x0, ..., x0} .

That is, α is the trivial sequence.

2.4 Iterated suspensions are coalgebras over the little cubes operad

In this section, we show that the n-fold reduced suspensionΣn X of a pointed space X is a coalgebra
over the little n-cubes operad. These are the paradigmatic examples of Cn-coalgebras. To show
our results, we use the coendomorphism version of Cn-coalgebras. At the end of the section, we
explain how the results in this paper allows us to swiftly recover the classical Cn-algebra structure
on n-fold loop spaces as a convolution structure. The Cn-coaction on Sn that we describe in this
section has previously appeared, in the context of the factorization homology, in [11].

Theorem 2.22. The n-fold reduced suspension of a pointed space X is a Cn-coalgebra. More precisely,
there is a natural and explicit operad map

∇ : Cn →CoEndΣn X

that encodes the homotopy coassociativity and homotopy cocommutativity of the classical pinch
map Σn X → Σn X ∨Σn X . In particular, the pinch map is an operation associated to an element
of Cn(2). Furthermore, for any based map X → Y , the induced map Σn X → ΣnY extends to a
morphism of Cn-coalgebras.
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The first step in proving the result above consists in showing that the sphere Sn , with n ≥ 1, is a
coalgebra over the little n-cubes operad. That is, we first show that the statement above is true for
X = Sn =ΣnS0.

Proposition 2.23. For every n ≥ 1, there is a natural and explicit morphism of operads

∇ : Cn →CoEndSn

turning the n-sphere into a Cn-coalgebra, so that all properties of Theorem 2.22 for Σn X = Sn hold
true.

Proof. Let us define the arity r component of ∇. This is a map

∇r : Cn(r ) → CoEndSn (r ) =Map∗
(
Sn ,Sn ∨ ...∨Sn)

.

For c = (c1, ...,cr ) ∈Cn(r ) a configuration of little n-cubes, we define the pointed map

∇r (c) : Sn (Sn)∨r

t ∇r (c)(t )

as follows. Identify Sn = I n/∂I n . Then t ∈ Sn is either the base point t = {∂I n} or else it is an interior
point of the n-cube I n . If t is interior, then is at most a single cube ci such that t ∈ c̊i . We define

∇r (c)(t ) =
{[

c−1
i (t )

]
if t ∈ c̊i ,

∗ otherwise

Here,
[
c−1

i (t )
]

denotes the point in the i -th wedge factor of Sn ∨ ...∨Sn followed by its inclusion as
the i -th factor of the wedge. So defined, the maps ∇r (c) are pointed, continuous and turn this into
a morphism of operads. The fact that this is a morphism of operads is straightforward to check and
left to the reader.

We prove next that the little n-cubes coalgebra structure on the sphere Sn just described induces
the little n-cubes coalgebra structure on an arbitrary n-fold reduced suspension.

Proof of Theorem 2.22: Let Σn X be the n-fold reduced suspension of the pointed space X . Write
Σn X = Sn ∧ X , and recall that for any three pointed spaces X , Y and Z , the wedge and smash
product distribute over each other [12, S. 4.F ], i.e.

X ∧ (Y ∨Z ) ∼= (X ∧Y )∨ (X ∧Z ) .

In particular, when we take X to be Sn

Σn (Y ∨Z ) ∼=ΣnY ∨Σn Z .

Then, for c ∈Cn(r ), define the map Σn X → (Σn X )∨r as the composition

Σn X ∼= Sn ∧X
∇r (c)∧idX−−−−−−−→

((
Sn)∨r

)
∧X

∼=−→ (
Sn ∧X

)∨r ∼= (
Σn X

)∨r ,

where ∇r is the arity r component of the map ∇ defined in Proposition 2.23. All these maps are
continuous, commute with the symmetric group actions and the operadic composition maps,
producing a functorial construction. Alternatively, one can define the operad map

CoEndSn → CoEndΣn X

given (up to isomorphism) by f 7→ f ∧ idX , and precompose it with the operad map of Proposition
2.23. Doing this, one ends up with the map we described before. In this sense, the Cn-coalgebra
structure of an n-fold suspension always factors through the Cn-coalgebra structure of Sn . ä
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Remark 2.24. The defined operad map ∇ : Cn → CoEndΣn X is determined by its arity 1 component
∇1 : Cn(1)×Σn X →Σn X . Being more precise, as a consequence of Proposition 2.5, the following
formula holds for all c ∈Cn(r ) and z ∈Σn X :

πi (∇r (c, z)) =∇r−1 (di (c) , z) ,

where πi and di are the wedge collapse and restriction operators from Section 2.1.

In the remainder of the section, we explain how the coalgebraic framework introduced in this
work let us swiftly recover the classical result by May that iterated loop spaces are algebras over
the little n-cubes operad. For this, we first need to define fold algebras in the category of pointed
spaces with the wedge product ∨.

Definition 2.25. Let X be a pointed space. The fold endomorphism operad End∨
X is the operad

whose arity r component is given by

End∨
X (r ) =Map∗

(
X ∨r , X

)
,

with the composition map given by inserting the output of a map into the input, and the symmetric
group action is given by permuting the inputs. If P is an operad in unpointed spaces, then a fold
P -algebra is a pointed space X together with a morphism of operads P →End∨X .

We leave it to the reader to check that the definition above gives an operad. Every pointed space
is canonically a commutative fold-algebra, where the products are given by the canonical fold
maps (which explains the name).

Using the definiton of a fold P -algebra, we can now define a convolution algebra between a
P -coalgebra and a fold Q-algebra, for operads P and Q. Denote by P ×Q the arity-wise product
of P and Q. This allows us to define convolution algebras in pointed spaces as follows.

Proposition 2.26. Let P and Q be operads in unpointed spaces. Let X be a P -coalgebra and Y a
fold Q-algebra. Then the pointed mapping space Map∗ (X ,Y ) is a P ×Q-algebra. The structure
maps

γ : P (r )×Q(r )×Map∗(X ,Y )×r →Map∗(X ,Y )

applied to pointed maps f1, ..., fr : X → Y are explicitly given by

γ
(
(θ,ν); f1, ..., fr

)= (
ν◦ (

f1 ∨·· ·∨ fr
)◦∆)

(θ).

Here, (θ,ν) ∈ P (r )×Q(r ) , i.e., the canonical map from the r -fold coproduct of X onto X , and
∆ : P → CoEndX is the P -coalgebra structure map of X .

Proof. This is similar to the construction in Section 1 of [2] and is left to the reader.

In particular, n-fold loop spaces fall into the framework described in the previous result. Since
every pointed space is canonically a commutative fold algebra, and the arity-wise product of Cn

with the commutative operad is isomorphic to Cn , we recover May’s classical Cn-algebra structure
on loop spaces as follows (see [16]).

Corollary 2.27. Let Ωn X be an n-fold loop space. Then, the Cn-algebra structure on

Ωn X =Map∗
(
Sn , X

)
induced by the Cn-coalgebra strucuture of Sn and the fold Com-algebra structure on X as a convolu-
tion algebra is exactly the classical Cn-algebra structure on loop spaces.

Proof. By definition, each map Sn → Sn ∨·· ·∨Sn arising from the Cn coalgebra structure of Sn

induces the following convolution product on an n-fold loop space Ωn X . Given α1, ...,αr : Sn → X
and θ ∈Cn(r ), define γ(α1, ...,αr ) as

Sn ∇(θ)−−−→ (
Sn)∨r α1∨...∨αr−−−−−−−→ X ∨r µr−→ X ,

where µr ∈ Com(r ) is the r th fold map. Here, Com is the commutative operad. One checks that
these maps are exactly the maps described in [16, Section 5].
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3 The Approximation Theorem

To prove the recognition principle for n-fold loop spaces, as well as to develop a unified theory of
homology operations for them, May proved the approximation theorem [16, Theorem 6.1]. This
consists of giving a morphism of monads from the monad Mn associated to the little n-cubes
operad to the monad ΩnΣn , and proving that this natural transformation is a weak equivalence on
connected spaces. In this section, we prove an Eckmann–Hilton dual result to approximate the
comonad ΣnΩn .

Theorem 3.1. For every n ≥ 1, there is a natural morphism of comonads

αn :ΣnΩn −→Cn .

Furthermore, for every pointed space X , there is an explicit natural homotopy retract of pointed
spaces

ΣnΩn X Cn(X )

In particular, αn(X ) is a weak equivalence.

The proof of the result above does not consist of a dualization of the corresponding proof
of May’s proof in the case of loop spaces. We take a different route which has the advantage
that it gives us explicit homotopies and does not require auxiliary spaces as is needed in May’s
original approach. It is at the moment not clear whether these methods can also be used to give an
alternative proof of the loop space approximation theorem.

Let n ≥ 1 be a fixed integer. The natural transformation α=αn :ΣnΩn →Cn is defined object-
wise as the composition

αX :ΣnΩn X
γ−→Cn

(
ΣnΩn X

) Cn(ηX )−−−−−→Cn (X ) ,

where γ is the Cn-coalgebra structure map of ΣnΩn X (Theorem 2.22), and ηX is the evaluation
at X of the counit η : ΣnΩn → idTop∗ of the (Σn ,Ωn)-adjunction. Unraveling the definitions, we
readily see that α=αX is explicitly given on a point [t ,`] ∈ΣnΩn X = Sn ∧Map∗ (Sn , X ) as the map
α[t ,`] : Cn(1) → X that acts on a little n-cube c ∈Cn(1) by

α[t ,`](c) =
{
`

(
c−1(t )

)
if t ∈ c̊

∗ otherwise

See Proposition A.2 for more details on the definition of α.

Proof of Theorem 3.1: The proof consists of the following two steps.

(i ) We must check that α defines a morphism of comonads. This is not complicated, but it is
lengthy. Because of this, we postponed this proof to Appendix A (Proposition A.2).

(i i ) We must check that for a fixed pointed space X , the space ΣnΩn X is a retract of spaces of
Cn (X ). To do so, we give a pointed map (of spaces, not comonads) Ψ=Ψn : Cn (X ) →ΣnΩn X and
a homotopy H : Cn(X )× I →Cn(X ) such that

Ψ◦α= idΣnΩn X and α◦Ψ' idCn (X ) . (10)

To define Ψ and the homotopy H =Hn :α◦Ψ' idCn (X ), we introduce below for each f ∈Cn (X )
a certain subset of the n-cube I n which we name the cubical support of f and denote CSupp

(
f
)
.

In the case of interest, the cubical support of a map f will be non-empty and has a well-defined
center, which is a point

Cent
(

f
) ∈ CSupp

(
f
)⊆ I n .

Theorem 3.1 will then follow from the two items just described. Since the first item is proved in
the mentioned appendix, it remains to prove the second one. We do this in what follows.
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Definition of Ψ

The pointed map Ψ is defined as follows.

Ψ : Cn (X ) ΣnΩn X

f Ψ
(

f
)= [

Cent
(

f
)

,`
]
.

Here, we need to explain what the two components above are:

t := Cent
(

f
) ∈ Sn and ` : Sn → X , s 7→ `(s) := f

(
cs,Cent( f )

)
.

Since we are identifying Sn = I n/∂I n , we are denoting by Cent
(

f
)

a certain point of the n-cube I n

that we are denoting in the same way and is going to be explained below. On the other hand, the
little n-cube cs,Cent( f ) that depends both on f and s, follows a certain construction to be explained
below too.

Let us start with the following auxiliary definition. The cubical support of an arbitrary map
f : Cn(1) → X is the intersection of the images of all little n-cubes c : I n → I n such that f acts
non-trivially on c:

CSupp
(

f
)= ⋂

c∈Cn (1)
f (c)6=∗

Im(c) ⊆ I n .

If the family over which we are taking the intersection above is empty, then we define CSupp
(

f
)=

;. If f is an element of Cn(X ), then this happens only when f is the trivial map. In this case, we
define Ψ

(
f
)

to be the base point of ΣnΩn X . The cubical support of f is closely related to its
classical support, namely, the set of points of the domain of f where f acts non-trivially:

Supp
(

f
)= ⋂

c∈Cn (1)
f (c)6=∗

c ⊆Cn(1).

Indeed, since each c ∈Cn(1) defines the subset Im(c) ⊆ I n , the cubical support of f is the subset
of I n determined by the classical support of f . Recall also that an n-rectangle is a subspace of Rn

which is rectilinearly homeomorphic to I n or a singleton. An n-rectangle that does not reduce to a
single point is determined by the set of its 2n vertices, but also more efficiently by 2n numbers that
describe the length of the sides and their position. In other words, an n-rectangle R is simply a
cartesian product of closed intervals:

R = {
(x1, ..., xn) ∈Rn | ai ≤ xi ≤ bi for all i = 1, ...,n

}= [a1,b1]×·· ·× [an ,bn] ,

for certain ai ,bi ∈R satisfying ai ≤ bi .

Claim 1: The cubical support CSupp
(

f
)

of a map f ∈Cn (X ) is empty if, and only if, f is the trivial
map. Furthermore, if f is non-trivial, then its cubical support is a point or an n-rectangle.

Proof of Claim 1: Let f ∈Cn(X ) be any map. If CSupp
(

f
) 6= ;, then obviously f 6= ∗. Let us check

the converse. Assume therefore that f 6= ∗, and let us check that CSupp
(

f
) 6= ;. Indeed: since

f 6= ∗, there is some little n-cube d such that f (d) 6= ∗. Thus, the family {Im(c) | f (c) 6= ∗} over
which we are taking the intersection in the definition of the cubical support is non-empty. Now,
from Proposition 2.18, it follows that if c1,c2 ∈ Cn(1) are such that both f (c1) 6= ∗ and f (c2) 6= ∗,
then necessarily c̊1 ∩ c̊2 6= ;. The intersection of the interiors of any two n-rectangles that do not
reduce to a point is either empty, or it is again an n-rectangle that does not reduce to a point. From
this fact, it follows that CSupp

(
f
)

is non-empty.
To check the furthermore assertion in Claim 1, let c ∈ Cn(1) be a little n-cube, and write

c = (
g1, ..., gn

)
in terms of its coordinate functions gi : I → I . Then, the image of the cube c is the

n-rectangle
Im(c) = [

g1(0), g1(1)
]×·· ·× [

gn(0), gn(1)
]⊆ I n .

20



There is an obvious canonical identification between little n-cubes and n-rectangles contained
in I n that do not reduce to a single point. The cubical support of a fixed map f : Cn(1) → X is
therefore the n-rectangle

CSupp
(

f
)= [a1,b1]×·· ·× [an ,bn] ,

where for each i = 1, ...,n

ai := sup
{

gi (0) | c = (
g1, ..., gn

) ∈Cn(1) and f (c) 6= ∗}
,

bi := inf
{

gi (1) | c = (
g1, ..., gn

) ∈Cn(1) and f (c) 6= ∗}
.

This finishes the proof of Claim 1. ä

Every non-empty n-rectangle R has a center Cent(R). If R = [a1,b1]×·· ·×[an ,bn], then its center
is the point determined by the midpoint of each of the intervals,

Cent(R) =
(

a1 +b1

2
, ...,

an +bn

2

)
.

Observe that, if R = (x1, ..., xn) is a singleton, then Cent(R) = (x1, ..., xn). Assuming furthermore that
R = CSupp

(
f
)

for some f , then we define Cent( f ), the center of f , as

Cent( f ) := Cent
(
CSupp

(
f
))= Cent(R).

Examples 3.2. Let us compute the cubical support CSupp
(

f
)

for several maps f .

1. Let Cn(∗) be the cofree Cn-coalgebra on a single point. Then, Cn (X ) =∗ reduces to the trivial
one-point space. Thus, the unique map f : Cn(1) →∗ collapses all little n-cubes to the base
point, and therefore, CSupp

(
f
)=;.

2. Consider the map f : C1(1) → I given by

f (c) =
{

0 if r ≤ 1/2

r −1/2 if r ≥ 1/2

Here, r = c(1)−c(0) is the size of the little 1-cube c . By Proposition 2.18, f defines an element
in C1 (I ), and one readily checks that Cent

(
f
)= CSupp

(
f
)= { 1

2

}
. By varying r , it is possible

to construct a map having as center any chosen point in (0,1).

3. Define f : C1(1) → I as in the example above replacing 1/2 by any real number a ∈ [ 1
2 ,1

)
. By

Proposition 2.18, f defines a map in C1 (I ). Its cubical support is the interval [1−a, a]. In the
case where α= 1

2 , we see again that Cent
(

f
)= 1

2 .

The examples above can be generalized to higher-dimensional cubes.

Another important example of cubical support is that of n-fold suspensions.

Proposition 3.3. Let Σn X be the n-fold reduced suspension of a pointed space X , and let γ :Σn X →
Cn (Σn X ) be its Cn-coalgebra structure map. Then, for every non-base point [t , x] ∈Σn X , we have
that

CSupp
(
γ[t , x]

)= {t } .

Proof. First, we prove the result for spheres. If γ : Sn →Cn (Sn) is the Cn-coalgebra structure map,
we explicitly have

γ(t )(c) =
{

c−1(t ) if t ∈ c̊

∗ otherwise,

where t ∈ Sn and we identify Sn with I n/∂I n , the ambient cube of c modulo its boundary. By
definition, CSupp

(
γ(t )

)
is the intersection of the family{

Im(c) | c ∈Cn(1) and γ(t )(c) 6= ∗}
.
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The image Im(c) of a little n-cube is non-trivial if, and only if, t ∈ Im(c). Thus, the cubical support
CSupp

(
γ(t )

)
is the intersection of all non-trivial cubes containing t , and therefore, it is the singleton

{t }.
Now, for an arbitrary n-fold reduced suspension Σn X , factorize its coalgebra structure map as

follows:

Σn X = Sn ∧X Cn (Sn)∧X Cn (Sn ∧X ) .
γSn ∧idX F

The second map F above is given by

F
(

f , x
)= [

f (−), x
]

, for f : Cn(1) → Sn and x ∈ X .

The final composition is therefore explicitly given by

γ[t , x] : Cn(1) Sn ∧X

c
[
γ(t )(c), x

]
.

Here, the cubical support CSupp
(
γ[t , x]

)
is the intersection of the family{

Im(c) | c ∈Cn(1) and
[
γ(t )(c), x

] 6= ∗}
.

Similar to the case of the spheres, we have

[
γ(x)(c), x

]={[
c−1(t ), x

]
if t ∈ c̊

∗ otherwise

We readily see from here that a little n-cube c has non-trivial image if, and only if, c̊ contains the
component t of the sphere. Thus, the intersection of them all yields the singleton {t }.

We also need the following auxiliary result. It explicitly describes the little n-cube that appears
in the loop ` : Sn → X of the second component of Ψ.

Claim 2: For each pair of points s, t ∈ I n −∂I n , there is a unique little n-cube c = cs,t : I n → I n ,
depending continuously on (s, t ), such that:

1. c(s) = t ,

2. Im(c) is the n-rectangle of maximum size contained in I n and touching all the faces of the
boundary ∂I n . More precisely, we require that for each coordinate at least one side of the
embedded rectangle touches a side of the ambient cube.

If s or t lies in the boundary ∂I n , we will not need to construct the cube cs,t . Indeed, in this case
Ψ will map the pair [t ,`] to the base point of Cn(X ).

Proof of Claim 2: Let us explicitly construct c. Recall from Equation (7) that the rectilinear embed-
ding c is of the form

c (x1, ..., xn) = (
(b1 −a1) x1 +a1, ..., (bn −an) xn +an

)
,

where 0 ≤ ai < bi ≤ 1 for all i . Thus, each component ci of c is determined by the numbers ai and
bi . Imposing that c(s) = t , we get the relations

(bi −ai )si +ai = ti for each i .

A second constraint on each component i determines the numbers ai ,bi uniquely. Since c touches
each face of ∂I n , at each component ci we must have one of the following two options:

1. ci (0) = 0, and then we deduce that

ci (xi ) = ti

si
· xi ,

or else
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2. ci (1) = 1, and then we deduce that

ci (xi ) = 1− (1− ti )(1−xi )

1− si
.

Now, there is no choice to be made here. Rather, the option is determined by the relationship
between s and t . That is, we are considering the separate cases where si > ti or si < ti . More
precisely, if for a fixed i , we have that 0 < ti /si < 1, then the first formula gives a well-defined affine
linear map onto the interval, but the second formula does not (because its image lands outside the
unit interval). If, on the other hand, the inequality 0 < ti /si < 1 does not hold, then it follows that
0 < (1−ti )(1−xi )

1−si
< 1, and the second formula does define an affine linear map (while the first one

does not). To finish, observe that the formulae agree when si = ti , which makes the construction of
c a continuous function of s and t . Of course, in the case si = ti , we are taking the identity map at
the i -th coordinate. This finishes the proof of Claim 2. ä

Having explained in full detail what all the items defining Ψ are, the map Ψ is given by:

Ψ : Cn (X ) ΣnΩn X

f Ψ
(

f
)= [

Cent
(

f
)

,`
]
,

where ` is defined as
` : Sn → X ,

s 7→ `(s) := f
(
cs,Cent( f )

)
.

Our arguments so far show that the resulting function is a pointed continuous function of f .

Definition of the homotopy H

The next step in the proof of the approximation theorem is to construct a homotopy H : Cn (X )×
I →Cn (X ) such that

H0 = idCn (X ), H1 =α◦Ψ, H (∗, t ) =∗ ∀t ∈ I . (11)

The following auxiliary construction is a key ingredient for the homotopy H . Intuitively speak-
ing, the idea is to construct a homotopy from maps whose cubical support is more than a point to
maps whose cubical support is exactly a point. We construct this homotopy by enlarging the cubes
in Cn(1) until they hit the boundary while also preserving the center. This is made precise in the
following auxiliary construction.

Auxiliary construction: The rectilinear expansion of a little n-cube c ∈ Cn(1) induced by a map
f ∈Cn (X ) whose center Cent

(
f
)

belongs to c̊.

Proof and explanations for the auxiliary construction: Let us explain the construction for a little
1-interval c ∈C1(1); the general case is an application of this construction at each coordinate of a
little n-cube. Let c ∈C1(1), so that

c(t ) = (b −a)t +a

for some a,b with 0 ≤ a < b ≤ 1. Let

x1 = dist(Im(c),∂I ) = min{a,1−b}

be the distance from Im(c) to the boundary of the interval.

Definition 3.4. Let c ∈ C1(1). The rectilinear expansion of c induced by a map f ∈C1(X ) whose

center Cent
(

f
)

belongs to c̊ is the unique path γ= γ f
c : I →C1(1) satisfying:

• γ(0) = c,

• for every s ∈ (0,1],
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– the cubeγ(s) is a rectilinear embedding that increases the size of c by min{s,dist(Im(c),∂I )}
while keeping the ratios between the sides equal, and

– the center Cent
(

f
)

is fixed by γ(s), i.e. if z = c−1
(
Cent

(
f
))

, then γ(s)(z) = Cent
(

f
)
.

Let us explicitly describe the path above. For each s ∈ I , we have γ(s) ∈C1(1) of the form

γ(s)(t ) = (b(s)−a(s)) t +a(s) ∀ t ∈ I .

For a fixed s ∈ I , two conditions on a(s) and b(s) determine γ(s) uniquely. We impose the two
mentioned conditions, namely that

γ(s)(p) = p,

where for simplicity we denote p = Cent
(

f
)
, and that the radius of γ(s) is that of c increased by

min{s, a,1−b}:
(b(s)−a(s))− (b −a) = min{s, a,1−b} .

These conditions produce the linear system of equations{
(1−p)a(s)+pb(s) = p

−a(s)+b(s) =α(s)

where α(s) = min{s, a,1−b}. The unique solution to the system above is

a(s) = p (1−α(s))

b(s) =α(s)−α(s)p +p.

Therefore, for a fixed s ∈ I , the little 1 interval γ(s) is given by

γ(s)(t ) =α(s)t +p −pα(s) ∀ t ∈ I .

This finishes the construction for a little 1-interval. In the general case, given c ∈Cn(1) of the form

c (t1, ..., tn) = (
(b1 −a1) t1 +a1, ..., (bn −an) tn +an

)
and f ∈Cn (X ), define γ= γ f

c : I →Cn(1) to be the path such that

γ(s) (t1, ..., tn) = (
α1(s)t1 +p1 −p1α1(s), ...,αn(s)tn +pn −pnαn(s)

) ∀ (t1, ..., tn) ∈ I n .

This finishes the construction of the auxiliary path γ
f
c : I → Cn(1), and therefore the proof and

explanations for the auxiliary construction. ä

Now, we are ready to define the homotopy H : Cn (X )× I →Cn (X ). For each
(

f , t
) ∈Cn (X )× I ,

this is the map
H

(
f , t

)
: Cn(1) → X

whose image on a little n-cube c ∈Cn(1) is

H
(

f , t
)

(c) = f
(
γ

f
c (t )

)
Here, γ f

c is the rectilinear expansion of c induced by f . Note that this rectilinear expansion shrinks
the cubical support of f to a point. We must check that H is well-defined, continuous, and
satisfies the requirements for being a pointed homotopy from idCn (X ) to αΨ. To check that H is
well-defined, we must corroborate that for each

(
f , t

)
, the map H

(
f , t

)
indeed defines an element

in Cn (X ). Recall from Proposition 2.18 that given c1,c2 ∈Cn(1) with c̊1 ∩ c̊2 =;, this amounts to
checking that

H
(

f , t
)

(c1) =∗ or H
(

f , t
)

(c2) =∗.
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But this is immediate: if c̊1 ∩ c̊2 =;, then Cent
(

f
)

cannot be in both c1 and c2 at the same time.
Therefore, by definition H

(
f , t

)
vanishes on the little cube ci not having Cent

(
f
)

in its image. We
conclude that H is well-defined. It is straightforward to check that H is indeed continuous and
we leave this to the reader. Similarly, it follows directly from the definitions that the identities of
Equation (11) hold.

We have therefore explained in full detail the definition of H , and checked it gives a pointed
homotopy between idCn (X ) and α◦Ψ.

Proving the equality Ψ◦α= idΣnΩn X

Let [t ,`] ∈ΣnΩn X . By definition,

Ψα[t ,`] = [Cent(α[t ,`]) ,L] , (12)

where L : Sn → X is the loop
s 7→ L(s) =α[t ,`]

(
cs,Cent(α[t ,`])

)
.

Assume that X is not the one-point space and that ` is not the constant loop; otherwise the result is
trivial. We must check the two components in the right hand side of Equation (12) are, respectively,
t and `.

1. Let us check that Cent(α[t ,`]) = t . To do so, it suffices to check that CSupp(α[t ,`]) reduces
to the single point {t }. Indeed: if c ∈ Cn(1) is such that α[t ,`](c) 6= ∗, it follows from the
definition of α[t ,`] that t ∈ c̊ (recall Equation (15)). Thus, t ∈ Im(c) for all little n-cubes
c such that α[t ,`](c) 6= ∗. Therefore, t is in the intersection of all such images, namely
CSupp(α[t ,`]). Now, if t0 6= t , then we can always find a little n-cube c̃ such that t0 ∉ Im(c̃)
and t ∈ Im(c̃), and furthermore `

(
(c̃)−1 (t )

) 6= ∗ (possibly after reparametrization: it might be
the case that the loop ` passes through the basepoint of X , but we are assuming ` is not the
constant loop).

2. Let us check that L(s) = `(s) for all s ∈ Sn . Indeed: for t = Cent(α[t ,`]), the little n-cube
c = cs,α[t ,`] is such that c(s) = t . Said differently, c−1(t ) = s. Therefore, by definition:

L(s) =α[t ,`] (c) =
{
∗ if t ∉ c̊

`
(
c−1(t )

)
otherwise

= `(s).

To summarise: we have explained the definition of the map Ψ and the homotopy H , and have
shown the retract requirements of Equation (10) hold. Thus, the proof of Theorem 3.1 is now
complete.

Remark 3.5. In this section we have chosen to prove the approximation theorem for the little
n-cubes (rectangles) operad, but the ideas could easily be modified to other little convex bodies
operads, like the little n-disks operad. Here some small modification would be needed to explain
what exactly is meant by the center and how the expansion is defined. For simplicity, we have
decided to only look at the little cubes operads.

4 The Recognition Principle for n-fold reduced suspensions

In this section, we prove the recognition principle for n-fold reduced suspensions. The precise
statement is the following.

Theorem 4.1. Let X be a Cn-coalgebra. Then there is a pointed space Γn(X ), naturally associated to
X , together with a weak equivalence of Cn-coalgebras

ΣnΓn(X ) X ,'

which is a retract in the category of pointed spaces. Therefore, every Cn-coalgebra has the homotopy
type of an n-fold reduced suspension.
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The result above is the converse of Theorem 2.22, where it was proven that n-fold reduced
suspensions are Cn-coalgebras. Summarizing, we are providing the following intrinsic characteri-
zation of n-fold reduced suspensions as Cn-coalgebras.

Corollary 4.2. Every n-fold suspension is a Cn-coalgebra, and if a pointed space is a Cn-coalgebra
then it is homotopy equivalent to an n-fold suspension.

Remark 4.3. Compared to other statements in the literature, see for example [14, 4], Theorem 4.1
does not require any additional connectivity assumptions, and it is therefore the sharpest possible
result. This follows from the fact that every Cn-coalgebra is (n −1)-connected. Indeed, let X be a
Cn-coalgebra with structure map c : X →Cn(X ). By the approximation theorem, the space Cn(X )

is homotopic to ΣnΩn X , and thus (n −1)-connected. Since the composition X
c−→Cn(X )

εX−−→ X is
the identity on X by the counit axiom, it follows that X is (n −1)-connected.

For readability, we shall give the proof of Theorem 4.1 straightaway, making reference to the
results and notation of the following two subsections.

Proof. By Theorem 3.1, there is a natural morphism of comonads αn :ΣnΩn −→Cn , and ΣnΩn X
is a retract of Cn (X ). Since ΣnΩn preserves equalizers (Proposition 4.10), it follows from Lemma
4.8 that the counit map (αn)∗α!

n(X ) → X is a Cn-algebra morphism which is a retract of pointed
spaces. Since (αn)∗ preserves the underlying topological space, it follows that the ΣnΩn-coalgebra
α!

n(X ) is a retract of X as a pointed space. It then follows from Theorem 4.9 together with the
approximation theorem that α!

n(X ) is naturally isomorphic to an n-fold suspension, and so the
counit map (αn)∗α!

n(X ) → X is an Cn-coalgebra map from a n-fold reduced suspension to X . In
particular, Γn is the functor Pn(αn)∗α!

n .

We give a second proof of Theorem 4.1 in Section 4.3 using explicit formulae very similar to
those appearing in the approximation theorem. This alternative proof is more concrete, and has
the further benefit of giving a characterization in terms of a certain Cn-subcoalgebra.

4.1 The change of coalgebra structures induced by a comonad morphism

In this section, we explain how a morphism of comonads α : C1 →C2 induces an adjoint pair

α∗ : C1 −Coalg�C2 −Coalg :α!

between the corresponding categories of coalgebras (under reasonable hypotheses on the underly-
ing ambient category). The final goal is to prove the technical Lemma 4.8, which is an essential
ingredient for proving Theorem 4.1.

Suppose that C1 and C2 are two comonads over a category M which admits finite limits, and
that α : C1 →C2 is a morphism of comonads. The change of coalgebra functor

α∗ : C1 −Coalg−→C2 −Coalg

is given by mapping a C1-coalgebra X to the same underlying object of M equipped with the
C2-coalgebra structure map given by the composition

X
γX−−→C1(X )

αX−−→C2(X ).

On morphisms, α∗ is the identity.

Since M has finite limits, by the dual of Dubuc’s adjoint triangle theorem [8], the change
of coalgebra functor α∗ has a right adjoint α! which we call the enveloping coalgebra functor.
The C1-coalgebra α! (X ) is explicitly given as the equalizer in C1 −Coalg of the following pair of
morphisms:

C1(X ) C1C2(X )

C1C1(X )
4C1

C1(δX )

C1(αX )
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Above, δX is the structure map of X as a C2-coalgebra. The following proposition, which is the dual
of [6, Prop. 4.3.2], gives conditions for this equalizer to be preserved by the forgetful functor to M .

Proposition 4.4. Let C be a comonad on M and let U : C −Coalg→M be the forgetful functor. Let
G : D → C −Coalg be a diagram such that UG has a limit in M that is preserved by C and C ◦C .
Then G has a limit in C −Coalg that is preserved by U .

Proof. The proof of this result is dual to that of [6, Prop. 4.3.2], and it is left to the reader.

We will need the following auxiliary definition.

Definition 4.5. A cosplit equalizer in a category is a diagram

A B C
p f

g

h s

where
sg = idB , hp = idA and s f = ph. (13)

The notion of a cosplit equalizer above is dual to that of split coequalizer, and it plays in
comonad theory the analog role of split coequalizers in the theory of monads (see [15, VI. 6]). The
following result is elementary but important.

Proposition 4.6. The cosplit equalizer of two morphisms is always an equalizer of the two mor-
phisms; and any functor preserves cosplit equalizers.

Proof. Assume we have a cosplit equalizer with the notation from Definition 4.5. To prove the first
assertion, assume that ϕ is any map such that f ϕ= gϕ. Then,

ϕ= hpϕ= s f ϕ= phϕ

factors through p. Since hp = idA , this factorization is unique. The second assertion is a straight-
forward consequence of the fact that functors preserve the associativity of the composition and
the identity on objects.

Next, we relate cosplit equalizers with coalgebra structures.

Proposition 4.7. Let C be a comonad in an arbitrary category, and let X be a C -coalgebra. Then,
the coalgebra structure map γ : X →C (X ) fits into a cosplit equalizer diagram

X C (X ) CC (X ).
γ C(γ)

∆X

Proof. Let X be a C -coalgebra with structure map γ. As a consequence of the coassociativity
axiom for γ, we have the fork in the statement. By Proposition 4.6, we are done as soon as we give
cosplitting maps h, s satisfying the identities of Equation (13), taking f =C

(
γ
)

and g =∆X . These
cosplittings h and s are respectively given by the corresponding counits

εX : C (X ) → X and εC (X ) : CC (X ) →C (X ).

Let us check that the identities in Equation (13) hold. The identity hp = idA becomes εX ◦γ= idX ,
which holds because it is precisely the counital axiom of the C -coalgebra X . Similarly, the identity
sg = idB becomes εC (X ) ◦∆X = idC (X ), which is exactly the counit axiom at C (X ). It remains to
check the identity s f = ph, that is, εC (X ) ◦C (γ) = γ◦εX . This follows from the fact ε is a natural
transformation and so one has the diagram

C (X ) CC (X )

X C (X ).

C (γ)

εX εC (X )

γ

We have checked the three identities of Equation (13). Therefore, the mentioned diagram is a
cosplit equalizer, and the proof is complete.
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Finally, the following technical lemma allows us to directly compare C1 and C2-coalgebras in
pointed spaces under certain conditions. It constitutes an essential ingredient in the proof of
Theorem 4.1.

Lemma 4.8. Letα : C1 →C2 be a morphism of comonads in Top∗ which is a retract of pointed spaces
at each level. If C1 preserves equalizers, then the counit α∗α! → idC2−Coalg of the

(
α∗,α!

)
adjunction

is a retract of pointed spaces at each level. In particular, for every C2-coalgebra X , the underlying
map of pointed spaces α∗α!(X ) → X is a retract.

Proof. Let X be a C2-coalgebra. Let us prove that the underlying map of pointed spaces of the
C2-coalgebra morphism α∗α!(X ) → X is a retract. Since α∗ is the identity on the underlying
pointed space, this underlying map is α!(X ) → X . Recall from Proposition 4.7 that the C2-coalgebra
structure γ on X is given by presenting X as the (cosplit) equalizer of the following diagram:

C2(X ) C2C2(X ).
C2(γ)

∆X

Here, ∆X is the comultiplication of the C2 comonad at X . This equalizer is taken in C2 −Coalg, but
we can compute the underlying topological space via the same limit in the category of pointed
topological spaces. This is because this limit is a cosplit equalizer, and therefore an equalizer
which is preserved by the forgetful functor (see Proposition 4.6). Since C1 is assumed to preserve
equalizers, by Proposition 4.4, and using a similar argument, the underlying topological space of
α!(X ) may be computed as the equalizer of the diagram

C1(X ) C1C2(X )
C1(γ)

C1(αX )◦∆C1

in the category of pointed topological spaces. The retract provided by α thus extends to a map (in
the category of pointed topological spaces) between the diagram defining α!(X ) and one defining
X , namely,

C1(X ) C1C2(X )

C2(X ) C2C2(X )

αX

C1(γ)

C1(αX )◦∆C1
αC2(X )

C2(γ)

∆X

The corresponding map of limits is thus precisely the desired map α!(X ) → X . Since retracts are
preserved under limits, we conclude that this map is a retract of pointed spaces.

4.2 The ΣnΩn-coalgebras are n-fold reduced suspensions

In this section, we completely characterize the coalgebras over the ΣnΩn-comonad (Theorem 4.9).

A warning on the notation: in other parts of this paper, we have consistently denoted by ∆ and
ε the comonadic structure maps of the comonad Cn constructed from the little n-cubes operad;
while ∆′ and ε′ were used for the comonaic structure maps of the comonad ΣnΩn . Since there will
be only a single comonad appearing in this section, namely ΣnΩn , we make an exception here and
denote by ∆ and ε the comonadic structure maps of ΣnΩn to make the reading easier.

Theorem 4.9. Let X be a ΣnΩn-coalgebra. Then X is naturally isomorphic to the n-fold reduced
suspension of a space Pn(X ) which can be computed as the equalizer of the following pair of maps:

Ωn X ΩnΣnΩn X .
Ωnγ

ηΩn X

Here, η is the unit of the (Σn ,Ωn) adjunction, and γ is the ΣnΩn-coalgebra structure map of X .
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Theorem 4.9 is essentially a consequence of the fact that reduced suspensions, despite being
left adjoint, preserve equalizers. Next, we give a proof of this elementary fact for completeness.

Proposition 4.10. The n-fold reduced suspension functor Σn :Top∗ →Top∗ commutes with equal-
izers. In other words, if Eq

(
f , g

)
,→ X is the equalizer of the diagram

X Y ,
f

g

then Σn Eq
(

f , g
)
,→Σn X is the equalizer of the diagram

Σn X ΣnY .
Σn f

Σn g

Since Ωn is right adjoint and thus preserves limits, it further follows that ΣnΩn preserves equalizers.

Proof. Recall that, as a set, the equalizer of f and g is given by

Eq
(

f , g
)= {

x ∈ X | f (x) = g (x)
}

.

Since we tacitly work in the category CGH of compactly generated Hausdorff spaces, the topology
on this set is not necessarily the subspace topology, but might be finer. Explicitly, its topology
is given by applying the k-ification functor k(−), see for example [17, Chapter 5]. This functor
is the right adjoint of the inclusion of CGH into ordinary topological spaces. This change in the
underlying topology is not an issue, because taking n-fold reduced suspension commutes with
the k-ification functor. Indeed, if X and Y are any compactly generated Hausdorff spaces and X
is locally compact, then X ×Y is a compactly generated Hausdorff space ([20, Thm. 4.3]). Since
the sphere Sn is locally compact, the product Sn × X is compactly generated Hausdorff for any
compactly generated Hausdorff space X . Since the smash product Sn ∧ X is the pushout of the
inclusion Sn ∨ X ,→ Sn × X along the collapse map Sn ∨ X → ∗, it follows that Sn ∧ X = Σn X is
compactly generated Hausdorff. Thus,

Σn Eq
(

f , g
)= Sn ∧Eq

(
f , g

)
.

Points in the suspension above are of the form [t , x], with t ∈ Sn and x ∈ X such that f (x) = g (x).
On the other hand,

Eq
(
Σn f ,Σn g

)= {
[t , x] ∈Σn X | [t , f (x)

]= [
t , g (x)

]}
.

Under the two identifications above, the natural map

Σn Eq
(

f , g
)→ Eq

(
Σn f ,Σn g

)
is a homeomorphism.

Recall from Proposition 4.7 that every coalgebra structure map is characterized as a cosplit
equalizer. In particular, we have the following result.

Proposition 4.11. Let X be a ΣnΩn-coalgebra with structure map γ. Then, as a pointed space, X is
the (cosplit) equalizer of the following pairs of maps

ΣnΩn X ΣnΩnΣnΩn X .
ΣnΩnγ

∆X

Here, 4 is the comonadic comultiplication of ΣnΩn .

Proof. As mentioned, this is a particular case of Proposition 4.7. The following diagram is a cosplit
equalizer:
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X ΣnΩn X ΣnΩnΣnΩn X ,
γ ΣnΩnγ

∆X

where the cosplittings h and s are respectively given by the corresponding counits

εX :ΣnΩn X → X and εΣnΩn X :ΣnΩnΣnΩn X →ΣnΩn X .

Let us finally prove the main result of this section.

Proof of Theorem 4.9. Use, in the order given, Proposition 4.11, that the comonadic coproduct ∆X

is explicitly given by ΣnηΩn (X ), and Proposition 4.10 to obtain that

X = Eq
(
ΣnΩnγ,∆X

)= Eq
(
ΣnΩnγ,ΣnηΩn X

)=Σn Eq
(
Ωnγ,ηΩn X

)
.

This is exactly what we wished to prove.

4.3 A point-set description of the recognition principle

We give here an alternative proof of the recognition principle mentioned in the introduction to
Section 4. This proof has the advantage of explicitly characterizing the n-fold suspension onto
which a Cn-coalgebra retracts.

Theorem 4.12. Let X be a Cn-coalgebra. Then, there is a pointed space Z together with a homotopy
equivalence of Cn-coalgebras X 'Σn Z .

The strategy of the proof is the following. First we show that every Cn-coalgebra X contains a
Cn-subcoalgebra S(X ) which is also a ΣnΩn-coalgebra, and that there is a retract of X onto S(X )
(Theorem 4.13 and Theorem 4.14, respectively). Because of Theorem 4.9 this implies that S(X ) is
an n-fold suspension, proving Theorem 4.12.

In Proposition 3.3, we saw thatΣnΩn-coalgebras considered as Cn-coalgebras have the property
that the cubical support at each point is just a single point. In this section, we prove that the
converse is also true. That is, every Cn-coalgebra of which the cubical support of every point (other
than the base point) is just a single point is not just a Cn-coalgebra, but also a ΣnΩn-coalgebra.

It further turns out that the set of points whose cubical support is just a single point forms a
Cn-subcoalgebra.

Theorem 4.13. Let X be a Cn-coalgebra with coalgebra structure map c : X → Cn(X ). Then, the
subspace

S(X ) = {
x ∈ X | | CSupp(c(x))| = 1

}∪ {∗} ⊆ X

formed by the points of X whose cubical support is a single point, together with the base point, is
such that the following assertions hold.

1. The inclusion S(X ) ,→ X is a homotopy equivalence of pointed spaces.

2. The subspace S(X ) is a Cn-subcoalgebra, and the inclusion is a morphism of Cn-coalgebras.

Therefore, the inclusion S(X ) ,→ X is a homotopy equivalence of Cn-coalgebras.

The result above tells us that any Cn-coalgebra X contains a homotopy equivalent Cn-subcoalgebra
S(X ) with an extra property. Thus, to prove Theorem 4.12, the task has been reduced to showing
that S(X ) is equivalent to an n-fold suspension as a Cn-coalgebra. It turns out that S(X ) is not only
equivalent to a suspension, but we can say slightly more. This is the content of the next result.

Theorem 4.14. Let X be a Cn-coalgebra. Then, the Cn-subcoalgebra S(X ) of Theorem 4.13 is a
ΣnΩn-coalgebra.

Since every ΣnΩn-coalgebra is an n-fold suspension (Proposition 4.10), Theorem 4.12 is proven.
Thus, it suffices to show the two results mentioned, and we do that next.
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Proof of Theorem 4.13. Denote by i : S(X ) ,→Cn(X ) the inclusion and by c : X →Cn(X ) the coalge-
bra structure map.

Item 1. Let us give a retraction (of spaces) r : X → S(X ), that is, a continuous map r such
that r i = idS(X ) and a homotopy H : X × I → X between i r and idX . The map r is given as the
composition

r : X ,→Cn(X )
ΨX−−→ΣnΩn X

αX−−→Cn(X )
εX−−→ X .

The maps above are, respectively, the coalgebra structure map of X , the natural transformations Ψ
and α, and the counit ε from Section 3. Since the map ΨX reduces the cubical support of every
point to a singleton, then the image of this map is exactly the subspace S(X ). It further follows that
r i is the identity on the subspace S(X ) because the map ΨX does not change the cubical support
of points whose cubical support was just a single point already.

The homotopy H from Theorem 3.1 can also be used to induce a homotopy in this case. In
particular we get the following homotopy

H : X × I ,→Cn(X )× I
HX−−→ΣnΩn X

αX−−→Cn(X )
εX−−→ X .

It is straightforward to check that by exactly the same arguments as in Theorem 3.1 this is indeed a
homotopy between i r and idX . Therefore the inclusion S(X ) is a homotopy equivalence of pointed
spaces.

Item 2. To show that S(X ) is a Cn-subcoalgebra, we must show it is closed under the coproduct.
That is, we must check that if x ∈ S(X ) then the image of the map c(x) : Cn(1) → X is contained in
the subspace S(X ) ⊆ X .

To show that this is indeed the case we make the following observation. If d ,d ′ ∈ Cn(1) are
two cubes such that d ⊂ d ′, then c(x)(d) 6= ∗ implies that c(x)(d ′) 6= ∗. This is because of the
coassociativity of the comonad. Since d is the composition of d ′ with some other little cube e
d = e ◦d ′ for some little cube e we have that c(x)(d) is equal to

Cn(1)
e−→Cn(1)

c−→ X ,

evaluated at d ′. So c(x)(d) = c(x)(d ′ ◦ e) = e(c(x))(d ′), where e(c(x)) is first the composition of
e in the comonad and then acting with this on the coalgebra. It therefore follows that if d ⊂ d ′
then if c(x)(d) 6= ∗ then c(x)(d ′) 6= ∗. From this it is straightforward to deduce that if the cubical
support of c(x) is just a single point then the image of c(x) is contained in S(X ), otherwise the
previous identity would be violated. Therefore, S(X ) is a Cn-subcoalgebra and the inclusion map is
a homotopy equivalence of Cn-coalgebras.

Proof of Theorem 4.14. To prove Theorem 4.14, we need to define a map c ′ : S(X ) →ΣnΩnS(X ) and
show that it satisfies the comonad identities.

We define c ′ : S(X ) →ΣnΩnS(X ) by mapping c ′(x) := [t ,`], where t = Centc(x) and ` : Sn → S(X )
is given by

`(s) = c(x)
(
cs,Centc(x)

)= c(x)
(
cs,t

)
,

where cs,Centc(x) is the cube from the proof of Theorem 3.1. Because c ′ is a Cn-coalgebra map, it
follows that it also satisfies the coassociativity axiom to be a ΣnΩn-coalgebra, which completes the
proof.

Appendix A The map α is a morphism of comonads

In this appendix, we give the necessary definitions and prove in full detail that the natural transfor-
mation

αn :ΣnΩn →Cn

appearing in Theorem 3.1 defines a morphism of comonads.

Definition A.1. A morphism of comonads α : (C ,∆,ε) → (
C ′,∆′,ε′

)
in a category M is a natural

transformation α : C →C ′ such that for every object X ∈M , the following two diagrams commute:
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C (X ) C ′(X ) C (X ) C (C (X ))

X C ′(X ) C ′(C ′(X ))

ε′X ◦αX = εX α2
X ◦∆X =∆′

X ◦αX

αX

εX ε′X

∆X

αX α2
X

∆′
X

The morphism α2
X is defined by the following diagram, which is commutative because α is a

morphism of comonads.

C (C (X )) C ′C (X )

C (C ′(X )) C ′(C ′(X ))

αC (X )

C (αX )
α2

X
C ′(αX )

αC ′(X )

α2
X =C ′(αX )◦αC (X ) =αC ′(X ) ◦C (αX ) (14)

Next, we settle the morphism of comonads assertion made in Theorem 3.1.

Proposition A.2. The natural transformation αn : ΣnΩn → Cn in Theorem 3.1 is a morphism of
comonads.

Proof. Fix an integer n ≥ 1, and denote αn by α to simplify the notation. Recall that object-wise,
the natural transformation α is explicitly given by

αX :ΣnΩn X
γ−→Cn

(
ΣnΩn X

) Cn (ηX )−−−−−→Cn (X ) ,

where γ is the Cn-coalgebra structure map of ΣnΩn X (Theorem 2.22), and ηX is the evaluation at
X of the counit η :ΣnΩn → idTop∗ of the adjunction (Σn ,Ωn). Identify

ΣnΩn X ∼= Sn ∧Map∗
(
Sn , X

)
.

Under this identification, the counit ηX :ΣnΩn X → X becomes the evaluation map,

ev : Sn ∧Map∗
(
Sn , X

)→ X ev : [t ,`] 7→ `(t ).

Next, identify Cn (X ) as a subspace of Map (Cn(1), X ). Recall that under this identification, the
value of Cn(g ) on a map g : Cn(1) → X is the postcomposition with g (Proposition 2.6). Then, the
map αX :ΣnΩn X →Cn (X ) is explicitly given on a point [t ,`] as the map

αX [t ,`] : Cn(1) → X

whose image on a little n-cube c ∈Cn(1) is

α[t ,`](c) =
{
`

(
c−1(t )

)
if t ∈ c̊

∗ otherwise
(15)

Geometrically, αX is just re-scaling the evaluation map ev : Sn ∧Map∗ (Sn , X ) by shrinking the
points of Sn = I n/∂I n according to the little n-cube c.

We can now check the commutativity of the diagrams in Definition A.1.

ε′X ◦αX = εX

Let [t ,`] ∈ΣnΩn X . Since ε′X plugs the identity operation id ∈Cn(1), we have:

ε′X ◦αX :ΣnΩn X Cn (X ) X

[t ,`] αX [t ,`] αX [t ,`](id) = `(c(t ))

αX ε′X
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The composition above is exactly the definition of εX [t ,`].

α2
X ◦∆X =∆′

X ◦αX

The map α2
X can be written as two different compositions, see Diagram (14). Here, we prove

that
αC ′(X ) ◦C (αX )◦∆X =∆′

X ◦αX , (16)

where C =ΣnΩn αn−−→C ′ =Cn . The left hand side of Equation (16) is the composition

ΣnΩn X ΣnΩn (ΣnΩn X ) ΣnΩn (Cn (X )) Cn (Cn (X )) .
∆X ΣnΩn (αX ) αCn (X )

The maps in the composition above are given as follows.

• Denote by ηX : X →ΩnΣn X the unit of the (Σn ,Ωn) adjunction. Then∆X =Σn◦ηX ◦Ωn . Thus,
a point [t ,`] ∈ΣnΩn X = Sn ∧Map∗ (Sn , X ) maps to the point [t , ¯̀] ∈ Sn ∧Map∗ (Sn ,ΣnΩn X ),
where

¯̀ : Sn →ΣnΩn X s 7→ [s,`].

• The second map ΣnΩn (αX ) maps the point [t , ¯̀] to the point [t ,αX ◦ ¯̀].

• The last map takes a point [t ,`′], where `′ : Sn →Cn (X ) is a loop, to the evaluation

αCn (X )[t ,`′] : Cn(1) Cn (X )

c `′
(
c−1(t )

)
Therefore, with the notation above, the full composition applied to a point [t ,`] yields

[t ,`] 7→ [t , ¯̀] 7→ [t ,αX ◦ ¯̀] 7→αCn (X )[t ,α◦ ¯̀].

The resulting map
αCn (X )[t ,α◦ ¯̀] : Cn(1) →Cn (X )

acts on a little n-cube c ∈Cn(1) by producing

c 7→ (
αX ◦ l̄

)(
c−1(t )

)=α[c−1(t ),`] : Cn(1) → X ,

where c2 ∈Cn(1) gets mapped to

α[c−1(t ),`](c2) = `(
c−1

2

(
c−1(t )

))
.

The right hand side of Equation (16) is the composition

ΣnΩn X Cn (X ) Cn (Cn (X ))
αX ∆′

X

The first map in the composition above was given in Equation (15). The map ∆′
X , described in

Proposition 2.10, applies an arbitrary map h : Cn(1) → X to the map h̄ : Cn(1) →Cn (X ) given by

µ ∈Cn(1) 7→ h̄(µ) : Cn(1) → X , h̄(µ)(θ) := h
(
γ

(
µ;θ

))
.

In particular, ∆′
X applies the map αX [t ,`] to the map

∆′
X (αX [t ,`]) : Cn(1) Cn (X )

c ∆′
X (αX [t ,`]) (c) =α[t ,`](c) : Cn(1) X

c2 `
(
γ (c;c2)−1 (t )

)
Since, by definition of the composition in the little cubes operad,

`
(
c−1

2

(
c−1(t )

))= `(
γ (c;c2)−1 (t )

)
for all little cubes c,c2, the claim is proven.
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