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CONFORMALLY RELATED INVARIANT (α, β)-METRICS ON

HOMOGENEOUS SPACES

AZAR FATAHI, MASOUMEH HOSSEINI, AND HAMID REZA SALIMI MOGHADDAM

Abstract. In this paper, we give the flag curvature formula of general (α, β)-metrics of

Berwald type. We study conformally related (α, β)-metrics, especially general (α, β)-metrics

that are conformally related to invariant (α, β)-metrics. Also, a necessary and sufficient con-

dition for a Finsler metric conformally related to an (α, β)-metric is given and conformally

related Douglas Randers metrics are studied. Finally, we present some examples of conformally

related (α, β)-metrics.

1. Introduction

In the last two decades, many mathematicians worked on invariant Finsler metrics on ho-

mogeneous spaces (see [4] and [5]). Among different types of Finsler metrics, (α, β)-metrics

have been paid more attention to because of their simplicity and applications in physics (see

[1], [2] and [3]). These Finsler metrics were introduced in [8], by Matsumoto. In fact, the

Randers metric, the first (α, β)-metric defined by G. Randers in 1941, was introduced because

of its application in general relativity (see [10]). Other examples of such (α, β)-metrics defined

because of their applications in physics are the Matsumoto metric and the Kropina metric (see

[1], [2] and [11]).

Suppose that g is a Riemannian metric and β is a 1-form on a differentiable manifold M . For

a C∞ function φ : (−b0, b0) −→ R
+ satisfying

(1.1) φ(s)− sφ
′

(s) + (b2 − s2)φ
′′

(s) > 0, |s| ≤ b < b0,

and ‖β‖α < b0 (see [3]), the Finsler metric F = αφ(β
α
) is called an (α, β)-metric, where

α(x, y) =
√

g(y, y). To define the above-mentioned (α, β)-metrics, Randers, Matsumoto, and

Kropina metrics, it is sufficient to consider the function φ as φ(s) = 1 + s, φ(s) = 1
1−s

, and

φ(s) = 1
s
, respectively.

In the year 2011, Yu and Zhu generalized the concept of the (α, β)-metric to a more general

case which was called the general (α, β)-metric (see [12]). A Finsler metric F on a differentiable

manifold M is called a general (α, β)-metric if there exists a C∞ function φ, a Riemannian

metric g, and a 1-form β, such that

(1.2) F = αφ(x,
β

α
),
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where x ∈ M and α(x, y) =
√

g(y, y).

A special class of general (α, β)-metrics is of the form F = αφ(b2, β
α
), where b2 := ‖β‖2α,

|s| ≤ b < b0, for some 0 < b0 ≤ +∞. This family of general (α, β)-metrics is important

because it includes some Bryant Finsler metrics (see [12]). It is shown that for ‖β‖α < b0 the

function F = αφ(b2, β
α
) is a Finsler metric if and only if φ is a positive C∞ function such that

• φ− sφ2 > 0, φ(s)− sφ2(s) + (b2 − s2)φ22(s) > 0, (if dimM ≥ 3)

• φ(s)− sφ2(s) + (b2 − s2)φ22(s) > 0, (if dimM = 2),

where |s| ≤ b < b0 (see [12]).

It seems that the study of geometric properties of invariant general (α, β)-metrics on homoge-

neous spaces is interesting. But, we see this is not a good idea, because every invariant general

(α, β)-metric, which is defined by an invariant Riemannian metric and an invariant vector field

(1-form), is an invariant (α, β)-metric (see proposition 3.1 below). So we study a family of

general (α, β)-metrics which are very close to invariant (α, β)-metrics. In this work, we study

general (α, β)-metrics that are conformally related to invariant (α, β)-metrics defined by an

invariant Riemannian metric and an invariant vector field. Also we give the flag curvature

formula of general (α, β)-metrics of Berwald type. A necessary and sufficient condition for a

Finsler metric conformally related to an (α, β)-metric is given. Conformally related Douglas

Randers metrics are investigated. Finally, some examples of conformally related (α, β)-metrics

are given.

2. Conformally related (α, β)-metrics

In this section, firstly we consider the general (α, β)-metrics of Berwald type. Easily, similar

to the (α, β)-metrics, we compute the flag curvature formula of the general (α, β)-metrics of

Berwald type. Next, we turn our attention to the Finsler metrics that are conformally related

to the (α, β)-metrics. We give a necessary and sufficient condition for such metrics to be of

Berwald type. Also, we study such Randers metrics that are of Douglas type.

Remark 2.1. Let F (x, y) = αφ(b2, β
α
) be a general (α, β)-metric on a differentiable manifold

M . If β is parallel with respect to α, then F is of Berwald type.

Proof. Assume that β is parallel with respect to α i.e. bi;j = 0, where bi;j is the covariant

derivative of bi with respect to the Riemannian metric g. Suppose that Gi and Gi
α denote the

spray coefficients of F and α, respectively. Now, Proposition 3.4 of [12] shows that Gi = Gi
α

and so F is of Berwald type. �

Proposition 2.2. Let M be a Finsler manifold equipped with a general (α, β)-metric F (x, y) =

αφ(b2, β
α
). If β is parallel with respect to α, then the flag curvature KF (y, P ) of F is given by

(2.1) KF (y, P ) =
α2‖u‖2α − g(y, u)2

F 2gFy (u, u)− gFy (y, u)
2
ρKg(P ).

where P = span{y, u}, ρ = φ(φ−sφ2), and Kg(P ) is the sectional curvature of the Riemannian

metric g.

In a particular case, if {y, u} is an orthonormal set with respect to the Riemannian metric g,

then

(2.2) KF (y, P ) =
1

φ2(1 + g2(X,u)D)
Kg(P ),
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where

D :=
φ22

φ− sφ2
,

and X is the vector field corresponding to the 1-form β with respect to the Riemannian metric

g.

Proof. For a local coordinate system (xi) let s = β
α
, where α(x, y) =

√

gijyiyj and β(x, y) =

biy
i. Using Proposition 3.2 of [12] for the Hessian matrix gFij of F we have:

gFij = ρgij + ρ0bibj + ρ1(biαyj + bjαyi)− sρ1αyiαyj .

where

ρ = φ2 − sφφ2 = φ(φ− sφ2), ρ0 = φφ22 + φ2φ2, ρ1 = (φ− sφ2)φ2 − sφφ22.

Suppose that β is parallel with respect to α i.e. bi;j = 0. According to Remark (2.1), we have

Gi = Gi
α. The Riemannian curvature of F is given by

(2.3) Ri
k = 2

∂Gi

∂xk
− yj

∂2Gi

∂xj∂yk
+ 2Gj ∂2Gi

∂yj∂yk
−

∂Gi∂Gj

∂yj∂yk
.

The formula of Riemannian curvature (2.3) implies that

Ri
j =

αRi
j .

where Ri
j and α

R
i
j are the Riemannian curvatures of F and α, respectively. Now, let

Rij := gFimRm
j , α

Rij := gim
α
R

m
j .

Using the fact

αym
α
R

m
j =

1

α
gimyi αR

m
j =

1

α
yi αRij = 0,

and by a direct computation we have

Rij = gFim
α
R

m
j(2.4)

= (ρgim + ρ0bibm + ρ1(biαym + bmαyi)− sρ1αyiαym)
α
R

m
j

= ρ αRij .

Now, since bi;j = 0, the Ricci identity implies that

bm
αRm

j = bm
αRm

ijk = bi;j;k − bi;k;j = 0.

So

bm
αRm

j = bm
αRm

ijk y
iyj = 0.

By the definition, for P = span{u, y} and u = ui ∂
∂xi , the flag curvature KF of F and the

sectional curvature Kg are given by

(2.5) KF (y, P ) =
gFy (Ry(u), u)

gFy (y, y)g
F
y (u, u)− (gFy (y, u))

2
=

Riju
iuj

F 2gFy (u, u) − (gFy (u, y))
2
,

and

(2.6) Kg(y, p) =
g( αRy(u), u)

g(y, y)g(u, u) − g2(y, u)
=

αRij u
iuj

α2g(u, u) − g2(y, u)
.
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The relations (2.4),(2.5) and (2.6), imply that (2.1) holds.

It can be shown that, if {y, u} is an orthonormal basis of P with respect to the Riemannian

metric g, then

gFy (u, u) = gFiju
iuj = (ρgij + ρ0bibj + ρ1(biαyj + bjαyi)− sρ1αyiαyj )u

iuj

= ρ+ ρ0g
2(X,u),

and

gFy (y, u) = gFijy
iuj = (ρgij + ρ0bibj + ρ1(biαyj + bjαyi − sρ1αyiαyj )y

iuj

= ρ0βg(X,u) + ρ1αg(X,u) = (sρ0 + ρ1)αg(X,u)

= φφ2g(X,u).

On the other hand, we have

(2.7) giju
iuj = g(u, u) = 1, biu

i = g(X,u), αyiu
i =

1

α
g(y, u) = 0.

It follows that

F 2gFy (u, u) − (gFy (y, u))
2 = φ2(ρ+ ρ0g

2(X,u)) − (φφ2g(X,u))2(2.8)

= φ2ρ+ g2(X,u)(φ2ρ0 − (φφ2)
2)

= φ2ρ+ g2(X,u)φ3φ22.

Finally, using (2.7), (2.8) and the relation D = φ22

φ−sφ2
, we have

KF (y, P ) =
ρ

φ2ρ+ g2(X,u)φ3φ22
Kg(P ) =

1

φ2(1 + g2(X,u)D)
Kg(P ).

�

Proposition 2.3. If F̃ is a Finsler metric conformally equivalent to an (α, β)-metric F then

F̃ is an (α, β)-metric.

Proof. Suppose that M is an arbitrary differentiable manifold equipped with an (α, β)-metric

F , defined by a Riemannian metric g and a vector field X. Let F̃ = efF be a Finsler metric

conformally equivalent to F . Suppose that F is defined by F = αφ(β
α
) where φ : (b0, b0) → R

is a C∞ function. Now, we define a vector field X̃ and a Riemannian metric g̃ as follows:

(2.9) X̃ = e−fX, g̃ = e2fg.

Let φ̃ = φ, so we have

α̃φ̃(
β̃

α̃
)(x, y) =

√

e2f(x)g(y, y)φ(
e2f(x)g(e−f(x)X, y)
√

e2f(x)g(y, y)
= ef(x)F (x, y) = F̃

Also we have ‖X̃‖α̃ < b0. �

In the next proposition, we give a necessary and sufficient condition for a Finsler metric F̃

conformally equivalent to an (α, β)-metric F , to be of Berwald type.
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Proposition 2.4. Let M be an arbitrary differentiable manifold. Suppose that F , F̃ , g, g̃,

X and X̃ are as the previous proposition. Let ∇ and ∇̃ be the Levi-Civita connections of the

Riemannian metrics g and g̃, respectively. Then, the Finsler metric F̃ is of Berwald type if

and only if for any vector field Y on M we have

(2.10) ∇Y X = g(X,Y )∇f −XfY

Proof. We know that the Finsler metric F̃ is of Berwald type if and only if the vector field X̃

is parallel with respect to g̃, that is, for any vector field Y on M ∇̃Y X̃ = 0. On the other

hand, by Lemma 1 of [6], we have

(2.11) ∇̃Y X̃ = ∇Y X̃ + (Y f)X̃ + (X̃f)Y − g(X̃, Y )∇f.

So F̃ is a Berwald metric if and only if

(2.12) ∇Y X̃ + (Y f)X̃ + (X̃f)Y − g(X̃, Y )∇f = 0.

Now, suppose that X̃ = e−fX, then we have,

(2.13) (Y e−f )X + e−f (∇Y X + (Y f)X + (Xf)Y − g(X,Y )∇f) = 0.

A direct computation shows that equation (2.13) is equivalent to

(2.14) ∇Y X = g(X,Y )∇f −XfY.

�

In [13], Zhu studied general (α, β)-metrics with vanishing Douglas curvature. Also in [9],

the authors studied two-dimensional conformally related Douglas metrics and showed that

such metrics are Randers. In the following proposition, we study conformally related Douglas

Randers metrics in arbitrary dimension.

Proposition 2.5. Let F = α + β be a Randers metric and F̃ be conformally related to F .

Then, F̃ is of Douglas type if and only if

(2.15) dβ(Y,Z) + Y fg(X,Z)− Zfg(X,Y ) = 0 ∀Y,Z ∈ X (M).

Proof. Let F̃ = α̃+β̃ be a Randers metric that is α̃(x, y) =
√

g̃x(y, y) and β̃(x, y) = g̃(X̃(x), y).

We know that the Finsler metric F̃ is of Douglas type if and only if the 1-form β̃ is closed i.e.

dβ̃ = 0. On the other hand, according to Proposition 14.29 of [7] we have

(2.16) dβ̃(Y,Z) = Y β̃(Z)− Zβ̃(Y )− β̃[Y,Z] ∀Y,Z

It shows that F̃ is a Douglas metric if and only if

(2.17) Y g̃(X̃, Z)− Zg̃(X̃, Y )− g̃(X̃, [Y,Z]) = 0.

We replace X̃ and g̃ with e−fX and e2fg respectively in the above equality obtaining

(2.18) Y (efg(X,Z)) − Z(efg(X,Y ))− efg(X, [Y,Z]) = 0.

By direct computation, (3.4) is equivalent to

(2.19) dβ(Y,Z) + Y fg(X,Z)− Zfg(X,Y ) = 0.
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�

Corollary 2.6. Let F = α + β be a Randers metric of Douglas type and F̃ be conformally

related to F , F̃ = efF , then, F̃ is of Douglas type if and only if fi(x) =
∂f
∂xi

(x) proportional to

bi(x) i.e. fibj − fjbi = 0, where β = bi(x)y
i.

Proof. Since F is a Randers metric of Douglas type hence, dβ = 0. Suppose Y = ∂
∂xi

and

Z = ∂
∂xj

. According to Proposition (2.5) we have ∂f
∂xi

bj −
∂f
∂xj

bi = 0. �

3. Conformally related invariant (α, β)-metrics

In this short section, we study conformally related invariant (α, β)-metrics on homogeneous

spaces. In the following proposition, easily we see that there is no nontrivial G-invariant general

(α, β)-metric on a homogeneous space G/H.

Proposition 3.1. Let F = αφ(x, β
α
) be an (α, β)-metric which is defined by a G-invariant

vector field X and a G-invariant Riemannian metric g on M = G/H. Then, F is a G-

invariant general (α, β)-metric if and only if F is a G-invariant (α, β)-metric. In the special

case any left-invariant general (α, β)-metric defined by a left-invariant vector field and a left-

invariant Riemannian metric is a left-invariant (α, β)-metric.

Proof. Let τa : G/H → G/H be a diffeomorphism that τa(xH) = axH ∀a, x ∈ G. The

Riemannian metric g and the vector field X are G-invariant that is

gxH(dτxY, dτxZ) = geH(Y,Z)(3.1)

dτxX = X.(3.2)

By (3.1) and (3.2) F is an (α, β)-metric. �

Remark 3.2. Let g be a G-invariant Riemannian metric and X be a G-invariant vector field

on the homogeneous space M = G/H. Suppose that f : M → R is a smooth function such

that f(H) = 0 and the vector field X̃ and the Riemannian metric g̃ are defined as follows

(3.3) X̃ = e−fX, g̃ = e2fg.

Clearly X̃ and g̃ are not necessarily G-invariant but the two Riemannian metrics g and g̃ on

M are conformally related. Suppose that F̃ = α̃φ̃(b̃2, β̃
α̃
) is a general (α, β)-metric on G/H,

where α̃ is the norm of the metric g̃, β̃ is the 1-form defined by X̃, and b̃2 = g̃(X̃, X̃). Now,

we assume φ : (−b0, b0) → R such that φ(s) := φ̃(b̃2(H), s). Easily, φ is a C∞ function. It can

be shown that F = αφ(β
α
) is a G-invariant (α, β)-metric on M = G/H, where X = X̃(H) and

β(y) = g(X, y). Furthermore F̃ is conformally related to F .

We now turn to the left-invariant metrics on the Lie groups.

Proposition 3.3. Suppose that F = α + β is a left-invariant Randers metric defined by a

left-invariant vector field X and a left-invariant Riemannian metric g on a Lie group G. Let

F̃ = efF . If F̃ is of Douglas type then for all left-invariant vector fields Y,Z we have

(3.4) g(X, [Z, Y ]) + Y fg(X,Z) − Zfg(X,Y ) = 0.
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Proof. According to Proposition 14.29 of [7] we have

(3.5) dβ(Y,Z) = Y g(X,Z) − Zg(X,Y )− g([Y,Z],X).

Since g is a left-invariant Riemannian metric so

(3.6) dβ(Y,Z) = g(X, [Y,Z])

Due to (2.15) and (3.6) we conclude that (3.4) holds and it completes the proof. �

4. Examples

In this section, using the results obtained in the previous sections, we give some examples

of (α, β)-metrics that are conformally related to Randers metric under which conditions they

are of Douglas type. Also for a certain X and f , we show that F̃ , which is the conformally

related to an (α, β)-metric, is of Berwald type.

4.1. The Heisenberg group H3. The Heisenberg group H3 can be considered as the Eu-

clidean space R
3 with the following multiplication

(4.1) (x′, y′, z′).(x, y, z) = (x′ + x, y′ + y, z′ + z +
1

2
yx′ −

1

2
y′x).

Let g be the left-invariant Riemannian metric on H3 such that the left-invariant basis

(4.2) {e1 =
∂

∂x
−

y

2

∂

∂z
, e2 =

∂

∂y
+

x

2

∂

∂z
, e3 =

∂

∂z
},

is an orthonormal basis. Easily, we can see

(4.3) [e1, e2] = e3, [e1, e3] = [e2, e3] = 0.

Proposition 4.1. Suppose that G = H3 is the Heisenberg Lie group, and F = α + β is a

Randers metric defined by the left-invariant Riemannian metric g (which is defined above) and

a left-invariant vector field on H3. Let F̃ = efF be conformally related to F . Then F̃ is a

Douglas metric if and only if

X = ae1 + be2, a, b ∈ R(4.4)

∂f

∂z
= 0,(4.5)

b
∂f

∂x
− a

∂f

∂y
= 0.(4.6)

Proof. If X = ae1 + be2 and f satisfy the conditions (4.5) and (4.6), easily it can be seen the

relation (2.15) holds, and it shows that F̃ is of Douglas type.

Conversely, if X = ae1 + be2 + ce3 and F̃ is a Douglas metric, based on Proposition (2.5), we

have

dβ(Y,Z) + Y fg(X,Z)− Zfg(X,Y ) = 0,
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which is satisfied for all left-invariant vector fields Y and Z.

In the special case where Y = ei and Z = ej (i < j, i, j ∈ {1, 2, 3}), we have

b
∂f

∂x
− a

∂f

∂y
− (by + a

x

2
)
∂f

∂z
= c,(4.7)

c
∂f

∂x
− (cy + a)

∂f

∂z
= 0,(4.8)

c
∂f

∂y
+ (c

x

2
− b)

∂f

∂z
= 0.(4.9)

Then, by (4.7), (4.8) and (4.9), we have c = 0, ∂f
∂z

= 0 and b∂f
∂x

− a∂f
∂y

= 0. �

Corollary 4.2. a: If X = be2 then, F̃ is of Douglas type if and only if f = f(y).

b: If X = ae1 then,F̃ is of Douglas type if and only if f = f(x).

4.2. The Lie group R ⋊ R
+. Let G be the two-dimensional solvable Lie group R ⋊ R

+ and

g be the left-invariant Riemannian metric on G = R⋊ R
+ such that the left-invariant basis

(4.10) {e1 = y
∂

∂y
, e2 = y

∂

∂x
},

is an orthonormal basis. Easily, we can see

(4.11) [e1, e2] = e2.

Suppose that F = α + β is a Randers metric defined by the above left-invariant Riemannian

metric g and a left-invariant vector field X = ae1 + be2(a, b ∈ R).

Proposition 4.3. Suppose that G is the Lie R⋊ R
+, and F = α + β is a Randers metric as

above. Let F̃ = efF be conformally related to F , then F̃ is a Douglas metric if and only if

by
∂f

∂y
− ay

∂f

∂x
= b.(4.12)

Proof. If X = ae1 + be2 is a left-invariant vector field, and f satisfies the conditions (4.12),

easily it can be seen the relation (2.15) holds and it is shown that F̃ is of Douglas type.

Conversely, if F̃ is a Douglas metric and X = ae1 + be2, based on Proposition (2.5), we have

dβ(Y,Z) + Y fg(X,Z)− Zfg(X,Y ) = 0

which is satisfied for all left-invariant vector fields Y and Z.

In the special case where Y = e1 and Z = e2 we have

(4.13) by
∂f

∂y
− ay

∂f

∂x
= b.

�

Corollary 4.4. a: If X = be2 then, F̃ is of Douglas type if and only if f = lny + g(x).

b: If X = ae1 then,F̃ is of Douglas type if and only if f = f(y).

Example 4.5. Let G = R⋊R
+ and F be an (α, β)-metric defined by the above left-invariant

Riemannian metric g and a left-invariant vector field X. For the Levi-Civita connection of

g, we can see that ∇e2e1 = −e2 and ∇e1e1 = 0. Let X = ae1(a ∈ R), f(x, y) = lny and

Y = y1e1 + y2e2(y1, y2 ∈ C∞(G)). Easily we have ∇YX = −ay2y
∂
∂x

, g(X,Y ) = ay1, Xf = a

and ∇f = y ∂
∂y
. Therefore, according to the proposition(2.4), F̃ is of Berwald type.
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4.3. The Lie group R
2
⋊ R

+. Let G = R
2
⋊ R

+ and g be the left-invariant Riemannian

metric on G such that the left-invariant basis

(4.14) {e1 = z
∂

∂z
, e2 = z

∂

∂x
, e3 = z

∂

∂y
},

is an orthonormal basis. Clearly, we can see

(4.15) [e1, e2] = e2, [e1, e3] = e3, [e2, e3] = 0.

Suppose that F = α + β is a Randers metric defined by g and a left-invariant vector field

X = ae1 + be2 + ce3(a, b, c ∈ R) on G = R
2
⋊R

+.

Proposition 4.6. Let G = R
2
⋊R

+ and F = α+β be a Randers metric as above. If F̃ = efF

is conformally related to F , then F̃ is a Douglas metric if and only if

bz
∂f

∂z
− az

∂f

∂x
= b,(4.16)

cz
∂f

∂x
− bz

∂f

∂y
= 0,(4.17)

cz
∂f

∂z
− az

∂f

∂y
= c.(4.18)

Proof. If X = ae1 + be2 + ce3 and f satisfy the conditions (4.16), (4.17) and (4.18), easily it

can be seen the relation (2.15) holds, and it shows that F̃ is of Douglas type.

Conversely, if F̃ is a Douglas metric and X = ae1 + be2 + ce3, based on Proposition (2.5), we

have

dβ(Y,Z) + Y fg(X,Z)− Zfg(X,Y ) = 0

which is satisfied for all Y and Z in the Lie algebra of G.

In the special case where Y = ei and Z = ej (i < j, i, j ∈ {1, 2, 3}) we have

bz
∂f

∂z
− az

∂f

∂x
= b,(4.19)

cz
∂f

∂z
− az

∂f

∂y
= c,(4.20)

cz
∂f

∂x
− bz

∂f

∂y
= 0.(4.21)

�

Corollary 4.7. a: If X = be2 + ce3 then, F̃ is of Douglas type if and only if f =

lnz + g(x, y) and cz ∂f
∂x

− bz ∂f
∂y

= 0.

b: If X = ae1 + ce3 then,F̃ is of Douglas type if and only if f = ln|z|+ c
′

(c
′

∈ R).

c: If X = ae1+be2 then,F̃ is of Douglas type if and only if f = f(x, z) and bz ∂f
∂z

−az ∂f
∂x

=

b.

Example 4.8. Let G = R
2
⋊R

+ and F be an (α, β)-metric defined by the above left-invariant

Riemannian metric g and a left-invariant vector field X. We see that ∇e1e3 = ∇e2e3 = 0

and ∇e3e3 = e1. Suppose that X = ae3(a ∈ R), f(x, y, z) = lnz and Y = y1e1 + y2e2 +

y3e3(y1, y2, y3 ∈ C∞(G)). Easily ∇YX = ay3z
∂
∂z
, g(X,Y ) = ay3, Xf = 0 and ∇f = z ∂

∂z
.

Therefore, according to the Proposition(2.4), F̃ is a Berwald metric.
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