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The spectrum of local random Hamiltonians

B. Collins,∗ Z. Yin,† L. Zhao,‡ and P. Zhong§

(Dated: October 4, 2022)

The spectrum of a local random Hamiltonian can be represented generically by the so-called ε-free convolu-

tion of its local terms’ probability distributions. We establish an isomorphism between the set of ε-noncrossing

partitions and permutations to study its spectrum. Moreover, we derive some lower and upper bounds for the

largest eigenvalue of the Hamiltonian.

I. INTRODUCTION

In general, the Hamiltonian of a many-body system is local; namely, the Hamiltonian can be derived from a sum of local terms

which describe the interactions between the local systems. For instance, if the particles of a quantum spin only correlate with

the short-range, then the total Hamiltonian of the spin is local. Understanding their Hamiltonians’ spectrum is essential for their

theoretical and experimental aspects [1–3]. Furthermore, if the interactions are disordered, many striking phenomena appear.

For example, the upper bound of the speed of information propagation through a quantum spin chain with disordered interactions

may be significantly lower than the famous Lieb-Robinson’s bound [4], which indicates the system exhibits the phenomenon of

Anderson localization [5].

In this paper, we consider the following general model: let n be the number of local systems and let d be the local dimension.

Thus, the Hilbert space, which describes the total system, is given by an n-fold tensor product (Cd)⊗n. Let Kι , ι = 1, . . . ,m be

subsets of the integer set {1, . . . ,n} and suppose that the interactions only occur between the sites in Kι . As a result, the system’s

total Hamiltonian H of the system is given by the sum of local terms, namely,

H =
m

∑
ι=1

Hι , (1)

where Hι ∈
⊗

s∈Kι
Md(C)⊗

⊗

s/∈Kι
(C1ld). To express the disorderliness of the interactions, we can ideally assume that Hι ’s are

sampled by some given random ensembles. The above general framework covers a lot of explicit models, such as the Heisenberg,

Ising, XY, XXZ, AKLT models, etc., which are commonly studied in quantum many-body physics. Thus, a natural question

arises: can one figure out the spectrum of given local random Hamiltonians? Unfortunately, obtaining an analytical result is not

easy since, generally, the local terms do not commute. For quantum spin models (d = 2), the Jordan-Wigner transformation can

be used to reduce the problem to an equivalent single Hamiltonian [6]. However, a large amount of work relies on numerical

analysis.

Another line of investigation is carried out in the asymptotic picture (d → ∞). One can consider the random Hamiltonian H

in the framework of random matrix theory and study its spectrum in the large d limit. The idea may date back to the 1950s

when Wigner studied a model of complicated nuclei. The Hamiltonian of the system can be equivalently considered as a large

dimensional random matrix, and the distribution of its eigenvalues converges to the celebrated Wigner’s semicircular law [7].

Later, when studying the O(d) and U(d) quantum field theories, ’t Hooft discovered that remarkable simplifications occur in the

large d limit [8, 9]. Occasionally but surprisingly, the abovementioned theory satisfies Voiculescu’s free probability theory [10].

Indeed, the limit law as d → ∞ can be described using random variables in the framework of free probability [11–14].

In [15], Morampudi and Laumann proposed a systematic pictorial method to calculate the correlators based on randomly inter-

acting spin systems with spatial locality. According to ’t Hooft’s idea, only the so-called monochromatic stacked planar diagrams

survive in the large d limit. Consequently, in the large d limit, an algebraic relation known as "heap-freeness" emerges among

Hι ’s. This phenomenon was also independently observed by Charlesworth and Collins [16]. Due to their theory, heap-freeness

is equivalently called ε-freely independence, a mixture of classical and free independence [17, 18]. Here ε is a symmetric matrix

given by Kι ’s in our setting.

Therefore, motivated by the free probability theory, we show that the limit of the spectrum of H can be given by the so-called

ε-free convolution (see Definition III.1) of distributions of local terms for some given random ensembles (see Theorem III.1

and III.2). We remark that this conclusion was also implicitly indicated in [15]. The key point is to establish an isomorphism
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between the set of all ε-noncrossing partitions [17–19] (called monochromatic dependency partitions in [15]) and the set of all

ε-noncrossing permutations. Moreover, the Möbius functions of the corresponding set of partitions should also be considered

(see Definition II.3 and Theorem II.1). Our second result is that the convergence of the spectrum distribution holds almost surely.

To this end, we study the fluctuation of the correlators and obtain a stronger result of the concentration of measure than the one in

[15] (see Proposition III.7 and III.8). Finally, by some rough enumerations of ε-noncrossing partitions, we derive some bounds

for the largest eigenvalue of H (see Proposition IV.1 and IV.3).

II. PRELIMINARIES

A. ε-noncrossing partition and permutation

In this paper, we introduce a symmetric matrix ε , reflecting the particles’ interactions, given by the following definition. We

use [n] to denote the integer set {1, . . . ,n}.

Definition II.1. Let Kι , ι = 1, . . . ,m be subsets of the integer set [n], we define ε = (εi, j)
m
i, j=1 by a m×m symmetric matrix with

entries εi, j satisfies

εi, j =

{

1 if Ki ∩K j = /0;

0 otherwise.
(2)

We will use a bunch of notions in combinatorics and refer to Appendix A for more details. Let P(k) be the set of all partitions

of [k], and let ι : [k]→ [m] be a map given by

ι= (ι1, ι2, . . . , ιk), ιi ∈ [m], i = 1, . . . ,k.

We denote kerι by a partition in P(k) such that i, j belongs to the same block of kerι whenever ιi = ι j .
Thus, for the symmetric matrix ε given in (2) and a given map ι : [k]→ [m], one can define the (ε,ι)-noncrossing partitions

as follows:

Definition II.2. [18, 19]. A partition α ∈ P(k) is called (ε,ι)-noncrossing if there exist 1 ≤ i < p < j < q ≤ k such that

i ∼α j ≁α p ∼α q, then we must have ειi,ιp = 1. Note that i ∼α j means the elements i, j are in the same block of α. We define

N C
(ε,ι)(k) := {α ∈ P(k) : α ≤ kerι and is (ε,ι)-noncrossing}.

It is known that N C
(ε,ι)(k) is a lattice, and the poset order is defined by the refinement of partitions.

Denote N C (k) by the set of all noncrossing partitions of [k], here are some extreme cases.

(i) If Kι ’s are pairwise disjoint, then every non-diagonal entry of ε is 1. Then N C
(ε,ι)(k) = {α ∈ P(k) : α ≤ kerι}.

(ii) If K1 = K2 = · · ·= Km, then every entry of ε is 0. Then N C
(ε,ι)(k) = {α ∈ N C (k) : α ≤ kerι}.

(iii) If kerι ∈ N C (k), then N C
(ε,ι)(k) = {α ∈ N C (k) : α ≤ kerι}.

Example II.1. Let m = 4, and take the entries of ε as follows: ε1,3 = ε1,4 = ε2,4 = 1, and other entries are 0’s.

(i) Let k = 8 and ι= (ι1, ι2, . . . , ι8) = (1,3,3,1,3,2,4,2), then kerι= {{1,4},{2,3,5},{6,8},{7}};

(ii) Let α = {{1,4},{2},{3,5},{6,8},{7}}, then α ∈ N C
(ε,ι)(8) for the above given ι.

We denote the set of permutations on n elements by Sn. For a permutation π ∈ Sn, we denote |π | by the minimal number of

transpositions needed to decompose π . Let γn ∈ Sn be the full cycle γn = (1,2, . . . ,n). For any π ∈ Sn, we always have

|π |+ |π−1γn| ≤ n− 1.

We call π noncrossing if the equality holds, or equivalently we can say that π lies on the geodesic path 1n −π − γn in Sn.

Notation II.1. For given ε and ι : [k]→ [m], we use the following notations introduced in [16]:

(i) S
(ι)
k is the group of permutations σ with ι j = ισ( j) for all j. Hence each σ ∈ S

(ι)
k stabilize kerι. In particular, we denote

P
(ι)
2 (k) by the set of pair partitions of [k] which stabilize kerι.
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(ii) For each s ∈ [n], we denote Js := { j ∈ [k] : s ∈ Kι j
}, and moreover we denote ks := #Js. We denote γs by the full cycle of Js

and by 1s the identity of permutation on Js.

(iii) Any σ ∈ S
(ι)
k induces a permutation σs ∈ SJs ≃ Sks

, since it preserves each Js.

(iv) For any α ∈ P(k), we denote αs := α|Js by the restriction of α on Js, and by αB := α|B for any block of kerι.

(v) We use #ks
(·) to stress the permutation in the bracket is viewed as an element of Sks

and not as the induced permutation in

Sk which is constant on Js.

Note that Js is the union of some blocks of kerι and it might be an empty set for some s ∈ [n] which depends on the map ι. It

is clear that

n

∑
s=1

ks =
k

∑
ℓ=1

#(Kιℓ), (3)

where #(·) means the cardinality of a given set. Now we are ready to introduce the notion of (ε,ι)-noncrossing permutations.

Definition II.3. For given ε and ι : [k]→ [m],

(i) We define the set of all (ε,ι)-noncrossing permutations of [k], denoted by S
(ε,ι)
NC (γk), as follows:

S
(ε,ι)
NC (γk) := {σ ∈ S

(ι)
k : 1s −σs− γs for all s ∈ [n]}.

In other words, the restriction to any Js, σs is a noncrossing permutation.

(ii) For σ ,τ ∈ S
(ε,ι)
NC (γk) we say that σ ≤ τ , if for any s ∈ [n], σs and τs lie on the same geodesic and if σs comes before τs, i.e.,

1s −σs− τs − γs, for all s ∈ [n].

Example II.2. Let m= 4 and n= 5, let Kι = {ι, ι+1}, ι = 1, . . . ,4, therefore ε1,3 = ε1,4 = ε2,4 = 1 and other entries of ε are 0’s.

Moreover, let k = 8 and ι= {ι1, ι2, . . . , ι8}= (1,3,3,1,3,2,4,2). Then S
(ι)
8 is generated by the transpositions (1,4),(6,8),(2,3)

and (2,5). So that we have

J1 = {1,4},J2 = {1,4,6,8},J3 = {2,3,5,6,8},J4 = {2,3,5,7},J5 = {7}.

If σ = (1,4)(3,5)(6,8) ∈ S8 we have

σ1 = (1,4),σ2 = (1,4)(6,8),σ3 = (3,5)(6,8),σ4 = (3,5),σ5 = 1lJ5
.

It is easy to check that σ ∈ S
(ε,ι)
NC (γ8) for given ε and ι.

In [20], Biane showed that there is an isomorphism (of posets) between noncrossing partitions and permutations, which plays

an essential role in the aspect of combinatoric free probability theory. Likewise, we can obtain the following isomorphism

between ε-noncrossing partitions and permutations. We refer to Example II.1 and II.2 for the isomorphism.

Theorem II.1. With the relation "≤", S
(ε,ι)
NC (γk) becomes a poset. Moreover, there is a bijection between N C

(ε,ι)(k) and

S
(ε,ι)
NC (γk) which preserves the poset structure.

Proof. It is elementary to check that S
(ε)
NC(γk) is a poset with the given relation. Let α be a partition of [k]; we will denote Pα by

the permutation π ∈ Sk, which is determined by the following properties:

(a) α is π-invariant, i.e., π stabilize the blocks of α;

(b) if B = {i1, i2, . . . , is} is a block of α, with 1 ≤ i1 < i2 < · · ·< is ≤ k, then we have π(i1) = i2, . . . ,π(is−1) = is,π(is) = i1.

It induces a map P : P(k) → Sk given by P(α) := Pα = π for α ∈ P(k). It is known [20, 21] that the map P is a bijection

between N C (k) and SNC(γk) which preserves the poset structure.

Claim. P is also an isomorphism between N C
(ε,ι)(k) and the set S

(ε,ι)
NC (γk).

Firstly, by the definition of P, it is clear that for any α ≤ kerι, Pα ∈ S
(ι)
k . Now for any α ∈ N C

(ε,ι)(k), we will show that πs

is noncrossing on Js for every s ∈ [n], where π = Pα . Hence P(α) ∈ S
(ε,ι)
NC (γk). Suppose this is not ture, i.e., there exists a s ∈ [n]

such that πs is crossing on Js. Accordingly there exists 1 ≤ i < p < j < q ≤ k such that
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(i) i, p, j,q ∈ Js;

(ii) i ∼B1,s j, p ∼B2,s q, where B1,s and B2,s are two different blocks of αs.

By (i), we have s ∈ Kιi
and s ∈ Kιp . Therefore Kιi

∩Kιp 6= /0. By the definition of ε we can deduce that ειi,ιp = 0. However, by

(ii), there must have two different blocks B1 and B2 of α such that i ∼B1
j, p ∼B2

q. In fact Bi,s = Bi|Js . Thus ιi = ι j and ιp = ιq.

Since α ∈ N C
(ε,ι)(k), one has ειi ,ιp = 1, which is a contradiction.

Conversely, suppose that α /∈ N C
(ε,ι)(k), then there exist a crossing 1 ≤ i < p < j < q ≤ k, i ∼α j ≁α p ∼α q with ειi ,ιp = 0.

By the definition of ε we have Kιi
∩Kιp 6= /0. Hence there exists a s ∈ [n] such that i, p ∈ Js. Moreover, recall that ιi = ι j and

ιp = ιq, we have i, p, j,q ∈ Js. So, finally, we find a crossing partition in Js. Thus the restriction of Pα on Js is crossing, which

induces that Pα /∈ S
(ε,ι)
NC (γk).

Now we turn to show that P preserves the poset structure. Let α,β ∈ N C
(ε,ι)(k) and denote π = Pα ,σ = Pβ . Suppose that

α ≤ β . Obviously, we have αs ≤ βs for any s ∈ [n]. Now consider the restriction of P on P(ks), denote by Ps. Certainly, we have

Ps maps αs (resp. βs) to πs (resp. σs). Hence by Biane’s isomorphism [20, 21], Ps is a bijection between N C (ks) and SNC(γs)
which preserves the poset structure. It induces that 1s −πs−σs − γs for any s ∈ [n], which implies π ≤ σ .

Notation II.2. For given ι : [k]→ m, we denote N C
(ε,ι)
2 (k) by the set of all pair partitions of N C

(ε,ι)(k).

Since each pair partition in P2(k) is identified with a transposition of Sk via the map P, then we have

P
(ι)
2 (k) = {σ ∈ S

(ι)
k : σ is a transposition}.

Moreover, by the above proposition, we have

N C
(ε,ι)
2 (k) = {α ∈ P

(ι)
2 (k) : 1s −σs − γs for all s ∈ [n]}, (4)

where σ = Pα .
Let us remark that for the above-mentioned extreme cases (ii) and (iii), one can reduce to Biane’s isomorphism between the

noncrossing partitions and permutations [20] (see Proposition A.1).

B. Convolution operations and Möbius inversion

Let P be a finite poset, denote

P
(2) := {(α,β ) : α,β ∈ P,α ≤ β}.

For F,G : P
(2) → C, their convolution F ∗G is given by:

(F ∗G)(α,β ) := ∑
η∈P,

α≤η≤β

F(α,η)G(η ,β ).

The zeta function ζ : P(2) →C is defined by

ζ (α,β ) = 1, ∀(α,β ) ∈ P
(2).

And the unit δ : P(2) →C of the convolution is given by

δ (α,β ) =

{

1 if α = β ;

0 if α < β .

Definition II.4. [21]. For given poset P, the Möbius function of P , denoted it by µ , is the inverse of ζ under convolution, i.e.,

µ ∗ ζ = δ . Equivalently, the Möbius function is uniquely determined by the following equations

∑
η∈P,

α≤η≤β

µ(η ,β ) =

{

1 if α = β ;

0 if α < β .
(5)

To avoid confusion, let us denote µP(α,β ) by the Möbius function of the given poset P.
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Möbius function of N C
(ε,ι)(k)-Note that the Möbius function of N C (k) can be explicitly computed by the products of Catalan

numbers [21]. Here we will give a direct method to compute the Möbius function of N C
(ε,ι)(k) by using Theorem II.1.

Proposition II.2. Fix ε and ι : [k]→ [m], the Möbius function of N C
(ε,ι)(k) can be computed as follows:

µ
N C

(ε,ι)(k)
(α,β ) = ∏

B∈kerι

µN C (#(B))(αB,βB), (6)

for all α,β ∈ N C
(ε,ι)(k).

Proof. It sufficies to check Equation (5) for the poset N C
(ε,ι)(k). Firstly, suppose that α = β , thus αB = βB for every B ∈ kerι,

then we have

∏
B∈kerι

µN C (#(B))(αB,βB) = 1

since µN C (#(B))(αB,βB) = 1 for every B.
Now suppose that α < β , then there should exist a s ∈ [n] such that such that αs is a strict refinement of βs, i.e., αs < βs.

Denote S := {B ∈ kerι : B ⊆ Js} we have

∑
η∈N C

(ε,ι)(k),
α≤η≤β

∏
B∈kerι

µN C (#(B))(ηB,βB) = ∑
η∈N C

(ε,ι)(k),
α≤η≤β

∏
B∈S

µN C (#(B))(ηB,βB) ·∏
B/∈S

µN C (#(B))(ηB,βB)

= ∑
η∈N C

(ε,ι)(k),
α≤η≤β

µN C (ks)(ηs,βs) ·∏
B/∈S

µN C (#(B))(ηB,βB)

= ∑
αs≤ηs≤βs

µN C (ks)(ηs,βs) · ∑
B/∈S,

αB≤ηB≤βB

∏
B/∈S

µN C (#(B))(ηB,βB)

= 0,

where we used the fact that

∑
αs≤ηs≤βs

µN C (ks)(ηs,βs) = 0.

Remark II.1. For any α,β ∈ N C
(ε,ι)(k), we have

[α,β ]∼= ∏
B∈ker ι

[αB,βB], (7)

where [α,β ] := {η ∈ N C
(ε,ι)(k) : α ≤ η ≤ β} and [αB,βB] := {ηB ∈ N C (#(B)) : αB ≤ ηB ≤ βB}. Therefore, Proposition

II.2 is a natural corollary of (7). We refer to [21] for more details.

C. Framework of noncommutative probability

Noncommutative probability space–A noncommutative probability space [21] (A ,φ) is an unital algebra A over C, with a

unital linear functional

φ : A → C; φ(1A ) = 1.

An element a ∈ A is called a noncommutative random variable, and it is called centered if φ(a) = 0. Here are two examples of

noncommutative probability spaces.

(i) (L∞(R,µ),E), where µ is a probability measure supporting on R, and E is the expectation defined by E[ f ] :=
∫

R
f (t)dµ(t).

(ii) (Md(C), tr), where Md(C) is the algebra of d × d matrices, and tr := Tr/d is the normalized trace.
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ε-Independence–Independence plays a central role in probability theory. Roughly speaking, it provides a methodology to cal-

culate the joint moments of random variables. The notation of ε-freely independence was firstly introduced by Mlotkowski [17]

and later recovered by Speicher, and Wysoczanski [18]. Here ε is a symmetric m×m matrix with entries to be 0 or 1,, and we

follow the convention that the diagonal entries of ε are 0’s. Fix a symmetric matrix ε, we denote I
(ε)
k by the set of all k-tuples of

indices (ι1, . . . , ιk) from the integer set [m] such that whenever ιi = ι j with 1 ≤ i < j ≤ k there is an ℓ with i < ℓ < j, ιi 6= ιℓ, and

ειi ,ιℓ = 0. Given a noncommutative probability space (A ,φ), let A1,A2, . . . ,Am be a sequence of subalgebras of A . We call

A1,A2, . . . ,Am are ε-freely independent, if the following holds:

(i) Ai and A j commute whenever εi, j = 1;

(ii) If for any centred elements a j ∈ Aι j
, j = 1, . . . ,k,

φ(a1 · · ·ak) = 0 (8)

whenever we have (ι1, . . . , ιk) ∈ I
(ε)
k .

A sequence of noncommutative random variables a1, . . . ,am are said to be ε-freely independent if the subalgebras they generate

are ε-freely independent. Note that if the non-diagonal entries of ε are all 0’s (resp. 1’s), then we reduce to Voiculescu’s free

independence (resp. classical independence).

Moment-cumulant formulas for independent random variables–Let (A ,ϕ) be a noncommutative probability space. Given a

family of random variables a1, . . . ,am ∈ (A ,φ), the mixed moments of the random variables a1, . . . ,am are given by φ(aι1
· · ·aιk

),
where ι= (ι1, . . . , ιk) : [k]→ [m].

Denote

φm(a1, . . . ,am) := φ(a1 · · ·am).

Then for any partition α ∈ P(m), one can define [21]

φα [a1, . . . ,am] := ∏
V∈α

φ(V )[a1, · · · ,am], (9)

where V is the block of α and

φ(V )[a1, · · · ,am] := φ#(V )(ai1 , · · · ,air) for V = (i1, · · · , ir).

Hence (φα )α∈N C (m) are multiplicative functionals on A m, namely, they factorize in a product according to the block structure

of partitions [21].

Suppose that A1, . . . ,Am are ε-freely independent subalgebras of A , then for arbitrary ι : [k]→ [m], the mixed moment can

be represented as follows [18, 19]:

φ(a1 · · ·ak) = ∑
α∈N C

(ε,ι)(k)

κ
(ε)
α [a1, . . . ,ak], (10)

where a j ∈ Aι j
, j = 1, . . . ,k. The multilinear function κ

(ε)
α [· · · ] is called ε-free cumulant [19]. Note that if every non-diagonal

entry of ε is 0, Equation (10) reduces to the following free cumulant-moment formula [21]

φ(a1 · · ·ak) = ∑
α∈N C (k),

α≤kerι

κα [a1, . . . ,ak], (11)

where {κα}α∈N C (k) are called free cumulants. And if every non-diagonal entry of ε is 1, we have the following classical

cumulant-moment formula

φ(a1 · · ·ak) = ∑
α∈P(k),
α≤kerι

kα [a1, . . . ,ak], (12)

where {kα}α∈P(k) are called classical cumulants. We note that a1, . . . ,am are freely independent in Equation (11) and classical

independent in Equation (12), respectively. Indeed, the cumulants reflect the independence of random variables [21], and the

above moment-cumulant formulas indicate that the varieties of partitions yield different types of independence in the context of

noncommutative probability space (see Table I).
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TABLE I: Partitions and Independence

Independence Partitions Cumulants

Classical All partitions Classical cumulants

Free Noncrossing partitions Free cumulants

ε-Free ε-Noncrossing partitions ε-Free cumulants

Moreover, since we have made the convention that the diagonal terms of ε are 0’s, only free cumulants contributes in the sum

(10) (see [18][Theorem 5.2, Remark 5.4]), namely, for each α ∈ N C
(ε,ι)(k)

κ
(ε)
α [a1, . . . ,ak] : = κα [a1, . . . ,ak]

= ∏
V∈α

κ#(V )[a1, . . . ,ak],
(13)

where κα [a1, . . . ,ak] is the product of the free cumulants for each block.

Finally, it is known [19] that N C
(ε,ι)(k) is a lattice, and the ε-free cumulants are multiplicative. Therefore, due to the

standard theory of convolution, one can obtain the following so-called Möbius inversion of Equation (10)

κ
(ε)
α [a1, . . . ,ak] = ∑

β∈N C
(ε,ι)(k),

β≤α

φβ [a1, . . . ,ak] ·µ
N C

(ε,ι)(k)
(β ,α) (14)

for every α ∈ N C
(ε,ι)(k).

III. EMPIRICAL DISTRIBUTION OF THE EIGENVALUES

Empirical distribution of the eigenvlues–Let λi, i = 1, . . . ,dn denote the eigenvalues of H, and define [22] the empirical distribu-

tion of the eigenvalues as the probability measure on R by

µH =
1

dn

dn

∑
i=1

δλi
. (15)

Let (A ,φ) be a noncommutative probability space. A random variable a ∈ A has a probability distribution µ on R if the

following condition holds

φ(ak) =
∫

R

tk dµ(t), for all k ∈N. (16)

If we consider H in the framework of noncommutative probability space (Mdn(C), tr), then we say µH converges weakly, almost

surely, to a probability measure µ on R if almost surely,

lim
d→∞

trHk =
∫

R

tk dµ(t), for all k ∈ N. (17)

Define the semicircle distribution µsc as the probability distribution σ(t)dt on R with density

σ(t) =
1

2π

√

4− t2 ·1|t|≤2.

Suppose that H is globally sampled by Gaussian unitary ensemble (GUE); it is well known that µH converges weakly, almost

surely, to µsc as the dimension d goes to large [7].

ε-free convolution–convolution is an operation of probability measures. Suppose a1, . . . ,am ∈ A associate with probability

distribution µ1, . . . ,µm, respectively. If a1, . . . ,am are classical (resp. freely) independent, then the classical (resp. freely)

convolution of µ1, . . . ,µm, denoted by µ1 ∗ · · · ∗ µm (resp. µ1 + · · ·+ µm), can be defined as follows [21]:

φ

(

m

∑
ι=1

aι

)k

=
∫

R

tk d(µ1 ∗ · · · ∗ µm)(t) (resp. =
∫

R

tk d(µ1 + · · ·+ µm)(t))

for all k ∈ N. Motivated by the above definition, we have the following definition
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Definition III.1. Let (A ,φ) be a noncommutative probability space, let aι ∈ A with probability distribution µι , ι = 1, . . . ,m.
Suppose that a1, . . . ,am are ε-freely independent for given ε. We define the ε-free convolution of µ1, . . . ,µm, denoted by µ1 +ε

· · ·+ε µm, be the jointly distribution of a1 + · · ·+ am, i.e.,

φ

(

m

∑
ι=1

aι

)k

=

∫

R

tk dµa1+···+am(t)

:=
∫

R

tk d (µ1 +ε · · ·+ε µm)(t)

(18)

for all k ∈ N.

It is clear that if every non-diagonal entry of ε is 1 (resp. every entry of ε is 0) then the ε-free convolution reduces to the

classical (resp. free) convolution.

Main results–Case 1: Suppose that the local terms Hι , ι = 1, . . . ,m are independently sampled by GUE. Namely, for every

ι = 1, . . . ,m we suppose

Hι = Gι ⊗
⊗

s/∈Kι

(C1ld), (19)

where {Gι , ι = 1, . . . ,m} is a family of independent GUEs with Gι in
⊗

s∈Kι
Md(C). Note that µHι converges weakly, almost

surely, to µsc for each ι = 1, . . . ,m.

Theorem III.1. As d → ∞, µH converges weakly, almost surely, to +
(m)
ε µsc, if Hι ’s are independently sampled by GUE.

Case 2: Suppose that Hι ’s are independently sampled via Haar unitary invariant ensembles. Namely, for every ι = 1, . . . ,m we

suppose

Hι =UιAιU
∗
ι ⊗

⊗

s/∈Kι

(C1ld), (20)

where {Uι , ι = 1, . . . ,m} is a family of independent unitaries with Uι Haar-distributed in U
(
⊗

s∈Kι
Md(C)

)

and {Aι , ι =
1, . . . ,m} a family of deterministic Hermitian matrices with Aι ∈

⊗

s∈Kι
Md(C).

Assumption III.1. There are a sequence of compactly supported measures µ1, . . . ,µm on R such that µAι weakly converges to

µι for each ι = 1, . . . ,m. Hence µHι converges weakly, almost surely, to µι for each ι.

Theorem III.2. As d → ∞, µH converges weakly, almost surely, to µ1 +ε · · · +ε µm, if Hι ’s are independently sampled by the

Haar unitary invariant ensemble which obeys Assumption III.1.

We sketch the proofs as follows and refer to Subsections III A, III B and III C for the details. Firstly, we calculate the expec-

tation of kth-moment tr(Hk) by using Wick’s formula and the Weingarten formula for Cases 1 and 2, respectively. Indeed, it

had been done independently in [15], and [16] for Case 2, and we only need to adapt their proofs in our setting. Secondly, we

show that the leading order of the variance of tr(Hk) is O(1/d2). As a result, the Borel-Cantelli lemma can be applied, resulting

in almost sure convergence. Finally, using the isomorphism between the ε-noncrossing partition and permutation, µH can be

approximately represented by the ε-free convolution of the large d limit of µHι ’s.

A. Mixed moments of H1, . . . ,Hm

In this subsection, we calculate the mixed moments of H1, . . . ,Hm. The proofs follow [16], where the authors study the mixed

moments of some matrix models that are asymptotically ε-free. However, to be self-contained, we adapt their proofs to our

settings. Before we start, we recall Wick’s formula and Weingarten’s formula, which enable us to calculate the mixed moments

of GUE and Haar unitary ensemble, respectively.

Definition III.2. [21, 23]. Let G be a d × d matrix with entries gi, j where
√

dgi, j is a standard complex Gaussian random

variable, i.e., E(gi, j) = 0,E
(

|gi, j|2
)

= 1/d and

(i) gi, j = gi, j;

(ii) {Re(gi, j)}i≥ j ∪{Im(gi, j)}i> j are independent.
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Then G is called a GUE random matrix.

Proposition III.3. [21, 23] (Wick’s formula). Let G = (gi, j)
d
i, j=1 be a d × d GUE random matrix, then the expectation of the

product of its entries can be calculated by the following Wick’s formula:

E
(

gi1, j1 · · ·gik jk

)

=

{

∑α∈P2(k) ∏p∈[k] δip, jα(p)
for k is even;

0 for k is odd.
(21)

Proposition III.4. [24, 25] (Weingarten’s formula). Let U = (ui, j)
d
i, j=1 be a d×d unitary random matrix distributed according

to the Haar measure of the group of d×d matrices U (d), then the expectation of the product of its entries can be calculated by

the following Weingarten’s formula:

E

(

ui1, j1 · · ·uik jk ūi′1, j
′
1
· · · ūi′

k
, j′

k

)

= ∑
σ ,τ∈Sk

Wg(στ−1,d) · ∏
p∈[k]

δip,i′σ(p)
δ jp, j′τ(p)

, (22)

where Wg(σ ,d) : Sk → C is called a Weingarten function.

The following asymptotics of the Weingarten function is useful [26]

Wg(σ ,d) = µ(σ)d−(k+|σ |) (1+O
(

d−2
))

, (23)

where µ(σ) is a well defined function on Sk and it can be shown [21] that

µ(στ−1) = µN C (α,β ),

where σ = Pα and τ = Pβ .

Notation III.1. For given ι : [k]→ [m] and σ ∈ S
(ι)
k ,

(i) We denote γ := γk = (1, . . . ,k).

(ii) We denote ιB := ιℓ for all ℓ ∈ B, and denote W̃g(σ) := ∏B∈kerι Wg
(

σ |B,d#(KιB
)
)

.

(iii) trσ [A1, . . . ,Ak] := ∏c∈σ tr(∏i∈c Ai) , where c is the cycle of σ .

Proposition III.5. For the symmetric matrix ε given by (2), if Hι ’s are independently sampled GUEs, then the mixed moments

of H1, . . . ,Hm is given as follows:

E · tr
(

Hι1
· · ·Hιk

)

= ∑
α∈P

(ι)
2 (k)

n

∏
s=1

d#(γ·αs)− 1
2 ks−1, (24)

for each ι= (ι1, . . . , ιk) : [k]→ [m].

Proof. Note that the entries of Hι = (H
(ι)
i, j ) is given by

H
(ι)
i, j := g

(ι)
i, j · ∏

s/∈Kι

δi[s], j[s],

where i, j are n-tuples described as i = (i[1], . . . , i[n]), and g
(ι)
i, j are the coefficients of Gι . We first suppose for convenience that

E

(

∣

∣

∣g
(ι)
i, j

∣

∣

∣

2
)

= 1. Now, for any k ≥ 1 we have

E · tr(Hι1
Hι2

· · ·Hιk
) = d−n

E ·Tr(Hι1
Hι2

· · ·Hιk
)

= d−n ∑
i1,...,ik

E

(

H
(ι1)
i1,i2

H
(ι2)
i2,i3

· · ·H(ιk)
iki1

)

= d−n ∑
i1,...,ik

∏
B∈kerι

E

(

∏
p∈B

H
(ιp)
ip,iγ(p)

)

,



10

where γ = (1,2, . . . ,k) is the full cycle of [k]. Note that ιp = ιq for p,q ∈ B, we denote ιp = ιB for p ∈ B. Thus it follows that

E · tr(Hι1
Hι2

· · ·Hιk
) = d−n ∑

i1,...,ik

∏
B∈kerι

E

(

∏
p∈B

g
(ιB)
ip,iγ(p)

)

· ∏
p∈B

∏
s/∈KιB

δip[s],iγ(p)[s]
.

By Wick’s formula, E
(

∏p∈B g
(ιB)
ip,iγ(p)

)

= 0 whenever #(B) is odd, and otherwise

E

(

∏
p∈B

g
(ιB)
ip,iγ(p)

)

= ∑
α∈P2(#(B))

∏
p∈B

∏
s∈Kιp

δip[s],iγ·α(p)[s]
.

Since we need #(B) is even for every block B ∈ kerι ∈ P(k), therefore E · tr(· · · ) = 0 for k is odd. Now for even k, we are

choosing independently pairings on each block B ∈ kerι we may sum over all α ∈ P
ι

2(k) outside of the product. Thus for even

k, we have

E · tr(Hι1
Hι2

· · ·Hιk
) = d−n ∑

α∈P
(ι)
2 (k)

∑
i1,...,ik

∏
B∈kerι

∏
p∈B



 ∏
s∈Kιp

δip[s],iγ·α(p)[s]



 ·



 ∏
s/∈Kιp

δip[s],iγ(p)[s]





= d−n ∑
α∈P

(ι)
2 (k)

∑
i1,...,ik

k

∏
ℓ=1



 ∏
s∈Kιℓ

δiℓ[s],iγ·α(ℓ) [s]



 ·



 ∏
s/∈Kιℓ

δiℓ[s],iγ(ℓ)[s]



 .

Let us consider the sum ∑i1,...,ik ∏k
ℓ=1

(

∏s∈Kιℓ
δiℓ[s],iγ·α(ℓ)[s]

)

·
(

∏s/∈Kιℓ
δiℓ[s],iγ(ℓ)[s]

)

. In fact, these Dirac functions give the con-

ditions for the indices that contribute to the sum. Similar to the proof in [16], we will look at the conditions for each s ∈ [n]. We

need iℓ[s] = iγ·α(ℓ)[s] when s ∈ Kιℓ , while iℓ[s] = iγ(ℓ)[s] when s /∈ Kιℓ . That is, i[s] = (γ ·αs) · i[s], where we note that the action

of permutation π ∈ Sk on the indices i[s] = (i1[s], . . . , ik[s]) is defined as π · i[s] := (iπ(1)[s], . . . , iπ(k)[s]). So we have

∑
i1,...,ik

k

∏
ℓ=1



 ∏
s∈Kιℓ

δiℓ[s],iα·γ(ℓ) [s]



 ·



 ∏
s/∈Kιℓ

δiℓ[s],iγ(ℓ) [s]



=
n

∏
s=1

d#(γ·αs). (25)

To summarize, we have

E · tr(Hι1
Hι2

· · ·Hιk
) = d−n ∑

α∈P
(ι)
2 (k)

n

∏
s=1

d#(γ·αs)

= ∑
α∈P

(ι)
2 (k)

n

∏
s=1

d#(γ·αs)−1.

Now we return to the normalized entries such that E

(

∣

∣

∣g
(ι)
i, j

∣

∣

∣

2
)

= d− 1
2 #(Kι ). For normalized Hι and even k, we have

E · tr(Hι1
Hι2

· · ·Hιk
) = ∑

α∈P
(ι)
2 (k)

k

∏
ℓ=1

d− 1
2 #(Kιℓ

) ·
n

∏
s=1

d#(γ·αs)−1

= ∑
α∈P

(ι)
2 (k)

n

∏
s=1

d#(γ·αs)− 1
2 ks−1,

(26)

where we have used the fact that

k

∑
ℓ=1

#(Kιℓ) = ∑
B∈kerι

∑
p∈B

#(Kιp) =
n

∑
s=1

ks.
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The following proposition is one of the main results in [16]. We keep the proof for the convenience of the readers after

adapting the notations and adding a few details.

Proposition III.6. [16][Theorem 6]. For the symmetric matrix ε given by (2), if Hι ’s are independently sampled by a Haar

unitary invariant ensemble, then the mixed moments of H1, . . . ,Hm are given as follows:

E · tr
(

Hι1
· · ·Hιk

)

= ∑
σ ,τ∈S

(ι)
k

W̃g(στ−1) · trτ

[

Aι1
, . . . ,Aιk

]

·
n

∏
s=1

d#ks (τs)+#(σ−1
s γ)−1, (27)

for each ι= (ι1, . . . , ιk) : [k]→ [m].

Proof. Note that the entries of Hι = (H
(ι)
i, j ) are given by

H
(ι)
i, j := ∑

p,q

a
(ι)
p,qu

(ι)
i,p ū

(ι)
j,q,

where i, j, p,q are n-tuples described as i = (i[1], . . . , i[n]), and a
(ι)
p,q and u

(ι)
p,q are the coefficients of Aι and Uι , respectively. For

any k ≥ 1, we have

E · tr
(

Hι1
· · ·Hιk

)

= d−n ∑
i1,...,ik

E

(

H
(ι1)
i1,i2

H
(ι2)
i2,i3

· · ·H(ιk)
iki1

)

= d−n ∑
i1,...,ik

∏
B∈kerι

E

(

∏
t∈B

H
(ιt)
it ,iγ(t)

)

.

We use the Weingarten formula to calculate the term E

(

∏t∈B H
(ιt)
it ,iγ(t)

)

. We denote ιt = ιB for all t ∈ B.

E

(

∏
t∈B

H
(ιt)
it ,iγ(t)

)

= E

(

∏
t∈B

∑
pt ,qt

a
(ιt)
pt ,qt u

(ιt)
it ,pt

ū
(ιt)
iγ(t),qt

)

= ∑
pt ,qt ,t∈B

E

(

∏
t∈B

a
(ιt)
pt ,qt u

(ιt)
it ,pt

ū
(ιt)
iγ(t),qt

)

= ∑
pt ,qt ,t∈B

(

∏
t∈B

a
(ιt)
pt ,qt

)

·
(

∑
σ ,τ∈SB

Wg
(

στ−1,d#(KιB )
)

×

×∏
t∈B

∏
s∈Kιt

δit [s],iσ−1γ(t)
[s]δpt [s],qτ−1(t)

[s] · ∏
s/∈Kιt

δit [s],iγ(t)[s]

)

= ∑
σ ,τ∈SB

Wg
(

στ−1,d#(KιB )
)

∑
pt ,t∈B

∏
t∈B

∏
s∈Kιt

a
(ιt)
pt [s],pτ(t)[s]

δit [s],iσ−1γ(t)
[s] · ∏

s/∈Kιt

δit [s],iγ(t) [s]
.

Since we are choosing permutations on each B independently, we may instead sum over all σ ,τ ∈ S
(ι)
k outside of the product.

Therefore it follows that

E · tr
(

Hι1
· · ·Hιk

)

= d−n ∑
σ ,τ∈S

(ι)
k

W̃g(στ−1) · ∑
i1,...,ik;
p1,...,pk

∏
B∈kerι

∏
t∈B

∏
s∈Kιt

a
(ιt)
pt [s],pτ(t)[s]

δit [s],iσ−1γ(t)
[s] · ∏

s/∈Kιt

δit [s],iγ(t)[s]

= d−n ∑
σ ,τ∈S

(ι)
k

W̃g(στ−1) · ∑
i1,...,ik;
p1,...,pk

k

∏
ℓ=1

∏
s∈Kιℓ

a
(ιℓ)
pℓ[s],pτ(ℓ)[s]

δiℓ[s],iσ−1γ(ℓ)
[s] · ∏

s/∈Kιℓ

δiℓ[s],iγ(ℓ)[s]
.

Again, let us consider the conditions for the indices that contributes in the sum ∑ i1,...,ik;
p1,...,pk

[· · · ]. Firstly, similar to Equation (25),

we have

∑
i1,...,ik

k

∏
ℓ=1

∏
s∈Kιℓ

δiℓ[s],iσ−1γ(ℓ)
[s] · ∏

s/∈Kιℓ

δiℓ[s],iγ(ℓ)[s]
=

n

∏
s=1

d#(σ−1
s γ).
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Next, we turn to consider the sum ∑p1,...,pk
∏k

ℓ=1 ∏s∈Kιℓ
a
(ιℓ)
pℓ[s],pτ(ℓ)[s]

. For each block B ∈ kerι, if we look at the sum based on τ|B,

then we have a trace (over ⊗s∈KιMd(C)) of Aι ’s respect to τ|B. Namely,

∑
p1,...,pk

k

∏
ℓ=1

∏
s∈Kιℓ

a
(ιℓ)
pℓ[s],pτ(ℓ)[s]

= ∏
B∈kerι

Trτ|B [A1, . . . .Ak]

= ∏
B∈kerι

d#B(τ|B)·#(KιB )trτ|B [A1, . . . .Ak]

= trτ [A1, . . . ,Ak] ·
n

∏
s=1

d#ks (τs),

where we have used the fact that

n

∑
s=1

#ks
(τs) = ∑

B∈kerι

#B(τ|B) ·#(KιB
),

since #(KιB
) is the number of occurrences that the block B appears in Js.

To sum up, we have

E · tr
(

Hι1
· · ·Hιk

)

= d−n ∑
σ ,τ∈S

(ι)
k

W̃g(στ−1) · trτ

[

Aι1
, . . . ,Aιk

]

·
n

∏
s=1

d#ks (τs)+#(σ−1
s γ)

= ∑
σ ,τ∈S

(ι)
k

W̃g(στ−1) · trτ

[

Aι1
, . . . ,Aιk

]

·
n

∏
s=1

d#ks (τs)+#(σ−1
s γ)−1.

(28)

We end this subsection with the following remark.

Remark III.1. By Proposition III.6, the local terms H1, . . . ,Hm that satisfies conditions in Case II are asymptotic ε-free (see

[16][Theorem 7]). Moreover, because the GUE random matrix is Haar unitary invariant, Proposition III.6 could be used to

induce the GUE model’s asymptotic ε-freeness. However, we would like to derive an explicit formula for the moments of the

GUE model to access the almost sure convergence, which is one of the main results of our paper.

B. Almost sure convergence

Notation III.2. For given ι̃= (ι1, . . . , ιk, ιk+1, . . . , ι2k) : [2k]→ m.

(i) Denote γ1 = (1,2, . . . ,k), γ2 = (k+ 1,k+ 2, . . . ,2k), and δ = γ1 × γ2 ∈ S2k.

(ii) For each string s ∈ [n], we denote J1,s := Js ∩ [1,k] and J2,s := Js ∩ [k+ 1,2k]. Moreover, ki,s := #Ji,s, i = 1,2.

(iii) Any σ ∈ S
(ι̃)
2k induces permutations σi,s ∈ SJi,s , i = 1,2.

(iv) Denote αi,s := α|Ji,s , i = 1.2.

A partition α ∈ P(2k) is called connected if there is a block B ∈ α such that B∩ [1,k] 6= /0 and B∩ [k+1,2k] 6= /0. A partition

α ∈ P(2k) is connected if and only if Pα ∈ S2k is connected, i.e., Pα and δ generates a transitive subgroup in S2k.

Notation III.3. For given ι̃ : [2k]→ m, we denote P
(ι̃)
2,c (2k) by the set of all connected pair partitions of P

(ι̃)
2 (2k), and by S

(ι̃)
2k,c

the set of all connected permutations of S
(ι̃)
2k .

Proposition III.7. For the symmetric matrix ε given by (2), if Hι ’s are independently sampled by GUE, then almost sure we

have

lim
d→∞

tr
(

Hι1
· · ·Hιk

)

= ∑
α∈N C

(ε,ι)
2 (k)

1 (29)

for each ι= (ι1, . . . , ιk) : [k]→ [m].
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Proof. The proof follows the ideas in [27]. Firstly, note that for any pair partition αs, we always have #(αsγ) = #ks
(αsγs)≤ ks

2
+1,

the equality holds whenever αs is non-crossing. Therefore for each ι= (ι1, . . . , ιk) : [k]→ [m] we have

E · tr
(

Hι1
· · ·Hιk

)

= ∑
α∈N C

(ε,ι)
2 (k)

1+O

(

1

d

)

, (30)

where we have used Equation (4). Hence

lim
d→∞

E · tr
(

Hι1
· · ·Hιk

)

= ∑
α∈N C

(ε,ι)
2 (k)

1, (31)

For the almost sure convergence, by using the Borel-Cantelli lemma, it suffices to show that

∞

∑
d=1

E
(

tr
(

Hι1
· · ·Hιk

)

−E · tr
(

Hι1
· · ·Hιk

))2
< ∞. (32)

To this end, let us consider the following expectation of the product of normalized traces:

E · tr2
(

Hι1
· · ·Hιk

)

= d−2n ∑
j1,..., jk ,

jk+1,..., j2k

E

(

H
(ι1)
j1, j2

· · ·H(ιk)
jk, j1

·H(ιk+1)
jk+1, jk+2

· · ·H(ι2k)
j2k , jk+1

)

= d−2n ∑
j1,..., j2k

E

(

2k

∏
ℓ=1

H
(ιℓ)
jℓ, jδ (ℓ)

)

.

Similar to the derivation of Equation (26), we have

E · tr2
(

Hι1
· · ·Hιk

)

= ∑
α∈P

(ι̃)
2 (2k)

2k

∏
ℓ=1

d− 1
2 Kιℓ

n

∏
s=1

d#(δ ·αs)−2

= ∑
α∈P

(ι̃)
2 (2k)

n

∏
s=1

d#(δ ·αs)− 1
2 ks−2.

Let ι1 and ι2 be the restrictions of ι̃ to [1,k] and to [k+ 1,2k], respectively. It follows that

E · tr2
(

Hι1
· · ·Hιk

)

−
(

E · tr
(

Hι1
· · ·Hιk

))2
= ∑

α∈P
(ι̃)
2 (2k)

n

∏
s=1

d#(δ ·αs)− 1
2 ks−2

− ∑
α1∈P

(ι1)
2 (k),

α2∈P
(ι2)
2 (k)

n

∏
s=1

d#(γ1·α1,s)+#(γ2·α2,s)− 1
2 ks−2

= ∑
α∈P

(ι̃)
2,c (2k)

n

∏
s=1

d#(δ ·αs)− 1
2 ks−2

= ∑
α∈P

(ι̃)
2,c (2k)

∏
s∈S1

d(···) · ∏
s∈S2

d(···),

where we denote S1 := {s ∈ [n] : αs is connected} and S2 := {s ∈ [n] : αs is disconnected}. We note that S1 6= /0, otherwise α
could not be connected.

For any s ∈ S1, by Formula (A3) we have

#(αsδ ) = #ks
(αsδs) = ks + 2(1− g)− #ks

(αs)− #ks
(δs)

= ks + 2(1− g)− 1

2
ks − 2

=
1

2
ks − 2g.
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And for any s ∈ S2, we have αs = α1,s ×α2,s and

#(αsδ )−
1

2
ks − 2 = #(α1,sγ1)+ #(α2,sγ2)−

1

2
ks − 2 ≤ 0.

The equality holds when πs is noncrossing.

In summary, the leading order of terms in the above sum is O
(

d−2#(S1)
)

(by letting g = 0), thus finally we have

E · tr2
(

Hι1
· · ·Hιk

)

−
(

E · tr
(

Hι1
· · ·Hιk

))2
= O(d−2),

which implies (32).

Proposition III.8. For the symmetric matrix ε given by (2), if Hι ’s are independently sampled by a Haar unitary invariant

ensemble which obeys Assumption III.1, then almost surely we have

lim
d→∞

tr
(

Hι1
· · ·Hιk

)

= ∑
σ ,τ∈S

(ε,ι)
NC (γ);

τ≤σ

µ(στ−1) · lim
d→∞

trτ

[

Aι1
, . . . ,Aιk

]

.
(33)

Proof. Recall that for σ ∈ S
(ι)
k we have

W̃g(σ) = ∏
B∈kerι

µ(σ |B)d−#(KιB
)·(#(B)+|σ |B)

(

1+O
(

d−2#(KιB
)
))

= µ(σ)
n

∏
s=1

d−(ks+|σs|)(1+O(d−2)),

where µ(σ) := ∏B∈kerι µ(σB).
Combining Equation (28), we obtain

E · tr
(

Hι1
· · ·Hιk

)

= ∑
σ ,τ∈S

(ι)
k

µ(στ−1) · trτ

[

Aι1
, . . . ,Aιk

]

·
n

∏
s=1

d#ks (τs)+#(σ−1
s γ)−ks−|σsτ−1

s |−1(1+O(d−2)). (34)

Given σ ,τ ∈ S
(ι)
k we have

#ks
(τs)+ #(σ−1

s γ)− ks−|σsτ
−1
s |− 1 = ks − 1− (|τs+ |σsτ

−1
s |+ |σ−1

s γs|)
≤ ks − 1−|γs| ≤ 0.

The equality holds whenever σs,τs is on the geodesic path 1s − τs −σs− γs in Sks
. Thus Equation (34) induces that

lim
d→∞

E · tr
(

Hι1
· · ·Hιk

)

= ∑
σ ,τ∈S

(ι)
k ;

1s−τs−σs−γs for all s

µ(στ−1) · lim
d→∞

trτ

[

Aι1
, . . . ,Aιk

]

= ∑
σ ,τ∈S

(ε,ι)
NC (γ);

τ≤σ

µ(στ−1) · lim
d→∞

trτ

[

Aι1
, . . . ,Aιk

]

.
(35)

Note that due to Assumption III.1, the limit limd→∞ trτ

[

Aι1
, . . . ,Aιk

]

always exists.
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Now we turn to show the almost sure convergence. Similar to the proof in Proposition III.7, we have

E · tr2
(

Hι1
· · ·Hιk

)

−
(

E · tr
(

Hι1
· · ·Hιk

))2

= ∑
σ ,τ∈S

(ι̃)
2k

W̃g(στ−1) · trτ

[

Aι1
, . . . ,Aι2k

]

·
n

∏
s=1

d#ks (τs)+#(σ−1
s δ )−2

− ∑
σ1,τ1∈S

(ι1)
k

;

σ2,τ2∈S
(ι2)
k

W̃g(σ1τ−1
1 )W̃g(σ2τ−1

2 )×

× trτ1×τ2

[

Aι1
, . . . ,Aι2k

]

·d#k1,s
(τ1)+#(σ−1

1 γ1)+#k2,s
(τ2)+#(σ−1

2 γ2)−2

= ∑
σ ,τ∈S

(ι̃)
2k,c

W̃g(στ−1) · trτ

[

Aι1
, . . . ,Aι2k

]

·
n

∏
s=1

d#ks (τs)+#(σ−1δ )−2

= ∑
σ ,τ∈S

(ι̃)
2k,c

µ(στ−1) · trτ

[

Aι1
, . . . ,Aι2k

]

·
n

∏
s=1

d#ks (τs)+#(σ−1
s δ )−|σsτ−1

s |−ks−2

= ∑
σ ,τ∈S

(ι̃)
2k,c

µ(στ−1) · trτ

[

Aι1
, . . . ,Aι2k

]

· ∏
s∈S1

d(···) · ∏
s∈S2

d(···) · ∏
s∈S3

d(···) · ∏
s∈S4

d(···),

where we denote S1 := {s ∈ [n] : σs,τs are connected},S2 := {s ∈ [n] : σs is connected and τs is disconnected},S3 := {s ∈ [n] :

τs is connected and σs is disconnected}, and S4 := {s ∈ [n] : σs,τs are disconnected}.
For any s ∈ S1 we have

#ks
(τs)+ #(σ−1

s δ )−|σsτ
−1
s |− ks− 2 = ks − 2− (|τs|+ |σsτ

−1
s |+ |σ−1

s δs|)
≤ ks − 2− (|σs|+ |σ−1

s δs|)
≤ ks − 2− ks =−2,

where for the first inequality we have used the triangle inequality |σs| ≤ |τs|+ |σsτ
−1
s |, and for the second one we have used the

fact that ks ≤ |σs|+ |σ−1
s δs| since σs is connected.

For any s ∈ S2 we have

#ks
(τs)+ #(σ−1

s δ )−|σsτ
−1
s |− ks− 2 = ks − 2− (|τs|+ |σsτ

−1
s |+ |σ−1

s δs|)
< ks − 2− (|σs|+ |σ−1

s δs|)
≤ ks − 2− ks =−2.

We noted that for s ∈ S2, |σs| < |τs|+ |σsτ
−1
s |. Since the connectedness of σs and τs is different, they can not lies in a geodesic

path. The case for s ∈ S3 is similar.

For any s ∈ S4, we have σs = σ1,s ×σ2,s,τs = τ1,s × τ2,s and

#ks
(τs)+ #(σ−1

s δ )−|σsτ
−1
s |− ks− 2 = ks − 2− (|τs|+ |σsτ

−1
s |+ |σ−1

s δs|)
≤ ks − 2− (|σs|+ |σ−1

s δs|)
= ks − 2− (|σ1,s|+ |σ2,s|+ |σ−1

1,s γs|+ |σ−1
2,s γs|)

≤ ks − 2− (ks− 2) = 0.

The equality holds whenever 1s − τi,s −σi,s − γs for i = 1,2.

In summary, the leading order of terms in the above sum is O
(

d−2#(S1)−3#(S2)−3#(S3)
)

. Hence the leading order of the variance

is O(d−2), which leads to the almost sure convergence.

C. Empirical eigenvalue distribution of H

Let (A ,φ) be a noncommutative probability space and a1, . . . ,am be a sequence of ε-freely independent random variables in

(A ,φ) such that the law of aι is µι for each ι = 1, . . . ,m. Because the local terms H1, . . . ,Hm are asymptotic ε-free, the sum
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H = ∑m
ι=1 Hι converges in moment to the sum ∑m

ι=1 aι [16][Theorem 4]. We will provide an alternate combinatoric proof which

will use the moment-cumulant formulas (10) and (14). Furthermore, due to the results in Subsection III B, we have an almost

sure convergence for H.

Theorem III.9. (Restatement of Theorem III.1). As d → ∞, µH converges weakly, almost surely, to +
(m)
ε µsc, if Hι ’s are indepen-

dently sampled by GUE.

Proof. Let (A ,φ) be a noncommutative probability space and s1, . . . ,sm be a sequence of ε-freely independent random variables

in (A ,φ) which satisfies the semicircular law µsc. For any even k ≥ 1, the k-th moment of ∑m
ι=1 sι is given by

φ

(

m

∑
ι=1

sι

)k

=
m

∑
ι1,...,ιk=1

φ(sι1
sι2

· · · sιk
)

= ∑
ι:[k]→[m]

∑
α∈N C

(ε,ι)(k)

κ
(ε)
α [sι1

,sι2
, . . . ,sιk

]

= ∑
ι:[k]→[m]

∑
α∈N C

(ε,ι)(k)

κα [sι1
,sι2

, . . . ,sιk
]

= ∑
ι:[k]→[m]

∑
α∈N C

(ε,ι)
2 (k)

1,

(36)

where we have used the following fact about the free cumulant of semicircular elements [21]:

κα [sι1
,sι2

, . . . ,sιk
] =

{

1 if α is a pairing;

0 otherwise.

Moreover, note that for odd k, φ (∑m
ι=1 sι )

k = 0. Hence by combining Proposition III.5 and III.7, almost surely we have

lim
d→∞

trHk = lim
d→∞

∑
ι:[k]→[m]

tr
(

Hι1
· · ·Hιk

)

= ∑
ι:[k]→[m]

∑
π∈N C

(ε,ι)
2 (k)

1

= φ

(

m

∑
ι=1

sι

)k

.

It follows that µH converges weakly, almost surely to +
(m)
ε µsc as d → ∞.

Theorem III.10. (Restatement of Theorem III.2). As d → ∞, µH converges weakly, almost surely, to µ1 +ε · · · +ε µm, if Hι ’s are

independently sampled by the Haar unitary invariant ensemble which obeys Assumption III.1.

Proof. Let (A ,φ) be a noncommutative probability space and a1, . . . ,am be a sequence of ε-freely independent random variables

in (A ,φ) such that the law of aι is µι for each ι = 1, . . . ,m. By Assumption III.1, for every α ∈ P(k) and ι : [k]→ [m] we have

lim
d→∞

trσ

[

Aι1
, . . . ,Aιk

]

= φα

[

aι1
, . . . ,aιk

]

,

where σ = Pα .
Then for any k ≥ 1, the k-th moment of ∑m

ι=1 aι is given by

φ

(

m

∑
ι=1

aι

)k

=
m

∑
ι1,...,ιk=1

φ(aι1
aι2

· · ·aιk
)

= ∑
ι:[k]→[m]

∑
α∈N C

(ε,ι)(k)

κ
(ε)
α [aι1

, . . . ,aιk
]

= ∑
ι:[k]→[m]

∑
α ,β∈N C

(ε,ι)(k),
β≤α

φβ [aι1
, . . . ,aιk

] ·µ
N C

(ε,ι)(k)
(β ,α).
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By Theorem II.1 and Proposition II.2, it follows that

φ

(

m

∑
ι=1

aι

)k

= ∑
ι:[k]→[m]

∑
σ ,τ∈S

(ε,ι)
NC (γ);

τ≤σ

µ(στ−1) · lim
d→∞

trτ

[

Aι1
, . . . ,Aιk

]

,

where σ = Pα and τ = Pβ . Note we have used the fact that

µ(στ−1) = ∏
B∈kerι

µ(σBτ−1
B ) = ∏

B∈kerι

µN C (#(B))(βB,αB)

= µ
N C

(ε,ι)(k)
(β ,α).

Hence by combining Proposition III.6 and III.8, almost surely we have

lim
d→∞

trHk = lim
d→∞

∑
ι:[k]→[m]

tr
(

Hι1
· · ·Hιk

)

= ∑
ι:[k]→[m]

∑
σ ,τ∈S

(ε,ι)
NC (γ);

τ≤σ

µ(στ−1) · lim
d→∞

trτ

[

Aι1
, . . . ,Aιk

]

= φ

(

m

∑
ι=1

sι

)k

.

It follows that µH converges weakly, almost surely to µ1 +ε · · · +ε µm as d → ∞.

IV. BOUNDS FOR THE LARGEST EIGENVALUE

Let λmax be the largest eigenvalue of H, we have the following bounds for λmax.

Proposition IV.1. If Hι ’s are independently sampled by GUE, then with probability one, we have

λmax ≥ 2
√

m, as d → ∞. (37)

Proof. Suppose that kerι is noncrossing, then by the definition of N C
(ε,ι)(k) we have

N C
(ε,ι)(k) = {α ∈ N C (k) : α ≤ kerι}.

By Proposition III.7 almost surely we have

lim
d→∞

tr
(

H2k
)

= ∑
ι:[2k]→[m]

∑
α∈N C

(ε,ι)
2 (2k)

1

= ∑
β∈P(2k)

∑
ι:[2k]→[m],

kerι=β

∑
α∈N C

(ε,ι)
2 (2k)

1

≥ ∑
β∈N C (2k)

∑
ι:[2k]→[m],

kerι=β

∑
α∈N C 2(2k),

α≤kerι

1

= ∑
β∈N C (2k)

∑
α∈N C 2(2k),

α≤β

∑
ι:[2k]→[m],

kerι=β

1

≥ ∑
β∈N C 2(2k)

∑
ι:[2k]→[m],

kerι=β

1

≃ mk ·Ck,

where Ck =
1

k+1

(

2k
k

)

is the Catalan number. Note that we have by Stirling’s formula

lim
k→∞

C
1
k

k = 4. (38)
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Then for any δ > 0, and sufficient large d

P[λmax < 2
√

m− δ ]≤ P[tr
(

H2k
)

< (2
√

m− δ )2k]

≤ P[ lim
k→∞

(

tr
(

H2k
)) 1

2k ≤ 2
√

m− δ ]

= P[2
√

m ≤ 2
√

m− δ ] = 0.

Hence P[λmax < 2
√

m− δ ]→ 0 as d → ∞, which completes our proof.

Proposition IV.2. Suppose that Hι ’s are independently sampled by a Haar unitary invariant ensemble which obeys Assumption

III.1, and for each ι, µι is distributed with mean 0 and variance 1, then almost surely we have

λmax ≥ 2
√

m, as d → ∞. (39)

Proof. Let (A ,φ) be a noncommutative probability space and a1, . . . ,am be a sequence of ε-freely independent random variables

in (A ,φ) such that the law of aι is µι for each ι = 1, . . . ,m. By our assuption, for every α ∈ P(k) and ι : [k]→ [m] we have

lim
d→∞

trσ

[

Aι1
, . . . ,Aιk

]

= φα

[

aι1
, . . . ,aιk

]

,

where σ = Pα . Moreover, φ(aι ) = 0 and φ(a2
ι ) = 1 for each ι = 1, . . . ,m.

By Proposition III.8, almost surely we have

lim
d→∞

tr
(

H2k
)

= ∑
ι:[2k]→[m]

∑
α∈N C

(ε,ι)(2k)

κ
(ε)
α [aι1

, . . . ,aι2k
]

≥ ∑
ι:[2k]→[m]

∑
α∈N C (2k),

α≤kerι

κα [aι1
, . . . ,aι2k

]

= ∑
β∈N C (2k)

∑
α∈N C (2k),

α≤β

∑
ι:[2k]→[m],

kerι=β

κα [aι1
, . . . ,aι2k

]

≥ ∑
β∈N C 2(2k)

∑
ι:[2k]→[m],

kerι=β

κβ [aι1
, . . . ,aι2k

]

≥ ∑
β∈N C 2(2k)

∑
ι:[2k]→[m],

kerι=β

1

≃ mk ·Ck,

(40)

where we have used the fact that κ
(ε)
α [aι1

, . . . ,aι2k
] = κα [aι1

, . . . ,aι2k
] for α ∈ N C (2k), and

κβ [aι1
, . . . ,aι2k

] = 1

for β ∈ N C 2(2k) and kerι= β . The rest of the proof is the same as the proof of Proposition IV.1.

Remark that the above lower bound is universal for all ε and it becomes optimal for the extreme case whenever every non-

diagonal entry of ε is 0. For example, let Kι = [n] for every ι ∈ [m], then almost surely we have [28–30]

λmax ≤ 2
√

m, as d → ∞.

On the other hand, there is a trivial upper bound for λmax without considering the interactions between Hι ’s. For simplicity,

we only consider the case of Hι being GUE. Note that it is well-known [31] that ‖Hι‖∞ = 2 almost surely as d → ∞, then we

have

λmax ≤ ‖H‖∞ ≤
m

∑
ι=1

‖Hι‖∞

≤ 2m,

(41)

as d → ∞. The above upper bound can be improved by considering the interactions.
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Now let us consider the following XY-model: Let m = n− 1 and assume that

Kι = {ι, ι + 1}, ι = 1, . . . ,n− 1. (42)

Thus the entries of ε are given by (i ≥ j)

εi, j =

{

0 if i = j, j+ 1;

1 others.

Moreover, for given ι : [k]→ [n−1] we have J1 = { j ∈ [k] : ι j = 1}, Js = { j ∈ [k] : ι j = s−1,s},s = 2, . . . ,n−1, and Jn = { j ∈
[k] : ι j = n− 1}.
Proposition IV.3. Let m = n−1, and consider the Hamiltonian H with the interactions given by (42), if Hι ’s are independently

sampled by GUE, then with probability one, we have

λmax ≤ 2(n− 3)+ 2
√

2, as d → ∞. (43)

Proof. For given ι : [k]→ [n− 1], by the definition of N C
(ε,ι)(k) we have the following iteration relation

N C
(ε,ι)(k)⊆ N C (J1)×N C

(ε,ι1)([k]/J1),

where ι1 is the restriction of ι on [k]/J1.
Starting with Equation (30) we have

E · tr(H)k = ∑
ι:[k]→[n−1]

∑
α∈N C

(ε,ι)
2 (k)

1+O

(

1

d

)

≤ ∑
ι:[k]→[n−1]

∑
α1∈N C 2(J1)

∑
α2∈N C

(ε,ι1)
2 ([k]/J1)

1+O

(

1

d

)

=
k

∑
ℓ1=0

(

k

ℓ1

)

#(N C 2(ℓ1)) · ∑
ι:[k−ℓ1]→[2,n−1]

∑
α2∈N C

(ε,ι)
2 (k−ℓ1)

1+O

(

1

d

)

=
k

∑
ℓ1=0

(

k

ℓ1

)

#(N C 2(ℓ1)) ·Etr(H2 + · · ·+Hn−1)
k−ℓ+O

(

1

d

)

.

By an inductive argument, we have

E · tr(H)k ≤
k

∑
ℓ1=0

(

k

ℓ1

)

#(N C 2(ℓ1)) ·Etr(H2 + · · ·+Hn−1)
k−ℓ1 +O

(

1

d

)

≤
k

∑
ℓ1=0

k−ℓ1

∑
ℓ2=0

(

k

ℓ1

)(

k− ℓ1

ℓ2

)

#(N C 2(ℓ1)) ·#(N C 2(ℓ2)) ·Etr(H3 + · · ·+Hn−1)
k−ℓ+O

(

1

d

)

. . . . . .

≤
k

∑
ℓ1=0

k−ℓ1

∑
ℓ2=0

· · ·
k−(ℓ1+···+ℓn−4)

∑
ℓn−3=0

(

k

ℓ1

)(

k− ℓ1

ℓ2

)

· · ·
(

k− (ℓ1 + · · ·+ ℓn−4)

ℓn−3

)

n−3

∏
i=1

#(N C 2(ℓi))×

×Etr(Hn−2 +Hn−1)
k−(ℓ1+···+ℓn−3)+O

(

1

d

)

=
k

∑
ℓ1=0

k−ℓ1

∑
ℓ2=0

· · ·
k−(ℓ1+···+ℓn−4)

∑
ℓn−3=0

(

k

ℓ1

)(

k− ℓ1

ℓ2

)

· · ·
(

k− (ℓ1 + · · ·+ ℓn−4)

ℓn−3

)

n−3

∏
i=1

#(N C 2(ℓi))×

× #(N C 2(k− (ℓ1 + · · ·+ ℓn−3)) ·2
k−(ℓ1+···+ℓn−3)

2 +O

(

1

d

)

≤
k

∑
ℓ1=0

k−ℓ1

∑
ℓ2=0

· · ·
k−(ℓ1+···+ℓn−4)

∑
ℓn−3=0

(

k

ℓ1

)(

k− ℓ1

ℓ2

)

· · ·
(

k− (ℓ1 + · · ·+ ℓn−4)

ℓn−3

)

4
k
2 ·2

k−(ℓ1+···+ℓn−3)
2 +O

(

1

d

)

:= Mk +O

(

1

d

)

,
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where we have used the fact that #(N C 2(k)) =Ck/2 ≤ 4k/2. Note that we have by Stirling’s formula

lim
k→∞

M
1
k

k = 2(n− 3)+ 2
√

2. (44)

Choose a sequence k(d)→ ∞ as d → ∞ such that

Mk(d) ≤
(

2(n− 3)+ 2
√

2
)k(d)

, and k(d)/ logd → 0 as d → ∞.

Then for any δ > 0, and sufficient large d,

P[λmax > 2(n− 3)+ 2
√

2+ δ ]≤ P[Tr
(

H2k(d)
)

> (2(n− 3)+ 2
√

2+ δ )2k(d)]

≤
E ·Tr

(

H2k(d)
)

(2(n− 3)+ 2
√

2+ δ )2k(d)

≤ dn · (2(n− 3)+ 2
√

2)2k(d)

(2(n− 3)+ 2
√

2+ δ )2k(d)
.

Hence P[λmax > 2(n− 3)+ 2
√

2+ δ ]→ 0 as d → ∞, which completes our proof.

V. CONCLUSION AND DISCUSSION

In this paper, we consider the spectrum of local Hamiltonians given by some random ensembles in the large d limit. Since

the Hamiltonian is local, the correlations between the local terms are somewhat complicated. However, as pointed out in [15]

and [16], the local terms of the Hamiltonian are asymptotically ε-free (or equivalently heap-free) in the limit, namely, it is

appropriate to carry out our investigation in the framework of noncommutative probability theory. Therefore, it is natural to say

that the spectrum distribution of the total Hamiltonian is some convolution of its local terms’ probability distributions. Our work

has two main contributions: (i) by proper variance estimations, the asymptotic ε-freeness of the local terms holds generically.

As a byproduct, our proof may shed some light on considering the second order ε-freeness of the corresponding random matrix

models. Such a problem is inspired by the work of second order freeness [27, 32–34]. Moreover, the almost sure convergence of

the matrix model may have further applications in operator algebra. (ii) the isomorphism between the ε-noncrossing partitions

and permutations brings us a new bridge to connect the matrix model and its large d limit, just like what Biane had done in the

free probability theory. And it allows us to provide a direct combinatoric proof for the convergence of the total Hamiltonian

H, though the convergence in moments can be induced by the results in [16]. Since the enumeration of the ε-noncrossing

partitions/permutations is unclear; our results are only formally meaningful. Nevertheless, we can derive bounds for the largest

eigenvalue of the total Hamiltonian via some rough estimation of the enumeration. We end our conclusion with the following

questions.

(i) Is it possible to explicitly calculate the ε-free convolution for some given non-trivial ε? For the GUE case, the expectation

of kth-moment of H is given by

E · tr(Hk) = ∑
ι:[k]→[m]

∑
α∈N C

(ε,ι)
2 (k)

1.

Can one connect the above combinatorial summation to some transformations of µsc, e.g., the Cauchy transform of µsc?

(ii) Assume that Hι is given by independent projection, i.e., Hι = Uι PιU
∗
ι ⊗⊗s/∈Kι

(C1ld), where Pι is a rank p projection.

Then µι converges to the Bernoulli distribution for each ι. Is it possible to figure out the spectrum gap of H in the thermal

dynamical limit (m → ∞)? The XY-model given by (42) is of great interest. Since it can be shown that the Hamiltonian

of this model is generically gapless [2]. There is some evidence that it is possible to recover this conclusion by estimating

the density of ε-free convolution. Consider the extreme case when Kι = [n], the density of µH becomes continuous when

m → ∞ [35, 36]. Is it possible to make any similar qualitative estimation for other non-trivial interactions (hence for some

non-trivial ε)?

(iii) In [37], the authors considered the dynamical correlator under the Hamiltonian to be given by the sum of two independent

random matrices. So it is natural to consider the correlator under the local random Hamiltonians. Moreover, it is interesting

to consider the convergence to equilibrium under a local random Hamiltonian. For the global case, see [38].
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Appendix A: Some notions of combinatorics

In this appendix, we will recall some combinatoric notations and facts frequently appearing in this paper, which mainly come

from [21, 23] and the references therein.

For natural numbers m,n ∈ N with m < n, we denote by [m,n] the interval of natural numbers between m and n,

[m,n] := {m,m+ 1, . . . ,n− 1,n}.

Moreover, we use [n] to denote [1,n].

Permutations–We denote the set of permutations on n elements by Sn. For a permutation π ∈ Sn we denote #(π) by the number

of cycles of π and by |π | the minimal number of transpositions needed to decompose π . There is a nice relation between #(π)
and |π |, namely,

|π |+ #(π) = n, for all π ∈ Sn. (A1)

Let γn ∈ Sn be the full cycle γn = (1,2, . . . ,n). For any π ∈ Sn we always have

|π |+ |π−1γn| ≥ n− 1.

We call π noncrossing if the equality holds, or equivalently we can say that π lies on the geodesic path 1n −π − γn in Sn. We

denote the set of all noncrossing permutations in Sn by SNC(γn). For σ ,π ∈ SNC(γn). We say that σ ≤ π if σ and π lie on the

same geodesic path and σ comes before π , i.e., 1n −σ −π − γn. The set SNC(γn) endowed with ” ≤ ” becomes a poset.

Fix m,n ∈N and denote by γm,n the product of the two cycles

γm,n = (1,2, . . . ,m) · (m+ 1,m+ 2, . . .,m+ n).

A permutation π ∈ Sm+n is called connected if the pair π and γm,n generates a transitive subgroup in Sm+n. We note that a

connected permutation π ∈ Sm+n always satisfies

m+ n ≤ |π |+ |π−1γm,n|. (A2)

If π ∈ Sm+n is connected, and if we have equality, then we call π annular noncrossing. More general, suppose π ∈ Sm+n is

connected, then we have the following formula

#(π)+ #(π−1γm,n)+ #(γm,n) = m+ n+ 2(1− g), (A3)

where g ≥ 0 is the genus of π relative to γm,n.

Partitions–We say α = {A1,A2, . . . ,Ak} is a partition of [n] if the sets Ai are disjoint and non-empty and their union is equal

to [n]. We call A1, . . . ,Ak the blocks of partition α. The set of all partitions of [n] is denoted by P(n). If there are only two

elements in every block of α ∈ P(n), we call α a pair partition and the set of all pair partitions of [n] is denoted by P2(n). If

α = {A1, . . . ,Ak} and β = {B1, . . . ,Bs} are partitions of [n], we say that α ≤ β if for every block Ai there exists some block B j

such that Ai ⊆ B j. With the relation ” ≤ ”, the set P(n) is also a poset.

Given two elements i, j ∈ [n], we write i ∼α j if i and j belongs to the same block of α. A partition α is called a crossing

if i1 < j1 < i2 < j2 ∈ [n] exist such that i1 ∼α i2 ≁α j1 ∼α j2. We call α a noncrossing partition if α is not crossing, and we

denote NC(n) (resp. NC2(n)) by the set of all noncrossing partitions (resp. noncrossing pair partitions) of [n]. It is known that

the cardinality of the set of noncrossing partitions is the Catalan number, i.e.,

#(N C (k)) = #(N C 2(2k)) =Ck, (A4)

where Ck =
1

k+1

(

2k
k

)

.

Permutations vs. Partitions–A permutation can always be written as a product of cycles, so one can identify a permutation

π ∈ Sn with a partition α ∈ P(n) by omitting the order on the cycles. In particular, there is a one-to-one identification between

the transpositions and the pair partitions. We remark that now n should be even. In this sense, we can multiply a pair partition

α ∈ P2(n) with a permutation π ∈ Sn, and their product α ·π is viewed as an element in Sn. Moreover, we always have

#(α · γn)≤
n

2
+ 1, (A5)

the equality holds whenever α is noncrossing.

For the noncrossing case, the situation is much better; we recall the following fact due to Biane [20]:
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Proposition A.1. There is a bijection between NC(n) and the set SNC(γn), which preserves the poset structure.
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