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Abstract

This work addresses the regularity of solutions for a nonlocal diffusion equation over the
space of periodic distributions. The spatial operator for the nonlocal diffusion equation is given
by a nonlocal Laplace operator with a compactly supported integral kernel. We follow a unified
approach based on the Fourier multipliers of the nonlocal Laplace operator, which allows the
study of regular as well as distributional solutions of the nonlocal diffusion equation, integrable
as well as singular kernels, in any spatial dimension. In addition, the results extend beyond
operators with singular kernels to nonlocal super-diffusion operators. We present results on
the spatial and temporal regularity of solutions in terms of regularity of the initial data or
the diffusion source term. Moreover, solutions of the nonlocal diffusion equation are shown to
converge to the solution of the classical diffusion equation for two types of limits: as the spatial
nonlocality vanishes or as the singularity of the integral kernel approaches a certain critical
singularity that depends on the spatial dimension. Furthermore, we show that, for the case of
integrable kernels, discontinuities in the initial data propagate and persist in the solution of the
nonlocal diffusion equation. The magnitude of a jump discontinuity is shown to decay overtime.

Keywords: Nonlocal diffusion equations, nonlocal Laplace operators, nonlocal superdiffusion, Fourier
multipliers, spatial regularity, temporal regularity.

1 Introduction

In this work, we study the regularity of solutions to the nonlocal diffusion equation given by{
ut(x, t) = Lδ,βu(x, t) + b(x), x ∈ Tn, t > 0,

u(x, 0) = f(x),
(1)

over the space of periodic distributions Hs(Tn), with s ∈ R. Here Tn denotes the periodic torus in
Rn and Lδ,β is a nonlocal Laplace operator defined by

Lδ,βu(x) = cδ,β
∫
Bδ(x)

u(y)− u(x)

‖y − x‖β
dy, x ∈ Rn, (2)

where Bδ(x) denotes a ball in Rn, δ > 0 is called the horizon or the nonlocality, and the kernel
exponent β satisfies β < n+ 2 [9,10]. The scaling constant cδ,β is given by

cδ,β =
2(n+ 2− β)Γ(n2 + 1)

π
n
2 δn+2−β

.
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Nonlocal integral operators with compact support of the form (2) have their roots in peridynamics
[24, 25] and have been introduced in nonlocal vector Calculus [10]. These nonlocal operators have
been used in different applied settings, see for example [4, 6, 7, 17, 19]. The work in [3] proposed
a nonlocal model for transient heat transfer, which is valid when the body undergoes damage or
evolving cracks. There have been many mathematical analysis studies involving nonlocal Laplace
operators and peridynamic operators including the works [2,9,15,21–23]. In general, exact solutions
are not readily available for nonlocal models, however, different computational techniques and
numerical analysis methods have been developed for solving nonlocal equations such as [1,5,8,11–
14,16,20,26].

The work in [2] introduces the Fourier multipliers for nonlocal Laplace operators, studies the
asymptotic behavior of these multipliers, and then applies the asymptotic analysis in the periodic
setting to prove regularity results for the nonlocal Poisson equation. In this work, we apply the
Fourier multipliers approach developed in [2] to study the regularity of solutions to the nonlocal
diffusion equation over the space of periodic distributions. The organization of this article and a
brief description of the main contributions of this study are as follows.

• A review of the Fourier multipliers analysis for the nonlocal Laplace operator (2) is provided in
Section 2.

• In Section 3, we present the regularity of solutions analysis for the nonlocal diffusion equation
with initial data in Hs(Tn), but without a diffusion source.

– Theorem 3 and Proposition 1 provide the spatial and temporal regularity results, respec-
tively, in any spatial dimension. The temporal regularity for a general periodic distribution
in Hs(Tn), with s ∈ R, is studied in the sense of Gateaux derivative.

– In the case when the Fourier coefficients of the initial data f ∈ Hs(Tn) are summable∑
k∈Zn
|f̂k| <∞,

then the solution of the nonlocal diffusion equation, considered as a function of the spa-
tial variable x, is a regular L2(Tn) function and Proposition 2 of Section 3.3 provides the
temporal regularity of the solution with respect to the classical derivative.

– Theorem 7 and Theorem 8 provide convergence results for the solution of the nonlocal
diffusion equation, without a diffusion source, to the solution of the corresponding classi-
cal diffusion equation with respect to two different limits: as δ → 0+ or as β → n + 2,
respectively.

• In Section 4, we present the regularity of solutions analysis for the nonlocal diffusion equation,
when a diffusion source b ∈ Hs(Tn), for some s ∈ R, is present.

– Theorem 9 and Proposition 3 provide the spatial and temporal regularity results, respec-
tively, in any spatial dimension. The temporal regularity for a general periodic distribution
in Hs(Tn), with s ∈ R, is studied in the sense of Gateaux derivative.

– In the case when the Fourier coefficients of the source term b ∈ Hs(Tn) are summable∑
k∈Zn
|b̂k| <∞,

then the solution of the nonlocal diffusion equation, considered as a function of the spa-
tial variable x, is a regular L2(Tn) function and Proposition 4 of Section 4.1 provides the
temporal regularity of the solution with respect to the classical derivative.
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– Theorem 12 and Theorem 13 provide convergence results for the solution of nonlocal diffu-
sion equation with a non-zero diffusion source to the solution of the corresponding classical
diffusion equation with respect to two kinds of limits: as δ → 0+ or as β → n + 2, respec-
tively.

• In Section 5, we show that, for the case of integrable kernels, that is when β < n, discontinuities
in the initial data propagate and persist in the solution of the nonlocal diffusion equation. The
magnitude of a jump discontinuity is shown to decay as time increases.

2 Fourier multipliers

In this section, we give a summary of the Fourier multipliers’ results introduced in [2], which are
relevant to the work presented in Section 3. These multipliers are defined through the Fourier
transform by

Lδ,βu(x) =
1

(2π)n

∫
Rn
mδ,βû(ν)eiν·xdν, (3)

where mδ,β(ν) is given by

mδ,β(ν) = cδ,β
∫
Bδ(0)

cos(ν · z)− 1

‖z‖β
dz, (4)

for β < n+ 2. The following theorem gives the hypergeometric representation of these multipliers.

Theorem 1. Let n ≥ 1, δ > 0 and β < n+ 2. Then the Fourier multipliers can be written as

mδ,β(ν) = −‖ν‖2 2F3

(
1,
n+ 2− β

2
; 2,

n+ 2

2
,
n+ 4− β

2
;−1

4
‖ν‖2δ2

)
. (5)

The hypergeometric function 2F3 on the right hand side is well-defined for any β 6= n+ 4, n+
6, · · · , hence, using (5), the definition of the multipliers is extended to the case when β ≥ n + 2
with β 6= n + 4, n + 6, · · · . Consequently, the operator Lδ,β is extended to these larger values of
β using the Fourier transform. In particular, for the case when β = n + 2, and since mδ,n+2(ν) is
equal to −‖ν‖2, the extended operator Lδ,β coincides with the classical Laplace operator ∆. For
the case, n + 2 < β < n + 4, the extended operator Lδ,β corresponds to a nonlocal super-diffusion
operator [1].

The representation (5) is used to provide the asymptotic behavior of mδ,β(ν) for large ‖ν‖. This
is given by the following result [2].

Theorem 2. Let n ≥ 1, δ > 0 and β /∈ {n+ 2, n+ 4, n+ 6, . . . }. Then, as ‖ν‖ → ∞,

mδ,β(ν) ∼

−
2n(n+2−β)
δ2(n−β)

+ 2
(

2
δ

)n+2−β Γ(n+4−β
2 )Γ(n+2

2 )
(n−β)Γ(β2 )

‖ν‖β−n, if β 6= n,

−2n
δ2

(
2 log ‖ν‖+ log

(
δ2

4

)
+ γ − ψ

(
n
2

))
, if β = n,

(6)

where γ is Euler’s constant and ψ is the digamma function.

To simplify the notation, throughout this article we will denote mδ,β simply by m. However, in
places in which there is a need to emphasize the dependence of the multipliers on the parameters
δ and β, such as when we take limits in those parameters, we will revert to the notation mδ,β.
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3 Regularity of solutions for the peridynamic diffusion equation

In this section, we focus on the following nonlocal diffusion equation with initial data and no
diffusion source {

ut(x, t) = Lδ,βu(x, t), x ∈ Tn, t > 0,

u(x, 0) = f(x).
(7)

In order to study the existence, uniqueness, and regularity of solutions to (7) over the space of
periodic distributions, we consider the identification U(t) = u(·, t), with U : [0,∞)→ Hs(Tn).

3.1 Eigenvalues on periodic domains

Let Lδ,β be defined on the periodic torus

Tn =

n∏
i=1

[0, ri], ri > 0, i = 1, 2, · · · , n.

Define

νk =

(
2πk1

r1
,
2πk2

r2
, . . . ,

2πkn
rn

)
,

for any k ∈ Zn. Let φk(x) = eiνk·x. Then,

Lδ,βφk(x) = mδ,β(νk)φk(x), (8)

which shows that φk is an eigenfunction of Lδ,β with eigenvalues mδ,β(νk). To simplify the notation,
we will often suppress the dependence of the multipliers on δ and β and use m(ν) to denote mδ,β(ν).

Consider the nonlocal diffusion equation defined in (1). For s ∈ R, let Hs(Tn) be the space of
periodic distributions h on Tn such that

‖h‖2Hs(Tn) :=
∑
k∈Zn

(1 + ‖k‖2)s|ĥk|2 <∞.

3.2 Distributional solutions for nonlocal diffusion equation

Let f ∈ Hs(Tn) and define U, V : [0,∞)→ Hq(Tn) for some q ∈ R, by

U(t) =
∑
k

f̂ke
m(νk)teiνk·x, (9)

V (t) =
∑
k

f̂km(νk)e
m(νk)teiνk·x. (10)

Observe that for any t ≥ 0, U(t) and V (t) are well-defined periodic distributions, since em(νk)t and
m(νk)e

m(νk)t are both bounded functions in k.

Theorem 3. Let n ≥ 1, δ > 0 and β < n+ 4. Let ε1 and ε2 be such that 0 < ε1 < ε2 < 1. Assume
that f ∈ Hs(Tn) for some s ∈ R. Then for any fixed t > 0, U(t) ∈ Hp(Tn) and V (t) ∈ Hr(Tn),
where

p =


s, if β < n,

s+
4nt

δ2
(1− ε1), if β = n,

∞, if β > n,

r =


s, if β < n,

s+
4nt

δ2
(1− ε2), if β = n,

∞, if β > n,

(11)
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with H∞(Tn) :=
⋂
s∈R

Hs(Tn).

Proof. We observe that∑
06=k∈Zn

(1 + ‖k‖2)p|Ûk|2 =
∑

06=k∈Zn
(1 + ‖k‖2)p−s(1 + ‖k‖2)s|f̂kem(νk)t|2.

Since f ∈ Hs(Tn), then the result that U(t) ∈ Hp(Tn) follows by showing that

(1 + ‖k‖2)p−se2m(νk)t

is bounded for k 6= 0. To see this, we consider three cases. For the case β < n, then p− s = 0 and

e2m(νk)t(1 + ‖k‖2)p−s = e2m(νk)t,

which is bounded since m(νk) ≤ 0.
For the case when n < β < n+ 4, let q ∈ R be arbitrary. Then,

(1 + ‖k‖2)q−se2m(νk)t =
(1 + ‖k‖2)q−s

e2t|m(νk)| ,

which vanishes as ‖k‖ → ∞, and hence boundedness follows. Thus, U(t) ∈ Hq(Tn) for all q and
therefore,

U(t) ∈
⋂
q∈R

Hq(Tn) = H∞(Tn).

For the case when β = n, then p− s = 4nt
δ2

(1− ε1). From Theorem 2, we have

m(νk) ∼ −
4n

δ2
log ‖νk‖,

which implies that

lim
‖νk‖→∞

m(νk)

−4n
δ2

log ‖νk‖
= 1. (12)

Thus, for any ε1 > 0, there exists N ∈ N such that

−4n

δ2
(1 + ε1) log ‖νk‖ ≤ m(νk) ≤ −

4n

δ2
(1− ε1) log ‖νk‖, (13)

for all ‖νk‖ ≥ N . Therefore,

e2m(νk)t ≤ e−
8nt
δ2

(1−ε1) log ‖νk‖ = ‖νk‖−
8nt
δ2

(1−ε1). (14)

Since there exists A > 0 such that A‖k‖ ≤ ‖νk‖, then

(1 + ‖k‖2)p−se2m(νk)t ≤ (1 + ‖k‖2)
4nt
δ2

(1−ε1)

‖νk‖
8nt
δ2

(1−ε1)
≤ (1 + ‖k‖2)

4nt
δ2

(1−ε1)

(A‖k‖)
8nt
δ2

(1−ε1)
,

which is bounded.
Similarly, to show that V (t) ∈ Hr(Tn), we show that

(1 + ‖k‖2)r−sm(νk)
2e2m(νk)t

5



is bounded for k 6= 0. For the case when β < n, then r − s = 0 and there exists a constant C > 0
such that |m(νk)| ≤ C. Thus,

(1 + ‖k‖2)r−sm(νk)
2e2m(νk)t = m(νk)

2e2m(νk)t

is bounded. For the case when n < β < n+ 4, then for an arbitrary q′ ∈ R, we have

(1 + ‖k‖2)q
′−sm(νk)

2e2m(νk)t =
m(νk)

2(1 + ‖k‖2)q
′−s

e2t|m(νk)| ,

which vanishes as ‖k‖ → ∞, and therefore boundedness follows. Thus, V (t) ∈ Hq′(Tn) for all
q′ ∈ R and hence,

V (t) ∈
⋂
q′∈R

Hq′(Tn) = H∞(Tn).

When β = n, then r − s = 4nt
δ2

(1− ε2). From (13),

|m(νk)|2 ≤
(

4n

δ2
(1 + ε1)

)2

(log ‖νk‖)2. (15)

In addition, there exists N2 ∈ N such that

log(‖νk‖) ≤ ‖νk‖
4nt
δ2

(ε2−ε1), (16)

for all ‖νk‖ > N2. Moreover, there exists B > 0 such that ‖νk‖ ≤ B‖k‖. Hence, by using (14).
(15), and (16), we obtain

(1 + ‖k‖2)r−s|m(νk)|2e2m(νk)t ≤
(1 + ‖k‖2)

4nt
δ2

(1−ε2) (4n
δ2

(1 + ε1)
)2

(B2‖k‖2)
4nt
δ2

(ε2−ε1)

(A‖k‖)
8nt
δ2

(1−ε1)

= C
(1 + ‖k‖2)

4nt
δ2

(1−ε2)

‖k‖
8nt
δ2

(1−ε2)
,

where

C =

(
4n
δ2

(1 + ε1)
)2
B

8nt
δ2

(ε2−ε1)

A
8nt
δ2

(1−ε1)
.

This shows boundedness and therefore completing the proof.

For any J ∈ Hs(Tn), s ∈ R, define

Lδ,βJ =
∑
k∈Zn

m(νk)Ĵke
iνk·x. (17)

Lemma 1. Let U and V be as defined in (9) and (10) respectively, then Lδ,βU(t) = V (t).

Proof. By (17), we have

Lδ,βU(t) =
∑
k∈Zn

m(νk)Ûk(t)e
iνk·x

=
∑
k∈Zn

m(νk)f̂ke
m(νk)teiνk·x

= V (t).
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Proposition 1. Let N ∈ N ∪ {0} and define

U (N)(t) =
∑
k

f̂km(νk)
Nem(νk)teiνk·x,

V (N)(t) =
∑
k

f̂km(νk)
N+1em(νk)teiνk·x.

Then d
dtU

(N)(t) = V (N)(t), for all t ∈ (0,∞). Equivalently,

dN

dtN
U(t) =

∑
k

f̂km(νk)
N+1em(νk)teiνk·x,

where the differentiation here is in the sense of Gateaux differentiation.

Remark 1. We note that U (0)(t) = U(t) and V (0)(t) = V (t). In addition, similar to the argument
in Theorem 3, for any t ≥ 0, both U (N)(t) and V (N)(t) are in Hs(Tn) when β ≤ n and both are in
H∞(Tn) when n < β < n+ 4.

Proof. Let t > 0, we show that d
dtU

(N)(t) = V (N)(t), where the differentiation is in the Gateaux
sense, which is given by

lim
h→0

∥∥∥∥1

h

[
U (N)(t+ h)− U (N)(t)

]
− V (N)(t)

∥∥∥∥2

Hq(Tn)

= 0,

where q = s when β ≤ n and q is arbitrary when n < β < n+ 4. Equivalently, we show that

lim
h→0

∑
k∈Zn

(1 + ‖k‖2)q|f̂k|2m(νk)
2N

[
1

h

(
em(νk)h − 1

)
em(νk)t −m(νk)e

m(νk)t

]2

= 0. (18)

This result follows from passing the limit inside the sum, which we justify next by the dominated
convergence theorem.

When β < n, then q = s and there exists a constant C1 > 0 such that |m(νk)| < C1. Moreover,
there exists C2 > 0 such that ∣∣∣∣∣em(νk)h − 1

h

∣∣∣∣∣ < C2, (19)

for all k, and for sufficiently small h. Combining this with the fact that f ∈ Hs(Tn), it follows that
the summand in the left hand side of (18) is uniformly bounded.

When β > n, then the expression

(1 + ‖k‖2)q|f̂k|2m(νk)
2N

[
1

h

(
em(νk)h − 1

)
em(νk)t −m(νk)e

m(νk)t

]2

,

is uniformly bounded since m(νk)→ −∞ as ‖k‖ → ∞.
When β = n, then q = s and it is sufficient to show that

m(νk)
2N

[
1

h

(
em(νk)h − 1

)
em(νk)t −m(νk)e

m(νk)t

]2

= m(νk)
2Ne2m(νk)t

[
1

h

(
em(νk)h − 1

)
−m(νk)

]2

,
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is bounded. There exists ε > 0 such that∣∣∣∣∣em(νk)h − 1

h
−m(νk)

∣∣∣∣∣ ≤
∣∣∣∣∣em(νk)h − 1

h

∣∣∣∣∣+ |m(νk)| ≤ 2|m(νk)|+ ε.

Thus, by letting ε→ 0 and by using (13) and (16), we have

m(νk)
2Ne2m(νk)t

[
1

h

(
em(νk)h − 1

)
−m(νk)

]2

≤ 4m(νk)
2(N+1)e2m(νk)t

≤
4
(

4n
δ2

(1 + ε1)
)2(N+1)

(B‖k‖2(N+1))
4nt(1−ε1)
δ2(N+1)

(A‖k‖)
8nt
δ2

(1−ε1)

=
4
(

4n
δ2

(1 + ε1)
)2(N+1)

B
4nt(1−ε1)
δ2(N+1)

A
8nt
δ2

(1−ε1)
,

showing uniform boundedness and therefore completing the proof.

The following theorem summarizes the results in this subsection.

Theorem 4. Let f ∈ Hs(Tn), β < n+ 4, and s ∈ R. Then, there exists a unique solution U(t) to
the nonlocal diffusion equation 

dU

dt
= Lδ,βU(t),

U(0) = f.
(20)

Moreover, U ∈ C∞((0,∞);Hp(Tn)), where p is as defined in (11).

Remark 2. The time regularity in Theorem 4 is in the sense of Gateaux differentiation.

Proof. The existence follows from Lemma 1 and Proposition 1 by taking N = 0. For the uniqueness,
let U2(t) be another solution of (20). We define W (t) = U(t)− U2(t). Then, W (t) satisfies

dW

dt
= Lδ,βW,

W (0) = 0.

Represent W (t) by its Fourier series

W (t) =
∑
k∈Zn

Ŵk(t)e
iνk·x.

Lemma 1 implies that

Lδ,βW (t) =
∑
k∈Zn

m(νk)Ŵk(t)e
iνk·x,

and
dW

dt
=
∑
k∈Zn

dŴk

dt
(t)eiνk·x.

From (20) and the uniqueness of Fourier coefficients, we have that

dŴk

dt
(t) = m(νk)Ŵk(t),

for all k. This implies that Ŵk(t) = Aem(νk)t, where A is a constant. Since Ŵk(0) = 0, then
Ŵk(t) = 0, for all k which implies that W (t) = 0. Therefore, U(t) = U2(t). The spatial regularity
follows from Theorem 3.
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3.3 Regular functions as solutions of the nonlocal diffusion equation

In this section, we focus on functions f with absolutely summable Fourier coefficients, that is,∑
k∈Zn
|f̂k| <∞. The following theorem gives a class of functions that satisfy this condition, see [18].

Theorem 5. Let s be a non-negative integer and let 0 ≤ α < 1. Assume that f is a function defined
on Tn all of whose partial derivatives of order s lie in the space of Holder continuous functions of
order α. Suppose that s+ α > n/2. Then f has an absolutely convergent Fourier series.

Next we provide results on the temporal regularity of the nonlocal diffusion equation.

Proposition 2. Let f ∈ Hs(Tn) such that
∑
k∈Zn
|f̂k| <∞ and let β < n+ 4. Then,

u(x, ·) ∈ C∞((0,∞)),

for all x ∈ Tn.

Proof. We use the Leibniz integral rule for the counting measure to differentiate under the sum-
mation. Let gk(t) = f̂ke

m(νk)teiνk·x and consider∑
k∈Zn

|gk(t)| =
∑
k∈Zn

|f̂kem(νk)teiνk·x|

=
∑
k∈Zn

|f̂k|em(νk)t

≤
∑
k∈Zn

|f̂k|.

Since
∑
k∈Zn
|f̂k| <∞, then gk(t) is summable for any fixed t. Moreover,

dgk
dt

= f̂km(νk)e
m(νk)teiνk·x,

is continuous for all k. Now fix t > 0, then there exist τ such that 0 < τ < t. We define
θk := |f̂k||m(νk)|em(νk)τ . When β < n, then there exists C > 0 such that |m(νk)| ≤ C. Thus

θk = |f̂k||m(νk)|em(νk)τ ≤ C|f̂k|,

showing that θk is summable. When β ≥ n, then em(νk)τ → 0 as ‖k‖ → ∞. Thus |m(νk)|em(νk)τ ≤ 1
for sufficiently large ‖k‖. Hence θk ≤ |f̂k|, showing that θk is summable. Moreover∣∣∣∣dgkdt

∣∣∣∣ = |f̂k||m(νk)|em(νk)t

≤ |f̂k||m(νk)|em(νk)τ

= θk.

Therefore, we can differentiate under the summation,

∂u(x, t)

∂t
=

d

dt

∑
k∈Zn

gk(t)

=
∑
k∈Zn

dgk
dt

=
∑
k∈Zn

f̂km(νk)e
m(νk)teiνk·x.

9



For higher derivatives, we observe that

dNgk
dtN

= f̂k|m(νk)|Nem(νk)teiνk·x.

Define θk = |f̂k||m(νk)|Nem(νk)τ . Then θk is summable by following similar arguments as above.
Furthermore, ∣∣∣∣dNgkdtN

∣∣∣∣ = |f̂k||m(νk)|Nem(νk)t

≤ |f̂k||m(νk)|Nem(νk)τ

= θk.

This implies that u(x, ·) is N-times continuously differentiable and

∂Nu(x, t)

∂tN
=

dN

dtN

∑
k∈Zn

gk(t)

=
∑
k∈Zn

dNgk
dtN

=
∑
k∈Zn

f̂k|m(νk)|Nem(νk)teiνk·x.

Since N is arbitrary, it follows that u(x, ·) ∈ C∞((0,∞)).

From Theorem 3 and Proposition 2 we obtain the following regularity result.

Theorem 6. Let n ≥ 1, δ > 0, ε > 0 and β < n + 4. Assume that f ∈ Hs(Tn) and its Fourier
coefficients are summable. Then,

1. u ∈ C∞((0,∞);Hs(Tn)) for β < n,

2. u ∈ C∞
(

(0,∞);Hs+ 4nt
δ2

(1−ε)(Tn)
)

for β = n,

3. u ∈ C∞((0,∞);H∞(Tn)) for β > n.

The following lemma will be used to prove Theorem 7 on the convergence of solutions of the
nonlocal diffusion equation as δ → 0+.

Lemma 2. Let n < β < n + 2 and δ ≤ 1. Then, there exist c1 > 0 and c2 > 0 such that for all
ν ∈ Rn,

mδ,β(ν) ≤ max{−c1‖ν‖β−n,−c2‖ν‖2}.

Proof. From Theorem 2, we have
m1,β(ν) ∼ c‖ν‖β−n,

where

c = (2)2n+2−β
Γ
(
n+4−β

2

)
Γ
(
n+2

2

)
(β − n)Γ

(
β
2

) > 0.

10



This is equivalent to

lim
‖ν‖→∞

m1,β(ν)

−‖ν‖β−n
= c,

which implies that there is c1 > 0 and N > 0 such that for all ‖ν‖ > N

m1,β(ν) ≤ −c1‖ν‖β−n. (21)

On the other hand, from [1], we have

lim
‖ν‖→0

m1,β(ν)

−‖ν‖β−n
= 1.

Thus, there exists c2 > 0 such that for all ‖ν‖ < N,

m1,β(ν) ≤ −c2‖ν‖2. (22)

Combining (21) and (22), we have

m1,β(ν) ≤ max{−c1‖ν‖β−n,−c2‖ν‖2}, (23)

for all ν ∈ Rn. Using (23) and the fact that mδ,β = 1
δ2
m1,β(δν), we obtain

mδ,β =
1

δ2
m1,β(δν) ≤ 1

δ2
max{−c1‖δν‖β−n,−c2‖δν‖2}

= max{−c1‖ν‖β−nδβ−(n+2),−c2‖ν‖2}.

Since δ ≤ 1, then −δβ−(n+2) ≤ −1 and hence

mδ,β(ν) ≤ max{−c1‖ν‖β−n,−c2‖ν‖2}.

Convergence of solutions of the nonlocal diffusion equation (7) to the solution of the correspond-
ing classical diffusion equation is given next in Theorem 7 and Theorem 8.

Theorem 7. Let n ≥ 1, s ∈ R and let f ∈ Hs(Tn). Suppose u is the solution of the classical
diffusion equation ut = ∆u with initial condition u|t=0 = f . For any δ > 0, let uδ,β be the solution
of the nonlocal diffusion equation in (7). Then, for t > 0 and β ≤ n,

lim
δ→0+

uδ,β(·, t) = u(·, t), in Hs(Tn),

and for n < β ≤ n+ 2,

lim
δ→0+

uδ,β(·, t) = u(·, t), in H∞(Tn).

Proof. The Fourier coefficients satisfy ûδ,βk = f̂ke
m(νk)t and ûk = f̂ke

−‖νk‖2t. When β ≤ n, then

‖uδ,β(·, t)− u(·, t)‖2Hs(Tn) =
∑

06=k∈Zn
(1 + ‖k‖2)s |ûδ,βk − ûk|

2

=
∑

06=k∈Zn
(1 + ‖k‖2)s |em(νk)t − e−‖νk‖2t|2 |f̂k|2.

11



To pass the limit δ → 0+ inside the sum, it is sufficient to show that |em(νk)t−e−‖νk‖2t|2 as a function
of k is uniformly bounded. Using (4), it is straightforward to see that m(ν) ≤ 0 for ν ∈ Rn. Thus,∣∣∣em(νk)t − e−‖νk‖2t

∣∣∣2 ≤ (em(νk)t + e−‖νk‖
2t)2 ≤ 4.

Since, lim
δ→0+

m(νk) = −‖νk‖2, then

lim
δ→0+

uδ,β(·, t) = u(·, t), in Hs(Tn).

For the case β > n, fix an arbitrary p ∈ R. Then,

‖uδ,β(·, t)− u(·, t)‖2Hp(Tn) =
∑

06=k∈Zn
(1 + ‖k‖2)p|ûδ,βk − ûk|

2

=
∑

06=k∈Zn
(1 + ‖k‖2)s (1 + ‖k‖2)p−s |em(νk)t − e−‖νk‖2t|2 |f̂k|2.

Since (1 + ‖k‖2)s|f̂k|2 is summable, then to pass the limit inside the above sum, we show that the
following function in k that is given by

(1 + ‖k‖2)p−s|em(νk)t − e−‖νk‖2t|2,

is uniformly bounded. First, we rewrite the above expression as

(1 + ‖k‖2)p−s|em(νk)t − e−‖νk‖2t|2 = (1 + ‖k‖2)p−s e2m(νk)t
(

1− e−(m(νk)+‖νk‖2)t
)2
.

Then, we observe that

mδ,β(νk) + ‖νk‖2 = −‖νk‖2 2F3

(
1,
n+ 2− β

2
; 2,

n+ 2

2
,
n+ 4− β

2
;−1

4
‖νk‖2δ2

)
+ ‖νk‖2

= ‖νk‖2
(

1−2 F3

(
1,
n+ 2− β

2
; 2,

n+ 2

2
,
n+ 4− β

2
;−1

4
‖νk‖2δ2

))
.

Since 2F3

(
1, n+2−β

2 ; 2, n+2
2 , n+4−β

2 ;x
)
≤ 1 for all x ≤ 0, then mδ,β + ‖νk‖2 ≥ 0. Therefore,

1− e−(m(νk)+‖νk‖2)t < 1.

Using this fact, we have

(1 + ‖k‖2)p−s
∣∣∣em(νk)t − e−‖νk‖2

∣∣∣ = (1 + ‖k‖2)p−s e2m(νk)t(1− e−(m(νk)+‖νk‖2t)2

< (1 + ‖k‖2)p−s e2m(νk)t.

Lemma 2 implies that there exist c1 > 0 and c2 > 0 such that

em(νk)t ≤ max{e−c1‖νk‖β−n t, e−c2‖νk‖2t}.

Consequently,

(1 + ‖k‖2)p−s e2m(νk)t ≤ (1 + ‖k‖2)p−s

min{exp(2c1‖νk‖β−n t), exp(2c2‖νk‖2t)}
,

which is bounded for sufficiently large k for all δ ∈ [0, 1].
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Theorem 8. Let n ≥ 1, s ∈ R and let f ∈ Hs(Tn). Suppose u is the solution of the classical
diffusion equation ut = ∆u, with u|t=0 = f , and for any β < n + 4, let uδ,β be the solution of the
nonlocal diffusion equation (7), then for t > 0

lim
β→n+2

uδ,β(·, t) = u(·, t), in H∞(Tn).

Proof. Let q ∈ R be arbitrary. Consider

‖uδ,β(·, t)− u(·, t)‖2Hq(Tn) =
∑
k∈Zn

(1 + ‖k‖2)q−s
∣∣∣em(νk)t − e−‖νk‖2t

∣∣∣2 (1 + ‖k‖2)s‖f̂k‖2.

We observe that for β near n + 2, m(νk) → −∞ as ‖k‖ → ∞. Thus, we can pass the limit in β
inside the sum above, since f ∈ Hs(Tn) and the expression

(1 + ‖k‖2)q−s
∣∣∣em(νk)t − e−‖νk‖2t

∣∣∣2 ,
is uniformly bounded. Since lim

β→n+2
m(νk) = −‖νk‖2, then the result follows.

4 Nonlocal diffusion equation with a diffusion source

In this section, we focus on the following nonlocal diffusion equation with a diffusion source and
zero initial data {

ut(x, t) = Lδ,βu(x, t) + b(x), x ∈ Tn, t > 0,

u(x, 0) = 0.
(24)

In order to study the existence, uniqueness, and regularity of solutions to (24) over the space of
periodic distributions, we consider the identification U(t) = u(·, t), with U : [0,∞)→ Hs(Tn).

Let b ∈ Hs(Tn) and define U, V : [0,∞)→ Hq(Tn) for some q ∈ R, by

U(t) = b̂0t+
∑

06=k∈Zn

em(νk)t − 1

m(νk)
b̂ke

iνk·x, (25)

V (t) =
∑
k∈Zn

em(νk)tb̂ke
iνk·x. (26)

Observe that for any t ≥ 0, U(t) and V (t) are well-defined periodic distributions, since em(νk)t−1
m(νk)

and em(νk)t are bounded functions in k.

Theorem 9. Let n ≥ 1, δ > 0, and β < n + 4. Assume that ε1 > 0 and b ∈ Hs(Tn) for some
s ∈ R. Then for any fixed t > 0, U(t) ∈ Hp(Tn) and V (t) ∈ Hr(Tn), where

p =

{
s, if β ≤ n,
s+ β − n, if β > n,

and r =


s, if β < n,

s+
4nt

δ2
(1− ε1), if β = n,

∞, if β > n.

(27)
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Proof. We observe that

‖U(t)− b̂0t‖2Hp(Tn) =
∑

06=k∈Zn
(1 + ‖k‖2)p|Ûk(t)|2

=
∑

06=k∈Zn

(1 + ‖k‖2)p−s

|m(νk)|2
(em(νk) − 1)2(1 + ‖k‖2)s|b̂k|2.

Since b ∈ Hs(Tn) and em(νk)t is bounded because m(νk) < 0, then the result follows by showing
that

(1 + ‖k‖2)p−s

|m(νk)|2
,

is bounded for k 6= 0. When β ≤ n, then p − s = 0 and by using Theorem 2, there exist C1 > 0
and r1 > 0 such that |m(νk)| ≥ C1, for all ‖k‖ ≥ r1. Thus,

(1 + ‖k‖2)p−s

|m(νk)|2
≤ 1

C2
1

.

When β > n, then p− s = β−n, and by using Theorem 2, there exist C2 > 0 and r2 > 0 such that
|m(νk)| ≥ C2‖k‖β−n, for all ‖k‖ ≥ r2. This implies that

(1 + ‖k‖2)p−s

|m(νk)|2
≤ 1

C2
2

(
1 + ‖k‖2

‖k‖2

)β−n
,

which is bounded. The proof of V (t) ∈ Hr(Tn) is similar to the proof of Theorem 3.

Lemma 3. Let U and V be as defined in (25) and (26), respectively. Then

V (t) = Lδ,βU(t) + b.

Proof. By using (17), for any x ∈ Tn and t > 0, we have

Lδ,βU(t)(x) = Lδ,β(b̂0t) +
∑

06=k∈Zn
m(νk)Ûk(t)e

iνk·x

=
∑

06=k∈Zn
m(νk)

(em(νk)t − 1)

m(νk)
b̂ke

iνk·x

=
∑

06=k∈Zn
b̂ke

m(νk)teiνk·x −
∑

06=k∈Zn
b̂ke

iνk·x

= V (t)(x)− b(x).

Proposition 3. Let U(t) and V (t) be as defined in (25) and (26), respectively. Then,

dU

dt
= V (t).

Moreover, for N ≥ 1,
dNU

dtN
=
∑
k∈Zn

b̂km(νk)
N−1em(νk)teiνk·x,

for all t ∈ (0,∞), where the differentiation here is in the sense of Gateaux differentiation.
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Proof. We show that

lim
h→0

∥∥∥∥1

h
[U(t+ h)− U(t)]− V (t)

∥∥∥∥2

Hq(Tn)

= 0,

where q = s when β ≤ n and q is arbitrary when β > n. Equivalently, we show that

lim
h→0

∑
06=k∈Zn

(1 + ‖k‖2)q|b̂k|2
[

1

h

(
em(νk)h − 1

) em(νk)t

m(νk)
− em(νk)t

]2

= 0. (28)

This result follows from passing the limit inside the sum, which we justify next by the dominated
convergence theorem.

When β < n, then q = s and similar to (19), there exists a constant C2 > 0 such that∣∣∣∣∣em(νk)h − 1

h

∣∣∣∣∣ < C2,

for all k, and for sufficiently small h. Moreover, em(νk)t and 1
m(νk) , for k 6= 0, are bounded.

Combining this with the fact that b ∈ Hs(Tn), it follows that the summand in the left hand side
of (28) is uniformly bounded.

When β > n, then the expression

(1 + ‖k‖2)q|b̂k|2
[

1

h

(
em(νk)h − 1

) em(νk)t

m(νk)
− em(νk)t

]2

is uniformly bounded since m(νk)→ −∞ as ‖k‖ → ∞.
When β = n, then q = s and thus it is sufficient to show that[

1

h

(
em(νk)h − 1

) em(νk)t

m(νk)
− em(νk)t

]2

=
e2m(νk)t

m(νk)2

[
1

h

(
em(νk)h − 1

)
−m(νk)

]2

is uniformly bounded. There exists ε > 0 such that∣∣∣∣∣em(νk)h − 1

h
−m(νk)

∣∣∣∣∣ ≤
∣∣∣∣∣em(νk)h − 1

h

∣∣∣∣∣+ |m(νk)| ≤ 2|m(νk)|+ ε.

Thus, by letting ε→ 0, we have

e2m(νk)t

m(νk)2

[
1

h

(
em(νk)h − 1

)
−m(νk)

]2

≤ 4e2m(νk)t,

showing boundedness since m(νk) ≤ 0, and therefore completing the proof of the first part. The
second part of this proposition follows from arguments similar to those in the proof of Proposition 1.

The following regularity theorem summarizes the results of this subsection.

Theorem 10. Let b ∈ Hs(Tn) with s ∈ R. Then there exists a unique solution U to the nonlocal
diffusion equation 

dU

dt
= Lδ,βU(t) + b,

U(0) = 0.
(29)

Moreover, U ∈ C∞((0,∞);Hp(Tn)), where p is as defined in (27).
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Remark 3. The temporal regularity is in the sense of Gateaux differentiation.

Proof. The existence follows from Lemma 3 and Proposition 3. For the uniqueness, the proof is
similar to the proof of uniqueness in Theorem 4. The spatial regularity follows from Theorem 9
and the temporal regularity follows from Proposition 3.

4.1 Regular functions as solutions of nonlocal diffusion equation with diffusion
source

In this section, we focus on functions b with absolutely summable Fourier coefficients,
∑
k∈Zn
|b̂k| <∞.

Proposition 4. Let b ∈ Hs(Tn) such that
∑
k∈Zn
|b̂k| <∞ and let β < n+ 4. Then

u(x, ·) ∈ C∞((0,∞)),

for all x ∈ Tn.

Proof. We use the Leibniz rule to differentiate under the sum. Let gk(t) = em(νk)t−1
m(νk) b̂ke

iνk·x and
consider

∑
06=k∈Zn

|gk(t)| =
∑

06=k∈Zn

∣∣∣∣∣em(νk)t − 1

m(νk)
b̂ke

iνk·x

∣∣∣∣∣
=

∑
06=k∈Zn

|b̂k|

∣∣∣∣∣em(νk)t − 1

m(νk)

∣∣∣∣∣
≤

∑
06=k∈Zn

|b̂k|
1

|m(νk)|
,

where in the last inequality, we used the fact that m(νk) < 0. Since 1
|m(νk)| , k 6= 0, is bounded and∑

k∈Zn
|b̂k| <∞, then gk(t) is summable for any fixed t. Moreover,

dgk
dt

= b̂ke
m(νk)teiνk·x,

is continuous for all k. Now fix t > 0, then there exists τ such that 0 < τ < t. We define
θk := |b̂k|em(νk)τ . Since m(νk) ≤ 0, for all k, then

θk = |b̂k|em(νk)τ ≤ |b̂k|,

showing that θk is summable. Moreover,∣∣∣∣dgkdt
∣∣∣∣ = |b̂k|em(νk)t

≤ |b̂k|em(νk)τ

= θk.
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Therefore,

∂u(x, t)

∂t
= b̂0 +

d

dt

∑
06=k∈Zn

gk(t)

= b̂0 +
∑

06=k∈Zn

dgk
dt

=
∑
k∈Zn

b̂ke
m(νk)teiνk·x.

This shows that u is differentiable with respect to t. For higher derivatives, let N ≥ 2 be an integer,
we observe that

dNgk
dtN

= b̂k (m(νk))
N−1em(νk)teiνk·x.

Define θk = |b̂k||m(νk)|N−1em(νk)τ . When β < n, then there exists C > 0 such that |m(νk)| ≤ C.
Thus,

θk = |b̂k||m(νk)|N−1em(νk)τ ≤ CN−1|b̂k|,

showing that θk is summable. When β ≥ n, then em(νk)τ → 0 as ‖k‖ → ∞. Thus, |m(νk)|N−1em(νk)τ ≤ 1
for sufficiently large ‖k‖. Hence θk ≤ |b̂k|, showing that θk is summable. Furthermore,∣∣∣∣dNgkdtN

∣∣∣∣ = |b̂k||m(νk)|N−1em(νk)t

≤ |b̂k||m(νk)|N−1em(νk)τ

= θk.

This implies that u(x, ·) is N-times continuously differentiable and

∂Nu(x, t)

∂tN
=

dN

dtN

∑
k∈Zn

gk(t)

=
∑
k∈Zn

dNgk
dtN

=
∑
k∈Zn

b̂k|m(νk)|N−1em(νk)teiνk·x.

Since N is arbitrary, it follows that u(x, ·) ∈ C∞((0,∞)).

From Theorem 9 and Proposition 4 we obtain the following regularity result.

Theorem 11. Let n ≥ 1, δ > 0 and β < n+4. Assume that b ∈ Hs(Tn) and its Fourier coefficients
are summable. Then,

1. u ∈ C∞((0,∞);Hs(Tn)), for β ≤ n,

2. u ∈ C∞
(
(0,∞);Hs+β−n(Tn)

)
, for β > n.

Convergence of solutions of the nonlocal diffusion equation (24) to the solution of the corre-
sponding classical diffusion equation is given next in Theorem 12 and Theorem 13.
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Theorem 12. Let n ≥ 1 and b ∈ Hs(Tn), with s ∈ R. Suppose u is the solution of the classical
diffusion equation ut = 4u + b with initial condition u|t=0 = 0. For any δ > 0, let uδ,β be the
solution of the nonlocal diffusion equation{

uδ,βt (x, t) = Lδ,βuδ,β(x, t) + b(x), x ∈ Tn, t > 0,

uδ,β(x, 0) = 0, x ∈ Tn.
(30)

Then, for t > 0 and β ≤ n,

lim
δ→0+

uδ,β(·, t) = u(·, t), in Hs(Tn),

and for n < β ≤ n+ 2,

lim
δ→0+

uδ,β(·, t) = u(·, t), in Hs+β−n(Tn).

Proof. The Fourier coefficients satisfy ûδ,βk = (em(νk)t−1)
m(νk) b̂k and ûk = (e−‖νk‖

2t−1)
−‖νk‖2

b̂k, for k 6= 0. For

β ≤ n, then

‖uδ,β(·, t)− u(·, t)‖2Hs(Tn) =
∑

06=k∈Zn
(1 + ‖k‖2)s |ûδ,βk − ûk|

2

=
∑

06=k∈Zn
(1 + ‖k‖2)s

∣∣∣∣∣(em(νk)t − 1)

m(νk)
− (e−‖νk‖

2t − 1)

−‖νk‖2

∣∣∣∣∣
2

|b̂k|2.

To pass the limit δ → 0+ inside the sum, it is sufficient to show that

∣∣∣∣ (em(νk)t−1)
m(νk) − (e−‖νk‖

2t−1)
−‖νk‖2

∣∣∣∣ is

uniformly bounded. Using (4), m(ν) ≤ 0 for ν ∈ Rn, and thus,∣∣∣∣∣(em(νk)t − 1)

m(νk)
− (e−‖νk‖

2t − 1)

−‖νk‖2

∣∣∣∣∣ ≤ 1

|m(νk)|
+

1

‖νk‖2
.

Since 1
m(νk) , k 6= 0, and 1

‖νk‖2
, k 6= 0, are bounded, then

∣∣∣∣ (em(νk)t−1)
m(νk) − (e−‖νk‖

2t−1)
−‖νk‖2

∣∣∣∣ is uniformly

bounded. For the case β > n, consider

‖uδ,β(·, t)− u(·, t)‖2Hs+β−n(Tn) =
∑

06=k∈Zn
(1 + ‖k‖2)s+β−n |ûδ,βk − ûk|

2

=
∑

06=k∈Zn
(1 + ‖k‖2)s(1 + ‖k‖2)β−n

∣∣∣∣∣(em(νk)t − 1)

m(νk)
− (e−‖νk‖

2t − 1)

−‖νk‖2

∣∣∣∣∣
2

|b̂k|2.

Since (1 + ‖k‖2)s|b̂k|2 is summable, then to pass the limit inside the above sum, we show that the
following function in k that is given by

(1 + ‖k‖2)β−n

∣∣∣∣∣(em(νk)t − 1)

m(νk)
− (e−‖νk‖

2t − 1)

−‖νk‖2

∣∣∣∣∣
2

is uniformly bounded. Since m(ν) ≤ 0 for all ν ∈ Rn, then

(1 + ‖k‖2)β−n

∣∣∣∣∣(em(νk)t − 1)

m(νk)
− (e−‖νk‖

2t − 1)

−‖νk‖2

∣∣∣∣∣
2

≤ (1 + ‖k‖2)β−n
(

1

|m(νk)|
+

1

‖νk‖2

)2

.
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By using Theorem 2, there exists constant C > 0 such that |m(νk)| > C‖k‖β−n. Furthermore,
using the fact that A‖k‖ ≤ ‖νk‖ ≤ B‖k‖ for positive constants A and B and since β − n ≤ 2, then
‖νk‖2 ≥ A2‖k‖β−n. Therefore,

(1 + ‖k‖2)β−n
(

1

|m(νk)|
+

1

‖νk‖2

)2

≤ (1 + ‖k‖2)β−n
(

1

C‖k‖β−n
+

1

A2‖k‖β−n

)2

≤ max

(
1

C2
,

1

A4

)(
1 + ‖k‖2

‖k‖2

)β−n
,

showing uniform boundedness. Whether β ≤ n or n < β ≤ n + 2, we have lim
δ→0+

m(νk) = −‖νk‖2,

which implies that lim
δ→0+

‖uδ,β(·, t) − u(·, t)‖Hs(Tn) = 0, or lim
δ→0+

‖uδ,β(·, t) − u(·, t)‖Hs+β−n(Tn) = 0,

respectively, and therefore completing the proof.

A proof of the following lemma on the monotonicity of the multipliers can be found in [2].

Lemma 4. Let β′ < β ≤ n+ 2. Then, for all ν 6= 0, mδ,β(ν) < mδ,β′(ν).

Theorem 13. Let n ≥ 1, s ∈ R and let b ∈ Hs(Tn). Suppose u is the solution of the classical
diffusion equation ut = ∆u + b, with u|t=0 = 0, and for any β < n + 2, let uδ,β be the solution of
the nonlocal diffusion equation (30). Then, for t > 0 and 0 < ε < 2,

lim
β→(n+2)−

uδ,β(·, t) = u(·, t), in Hs+2−ε(Tn).

Proof. For 0 < ε < 2, define β′ = n + 2 − ε. For any β > β′, we have from Theorem 9 that
uδ,β ∈ Hs+β−n(Tn) ⊂ Hs+2−ε(Tn). Furthermore, u ∈ Hs+2(Tn) ⊂ Hs+2−ε(Tn). Thus the limit
makes sense. Consider

‖uδ,β(·, t)− u(·, t)‖2Hs+2−ε(Tn) =
∑

06=k∈Zn
(1 + ‖k‖2)2−ε

∣∣∣∣∣em
δ,β(νk)t − 1

mδ,β(νk)
− e−‖νk‖

2t − 1

−‖νk‖2

∣∣∣∣∣
2

(1 + ‖k‖2)s‖b̂k‖2.

Since b ∈ Hs(Tn), in order to pass the limit in β inside the sum, we show that the expression

(1 + ‖k‖2)2−ε

∣∣∣∣∣em
δ,β(νk)t − 1

mδ,β(νk)
− e−‖νk‖

2t − 1

−‖νk‖2

∣∣∣∣∣
2

is uniformly bounded for k 6= 0 and β ∈ [β′, n+ 2). Applying Lemma 4,

(1 + ‖k‖2)2−ε

∣∣∣∣∣em
δ,β(νk)t − 1

mδ,β(νk)
− e−‖νk‖

2t − 1

−‖νk‖2

∣∣∣∣∣
2

≤ (1 + ‖k‖2)2−ε
(

1

|mδ,β(νk)|
+

1

‖νk‖2

)2

≤ (1 + ‖k‖2)2−ε
(

1

|mδ,β′(νk)|
+

1

‖νk‖2

)2

.

From Theorem 2, there exists C > 0 such that |mδ,β′(νk)| ≥ C‖k‖2−ε. Furthermore, there exists
A > 0 such that ‖νk‖ ≥ A‖k‖. Thus,

(1 + ‖k‖2)2−ε
(

1

|mδ,β′(νk)|
+

1

‖νk‖2

)2

≤ (1 + ‖k‖2)2−ε
(

1

C‖k‖2−ε
+

1

A2‖νk‖2

)2

≤ (1 + ‖k‖2)2−ε
(

1

C‖k‖2−ε
+

1

A2‖νk‖2−ε

)2

,

which is uniformly bounded. Since lim
β→(n+2)−

m(νk) = −‖νk‖2, then the result follows.

19



5 Propagation of discontinuities for the nonlocal diffusion equa-
tion

In this section, we study the propagation of discontinuities for the nonlocal diffusion equation in (7).
We emphasize that Theorem 6 implies that the nonlocal diffusion equation satisfies an instantaneous
smoothing effect when the integral kernel is singular with β > n and a gradual (over time) smoothing
effect for when β = n. However, for integrable kernels (β < n), the nonlocal diffusion equation is
non-smoothing. In this section, we investigate this latter case further by studying the propagation
of discontinuities. To this end, given a discontinuous initial data f ∈ L2(Tn). Then, we show that
for certain conditions on f and β, discontinuities persist and propagate. In particular, we show
that in one-dimension, if f is piecewise continuous, then the solution u is piecewise continuous and
both f and u share the same locations of jumps.

To study the propagation of discontinuities, we look for a decomposition of u, the solution of
(7), of the form

u(x, t) = v(x, t) + g(t)f(x),

for some function v(x, t), which is continuous in x and satisfies v(x, 0) = 0, and some function g
satisfying g(0) = 1. This would imply that any discontinuity in f will persist to be a discontinuity
in u for all t > 0. We show that the magnitude of a jump discontinuity decays as t increases.

We observe that v satisfies the following

vt = ut − g′(t)f(x)

= Lδ,βu− g′(t)f(x)

= Lδ,βv + g(t)Lδ,βf(x)− g′(t)f(x).

Since β < n, we observe that

Lδ,βf(x) = cδ,β
∫
Bδ(x)

f(y)− f(x)

‖y − x‖β
dy = h(x)− αf(x),

where

h(x) = cδ,β
∫
Bδ(x)

f(y)

‖y − x‖β
dy =

(
cδ,β

‖ · ‖β
χBδ(0)(·)

)
∗ f(x), (31)

and α is a constant given by

α = cδ,β
∫
Bδ(x)

1

‖y − x‖β
dy =

2n(n+ 2− β)

δ2(n− β)
. (32)

Therefore,

vt = Lδ,βv + g(t)h(x)− αg(t)f(x)− g′(t)f(x)

= Lδ,βv + g(t)h(x)− f(x)
(
αg(t)− g′(t)

)
.

Setting αg(t)− g′(t) = 0, then g(t) = e−αt. Hence, v solves{
vt = Lδ,βv + e−αth(x), x ∈ Tn, t > 0,

v(x, 0) = 0,
(33)

and therefore,

u(x, t) = v(x, t) + e−αtf(x). (34)
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Hence,

v̂k = ûk − e−αtf̂k
= f̂ke

m(νk)t − e−αtf̂k
= f̂k

(
1− e−(m(νk)+α)t

)
em(νk)t. (35)

It remains to find conditions on f and β to guarantee the continuity of v. Towards this end, we
make use of the following lemma, whose proof is similar to the proof of Theorem 3.2 in [2]. We
note that the constant α appears in the asymptotics formula (6).

Lemma 5. Let ν ∈ Rn and let β < n. Suppose α is as defined in (32). Then

m(ν) + α ∼


4(n+ 2− β)Γ

(
n
2 + 1

)
δ2

Γ
(
n
2

)
Γ
(
n+2−β

2

)
Γ
(
β
2

) (
δ‖ν‖

2

)β−n
, if n−1

2 < β < n,

4(n+ 2− β)Γ
(
n
2 + 1

)
δ2

(n− β)Γ
(
n
2

)
4
√
π

(
δ‖ν‖

2

)−n+1
2
, if β ≤ n−1

2 .

In addition, we make use of the following lemma.

Lemma 6. Let α be as defined in (32). Then,

(
1− e−(m(νk)+α)t

)
em(νk)t ∼


C1te

−αt

‖k‖n−β
, if n−1

2 < β < n,

C2te
−αt

‖k‖
n+1
2

, if β ≤ n−1
2 ,

for some positive constants C1 and C2.

Proof. When n−1
2 < β < n, then by using Lemma 5 and the definition of νk, there exists C1 > 0

such that
lim
‖k‖→∞

(m(νk) + α)‖k‖n−β = C1,

which implies that
C1(1− ε)
‖k‖n−β

< m(νk) + α <
C1(1 + ε)

‖k‖n−β
,

for any ε > 0. Thus

‖k‖n−β
(

1− e−
C1(1−ε)t
‖k‖n−β

)
< ‖k‖n−β

(
1− e−(m(νk)+α)t

)
< ‖k‖n−β

(
1− e−

C1(1+ε)t

‖k‖n−β

)
,

and consequently,

C1(1− ε)t < lim
‖k‖→∞

‖k‖n−β
(

1− e−(m(νk)+α)t
)
< C1(1 + ε)t.

Since ε is arbitrary, we obtain

lim
‖k‖→∞

‖k‖n−β
(

1− e−(m(νk)+α)t
)

= C1t,

and thus, (
1− e−(m(νk)+α)t

)
em(νk)t ∼ C1te

−αt

‖k‖n−β
.

The proof is similar for the case β ≤ n−1
2 .
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Figure 1: The slow decay of a discontinuity in the nonlocal diffusion equation with β < n.

Conditions on f and β to guarantee the continuity of v are given in the following result.

Theorem 14. Let v(x, t) be as in (34) and assume that f̂k satisfies

f̂k ∼


1

‖k‖β+ε , if n−1
2 < β < n,

1

‖k‖
n−1
2 +ζ

, if β ≤ n−1
2 ,

for ε, ζ > 0. Then, v(x, t) is continuous.

Proof. For n−1
2 < β < n with f̂k ∼ 1

‖k‖β+ε , then by using Lemma 6, we have

v̂k = f̂k

(
1− e−(m(νk)+α)t

)
em(νk)t ∼ Cte−αt

‖k‖n+ε
.

Similarly, for β ≤ n−1
2 with f̂k ∼ 1

‖k‖
n−1
2 +ζ

, then

v̂k = f̂k

(
1− e−(m(νk)+α)t

)
em(νk)t ∼ Cte−αt

‖k‖n+ζ
.

By Proposition 3.3.12 in [18], we conclude that for t > 0, v(·, t) is continuous in both cases.

The following theorem summarizes the results in this section.

Theorem 15. Let β < n and let u be as given in (34) and assume that

f̂k ∼


1

‖k‖β+ε , if n−1
2 < β < n,

1

‖k‖
n−1
2 +ζ

, if β ≤ n−1
2 ,

for some ε, ζ > 0. Then, if f is discontinuous at x then u is discontinuous at x.

Corollary 1. If f ∈ L2(T ) is piecewise continuous, then u is piecewise continuous and f and u
share the same locations of jumps. Furthermore, the magnitude of a jump decays as t increases.

This is an immediate consequence of Theorem 15, since for a piecewise continuous function

f ∈ L2(T ), we have f̂k ∼
C

|k|
, for some C > 0.

A one-dimensional example for the propagation of a discontinuity in the nonlocal diffusion
equation is described below. Figure 1 shows the results of a numerical solution to the periodic

22



nonlocal diffusion problem ut = Lδ,βu on the interval (−10, 10) with δ = 1, β = 1/3, and initial
condition

u(x, 0) =


x+ 1 if − 1 < x ≤ 0,

x− 1 if 0 < x < 1,

0 otherwise.

In Figure 1, function values for x < 0 were plotted separately from those for x > 0 so that the
jump is apparent. The dashed lines indicate the values ±e−αt, showing the theoretical extremes of
the jump.
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