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Introduction

Abstract

We explore Arnold’s J+-invariant of immersions – planar smooth closed curves with non-vanishing
derivative, at most double points and only transverse intersections – and computation methods like
Viro’s sum, among others.

Only basic undergraduate mathematics is needed to understand the contents of this introductory
paper and everything we need that is above that is recalled or introduced. Examples, exercises and
solutions are included for practice.

Introduction

In this introductory paper will thoroughly walk through the following: A regular immersed loop is a
smooth map of a circle into the plane, i.e. q : S1 → C, with non-vanishing derivative. We identify
the map with its image K = q(S1) ⊂ C, ignoring its parametrization and orientation. We call an
immersed loop generic if it has only transverse self-intersections and all of them are double points. For
us all loops of interest are generic immersed loops, which we will simply call immersions if not explicitly
stated otherwise.

Vladimir Arnold introduced three invariants for such immersions [Arn93], of which the invariant J+

is of special interest for this introductory paper. If we consider an immersion during a regular homotopy
with only isolated non-generic moments, then the J+-value of the immersion changes only under
the first of the three so-called disasters – direct self-tangencies, inverse self-tangencies, triple point
intersections. If there are two immersions of the same rotation number, then by the Whitney–Graustein

Theorem one can be obtained from the other through a regular homotopy. Two such immersions have
the sameJ+-value if and only if during a regular homotopy from one to the other, the number of positive
direct self-tangencies is the same as the number of negative direct self-tangencies. As a consequence,
two immersions can only be homotopic to each other without direct self-tangencies – a tangential
double point where the directions agree – if their J+-value is the same.

Homotopies of immersions without direct self-tangencies are of interest for applications in planar
orbital physics – which are not discussed in this paper – where the Hamiltonian is conserved as the
sum of the potential and kinetic energy. For instance if the orbit of a particle moving in a conservative
force field changes, direct self-tangencies cannot occur, but inverse self-tangencies can occur as long
as velocity-dependent forces are present, like the Coriolis force or the Lorentz force. Without any
velocity-dependent force neither direct nor inverse self-tangencies would be possible.

Other invariants based on J+ can yield further applications, as for instanceJ1 andJ2 introduced
by Cieliebak, Frauenfelder and van Koert for any immersion K ⊂ C∗,C∗ := C \ {0}, see [CFK17]. They
are invariant under Stark–Zeeman homotopies (see [CFK17]), which are of special interest for orbits of
satellites in space but are not explored in this introductory paper.

After we finish the introduction to J+, as an extra, an approach to calculate J+ of interior sums (a
notion to be introduced in this paper) of immersions is developed. We take any two immersions K,K ′,

putK ′ into a connected componentC ofC\K, cross-connect the two immersions at two arcs where the
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Introduction

orientations match, and call the resulting immersion K×. We then show that the following equation
holds:

J+(K×) = J+(K) + J+(K ′)− 2 · ωC(K) · rot(K ′),

with ωC(K) the winding number of K around C and rot(K ′) the rotation number of K ′.
In order to prove this, in Chapter 4.1 we find and prove an equation for the computation of the

rotation number of an immersion K that only uses the winding numbers of the connected components
of C \K (denote them as ΓK) and the index of each double point (denote them asDK), which we
define to be the arithmetic mean of the winding numbers of the four connected components adjacent
to a double point. We obtain the equation

rot(K) =
∑
C∈ΓK

ωC(K)−
∑
p∈DK

indp(K).

First we recall some geometry basics in Chapter 1 and then introduce a few concepts of changing
curves and events that can occur in Chapter 2.

Acknowledgements: This introductory paper would not exist without the successful completion
of my bachelor thesis, which was only possible thanks to the extraordinarily patient guidance and
motivation from Kai Cieliebak, Urs Frauenfelder, Ingo Blechschmidt, Julius Natrup, Florian Schilberth,
Milan Zerbin, Leonie Nießeler and other friends from the University of Augsburg.
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1 Basics of immersions
Definition 1.1 (Immersed loop) An immersed loop is a regular loop, i.e. a smooth map

q : S1 → C

with non-vanishing derivative, which we will, by slight abuse of notation, from here on identify
with its oriented image K = q(S1) ⊂ C.

This abuse of notation is not dishonest, as we will not need any explicit definitions for immersed
loops. Instead, we will draw many pictures – in our heads and in this paper – to talk about immersed
loops. Note that orientation preserving reparametrizations of the immersion – i.e. changing how “fast”
the curve is traversed without changing the direction – have no effect on the oriented image and are
consequently ignored from here on.

Remark. In general, a path in a topological space X is a continuous map f : [0, 1] → X. It is called a

closed path or a loop if f(0) = f(1),which is equivalent to defining a loop as a path withS1, the circle, as the

domain of the path. A path (or loop) is called regular if it is smooth and has non-vanishing derivative, so the

derivative is non-zero everywhere. The image of a path (or loop) is often called a curve. This is just a reminder

– all curves in this paper will be regular and closed, so we do not need these general definitions.

Any curve that we can draw on paper, taking the following rules into consideration, is a valid visual-
ization for an immersed loop:

• ends where it started (loop),

• no interruptions (continuous),

• no edges (smooth, derivative never zero),

• is given one of two possible directions (oriented).

The pictures in Figure 1 represent immersed loops.

Figure 1: Examples of immersed loops.

The pictures in Figure 2 do not.

Introduction to Arnold’s J+-Invariant 3



Figure 2: Not valid visualizations of immersed loops.

Let’s pause and ponder

(solutions in the appendix)

1. Why is the third picture in the first row of Figure 1 ambiguous? How many different immersions
could be meant with the information of the picture and how could you fix it if you knew the
immersion better?

2. Why are the pictures in Figure 2 not valid visualizations of immersed loops? Find at least one
reason each.

3. Try to fix every picture in Figure 2 by adding some curves. Edges need some fantasy but are fairly
easy.

If points are passed twice (thrice) by a curve, we call these points double points (triple points). Although
a curve can pass any point an arbitrary amount of times, without loss of generality, we will not consider
anything above triple points.

Definition 1.2 (Generic immersion) We call an immersion a generic immersion if it only has transverse

self-intersections which are at double points.

This is an important definition for our invariants, asJ+ (see Definition 3.2) is only defined for generic
immersed loops, i.e. not defined for immersed loops with tangential intersections or more-than-double
points.

From here on we will often say immersions to mean generic immersed loops if not stated otherwise.
Definition 1.3 (Connected sum of immersions) The connected sum of two immersions is created by
joining them together as seen in Figure 3.

The immersions can be joined together at any outer arc. Of course this changes the resulting immer-
sion.

Technically we should also be careful with the orientations of the immersions, which should not be
changed by connecting them. There are two easy solutions to the problem of incompatible orientations
at the connection:

• put a sideways eight (later known as K0, see Figure 12) between the immersions, perform two
connections, get a kind of cross-connected sum

• ignore the problem and just change the orientation of one immersion.

Both “solutions” are fine for our purposes, as neither of them changes the invariant J+ that we
introduce below.

4 Introduction to Arnold’s J+-Invariant



Figure 3: Connected sum of two immersions. We make sure to smoothen out the edges at the last step
of the connection.

Definition 1.4 (Winding number ω) The winding number ωx(K) of an immersed loop K is the
amount of turns of the immersion around the point x ∈ C \ K, counting up (down) by one
for every turn in counter-clockwise (clockwise) direction.

For the sake of simplicity we forgo more formal definitions of the winding number.
Sometimes it is interesting to know the winding number of an immersion not around a single point,

like the origin point, but around an arbitrary point within a connected component of C \K.

Definition 1.5 (Connected component) A connected component C is a maximal connected subset of a
non-empty Euclidean space X. An area C is connected if any two points can be connected by a curve
within C and maximal if ∀D ⊆ X,C ∩D 6= D:C ∪D is not connected.

Remark. For a generic immersed loopK there arenK+2 many connected components, withnK the number

of double points of K. One of the components is unbounded, with winding number 0.

We denote the winding number for all points in a connected component C of C \K as

ωC(K) := ωy(K), y ∈ C arbitrary.

The difference of the winding number of two connected components of C \K that are adjacent to
each other is always equal to 1. Looking at any connected component C with a winding number of a,
the winding number of any adjacent component C ′ is a + 1 (a − 1) if the immersion’s arc, looking
from C to C ′, is oriented from left to right (right to left). In other words, a flatlander living in one of the
connected components can traverse an arc of the immersion to get to another connected component
and the winding number of her location will increase (decrease) by 1 if the traversed immersion arc is
oriented from left to right (right to left), see Figure 4.

With this trick it is easy to label all components’ winding number in a picture of an immersion,
starting from the unbounded component with winding number 0.

Introduction to Arnold’s J+-Invariant 5



Figure 4: Changing winding number between adjacent connected components.

Lemma 1.6 The winding numbers around a double point p are always of this form: let the lowest
winding number around p be a ∈ Z. Only one of the four components has winding number a,
the component on the opposite site has winding number a + 2 and the other two have winding
number a + 1.

Proof. See Figure 5. If a is the lowest winding number around p, the two adjacent components around
p have to be a + 1, so the arcs to cross to get to these components have to be oriented left to right. This
means the other two arcs also have to be oriented left to right and the last component has winding
number a + 2.

Figure 5: Winding numbers around a double point.

Definition 1.7 (Index indp(K)) The index indp(K) of a double point p in K is the arithmetic mean
of the winding numbers of the four connected components of C \K adjacent to p.

When calculating indp(K) and two corners of an adjacent component are equal to p, we count
this one component and its winding number twice in the arithmetic mean to get a total of four
adjacent components.

Remark 1.8 Using Lemma 1.6 we can see that indp(K) is always equal to the winding number a+ 1

appearing twice around p,with a ∈ Z the lowest winding number around p (same as in the lemma),
as

(a + (a + 1) + (a + 1) + (a + 2))

4
= a + 1.

Remark 1.9 It follows that whenever we draw a double point with the intersecting parts of the
immersion both directed to the right (in the picture), then the index of that double point is equal to
the winding number of the connected component to its right (or left). See Figure 5.

This is also true if the intersecting parts are both directed from right to left.

6 Introduction to Arnold’s J+-Invariant



Definition 1.10 (Rotation number rot) The rotation number rot(q) of an immersed loop q is equal to
the winding number of q̇, its derivative. So rot(q) = ω0(q̇).

Remark. Sometimes in other works the rotation number is called the (rotation) index of an immersion.

The rotation number is equal to how many times the tangent vector turns when travelling along the
immersion once, counting up (down) by one for every turn in counter-clockwise (clockwise) direction.

Remark. Changing the orientation of an immersion K changes the sign of its rotation number, the winding

number of all the connected components in C \K and the indices of all the double points of K.

Figure 6 shows a few immersions and their winding numbers, double point indices and rotation
number.

Figure 6: Immersed loops and their rotation number (below) and winding numbers for each connected
component. The bold and cursive numbers are the indices of some double points.

Definition 1.11 (Interior loops) An interior loop within a connected component of an immersion K

is the addition of a small loop at a boundary arc of the connected component. The loop is small
enough to only intersect itself, not any other part of the immersion.

A double interior loop is an interior loop with an interior loop within itself. Analogous for triple,
quadruple etc. or simply m-interior loop, m ∈ N+.

In Figure 12 the first picture is a circle with one single interior loop. The last picture is a circle with
three single interior loops. In Figure 3 the top left picture is a circle with a single interior loop on the
left and a double interior loop on the right.

Introduction to Arnold’s J+-Invariant 7



2 Events during homotopies of immersed loops

Looking at regular homotopies which do pass through immersions with tangential intersections or
triple points is fundamental to calculating the J+-invariant of any non-trivial immersion.

Definition 2.1 (Regular homotopy) A regular homotopy between two immersed loops q and q′ is a
smooth map

h : S1 × [0, 1]→ C,

with h(·, 0) = q and h(·, 1) = q′ and h(·, t) : S1 → C an immersed loop ∀t ∈ [0, 1].
We call two immersed loops regularly homotopic if there is a regular homotopy between these two

immersed loops.

Remember that by the Whitney–Graustein Theorem any two immersions are regularly homotopic if
and only if they have the same rotation number.

Intuitively, a regular homotopy grabs one of the two immersions and deforms it into the other
immersion and, most importantly, keeps it smooth with non-vanishing derivative – i.e. no edges
– during the deformation. A non-regular homotopy would have no such constraint that keeps the
immersion smooth during the deformation.

Let us interpret the second variable of a regular homotopy as time passing going from one immersion
to another, so we can talk about “moments” and a “before” and “after”.

Remark. The immersions during a regular homotopy do not have to always be generic. There can be t0 ∈
(0, 1) withh(·, t0) not generic, i.e. with self-tangencies or at least triple points. Without loss of generality, these

moments t0 are isolated within our regular homotopies and even in the non-generic case we have at most triple

points. This is honest, because if the immersion during a homotopy is not generic in all but isolated moments,

small perturbations of the homotopy can make the immersion generic in all but isolated moments.

So during the process of deformation we can take note of three important isolated scenarios that
can happen an arbitrary amount of times to the changing immersion: Direct self-tangencies, inverse
self-tangencies, and triple points. In his paper, Arnold calls them “perestroikas” (Russian for restructur-

ing, rearrangement, reorganisation), which is how they are often called in literature since then. Others
sometimes call them “disasters”.

Definition 2.2 (Direct (inverse) positive (negative) self-tangency) A self-tangency is the event of our
immersion crossing itself tangentially. We call this self-tangency direct (inverse) if both parts involved
in the crossing of the immersion are (are not) oriented in the same direction.

We call a direct self-tangency positive (negative) if the number of double points increases (de-
creases) by 2.

In other words, if the self-tangency occurs at t0 ∈ (0, 1), then there is an ε > 0 so that the number
of double points in h(·, t0 − ε) and h(·, t0 + ε) differs by two. See Figures 7 and 8.

Only direct self-tangencies will be important for our invariant J+, inverse self-tangencies have no
effect on it. We need to be careful not to confuse inverse/direct with positive/negative. One is about
the orientation of the involved curve arcs. The other is about whether two double points appear or
disappear.

8 Introduction to Arnold’s J+-Invariant



Figure 7: Direct self tangency during a regular homotopy. Left to right: positive. Right to left: negative.

Figure 8: Inverse self tangency during a regular homotopy. Left to right: positive. Right to left: negative.

Figure 9: Regular homotopy between two immersed loops with (reading left to right) one negative in-
verse self-tangency (picture 2) and one positive direct self-tangency (picture 4), first removing,
then adding two double points.

Another event that can occur, but has no effect on our invariant, is the crossing of triple points as
seen in Figure 10. The number of double points does not change at this event. Let us take note of that
and be happy that we do not have to care about them for our intents and purposes.

Figure 10: Triple point occurring during a regular homotopy.

One last note is that in related literature, like in [CFK17], other invariants based on J+ are introduced
that extend regular homotopies to allow for inner and outer cusps, which are then called Stark–Zeeman

homotopies. As cusps are not smooth, they will not appear in our homotopies, so be careful not to allow
any when experimenting with homotopies, as they wipe out or create inner and outer loops, which
would often change the invariant J+. This also always changes the rotation number of the immersion.
Figure 11 illustrates a homotopy with isolated cusps.

Figure 11: Example of cusps forming during a non-regular homotopy. Outer cusp in the third picture,
inner cusp in the fourth picture.

Introduction to Arnold’s J+-Invariant 9



3 The J+-invariant

In his paper [Arn93, Plane Curves, Their Invariants, Perestroikas and Classifications], Arnold introduces
the invariants J+, J− and St among others. His findings, especially on the J+-invariant and its
well-definedness, lay the foundations for the results of this paper.

3.1 Properties of J+

Before diving into the technicalities of J+, Figure 12 are some fairly simple immersions and their
respective values for J+.

Figure 12: The standard curves. From left to right: K−2,K−1,K0,K1,K2,K3,K4.

Definition 3.1 (Standard curves Kj) We call the immersions in Figure 12 the standard curves Kj .

• K0 is the figure eight,

• ∀j 6= 0 : Kj is a circle with |j| − 1 many interior single loops that do not intersect with each
other and with rotation number rot(Kj) = j.

Definition 3.2 (J+) The invariant J+ is a map

{K |K is a generic immersed loop} −→ 2Z,

with
K0 7−→ 0

and
Kj 7−→ −2(|j| − 1).

Further, the invariant J+

• changes by +2 (−2) under positive (negative) direct self-tangencies, i.e. tangent immersion
crossings where the number of double points increase (decrease) and both involved tangent
arcs have the same direction (see Definition 2.2),

• is additive under connected sums (see Figure 1.3),

• does not change under inverse self-tangencies or crossings through triple points,

• is independent of the orientation of the immersion.

In his paper, Arnold proves that with these properties J+ is well-defined. In his proof he shows
that the difference of positive and negative direct self-tangency moments during a regular homotopy

10 Introduction to Arnold’s J+-Invariant



3.2 Calculation of J+

between two immersions is always the same, independent of the chosen regular homotopy [Arn93].
This is important to remember when calculating J+ of an immersion by showing that it is regularly
homotopic to some other curve with knownJ+, as any regular homotopy – or the composition of many
– as simple or as complicated as it might be, will do.

Further, Arnold shows that there is in fact a unique invariant of generic immersions of fixed rotation
number whose value does not change under inverse self-tangencies or triple point crossings, but
increases (decreases) by a constant number a+ under a positive (negative) direct self-tangency [Arn93,
Theorem 2]. He then chooses

a+ = 2, K0 7→ 0, Kj 7→ −2(|j| − 1), ∀j ∈ Z \ {0}

and calls the unique invariant, with these choices, J+. The reasons for these choices are explained in
his paper, one of which is allowing for additivity of connected sums.

Most of the time we only denote the orientation in the picture of an immersion to decide whether a
self-tangency is direct or inverse, as J+ is independent of the orientation of the immersion. With this
in mind, some pictures of immersions from here on will lack any indication of orientation.

3.2 Calculation of J+

Let K be an arbitrary generic immersed loop. By the Whitney–Graustein Theorem we know that K is
regularly homotopic to the standard curve Kj (see Figure 12) with the same rotation number as K, i.e.
to Krot(K).

To calculate J+(K), the most straight forward way is to find a regular homotopy between K and
the standard curve Krot(K) and count how many positive direct self-tangencies d+ and how many
negative direct self-tangencies d− occur from K to Krot(K). By the properties of J+, see Definition 3.2,
it follows that:

J+(K) = J+(Krot(K))− 2d+ + 2d−

Sometimes it is useful to use the additivity of connected sums to split an immersion up into two.

Figure 13: Some immersions and their J+-value.

Let’s pause and ponder

(solutions in the appendix)

4. Try to verify the rotation number, winding numbers and double point indices for the immersions
in Figure 6.

Introduction to Arnold’s J+-Invariant 11



3.2 Calculation of J+

5. Try to verify J+ for the immersions in Figure 13.

6. Calculate J+ for the immersions at the top left, top right and bottom in Figure 3.

7. How would J+ of any Kj , |j| > 2, change if neighboring interior loops would intersect each
other a little, i.e. creating two new double points? What if they intersect even more, creating two
more new double points?

8. How would J+ of any Kj , |j| > 1, change if interior loops would intersect the top part of the
circle?

9. The standard curve K2 is a circle with a single interior loop. What is J+ of a circle with a double
interior loop? What about a triple interior loop?

Finding homotopies between an immersion and its corresponding standard curve can prove to be
very arduous. Especially if we want to introduce even minor changes to a curve with already knownJ+.

Two important tools to calculate J+ faster are given next.

• A formula to directly calculate J+ of an immersion with sums over its double points and con-
nected components (Viro’s formula).

• How two immersions with knownJ+ can be combined by “interior sums” and what theJ+-value
of the resulting immersion is.

3.2.1 Viro’s formula

Our first tool is Viro’s Formula for J+ [Vir95, 3.2.B Corollary]. Given any generic immersed loop it
calculates J+ using the number of double points, the winding numbers of all components and the
arithmetic mean of the winding numbers around each double point.

Lemma 3.3 [Viro’s Formula] Let K be a generic immersed loop. Then

J+(K) = 1 + nK −
∑
C∈ΓK

(ωC(K))2 +
∑
p∈DK

(indp(K))2,

with

• nK the number of double points of K

• ΓK the connected components of C \K

• DK the double points of K

• indp(K) the index of the double point p in K, see Definition 1.7

Remark. In Viro’s paper, the formula is stated as

J+(K) = 1−
∑
C∈ΓK

(ωC(K))2 +
∑
p∈DK

(1 + (indp(K))2),

which is equal to the way we wrote it.

12 Introduction to Arnold’s J+-Invariant



3.2 Calculation of J+

The formula can be proven the same way we proved Proposition 4.3, which is different from the proof Oleg

Viro did in his paper [Vir95].

Example Let us use Viro’s formula to calculate J+ of the immersion K from Figure 14. It is a circle
with one single interior loop and one double interior loop.

Figure 14: A circle with one single interior loop and one double interior loop. Picture one is just the
immersion without orientation, picture two with winding numbers, picture three with double
point indices, picture four with both.

In order to use Viro’s formula, we need to count the number of double points, get the square of the
winding number for all connected components of C \K and the square of the double point indices.

The number of double points is 3, which can be easily seen in the third picture of Figure 14, where
the double points are marked. So

nK = 3.

Next we need all winding numbers. We started with an immersion K that has no orientation. For
Viro’s formula we will need the square of all winding numbers of the connected components, so it
does not matter which orientation we choose. In this example we choose it so that the immersion
has positive rotation number. With the orientation chosen, we can label all winding numbers of the
connected components of C \K, see the second picture of Figure 14. With this we can calculate∑

C∈ΓK

(ωC(K))2 = 02 + 12 + 22 + 22 + 32

= 0 + 1 + 4 + 4 + 9

= 18.

Now the last thing we need is the double point indices. Again we only need the squares of them, so
it is ok that we choose any of the two orientations. Remember that the index of a double point is the
same as the winding number that appears twice around that double point (see Remark 1.8). With this
we can easily label all double point indices, see the third picture of Figure 14. With this we can calculate∑

p∈DK

(indp(K))2 = 12 + 12 + 22

= 1 + 1 + 4

= 6.

Introduction to Arnold’s J+-Invariant 13



3.3 Exercises

We combine these observations to get J+(K) using Viro’s formula:

J+(K) = 1 + nK︸︷︷︸
=3

−
∑
C∈ΓK

(ωC(K))2

︸ ︷︷ ︸
=18

+
∑
p∈DK

(indp(K))2

︸ ︷︷ ︸
=6

= 1 + 3− 18 + 6

= −8.

3.3 Exercises

In this subchapter we mainly take a look at a few different interesting immersions and how to calculate
theirJ+-value using homotopies and related tricks. It is not necessary to be proficient at calculatingJ+

of an immersion using homtopies in order to understand the results of this paper. This subchapter is
mainly included because some experience in using homotopies to calculate J+ of an immersion is an
important skill that enables us to find new interesting results. Most of the results of this paper were
envisioned drawing immersions and then applying homotopies in different ways. Once the idea for a
result was there, it was simplified using Viro’s formula.

Of course we can use Viro’s formula to calculate J+ all the time. Applying it is always the same
procedure as it is just a matter of summing up integers, once the winding numbers are all labeled,
see the example on page 13. This makes it less prone to errors than using homotopies, as homotopies
have to come to life in our heads and we need to find the isolated moments of direct self-tangencies
during the homotopies. The main drawback is that using Viro’s formula to see the change of J+ after a
homotopy is generally slower than checking for direct self-tangencies.

To avoid bloating this subchapter, we do not carry out the homotopies and calculations here, but
instead display the solutions in the appendix at the end of this paper.

Let’s pause and ponder

(solutions in the appendix)

10. Try to verify the rotation number and J+ for the immersions in Figure 27.

Figure 15

Figure 16

14 Introduction to Arnold’s J+-Invariant



3.3 Exercises

Figure 17

Figure 18

11. Calculate J+ for the immersions in Figures 15, 16, 17 and 18.

12. Prove Viro’s formula. Do not use Viro’s formula or Theorem 4.2 [J+ of interior sums].

Introduction to Arnold’s J+-Invariant 15



4 Advanced Topic: Interior sum of immersions

This extra chapter is not part of the introduction to the J+-invariant, but requires no additional
knowledge and was added for readers who want to apply their knowledge on J+ for practice or
recreational reasons – if not for using the contents of the following theorem and corollaries.

Figure 19: Interior sum of two immersions. The tinted connected component of immersion K is where
we want to addK ′ (first two pictures). The bold immersion arcs are where we want to connect
the immersions together. In picture 2 we draw K ′ smaller and the connected component C
bigger before putting them together in picture 3. There grey dotted lines hint at the former
arcs A and A′ which are now connected. Note that they are not connected with two parallel
segments like in connected sums of immersions, but instead with crossed segments. The cross
connection is visualized with dashed black lines. Picture 4 shows immersion K×.

Definition 4.1 (Interior sum of immersions) Let K and K ′ be two arbitrary immersions.
Consider any bounded connected component C of C \ K and any boundary arc A of C, see

Figure 19. Denote by Cadj the unique connected component of C \K that also has A as a boundary
arc and Cadj 6= C.

Next consider any connected component C ′ of C \K ′ that shares a boundary arc A′ with the
unbounded connected component.

Denote the difference of winding numbers ωC(K)− ωCadj(K) as ωadj.

If ωadj · ωC′(K ′) = −1, change the orientation of K ′ so ωadj = ωC′(K
′) ∈ {−1, 1}. If the

orientation of K ′ needs to be changed, denote K ′ with changed orientation still as K ′ as if it
was already equipped with the right orientation all along – the interior sum is not defined for not
matching orientations.

Denote with K× the immersion that we construct like this: put K ′ into C without intersections
between K and K ′ – it might need to be drawn smaller in visualizations – and cross-connect the
arcs A and A′.

We define this new immersion K× as the interior sum of immersions K,K ′ at boundary arcs A,A′

into the component C of C \K , with A,A′, C as above. See Figure 19 for an illustration.
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4.1 Rotation number from winding numbers

The theorem presented and proven here is a byproduct of trying to prove one of the main results in
a shortly to be published paper of mine about the change of J+-like invariants at bifurcations, with
inspiration from [CFK17, Lemma 4], which is stated in Corollary 4.6 and is a special case of the following
theorem. This approach was later dropped and not used for anything at all. What we are left with is a
fun theorem, a surprising formula for the rotation number (see the following Subchapter 4.1) and a
wealth of corollaries.

Remark. [CFZ19, Corollary 6.15] by Cieliebak, Frauenfelder and Zhao can also be used to prove our Corol-

lary 4.11. It is proven differently than here and does not use Theorem 4.2, but the theorem also directly follows

from the corollary, so the results of this subchapter are not entirely new, but presented in a different light.

Theorem 4.2 (J+ of interior sums) If K× is the interior sum of immersions K,K ′ at boundary
arcs A,A′ into the component C of C \K, then

J+(K×) = J+(K) + J+(K ′)− 2 · ωC(K) · rot(K ′).

In order to prove this theorem we first need a surprisingly elegant formula to calculate the rotation
number of an arbitrary immersionK only from its connected components’ winding number and double
point indices.

4.1 Rotation number from winding numbers

Proposition 4.3 (Rotation number from winding numbers) Let K be an arbitrary immersion – i.e.
a generic regular closed curve. Then:

rot(K) =
∑
C∈ΓK

ωC(K)−
∑
p∈DK

indp(K) (1)

with

• ΓK the connected components of C \K

• DK the double points of K

• indp(K) the index of the double point p in K, see Definition 1.7

We need the following lemma for one part of the proof of the proposition.
Lemma 4.4 A positive self-tangency of an immersion K splits one connected component of C \K
into two and creates another new one, which increases the total amount of connected components
by two.

Proof. The completely new connected component is obvious and not the interesting part of the lemma.
It is the one that is bounded only by the two arcs that were involved in the self-tangency (see Figure 22,
the one with winding number a− 1).

Now suppose that a positive self-tangency does not split a connected component C up into two
separate connected components C1 and C2. So there is still a curve connecting all the points from C1

with all points in C2. This would mean that before the positive self-tangency there was a loop Ko

in C that separates C into two disjoint areas and the immersion K had points in both areas without
intersecting the loop Ko, which is not possible for a continuous curve.
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4.1 Rotation number from winding numbers

Proof of Proposition 4.3: Rotation number from winding numbers. We prove this in two easy steps. First
we show that the equation is true for the standard curvesKj (introduced later, see Definition 3.1). Then
we show that the right side of the equation does not change under regular homotopies.

Let us prove the equation for the standard curves. We know that rot(Kj) = j by their definition.
The standard curve K0 has three connected components with winding numbers 0,−1, 1 and one

double point with index 0, see Figure 20. So the equation is

rot(K0) = (0− 1 + 1)− 0 = 0.

The standard curve Kj for j > 0 (j < 0) – see Figure 20 – has:

• the unbounded component with winding number 0

• one connected component with winding number 1 (−1)

• |j| − 1 many loops each bounding a connected component with winding number 2 (−2)

• |j| − 1 many double points each with index 1 (−1)

Figure 20: Standard curve K0 on the left, Kj on the right and their rotation number (below) and
winding numbers for each connected component. The bold and cursive numbers are the
indices of the double points. Here only for j > 0 multiply values by−1 for negative j < 0.

So the equation for j > 0 and for j < 0 is:

rot(Kj) =

(0 + 1 + 2(j − 1))− 1(j − 1) = j, if j > 0

(0− 1− 2(−j − 1)) + 1(−j − 1) = j, if j < 0

Next let us prove the invariance of
∑

C∈ΓK

ωC(K) −
∑

p∈DK

indp(K) under regular homotopies for

arbitrary immersions K.

Let K be an arbitrary generic immersed loop. There are three events during regular homotopies that
can change the topological properties of an immersion:

• direct self-tangency (see Figure 7)

• inverse self-tangency (see Figure 8)

• triple point crossing (see Figure 10)
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4.1 Rotation number from winding numbers

For the first two events there is only one case to consider each. For the third event there are four.
Each case is illustrated and verified to not change

∑
C∈ΓK

ωC(K)−
∑

p∈DK

indp(K).

In the pictures we denote some connected component to have winding number a ∈ Z and use the
trick from Figure 4 to label the rest. Remember that the index of a double point is the same as the
winding number that appears twice around that double point (see Remark 1.8).

When a direct self-tangency occurs, there are two new connected components (see Lemma 4.4) with
winding number a + 1 and two new double points with index a + 1, see Figure 21, so

∑
C∈ΓK

ωC(K)−∑
p∈DK

indp(K) changes by

2(a + 1)− 2(a + 1) = 0.

Figure 21: Winding numbers for each connected component and indices of the double points (bold and
cursive) for a direct self-tangency.

When an inverse self-tangency occurs, there are two new connected components (see Lemma 4.4)
with winding number a − 1 and a + 1 and two new double points with index a, see Figure 22, so∑
C∈ΓK

ωC(K)−
∑

p∈DK

indp(K) changes by

((a− 1) + (a + 1))− 2a = 0.

Figure 22: Winding numbers for each connected component and indices of the double points (bold and
cursive) for an inverse self-tangency.

When a triple point crossing occurs, one connected component is removed, a new one is added and
three double points are changed. To keep the pictures easy to read, we pick some winding number to
be 0 instead of a and go from there, but of course any a ∈ Z can be added to the pictures’ winding
numbers. This does not change the result, as all the a cancel out.

As before, we calculate the change when going from left to right in the pictures in Figure 23:
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Figure 23: All four different cases of triple point crossings we need to consider. Labeled are the winding
numbers for each connected component. The bold and cursive numbers are the indices of
the double points.

• Case 1: (2− 1)︸ ︷︷ ︸
change of

∑
C∈ΓK

ωC(K)

− ((1 + 2 + 2)− (1 + 1 + 2))︸ ︷︷ ︸
change of

∑
p∈DK

indp(K)

= 1− (5− 4) = 0

• Case 2: (1− 2)− ((1 + 1 + 2)− (1 + 2 + 2)) = −1− (4− 5) = 0

• Case 3: (3− 0)− ((2 + 2 + 2)− (1 + 1 + 1)) = 3− (6− 3) = 0

• Case 4: (2− 1)− ((1 + 2 + 2)− (1 + 1 + 2)) = 1− (5− 4) = 0

Now by the Whitney–Graustein Theorem we know that K is regularly homotopic to the standard
curveKj (see Definition 3.1) with the same rotation number asK, i.e. toKrot(K).We know the equation
is true for all standard curves and that it stays invariant under regular homotopies, which shows the
proposition.

Remark. Earlier in Chapter 3.2.1 we will introduce Viro’s formula, a tool to calculate J+ (yet to be intro-

duced). It can be proven in exactly the same way as the proof we just did. The full proof in this fashion can also

be found on page 7 of The J2+-Invariant for Pairs of Generic Immersions by Hanna Häußler [Häu21]. Of

course it is also proven in the cited literature, but differently. If you liked this proof, try proving Viro’s formula

later.

Let us formulate a corollary from Lemma 4.4 that we will later need for the proof of Theorem 4.2 in
Chapter 4.

Corollary 4.5 Let K be any generic immersed loop – i.e. all self-intersections are transverse
double points – nK the number of double points of K and ΓK its connected components. Then:

|ΓK | = nK + 2

One of the connected components is unbounded and all the other are bounded.
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Proof. By the Jordan Curve Theorem we know that the standard curve K1 divides the plane C into one
bounded component and one unbounded component, so

|ΓK1 | = 2 = 0 + 2 = nK1 + 2.

The same is true for K−1.

The standard curveK0 is a circle with an added outer loop. Adding a single loop increases the number
of double points and the number of (bounded) connected components by 1. So

|ΓK0 | = 3 = 1 + 2 = nK0 + 2.

For |j| > 1 we have a circle with |j| − 1 single interior loops, as we explored in the proof of
Proposition 4.3. So nKj = |j| − 1 and

|ΓKj | = (|j| − 1) + 2.

Now again by the Whitney–Graustein Theorem we know that the immersionK is regularly homotopic
to the standard curve Kj (see Definition 3.1) with the same rotation number as K, i.e. to Krot(K). We
know the equation is true for all standard curves and that it stays invariant under regular homotopies
(use Lemma 4.4), which shows the corollary.

4.2 Proof of the theorem

Proof of Theorem 4.2: J+ of interior sums. We use Viro’s formula to prove the theorem. Let us just put
the immersion K ′ into C and cross-connect the arcs A and A′ and observe which new double points
and winding numbers the resulting immersion K× has compared to K.

For the double points we get the ones that were already present in K, all double points from K ′ as
well as a new one because of the cross-connection, so

nK× = nK + nK′ + 1.

For the connected components and their winding numbers we observe that the connected com-
ponents we add to K are all connected components from K ′, but without the unbounded one (with
winding number 0). Let us denote ΓK′ without the unbounded connected component as Γ∗K′ .The wind-
ing number of these connected components in K× is increased by ωC(K). Let us denote b := ωC(K)

for readability, so:∑
ζ∈ΓK×

(ωζ(K
×))2 =

∑
ζ∈ΓK

(ωζ(K))2 +
∑
ζ∈Γ∗

K′

(ωζ(K
′) + b)2

=
∑
ζ∈ΓK

(ωζ(K))2 +
∑
ζ∈Γ∗

K′

(ωζ(K
′)2 + 2b · ωζ(K ′) + b2)

=
∑
ζ∈ΓK

(ωζ(K))2 +
∑
ζ∈ΓK′

(ωζ(K
′))2 +

∑
ζ∈ΓK′

(2b · ωζ(K ′)) + |Γ∗K′ |︸ ︷︷ ︸
=nK′+1

· b2

=
∑
ζ∈ΓK

(ωζ(K))2 +
∑
ζ∈ΓK′

(ωζ(K
′))2 + 2b

∑
ζ∈ΓK′

(ωζ(K
′)) + (nK′ + 1) · b2
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with Corollary 4.5 used in the third line.
For the double points and their indices we see that the single double point that was created by the

cross-connection has index b := ωC(K). For the double points from K ′ we see that their index is
increased by b as the winding numbers of all connected components were increased by b, so:∑
p∈DK×

(indp(K
×))2 =

∑
p∈DK

(indp(K))2 +
∑
p∈DK′

(indp(K
′) + b)2 + b2

=
∑
p∈DK

(indp(K))2 +
∑
p∈DK′

(indp(K
′)2 + 2b · indp(K

′) + b2) + b2

=
∑
p∈DK

(indp(K))2 +
∑
p∈DK′

(indp(K
′))2 +

∑
p∈DK′

(2b · indp(K
′)) + |DK′ |︸ ︷︷ ︸

=nK′

· b2 + b2

=
∑
p∈DK

(indp(K))2 +
∑
p∈DK′

(indp(K
′))2 + 2b

∑
p∈DK′

(indp(K
′)) + (nK′ + 1) · b2

Now with the preparations done, let us use these observations and calculate J+(K×). We use Viro’s
formula (see Lemma 3.3) for the first line and to get J+(K) and J+(K ′) and directly after we use
Equation 1 to get rot(K ′) :

J+(K×) = 1 + nK× −
∑

ζ∈ΓK×

(ωζ(K
×))2 +

∑
p∈DK×

(indp(K
×))2

= 1 + (nK + nK′ + 1)

− (
∑
ζ∈ΓK

(ωζ(K))2 +
∑
ζ∈ΓK′

(ωζ(K
′))2 + 2b

∑
ζ∈ΓK′

(ωζ(K
′)) + (nK′ + 1) · b2)

+
∑
p∈DK

(indp(K))2 +
∑
p∈DK′

(indp(K
′))2 + 2b

∑
p∈DK′

(indp(K
′)) + (nK′ + 1) · b2

= 1 + nK −
∑
ζ∈ΓK

(ωζ(K))2 +
∑
p∈DK

(indp(K))2

︸ ︷︷ ︸
=J+(K)

+ 1 + nK′ −
∑
ζ∈ΓK′

(ωζ(K
′))2 +

∑
p∈DK′

(indp(K
′))2

︸ ︷︷ ︸
=J+(K′)

−

2b
∑
ζ∈ΓK′

(ωζ(K
′)) + (nK′ + 1) · b2

 +

2b
∑
p∈DK′

(indp(K
′)) + (nK′ + 1) · b2


= J+(K) + J+(K ′)− 2b

 ∑
ζ∈ΓK′

(ωζ(K
′))−

∑
p∈DK′

(indp(K
′))


︸ ︷︷ ︸

=rot(K′)

= J+(K) + J+(K ′)− 2b · rot(K ′)

Now we replace b back with ωC(K) and see that the theorem is proven.

Remark. Originally the theorem had a very different proof, the sketch for it follows:
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4.2 Proof of the theorem

It is possible to pull a small part of the arc A all the way outside of the immersion K, so that this small part

of A is adjacent to the unbounded component – we can skip this first step if C was already adjacent to the

unbounded component. Pulling out this small part of A changed J+ of the immersion by some value d ∈ 2N
for all the new double points that were created pulling the small part out, whenever the self-tangency was direct,

that will later be cancelled out. Now we take the connected sum of the two immersions, connecting the arc A′

of K ′ with the pulled out part of A. Then we do a little trick which results in K ′ being inside the small part

of A′ and changes J+ by±2 · rot(K ′), see Figure 24.

Figure 24: Illustration of a trick used in an earlier proof of Theorem 4.2. The arcs at the left of the pictures
hint at the arcs of K that enclose the component C and that have to be crossed by the small
part of A to reach into the unbounded component.

Then we pull the small part ofA all the way back to its original position as an arc of the componentC,which

also pulls the part that was originally the immersion K ′, all the way into the component C. This cancels out

the change of J+ by d from before and also changes J+ by±2 · ωC(K) · (rot(K ′)± 1). All instances of±
in this argument can be specifically determined, but need a lot more words. As does the whole proof.

Formulating this whole idea properly turned out to be very tedious and temporarily involved an unproven

assumption. Luckily, this original proof gave rise to the idea that the rotation number of the immersion K ′,

which also played an important part in the original proof, should be equal to
∑

C∈ΓK

ωC(K)−
∑

p∈DK

indp(K).

This then resulted in trying to prove Proposition 4.3, which worked, and led to the realization that Theorem 4.2

can be proven using Viro’s formula and this newly found equation for the rotation number. Let us all be happy

that this lucky occurence saved us from what would have possibly been the worst proof of this paper.

Remark. Note that it does not matter which arc of the connected component C of the immersion K we cross-

connect with the immersion K ′ as long as the orientation of K ′ matches or is adjusted. We need to be care-

ful with the sign of the rotation number of K ′. In the definition and in the theorem we assumed the orienta-

tion of K ′ to already match. Taking another arc can require a change of orientation, which changes the sign

of rot(K ′) in the equation.
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4.3 Corollaries

Two noteworthy special cases of Theorem 4.2 are stated in the following two corollaries. The first one
is also stated in [CFK17, Lemma 4 (with a different proof, not referring to a version of Theorem 4.2, but
instead using an argument around neighboring connected components)], but slightly different.

Corollary 4.6 Let K be an arbitrary immersion.
Consider any connected component C of C \K and any boundary arc A of C. Denote by Cadj

the unique connected component of C \K that also has A as a boundary arc and Cadj 6= C.

Denote the difference of winding numbers ωC(K)− ωCadj(K) as ωadj ∈ {−1, 1}.
Denote as Ko the immersion that we get if we add an interior loop (see Definition 1.11) in the

connected component C to the arc A of immersion K. Then

J+(Ko) = J+(K)− 2 · ωC(K) · ωadj.

Proof. Adding an interior loop in C to A of the immersion K is the same as the interior sum of the
immersion K and a circle Kcircle at boundary arc A into the component C, where the orientation of the
circle is adjusted to fit the cross-connection with the arc A, so rot(Kcircle) = ωadj.

We use Theorem 4.2 and obtain

J+(Ko) = J+(K) + J+(Kcircle)︸ ︷︷ ︸
=0

−2 · ωC(K) · rot(Kcircle)︸ ︷︷ ︸
=ωadj

= J+(K)− 2 · ωC(K) · ωadj.

Corollary 4.7 Let K be an arbitrary immersion.
Consider any connected component C of C \K and any boundary arc A of C. Denote by Cadj

the unique connected component of C \K that also has A as a boundary arc and Cadj 6= C.

Denote the difference of winding numbers ωC(K)− ωCadj(K) as ωadj ∈ {−1, 1}.
Denote as K(m+1) the immersion that we get if we add an (m + 1)-interior loop (see Defini-

tion 1.11) in the connected component C to the arc A of immersion K. Then

J+(K(m+1)) = J+(K)− (m + 1)(m + 2 · ωC(K) · ωadj).

Before we prove this corollary, let us introduce the inner loop curves Aj and calculate their J+-value.

Figure 25: The inner loop curves. From left to right: A−2, A−1, A0, A3, A4, A5.

Definition 4.8 (Inner loop curves Aj) We call the immersions in Figure 25 the inner loops curves Aj .

• Aj := Kj for j ∈ {−2,−1, 0, 1, 2},

• ∀j, |j| > 1 : Aj is a circle with an (|j| − 1)-interior loop and with rot(Aj) = j.
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In his paper [Vir95], Viro proves Arnold’s Conjecture. The conjecture states that for any arbitrary
immersion K with n many double points the lower bound J+(K) ≥ −n2 − n holds, and that for any
number of double points n the equation is attained by the inner loop curve An+1. We use our theorem
for an alternate proof of the latter statement.

Lemma 4.9

J+(An+1) = −n2 − n, ∀n ∈ N

Proof. We do a simple proof by induction using Corollary 4.7.
For the base case n = 0 we have:

J+(An+1) = J+(A0+1) = J+(A1) = J+(K1) = 0 = (−1)2 − 1 X

For the induction step n→ n + 1 we get A(n+1)+1 = An+2 from An+1 if we add a single interior
loop into the component C with the highest winding number, which is n + 1. Using Corollary 4.6 we
get:

J+(An+2) = J+(An+1)︸ ︷︷ ︸
=−n2−n

−2 · ωC(An+1)︸ ︷︷ ︸
=n+1

· ωadj︸︷︷︸
=1

= −n2 − n− 2(n + 1)

= −((n2 + 2n + 1) + (n + 1))

= −((n + 1)2 + (n + 1))

= −(n + 1)2 − (n + 1) X

Which proves the lemma.

Now we can prove our corollary.

Proof of Corollary 4.7. Adding an (m+ 1)-interior loop inC toA of the immersionK is the same as the
interior sum of the immersion K and the inner loop curve Am+1 (A−m−1 if ωadj = −1) at boundary
arc A into the component C.

We use Theorem 4.2 and get the following. We writeAm+1 here in the first line, but the braces below
the first line already account for the case if ωadj = −1, where we would have to use A−m−1:

J+(K(m+1)) = J+(K) + J+(Am+1)︸ ︷︷ ︸
=−m2−m

−2 · ωC(K) · rot(Am+1)︸ ︷︷ ︸
=(m+1)·ωadj

= J+(K)−m2 −m− 2 · ωC(K) · (m + 1) · ωadj

= J+(K)− (m + 1)(m + 2 · ωC(K) · ωadj).

The setup of the following corollary is a bit tedious, just like the definition of interior sums, but the
statement itself is simple. It is rephrased informally after the corollary statement.

Corollary 4.10 Let K ′ and K ′tr be two arbitrary immersions with the same rotation number,
rot(K ′) = rot(K ′tr), and each with at least one connected componentC ′ andC ′tr adjacent to the
unbounded connected component and with the same winding number ωC′(K ′) = ωC′tr

(K ′tr) ∈
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{−1, 1}. Let A′ and A′tr be the boundary arcs of these connected components that are also
boundary arcs of the unbounded component.

Let K be an arbitrary immersion.
Consider any bounded connected component C of C \K and any boundary arc A of C.
Denote K× as the interior sum of immersions K,K ′ at boundary arcs A,A′ into the compo-

nent C of C \K. And K×tr as the interior sum of immersions K,K ′tr at boundary arcs A,A′tr into
the component C of C \K.

Then:
J+(K×) = J+(K×tr ) + (J+(K ′)− J+(K ′tr)).

In other words this corollary states the following: Let K× ⊂ C be an arbitrary immersion and let
U ⊂ C be a simply connected closed subset of C with |∂U ∩K×| = 2, so exactly two points of K×

are in the boundary of U. Now ignore everything outside of U, the closure of U. Connect the two points
of K× in the boundary ∂U of U along ∂U, see Figure 26, and call this new immersion K ′ that is the
union of this connection (along ∂U ) and the part of K× in U, regularized (with smoothened edges).

Now apply any regular homotopies to K ′, possibly with changes to its J+-value, and call the new
immersion K ′tr. The only thing necessary is an outside arc of K ′tr has to have the right orientation so
that it can roughly be aligned with the part of K ′ along ∂U by applying a regular homotopy. Now
remove that part along the border and rejoin the remaining part of K ′tr with the rest of K× and call
this new immersion K×tr .

Then we know that the difference of J+ between K×tr and K× is equal to the difference of J+

between K ′tr and K ′.

This guarantees that if two immersions are regularly homotopic – i.e. have the same rotation number
– and we can make out an isolated part of the immersion that needs to be changed to achieve the
homotopy, then it is enough to analyze the change of J+ in this isolated part of the immersion.

The way this is visualized and described in this remark might be easier to understand after the next
corollary.

Proof. With Theorem 4.2 and the following calculation the corollary follows:

J+(K×) = J+(K) + J+(K ′)︸ ︷︷ ︸
=J+(K′)+J+(K′tr)−J+(K′tr)

−2 · ωC(K) · rot(K ′)︸ ︷︷ ︸
=rot(K′tr)

= J+(K) + J+(K ′tr)− 2 · ωC(K) · rot(K ′tr) + (J+(K ′)− J+(K ′tr))

= J+(K×tr ) + (J+(K ′)− J+(K ′tr))

Remark. The Whitney–Graustein Theorem is also proven for isolated parts of an immersion – i.e. when a

part of an immersion can be isolated with a simply connected area U as in the corollary, then the isolated part

is regularly homotopic to any immersion with the same rotation number via a regular homotopy that keeps

the immersion outside of and at the border of U unchanged during the homotopy – which immediately proves

Corollary 4.10.

Now of course if we do not like to connect the immersions with a cross-connection, but instead with
a tunnel, like at the connected sum, the following corollary gives us the formula for that.
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Figure 26: Illustration of Corollary 4.10. In the top left picture we select a simply connected area U and
construct K ′ in the top right picture. We replace it by some other immersed loop with the
same rotation number in the bottom left picture and reconnect it to the rest of the immersion
in the bottom right picture. Here rot(K ′) = rot(K ′tr) = 3, J+(K ′) = −2, J+(K ′tr) = −6.

Corollary 4.11 (J+ of tunnel-connected interior sums) Let K,K ′, C,A,A′, ωadj be the same as in
Definition 4.1 and K ′ already the correct orientation for the interior sum.

Now denote byKニ the immersion that we construct like this: putK ′ intoC without intersec-
tions between K and K ′ – maybe it needs to be drawn smaller in visualizations – and connect
the arcs A and A′ without intersections in the connection. To do this, the orientation of K ′ has
to be changed. See Figure 27 for an illustration.

Then
J+(Kニ) = J+(K) + J+(K ′) + 2 · ωC(K) · (rot(K ′)− ωadj).

Figure 27: Tunnel-connected interior sum of the two immersions from Figure 19, pictured on the left.
Note that this time the immersions are not connected with a cross-conection, but with two
segments that do not intersect. Picture on the right shows the standard cross-connected
interior sum for comparison.
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Proof. Denote by K− the immersion K ′ with opposite orientation. First we take the connected sum
of K− at the arc A′ and K0 (figure eight) as illustrated in Figure 28. We denote this new immersion
as K∞, its new boundary arc as A∞ and note that its rotation number is rot(K∞) = rot(K−) + ωadj

and that J+(K∞) = J+(K−) = J+(K ′).

Figure 28: In the first row we take the connected sum of K− and K0 at the arc A′ and apply a regular
homotopy to get K∞. The bottom left picture shows the interior sum of K and K∞ and to
get to the bottom right picture of Kニ we apply a homotopy that goes through an inverse
self-tangency.

Now we just take the interior sum of immersions K,K∞ at boundary arcs A,A∞ into the compo-
nent C of C \K. In a moment we calculate what the J+-value of the resulting immersion is, but first
we do one last step to get Kニ so that we can calculate its J+-value.

We apply a homotopy that – through an inverse self-tangency (which does not change the value
of J+) – removes the connected component that we added when we created K∞, see the last two
pictures of Figure 28, and end up with Kニ.

With this and Theorem 4.2 we can calculate

J+(Kニ) = J+(K) + J+(K∞)︸ ︷︷ ︸
=J+(K−) =J+(K′)

−2 · ωC(K) · rot(K∞)︸ ︷︷ ︸
=rot(K−)︸ ︷︷ ︸

=− rot(K′)

+ωadj

= J+(K) + J+(K ′)− 2 · ωC(K) · (− rot(K ′) + ωadj)

= J+(K) + J+(K ′) + 2 · ωC(K) · (rot(K ′)− ωadj)
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Appendix

Welcome to the appendix. The tex files and all image files of this paper can be found in the Git repository
on gitlab.com/CptMaister/paper-intro-to-j-plus and are available for anyone to use and modify.

Solutions

1. Ambiguous immersion (page 4)

Because of the tangential intersection of the immersion and the lack of an arrow indicating the orienta-
tion on the right half of the immersion, any of the two orientations of Figure 29 are possible.

Figure 29

2. Not immersed loops (page 4)

The first, third, fourth and last curve is each not closed. The second one has edges, so it is not regular,
i.e. it is either not differentiable at the edges or the derivative vanishes (equals 0) at the edges. The fifth
picture is a mix of several not closed curves.

For any of these curves it can be argued that they are in fact closed and instead of being interrupted
at some points, the curve just goes back the same way it came from in a sort of multiple cover. But then
it is either not smooth or has vanishing derivative. The fourth picture (turtle) is then the only one that
cannot be a single closed curve, as it is made up of at least three disjoint curves.

3. Fixing immersions (page 4)

Figure 30 shows a suggestion for each of the curves, except for the last one. If this paper is printed, then
the last curve can only be fixed by adding another paper next to the page and close the curve there.

Figure 30

4. Winding numbers and more (page 11)

To label the winding numbers and double point indices, we use the observations from Figure 4 and
Remark 1.8.
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For the rotation number there are several different ways to count it. One way is to mark all the points
of the immersion where the tangent vector points to the right. Then let a be the number of those points
where the immersion curves up and b the number of those points where the immersion curves down.
Then the rotation number of the immersion is equal to a− b. This method is sometimes interpreted as
counting the smiles and frowns, or counting the happy and sad points of the immersion. In Figure 31
all happy points are marked with a plus and all sad points with a minus.

Figure 31: Happy and sad points for the immersions from Figure 6. The difference of happy and sad
points is equal to the rotation number.

5. Calculating J+ basics 1 (page 12)

Let us denote the immersions of Figure 13 from left to right by K5a,K5b,K5c and K5d.

We calculate J+ of these immersions by applying regular homotopies to them until we reach a
standard curve Kj and keep track of the number of direct self-tangencies (abbreviate with dst from
here), as they change the value of J+.

For the first immersion K5a, see Figure 32, we arrive at K3 with 0 positive dst and 3 negative dst. So
the value of J+ of the original immersion is

J+(K5a) = J+(K3)− 2(0− 3) = −4 + 6 = 2

Figure 32: Homotopy from immersion K5a to the standard curve K3. The second picture shows the 3

negative dst.

For the second immersion K5b, see Figure 33, we arrive at K−2 with 0 positive dst and 1 negative
dst. So the value of J+ of the original immersion is

J+(K5b) = J+(K−2)− 2(0− 1) = −2 + 2 = 0

For the third immersion K5c, see Figure 34, we arrive at K3 with 0 positive dst and 1 negative dst.
So the value of J+ of the original immersion is

J+(K5c) = J+(K3)− 2(0− 1) = −4 + 2 = −2
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Figure 33: Homotopy from immersion K5b to the standard curve K−2. There is one inverse self-
tangency and one triple point crossing between the first and second picture. The third
picture shows the negative dst.

Figure 34: Homotopy from immersion K5c to the standard curve K3. There are two inverse self-
tangencies between the first and second picture. The third picture shows the negative
dst.

For the fourth immersion K5d, see Figure 35, we arrive at K−4 with 1 positive dst and 0 negative dst.
So the value of J+ of the original immersion is

J+(K5d) = J+(K−4)− 2(1− 0) = −6− 2 = −8

Figure 35: Homotopy from immersion K5d to the standard curve K−4. The third picture shows the
positive dst. There is one inverse self-tangency and one triple point crossing between the
third and fourth picture.

6. Calculating J+ basics 2 (page 12)

Let us denote the immersions of Figure 3 by K6a (top left), K6b (top right) and K6c (bottom).
The first immersion K6a is the same as K5d from the previous exercise, see Figure 35, with

J+(K6a) = J+(K5d) = −8.

For the second immersion K6b, we calculate J+ by applying regular homotopies until we reach a
standard curve Kj and keep track of the number of direct self-tangencies (abbreviate with dst), as they
change the value of J+.
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We arrive atK0 with 0 positive dst and 1 negative dst, see Figure 36. So the value ofJ+ of the original
immersion is:

J+(K6b) = J+(K0)− 2(0− 1) = 0 + 2 = 2

Figure 36: Homotopy from immersion K6b to the standard curve K0. The second picture shows the
negative dst.

For the bottom immersion K6c we can use the additivity of J+ under connected sums:

J+(K6c) = J+(K6a) + J+(K6b) = −8 + 2 = −6

7. Kj with intersecting interior loops (page 12)

At first two interior loops intersect through an inverse self-tangency, see the second picture of Figure 37,
so J+ does not change.

Figure 37: The standard curve K4 in the first picture, with intersecting inner loops in the other pictures.

Once they intersect, we can make them intersect through a positive direct self-tangency, see the
third and fourth picture of Figure 37, which changes J+ by 2.

8. Kj with long interior loops (page 12)

Any single intersection of a circle with its interior loops is through direct self-tangencies, which each
changes J+ by 2. Figure 38 shows the standard curve K4 with two of its loops intersecting the upper
part once each. Denote the immersion in the right picture as K ′4, then

J+(K4) = −6, J+(K ′4) = −2.

9. Alternative calculation of J+(Aj) (page 12)

Let us denote a circle with a single interior loop by A2, a circle with a double interior loop by A3 and a
circle with a triple interior loop by A4, like in Definition 4.8.

We know that A2 = K2, so
J+(A2) = J+(K2) = −2.
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Figure 38: Standard curve K4 with direct self-tangencies.

To calculate J+(A3) we can start with K3 and apply a regular homotopy that moves one of the two
single interior loops into the other. During this homotopy there is 1 negative direct self-tangency. So

J+(A3) = J+(K3)− 2(1) = −4− 2 = −6.

And then we can calculate J+(A4) similarly. We start with K4 and apply a regular homotopy that
moves one of the three single interior loops into the other, creating a double interior loop, with 1

negative dst. Then we move the remaining single interior loop into the double interior loop, with 2

negative dst, see Figure 39. So

J+(A4) = J+(K4)− 2(1 + 2) = −6− 6 = −12.

Figure 39: Homotopy from the standard curve K4 to the inner loop curve A4.

This method can be used to calculateJ+ of anyAj with j > 1,which is a circle with a (j−1)-interior
loop, and we can see that for any j > 1 :

J+(Aj) = J+(Kj)− 2

j−2∑
k=1

k

= −2(j − 1)− 2
(j − 2)(j − 1)

2

= (j − 1)(−2− (j − 2))

= −j (j − 1)

= −j2 + j

= −(j − 1)2 − (j − 1),

which is identical to our result of Lemma 4.9.
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10. J+ and rotation number of interior sums (page 14)

First the rotation number of K× and Kニ. Let us use the denotions from Corollary 4.11 [J+ of tunnel-
connected interior sums] and its proof. We can calculate

rot(K) = rot(K ′) = 3, rot(K∞) = −2

With the happy-sad-points-approach from Figure 31 it is easy to see that the rotation number of the
cross-connected interior sum of two immersions is the sum of their rotation numbers. This is because
the cross-connection does not remove or add any happy or sad points. It follows, that

rot(K×) = rot(K) + rot(K ′) = 3 + 3 = 6, rot(Kニ) = rot(K) + rot(K∞) = 3− 2 = 1.

For the J+-value of K× and Kニ we use the results of Theorem 4.2 and Corollary 4.11. We know,
that

J+(K) = 2, J+(K ′) = −2.

And with that, we can calculate

J+(K×) = J+(K) + J+(K ′)− 2 · ωC(K) · rot(K ′)

= 2− 2− 2 · 2 · 3

= −12,

with C the connected component of K in Figure 19, and

J+(Kニ) = J+(K) + J+(K ′) + 2 · ωC(K) · (rot(K ′)− ωadj)

= 2− 2 + 2 · 2 · (3− 1)

= 8.

11. Calculating J+ advanced (page 15)

Let us denote the immersions of Figure 15 from left to right by Ka,Kb,Kc and Kd, the immersions
of Figure 16 from left to right by Ke,Kf ,Kg and Kh, the immersions of Figure 17 from left to right
by Kp,Kq,Kr and Ks, and the immersions of Figure 18 from left to right by Kt,Ku and Kv.

The immersion Ka is regularly homotopic to K9 without any self-tangencies at all, so

J+(Ka) = J+(K9) = −16.

Immersion Kb is a circle with a single interior loop that intersects the circle 5 times through positive
direct self-tangencies (abbreviate with dst), see Figure 40, so

J+(Kb) = J+(K2) + 2 · 5 = −2 + 10 = 8.

Immersion Kc is regularly homotopic to K2 through one inverse self-tangency, see Figure 41, so

J+(Kc) = J+(K2) = −2.
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Figure 40

Figure 41

Figure 42

Immersion Kd is regularly homotopic to K1, a circle, through 1 negative dst and 1 positive dst, see
Figure 42, so

J+(Kd) = J+(K1)− 2(1− 1) = 0.

ImmersionKe can be created by taking the connected sum of a circle,K1,and many figure eights,K0,

see Figure 43, so by the connectivity of J+ under connected sums we get

J+(Ke) = J+(K1) + 8 · J+(K0) = 0 + 8 · 0 = 0.

Figure 43

Immersion Kf can be created by taking the connected sum of K−2,K0 and K2 and then a regular
homotopy with 1 positive dst, see Figure 44 (from right to left), so by the connectivity of J+ under
connected sums we get

J+(Ke) = J+(K−2) + J+(K0) + J+(K2) + 2 = −2 + 0− 2 + 2 = −2.
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Figure 44

ImmersionKg is regularly homotopic toA5,a circle with a 4-interior loop, without any self-tangencies,
see Figure 45, so

J+(Kg) = J+(A5) = −52 + 5 = −20.

Figure 45

For immersion Kh we need a little trick, which is illustrated in Figure 46, that removes two coun-
teroriented loops that are next to each other and increases J+ by 2 as there is one positive dst.

Figure 46

With this, we see that immersion Kh is regularly homotopic to A3, a circle with a 2-interior loop,
after using the trick to remove counteroriented loops three times, see Figure 47, so

J+(Kh) = J+(A3)− 2 · 3 = −32 + 3− 6 = −12.

Figure 47

Immersion Kp is regularly homotopic to the standard curve K0, the figure eight, through 1 negative
dst, see Figure 48, so

J+(Kp) = J+(K0) + 2 = 2.
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Figure 48

Immersion Kq is regularly homotopic to the standard curve K4, a circle with three single interior
loops, through 1 negative dst, see Figure 49, so

J+(Kq) = J+(K4) + 2 = −6 + 2 = −4.

Figure 49

Immersion Kr is regularly homotopic to the connected sum of the standard curves K3,K0 and
K−2, through 3 negative dst, see Figure 50, so

J+(Kr) = J+(K3) + J+(K0) + J+(K−2) + 2 · 3 = −4 + 0− 2 + 6 = 0.

Figure 50

Immersion Ks is the connected sum of many figure eights, similar to the immersion Ke, so

J+(Ks) = 0.

Immersion Kt is regularly homotopic to the standard curve K6, a circle with five single interior
loops, through only inverse self-tangencies, no direct self-tangencies, see Figure 51, so

J+(Kt) = J+(K6) = −10.

Immersion Ku is regularly homotopic to the standard curve K1, a circle, through 12 negative dst,
see Figure 52, so

J+(Ku) = J+(K1) + 2 · 12 = 24.

Immersion Kv is regularly homotopic to the standard curve K0, a figure eight, through 12 negative
dst, similar to Ku, so

J+(Kv) = J+(K0) + 2 · 12 = 24.
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Figure 51

Figure 52

12. Proving Viro’s Formula (page 15)

Viro’s formula can be proven in exactly the same way as the proof we did for Proposition 4.3 [Rotation
number from winding numbers]. The full proof in this fashion can be found on page 7 of The J2+-

Invariant for Pairs of Generic Immersions by Hanna Häußler [Häu21].
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