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EXTREMAL SECTIONS AND PROJECTIONS OF CERTAIN CONVEX BODIES:

A SURVEY

PIOTR NAYAR AND TOMASZ TKOCZ

Abstract. We survey results concerning sharp estimates on volumes of sections and projections of
certain convex bodies, mainly ℓp balls, by and onto lower dimensional subspaces. This subject emerged
from geometry of numbers several decades ago and since then has seen development of a variety of
probabilistic and analytic methods, showcased in this survey.
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1. Introduction

1.1. Prologue. How small can the volume of a slice of the unit cube be? This question, asked by
Good in the 70s in the context of its applications in geometry of numbers has turned out to be
rather influential, prompting development of several important methods, as well as spurring further
problems and research directions of independent interest in convex geometry, with strong ties to
probability. Those most notably include the dual question of extremal-volume projections, which in
the simplest nontrivial case of hyperplane-projections, naturally translates into probabilistic Khinchin-
type inequalities. Intriguingly, questions on extremal-volume sections can be similarly translated into
the same probabilistic language.

The purpose of this survey is thus two-folded: in addition to striving to give a systematic account of the
known results, our second goal is to illustrate intertwined Fourier analytic, geometric and probabilistic
methods underpinning the old and recent approaches.

1.2. The motivating example. We begin with recalling Good’s question (following [14, 135]). Sup-

pose we are given n linear forms Li(x) =
∑k

j=1 aijxj, i = 1, . . . , n in k variables. When does the

system |Li(x)| ≤ 1, i ≤ n, admit a nontrivial integral solution? The cornerstone result in geometry of
numbers, Minkowski’s (first) theorem provides a link to volume: if K is a symmetric convex body in
R
d of volume at least 2d, then it contains a nontrivial lattice point (see, e.g. Chapter 2 in [101]). Let

A = [aij]i≤n,j≤k be the n × k matrix whose ith row determines Li. Thus immediately, if k ≥ n and
det(A) ≤ 1 when k = n, then the answer to Good’s question is affirmative because the set

K = {x ∈ R
k, |Li(x)| ≤ 1, i ≤ n} = {x ∈ R

k, Ax ∈ [−1, 1]n}
is the preimage of the cube [−1, 1]n under the linear map A : Rk → R

n (unbounded if A is singular and
of volume exactly 2k det(A)−1 otherwise when k = n). The case k < n is more interesting. Suppose A
is of full rank k. Then the image of K under A is the section of the cube [−1, 1]n by the k-dimensional
linear subspace A(Rk). How small can its volume be? Good’s conjecture confirmed later by Vaaler in
[135] says that it is at least 2k (the volume of the k-dimensional subcube [−1, 1]k × {0}n−k). Thus if
det(A⊤A) ≤ 1, we obtain

vol(K) ≥
√

det(A⊤A) vol(K) = vol(A(K)) ≥ 2k
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also asserting in view of Minkowski’s theorem that the initial system of inequalities admits a nontrivial
integral solution, provided the convenient sufficient condition det(A⊤A) ≤ 1. From a geometric point
of view, it now seems natural and interesting to ask further questions about the maximal-volume
sections for the cube, as well as other sets.

1.3. Preliminaries and overview. We endow R
n with the standard inner product 〈x, y〉 =

∑n
j=1 xjyj

between two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in R
n and denote by |x| =

√

〈x, x〉, the
induced standard Euclidean norm. Its closed centred unit ball is denoted Bn

2 and for the unit sphere,
we write Sn−1 = ∂Bn

2 . Moreover, we write e1, . . . , en for the standard basis vectors, e1 = (1, 0, . . . , 0),
e2 = (0, 1, 0, . . . , 0) etc. As usual, for a set A in R

n, A⊥ = {x ∈ R
n, 〈x, a〉 = 0 ∀a ∈ A} is its orthogonal

complement, with the convention that for a vector u in R
n, u⊥ = {u}⊥ is the hyperplane perpendicular

to u. Dilates are denoted by λA = {λa, a ∈ A} for a scalar λ. In particular, if −A = A, the set A is
called (origin) symmetric. The Minkowski or algebraic sum of two sets is A+B = {a+b, a ∈ A, b ∈ B}.
The orthogonal projection onto an affine or linear subspace H in R

n is denoted by ProjH . Volume, i.e.
k-dimensional Lebesgue measure in R

n is denoted by volk(·), identified with k-dimensional Haussdorff
measure (normalised so that cubes with side-length 1 have volume 1). Recall that a body in R

n is a
compact set with nonempty interior. For a symmetric convex body K in R

n, its Minkowski functional
is ‖x‖K = sup{t ≥ 0, x ∈ tK}, x ∈ R

n, the norm whose unit ball is K. A function f : Rn → R+ is
called log-concave, if it is of the form e−V for a convex function V : Rn → (−∞,+∞]. We refer for
instance to the monographs [4, 35].

To put it fairly generally, given a body B in R
n and 1 ≤ k ≤ n, the two questions of our main interest

will be

(I) What are the minimal and maximal
volume sections volk(B ∩H) among all
k-dimensional subspaces H in R

n?

(II) What are the minimal and maximal
volume projections volk(ProjH(B))

among all k-dimensional subspaces H in
R
n?

We note the obvious that in contrast to (I), Question (II) does not change if we translate the body B.

It is worth recalling two classical convexity-type results allowing to compare such volumes in the
codimension 1 case, k = n− 1 (despite not yielding direct answers to these questions).

Theorem 1 (Busemann [37]). Let K be a symmetric convex body in R
n. Then the function

x 7→ |x|
voln−1(K ∩ x⊥)

, x 6= 0,

extended by 0 at x = 0 defines a norm on R
n.

The surface area measure σK of a convex body K in R
n is a Borel measure on the unit sphere

Sn−1 defined as follows: for E ⊂ Sn−1, σK(E) equals the volume of the part of the boundary ∂K
where normal vectors belong to E (in other words, σK is the pushforward of the (n− 1)-dimensional
Haussdorff measure on ∂K via the Guass map νK : ∂K → Sn−1).

Theorem 2 (Cauchy-Minkowski). Let K be a convex body in R
n. Then for every unit vector θ ∈ Sn−1,

we have

voln−1

(
Projθ⊥(K)

)
=

1

2

∫

Sn−1

| 〈θ, ξ〉 |dσK(ξ).

In particular, the function x 7→ |x| voln−1

(
Projx⊥(K)

)
, x 6= 0, extended by 0 at x = 0, defines a norm

on R
n.

Let us explain this formula in the case of polytopes. Suppose we are give a convex polytope P in
R
n and we want to project it onto a hyperplane θ⊥, where θ is a unit vector. Let FP be the set

of faces of P . If F ∈ FP then voln−1(Projθ⊥(F )) = voln−1(F ) · | 〈θ, n(F )〉 |, where n(F ) is the unit
outer-normal vector to F . Note that in Projθ⊥(P ) every point is covered two times, so one gets the
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following expression for the volume of projection

voln−1(Projθ⊥ P ) =
1

2

∑

F∈FP

voln−1(F ) · | 〈θ, n(F )〉 |.

The Cauchy-Minkowski formula is a straightforward generalization of this formula to general convex
bodies. For further background and proofs, we refer for instance to [56] (Theorem 8.1.10 and (A.49)).

For p > 0 and a vector x = (x1, . . . , xn) in R
n, we define the ℓp-norm of x (quasinorm, when 0 < p < 1)

and its (closed) unit ball by

‖x‖p =





n∑

j=1

|xj |p




1/p

, ‖x‖∞ = max
j≤n

|xj |, Bn
p = {x ∈ R

n, ‖x‖p ≤ 1} .

The cube Bn
∞ = [−1, 1]n often warrants the more convenient volume 1 normalisation

Qn =
1

2
Bn

∞ =

[

−1

2
,
1

2

]n

.

The known results about extremal-volume hyperplane sections and projections of ℓp balls are sum-
marised in Tables 1 and 2 (that is the known answers to Questions (I) and (II) when B = Bn

p and
k = n− 1). We shall discuss them and many more in detail in the next sections.

Table 1. Extremal-volume hyperplane sections of ℓp-balls:

min /maxa∈Sn−1 voln−1(B
n
p ∩ a⊥).

0 < p < 2 2 < p <∞ p = ∞
min a =

(
1√
n
, . . . , 1√

n

)

[83] a = (1, 0, . . . , 0) [105] a = (1, 0, . . . , 0) [62, 64]

max a = (1, 0, . . . , 0) [105] ? a =
(

1√
2
, 1√

2
, 0, . . . , 0

)

[7]

Table 2. Extremal-volume hyperplane projections of ℓp-balls: min /maxa∈Sn−1 voln−1

(
Proja⊥(Bn

p )
)
.

p = 1 1 < p < 2 2 < p ≤ ∞
min a =

(
1√
2
, 1√

2
, 0, . . . , 0

)

[13, 133] ? a = (1, 0, . . . , 0) [25]

max a = (1, 0, . . . , 0) [folklore] a = (1, 0, , . . . , 0) [25] a =
(

1√
n
, . . . , 1√

n

)

[25]

1.4. Existing literature and our aim. There is of course a vast literature on the subject. Ball’s
survey [14] presents stochastic comparison methods and applications of the celebrated Brascamp-Lieb
inequalities to derive sharp bounds on sections. Koldobsky, Ryabogin and Zvavich’s survey [87], as
well as Koldobsky’s monograh [84] bring a common Fourier-analytic treatment to bounds on both
sections and projections. The aim of this paper is to update on these and gather in one place what
we know up-to-date, as well as highlight what we would like to know around Questions (I) and (II),
presenting 11 conjectures. We also showcase a unifying probabilistic point of view (via Khinchin-type
inequalities) which goes hand in hand with the Fourier-analytic methods, allowing to obtain additional
insights and sharper results.

2. Sections

The goal here is to give a comprehensive account of known results concerning Question (I), with some
indication of methods to which we come back in Section 4. We begin with some general remarks.
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A convex body K in R
n is called isotropic if it has volume 1, its barycentre is at the origin and its

covariance matrix is proportional to the identity matrix, that is

voln(K) = 1,

∫

K
xdx = 0,

∫

K
xixjdx = L2

Kδij .

The positive propotionality constant LK is called the isotropic constant of K. Every convex body
admits an affine image which is isotropic (diagonalising the covariance matrix). It turns out that for
symmetric isotropic convex bodies, volumes of all sections of a fixed dimension are comparable.

Theorem 3 (Hensley [65]). Fix 1 ≤ k ≤ n. There are positive constants ck, c
′
k which depend only on

k such that for every symmetric convex body K in R
n which is isotropic and every k-codimensional

subspace H in R
n, we have

ck
LK

≤ voln−k(K ∩H)1/k ≤ c′k
LK

.

To illustrate the key insight of Hensley’s argument, let us consider the hyperplane case: we take
H = a⊥ for a unit vector a and let

(1) f(t) = voln−1(K ∩ (H + ta)), t ∈ R.

By the Brunn-Minkowski inequality, this defines a log-concave function. By the assumptions on K,
it is even and integrates to 1. We claim that f(t) is the probability density function of the random
variable 〈a,X〉, where X is uniform on K. Indeed,

P

(
n∑

i=1

aiXi ≤ s

)

= P (〈a,X〉 ≤ s) = voln−1 ({x ∈ K : 〈a, x〉 ≤ s}) =

∫ s

−∞
f(t)dt,

by Fubini’s theorem. Crucially,

(2) voln−1(K ∩ a⊥) = f(0).

Since by isotropicity E| 〈a,X〉 |2 = L2
K , we have

∫

R
t2f(t)dt = L2

K . It then remains to extremise
the value of f(0) among all such densities. Using a “moving mass to where it is beneficial” type
of argument (see the proof of Theorem 4 below), a sharp lower bound is obtained by considering a
uniform density (in higher dimensions, i.e. k > 1, isotropicity naturally dictates a uniform density on
a Euclidean ball), whilst for a sharp upper bound, using convexity, the comparison is made against
a symmetric exponential density (in higher dimensions, the argument is more complicated and not
sharp anymore – see Lemma 3 in [65]).

Bourgain in [31] used the property of hyperplane sections having comparable volume to obtain bounds
on maximal functions. He asked whether the isotropic constants LK over all K in all dimensions are
uniformly bounded by a universal constant – equivalently, whether every (symmetric) convex body of
volume 1 admits a hyperplane section of volume at least a universal constant. This has become one
of the central questions in asymptotic convex geometry, the hyperplane, or slicing conjecture, see e.g.
[35] for a comprehensive monograph, [76] for a recent survey and [69, 75, 74] for the best results up
to date.

By Theorem 3, for two arbitrary subspaces H1,H2 of codimension k, we have
(

volk(K ∩H1)

volk(K ∩H2)

)1/k

≤ Ck

with Ck =
c′k
ck

. Hensley’s proof gives an upper bound on Ck of the order k!, which was improved to
√
k

by Ball in [8], who conjectured an optimal bound to be in fact of the constant order, which remains
open and turns out to be equivalent to the slicing conjecture. Implicit in his work and elucidated
by V. Milman and Pajor in their seminal work [107] is the following reason for that equivalence: for
a symmetric isotropic convex body K in R

n and a k-codimensional subspace H in R
n, there is a

symmetric k-dimensional convex body C in H⊥ such that

c1
LC

LK
≤ voln−k(K ∩H)1/k ≤ c2

LC

LK
,

4



where c1, c2 > 0 are universal constants. The body C emerges from a generalisation of Busemann’s
Theorem 1 to higher codimensions (see [8] and [107]). Since LK ≥ LBn

2
, if the slicing conjecture is

true, then LC ≤ c3 for a universal constant c3 > 0 thus it in particular implies the existence of a
universal constant M > 0 such that for all k-codimensional subspaces H, we have

(3) voln−k(K ∩H) ≤Mk.

2.1. Cube. Recall Qn = [−1
2 ,

1
2 ]n. As highlighted in the introduction, in the context of extremal-

volume sections, it has always been the cube sparking most interest and attention. The first sharp
result concerned minimum-volume hyperplane sections and was obtained independently by Hadwiger
in [62] and Hensley in [64].

Theorem 4 (Hadwiger [62], Hensley [64]). For every unit vector a in R
n, we have

voln−1(Qn ∩ a⊥) ≥ 1.

Equality holds if and only if a = ±ej for some 1 ≤ j ≤ n.

Proof. Let K = Qn and let us consider the function f from (1). Since Qn is isotropic, the value of
∫
t2f(t)dt =

∫

Qn
〈x, a〉2 dx = 1

12 does not depend on a (easily found by taking a = e1). Moreover,

‖f‖∞ = f(0), for f is even and log-concave. It is therefore enough to show that for every probability
density f , we have

‖f‖2∞
∫

t2f(t)dt ≥ 1

12
.

This goes back to Moriguti’s work [109] (rederived by Ball in [7] in a slightly more general case of p-
norms). For the proof, we can assume that f is even, as otherwise we consider g(t) = 1

2(f(t) + f(−t))
and ‖g‖∞ ≤ ‖f‖∞, whereas the second moments of f and g are the same. Then we move mass
towards the origin, as this is beneficial: formally, take f0 = ‖f‖∞1[−c,c], where c = (2‖f‖∞)−1.
Clearly ‖f0‖∞ = ‖f‖∞. We have

∫

t2(f(t) − f0(t))dt =

∫

(t2 − c2)(f(t) − f0(t))dt ≥ 0,

as the integrant is nonnegative. �

In words, the canonical coordinate subspaces uniquely minimise the volume of hyperplane sections
of the cube. Soon after, this was extended to sections of arbitrary dimension by Vaaler in [135],
confirming Good’s conjecture.

Theorem 5 (Vaaler [135]). Fix 1 ≤ k ≤ n. For every k-dimensional subspace H in R
n, we have

volk(Qn ∩H) ≥ 1.

Equality holds if and only if H is spanned by some k standard basis vectors.

Thus every section of the cube has large volume. It is also “fat in all directions”, in terms of quadratic
forms, see Ball and Prodromou’s work [16]. Vaaler used log-concavity and the notion of peakedness
(introduced by Kanter in [71]) to make such comparison, generalising Hensley’s argument. Recently,
Akopyan, Hubard and Karasev in [1] gave a different proof based on topological methods.

Thus Vaaler’s theorem gives a complete answer to Question (I) for mimimal-volume sections of the
cube. Turning to the maximal ones, the first general upper bound for hyperplane sections was given
by Hensley in [64], viz. voln−1(Qn ∩ a⊥) ≤ 5 for every unit vector a in R

n, who also conjectured that
the sharp bound would be with 5 replaced by

√
2 attained at a = ( 1√

2
, 1√

2
, 0, . . . , 0). This was later

confirmed by Ball in his seminal work [7].

Theorem 6 (Ball [7]). For every unit vector a in R
n, we have

voln−1(Qn ∩ a⊥) ≤
√

2.

Equality holds if and only if a = (±ei ± ej)/
√

2 for some 1 ≤ i < j ≤ n.

5



Sketch of the proof. The starting point of Ball’s approach was Fourier-analytic: if we fix a unit vector
a and let f be the probability density of 〈a,X〉, where X is a random vector uniform on Qn (thus
having i.i.d. components Xj which are uniform on [−1

2 ,
1
2 ]), then by (2) and the standard Fourier

inversion formula,

voln−1(Qn ∩ a⊥) = f(0) =
1

2π

∫ ∞

−∞
f̂(t)dt =

1

2π

∫ ∞

−∞

n∏

j=1

sin(12ajt)
1
2ajt

dt =
1

π

∫ ∞

−∞

n∏

j=1

sin(ajt)

ajt
dt.

(This formula can perhaps be traced back to Pólya’s work [118], and was also used by Hensley.) The
next crucial idea is to apply Hölder’s inequality with the weights pj = a−2

j to get the bound

(4)

∫ ∞

−∞

n∏

j=1

sin(ajt)

ajt
dt ≤

n∏

j=1

(
∫ ∞

−∞

∣
∣
∣
∣

sin(ajt)

ajt

∣
∣
∣
∣

a−2
j

dt

)a2j

=

n∏

j=1

Ψ
(

a−2
j

)a2j

with Ψ(p) =
√
p
∫∞
−∞

∣
∣ sin t

t

∣
∣
p

dt, p ≥ 1 (a similar trick was also used in Haagerup’s seminal work [61]

on sharp constants in Khinichin inequalities). The most technically challenging and rather intricate
is the problem of maximisation of Ψ. The so-called Ball’s integral inequality which he established to
finish his proof asserts that

(5)
1

π

∫ ∞

−∞

∣
∣
∣
∣

sin t

t

∣
∣
∣
∣

p

dt ≤
√

2

p
, p ≥ 2

with equality if and only if p = 2. This completes the proof in the case where all |aj| ≤ 1√
2
. The

complimentary case is dispensed with by a geometric argument justifying that voln−1(Qn ∩ a⊥) ≤ 1
|aj |

for each j. Indeed, projecting the section onto e⊥j changes its volume by the factor | 〈a, ej〉 | and it is
contained in the projection of the entire cube,

voln−1(Qn ∩ a⊥) =
1

| 〈a, ej〉 |
voln−1(Proje⊥j

(Qn ∩ a⊥)) ≤ 1

| 〈a, ej〉 |
voln−1(Proje⊥j

(Qn)) =
1

|aj |
.

�

We mention in passing that this integral inequality has been quite influential, with a very powerful
method developed by Nazarov and Podkorytov in [111] to give a “simple” proof, as well as many
extensions, generalisations, discrete versions, or even stability properties (see [5, 47, 72, 98, 103, 104]).

Quite remarkably and unexpectedly, the
√

2 bound allows to produce a very simple counter-example to
the famous Busemann-Petty problem posed in [38]: If for two symmetric convex bodies K and L in R

n,
we have voln−1(K ∩ a⊥) ≤ voln−1(L ∩ a⊥) for every vector a, does it follow that voln(K) ≤ voln(L)?
Indeed, Ball observed in [9] that since the volume of the hyperplane sections of the unit volume
Euclidean ball in high dimensions is roughly

√
e and

√
2 <

√
e, it suffices to take K = Qn and for L,

the ball of a slightly smaller radius. This argument in fact works in all dimensions n ≥ 10. Later in
[58], Giannopoulos used similar ideas involving cylinders to produce such elegant and simple counter-
examples in dimensions n ≥ 7. The answer to the Busemann-Petty problem is negative for n ≥ 5 and
positive for n ≤ 4, see [57] which has culminated efforts of significant work. We refer for instance to
Koldobsky’s comprehensive monography [84] for a full account.

The situation for upper bounds on volume of sections of codimensions higher that 1 is not fully
understood. Ball has obtained two general bounds.

Theorem 7 (Ball [10]). Fix 1 ≤ k ≤ n. For every k-dimensional subspace H in R
n, we have

voln−1(Qn ∩H) ≤ min

{√
n

k

k

,
√

2
n−k

}

.

The first bound
√

n
k

k
is optimal when k divides n. Rogalski’s question asked for the symmetric convex

body of largest volume ratio (see [10]). It turns out that the bound
√

n
k

k
is equivalent to the fact that

the cube is such a maximiser. The second bound
√

2
n−k

is better than the first one for k ≥ n
2 and turns

6



out to be sharp in this case. Both bounds rely heavily on Ball’s ingenious geometric version of the
Brascamp-Lieb inequality (from [34]), which provides a multidimensional analog of Hölder’s inequality.
The first bound uses it in a direct way (applied to indicator functions of intervals), whereas the second

bound applies it to the Fourier analytic formula. As already mentioned, the exponential bound
√

2
n−k

in the codimension n − k is largely motivated by the slicing problem, see (3), providing an explicit
constant for the cube.

These bounds, although sharp for many values of k and n, leave many other cases open. A sort of
folklore conjecture (see, e.g. [67, 119]) states that for arbitrary k and n, the maximal-volume section
of the cube is attained at an affine cube. Specifically, given 1 ≤ k ≤ n, let n = kℓ+ r with r being the
remainder from the division of n by k. We define the following k orthogonal vectors in R

n:

uj+1 = ejℓ+1 + ejℓ+2 + · · · + e(j+1)ℓ, 0 ≤ j < k − r,

uk−r+j = e(d−r)ℓ+(ℓ+1)j+1 + e(d−r)ℓ+(ℓ+1)j+2 + · · · + e(d−r)ℓ+(ℓ+1)(j+1), 0 ≤ j < r.

Let H∗ be the k-dimensional subspace spanned by them. Then

Qn ∩H∗ =







k∑

j=1

tkuk, |t1|, . . . , |tk| ≤
1

2







which is an affine cube of volume

volk(Qn ∩H∗) =

k∏

j=1

|uj | =
√
ℓ
k−r√

ℓ+ 1
r
.

Note that this becomes
√

n/k
k

when k divides n and
√

2
n−k

when k ≥ n/2.

Conjecture 1. Let 1 ≤ k ≤ n. For every k dimensional subspace H in R
n, we have

volk(Qn ∩H) ≤ volk(Qn ∩H∗).

In addition to Ball’s results of Theorem 7, this conjecture has recently been confirmed for planar
sections, i.e. when k = 2 by Ivanov and Tsiutsiurupa in [68], who developed local conditions for
extremal subspaces.

At the end of this subsection, we mention several loosely related extensions of these fundamental
results.

Other measures. Let γn denote the standard Gaussian measure on R
n, that is the Borel probability

measure on R
n with density (2π)−n/2e−|x|2/2, whereas for a subspace H, let γH be its counterpart

on H, that is the Borel probability measure supported on H with density (2π)− dimH/2e−|x|2/2 (with
respect to Lebesgue measure on H). Due to the lack of homogeneity, now of course cube’s side lengths
may play a role. For the lower bounds, Barthe, Guédon, Mendelson and Naor in [23] established an
analogue of Vaaler’s theorem.

Theorem 8 (Barthe-Guédon-Mendelson-Naor [23]). Fix 1 ≤ k ≤ n. For every k-dimensional subspace
H in R

n, the function

t 7→ γH(tQn ∩H)

γk(tQk)

is nonincreasing on [0,+∞). In particular (letting t→ ∞), for every t > 0, we have

γH(tQn ∩H) ≥ γk(tQk).

Their argument follows Vaaler’s approach, crucially using the product structure of Gaussian measure.
Using Ball’s geometric form of the Brascamp-Lieb inequality, they also obtain an upper bound, similar
to his bound for volume.

7



Theorem 9 (Barthe-Guédon-Mendelson-Naor [23]). Fix 1 ≤ k ≤ n. For every k-dimensional subspace
H in R

n and every t > 0, we have

γH(tQn ∩H) ≤ γk

(

t

√
n

k
Qk

)

.

Again, this is sharp whenever k divides n. The maximal-Gaussian-volume hyperplane sections of cubes
are not known for all values of t. Zvavitch has showed in [138] that the hyperplane ( 1√

2
, 1√

2
, 0, . . . , 0)⊥

cannot be extremal for all dilates because the bound from Theorem 9 in the case k = n − 1 is
tight as t → ∞. König and Koldobsky in [80] have found conditions on product measures assuring
that the hyperplane ( 1√

2
, 1√

2
, 0, . . . , 0)⊥ gives the maximal volume among all hyperplanes a⊥ with

maxj |aj | ≤ 1√
2
. When specialised to the standard Gaussian measure, they have additionally obtained

that the hyperplane ( 1√
2
, 1√

2
, 0, . . . , 0)⊥ yields maximal volume (among all hyperplanes) if and only if

t < t0 = 1.253... Sharp upper bounds for t > t0 are not known.

Cylinders. Dirksen in [46] has studied the extremal central sections of the generalised cylinders Zr =
Qn × (rBm

2 ), r > 0, m,n ≥ 1. He has found sharp upper bounds in the 3 dimensional case of an
ordinary cylinder, i.e. m = 2, n = 1, as well as upper bounds in the general case, sharp for large radii,
developing Fourier analytic formulae and delicate integral inequalities involving Bessel functions.

Perimeter. Answering a question of Pe lczyński about hyperplane sections of maximal-perimeter (i.e.
sections with the boundary of the cube), König and Koldobsky in [81] have shown that the extremal
direction is the same as for the volume.

Theorem 10 (König-Koldobsky [81]). Let n ≥ 3. For every unit vector a in R
n, we have

voln−2(∂Qn ∩ a⊥) ≤ 2((n− 2)
√

2 + 1).

This bound is attained if a = (±ei ± ej) /
√

2 for some 1 ≤ i < j ≤ n. This theorem also leads to
counter-examples to a permiter version of the Busemann-Petty probem in dimensions n ≥ 14. For the
proof, they derive a Fourier analytic formula for the perimeter; its analysis involves new ingredients,
most notably local conditions for constrained extrema, as well as subtle technical estimates around
Ball’s integral inequality.

Diagonal sections. Here we consider the volume of the section by the hyperplane perpendicular to the
main diagonal

αn = voln−1

(
Qn ∩ (1, . . . , 1

︸ ︷︷ ︸

n

)⊥
)
, n ≥ 1.

Perhaps a more natural interpretation of the sequence α1, . . . , αn is as the volumes of the sections of
Qn by hyperplanes perpendicular to the diagonals of subcubes of growing dimension, for 1 ≤ k ≤ n,
we have

voln−1

(
Qn ∩ (1, . . . , 1

︸ ︷︷ ︸

k

, 0, . . . , 0
︸ ︷︷ ︸

n−k

)⊥
)

= αk.

Theorems 4 and 6 in particular assert that α1 ≤ αi ≤ α2. Interestingly, the volumes of the diagonal
sections form a (strictly) increasing sequence.

Theorem 11 (Bartha-Fodor-González [19]). We have, α1 < α3 < α4 < α5 < · · · < α2.

Their approach starts with Pólya’s formula αn =
√
n
π

∫∞
−∞

(
sin t
t

)n
dt and is based on an intricate

asymptotic analysis by means of the Laplace method. They first argue that the sequence (αn) increases
for all n ≥ n0 for some n0. Then, using numerical estimates, they bound n0 and deal with all n ≤ n0
by computer assisted calculations. Their arguments also show that the sequence (αn) is eventually
concave.

It is tempting to believe that critical hyperplane sections must be diagonal, that is if a 7→ voln−1(Qn∩
a⊥) has an extremum at a unit vector a∗ then a∗ is proportional to a diagonal (1, . . . , 1, 0, . . . , 0). In
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[3], Ambrus, and independently Ivanov and Tsiutsiurupa in [68] have recently found an elegant local
condition (with vastly different methods). Moreover, Ambrus has confirmed this believe for n ≤ 3 and
disproved it for n = 4.

Discrete version. Melbourne and Roberto in [104] have derived a sharp discrete analogue of Ball’s
upper bound for hyperplane sections.

Theorem 12 (Melbourne-Roberto [104]). Let n, ℓ1, . . . , ℓn ≥ 1 and t, k1, . . . , kn be integers. Then,
∣
∣
∣
∣
∣
∣






z ∈ Z

n ∩
n∏

j=1

[kj , kj + ℓj − 1],

n∑

j=1

zj = t







∣
∣
∣
∣
∣
∣

<
√

2

∏n
j=1 ℓj

√
∑n

j=1(ℓ
2
j − 1)

.

The constant
√

2 is best possible as can be seen by discretizing Ball’s extremiser (by taking ℓ1 = ℓ2 =
m, ℓ3 = · · · = ℓn = 1 and letting m → ∞). Mimicing Ball’s approach, the following integral inequality
lies at the heart of the argument

∫ 1/2

−1/2

∣
∣
∣
∣

sin(nπt)

n sin(πt)

∣
∣
∣
∣

p

dt <

√

2

p(n2 − 1)
, p ≥ 2, n = 2, 3, . . . .

This is in fact stronger than Ball’s inequality (5) and recovers it by letting n → ∞. Melbourne
and Roberto have developed a new view-point on establishing such delicate bounds for oscillatory
integrands, borrowing and combining ideas from majorisation and optimal transport.

Chessboard-cutting. It is folklore that a line can meet the interiors of no more than 2N − 1 squares
of the usual N × N chessboard and this bound is tight (consider the diagonal pushed down a bit).
We refer to Bárány and Frenkel’s work [17] for a short argument as well as precise estimates for a
3-dimensional analogue. To tackle the problem in higher dimensions, in [18], they have introduced the
following quantity involving volumes of hyperplane sections of the cube,

Vn = max
v∈Rn

‖u‖1
|v| voln−1(Qn ∩ v⊥).

They have shown that if the cube [0, N ]n is divided into Nn unit cubes in the usual way, then the
maximal number of the unit cubes that a hyperplane can intersect equals

(1 + o(1))VnN
n−1

for a fixed n ≥ 1 as N → ∞. Confirming a conjecture from [18], Aliev has recently found the constant
Vn in [2].

Theorem 13 (Aliev [2]). Let n ≥ 1. We have, Vn =
√
n voln−1(Qn ∩ (1, . . . , 1)⊥).

In words, it is the diagonal section that maximises Vn, thus
√
n ≤ Vn ≤

√
2
√
n and Vn ∼

√
6
π

√
n for

large n. Aliev’s argument is purely geometric with the main observation being that the hyperplane
parallel to (1, . . . , 1)⊥ supports the intersection body of the cube.

Stability. With additional insights gained from a certain probabilistic point of view (see Section 4),
Chasapis and the authors have recently obtained in [42] a dimension free stability result for both lower
and upper bounds for hyperplane sections.

Theorem 14 (Chasapis-Nayar-Tkocz [42]). There are universal constants c1, c2 > 0 such that for
every unit vector a in R

n with a1 ≥ · · · ≥ an ≥ 0, we have

1 + c1|a− e1|2 ≤ voln−1(Qn ∩ a⊥) ≤
√

2 − c2

∣
∣
∣
∣
a− e1 + e2√

2

∣
∣
∣
∣
.

The exponents 2 and 1 on the left and the right hand side respectively are best possible, as can be
explicitly verified for n = 2. In an independent work [103], Melbourne and Roberto have obtained a
similar result.
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2.2. Balls of p-norms. We begin with a monotonicity result in the parameter p discovered by Mayer
and Pajor in [105].

Theorem 15 (Meyer-Pajor [105]). Fix 1 ≤ k ≤ n. For every k-dimensional subspace H in R
n, the

function

p 7→
volk(Bn

p ∩H)

volk(Bk
p )

is nondecreasing on [0,+∞). In particular, comparing against the Euclidean ball yields that

volk(Bn
p ∩H) ≤ volk(Bk

p ), 0 < p < 2,

volk(Bn
p ∩H) ≥ volk(Bk

p ), p > 2.

In each inequality, the equality holds if and only if H is spanned by some k standard basis vectors.

Meyer and Pajor established this theorem for p ≥ 1, which was extended later to p < 1 independently
by Barthe in [20] and Caetano in [39]. Letting p → ∞ recovers Vaaler’s Theorem 5 for the cube-
sections. Vaaler’s argument uses Kanter’s peakedness to make a comparison between the uniform and
Gaussian distribution. The key point in [105] was that the same comparison holds across the whole

family of probability measures with densities
{
e−cp|x|p}

p>0
. We will present this crucial idea in a

probabilistic setting in Section 4.

More is known for hyperplane sections when 0 < p < 2. Meyer and Pajor in [105] have found that the
minimal-volume hyperplane sections of the cross-polytope Bn

1 are attained by the diagonal directions
and conjectured the same for the entire range 0 < p < 2, confirmed later by Koldobsky in [83] in a
strong Schur-convexity-type result.

Theorem 16 (Koldobsky [83]). Let 0 < p < 2. For every two unit vectors a and b in R
n such that

(b21, . . . , b
2
n) majorises (a21, . . . , a

2
n), we have

voln−1(B
n
p ∩ a⊥) ≤ voln−1(B

n
p ∩ b⊥).

For background on majorisation and Schur-convexity, we refer for instance to [27]. In particular, since
(

1

n
, . . . ,

1

n

)

≺ (a21, . . . , a
2
n) ≺ (1, 0, . . . , 0),

for an arbitrary unit vector a in R
n, the minimal and maximal volume sections follow. What makes

the range 0 < p < 2 so much more tractable compared to p > 2 is the fact that the Fourier transform

of e−|x|p is a nonnegative function of the form t 7→
∫∞
0 e−ut2dµ(u), a Gaussian mixture. In fact the

same also holds for e−|x|p, which allowed [49] to bypass the Fourier-analytic arguments entirely. We
return to this in Section 4.

The maximal-volume hyperplane sections of Bn
p -balls for 2 < p < ∞ are unknown. Oleszkiewicz has

established in [116] that Ball’s upper bound for the cube, Theorem 6, does not extend to all p > 2, as
it fails for all p < 26.265.. and large enough dimensions (by comparing cube’s extremising hyperplane
(1, 1, . . . , 0)⊥ to the diagonal one (1, 1 . . . , 1)⊥ in the limit n → ∞). We conjecture that in each
dimension there is a unique phase-transition point.

Conjecture 2. For every n ≥ 3, there is a unique p0(n) such that

max
a∈Sn−1

voln−1(B
n
p ∩ a⊥) =

{

voln−1(B
n
p ∩ (1, . . . , 1)⊥), 2 < p ≤ p0(n),

voln−1(B
n
p ∩ (1, 1, 0, . . . , 0)⊥), p ≥ p0(n).

For lower dimensional sections, there is a general bound of Barthe which extends a corresponding result
for the cube from Theorem 7. The argument also crucially relies on the Brascamp-Lieb inequalities.

Theorem 17 (Barthe [20]). Let p ≥ 2. Fix 1 ≤ k ≤ n. For every k-dimensional subspace H in R
n,

we have

volk(Bn
p ∩H) ≤

(n

k

)k(1/2−1/p)
volk(Bk

p ).
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As for the cube, this is sharp when k divides n with the same extremising subspace.

Using a direct argument involving triangulation and convexity of certain functions, Nazarov has shown
that planar sections of the cross-polytope of minimal area are attained at regular polygons.

Theorem 18 (Nazarov, in [42]). Let n ≥ 3. For every 2-dimensional subspace H in R
n, we have

vol2(B
n
1 ∩H) ≥ n2 sin3

(
π
2n

)

cos
(

π
2n

) ,

which is optimal, attained when Bn
1 ∩H is a regular 2n-gon,

All known results from Table 1 on extremal-volume hyperplane sections for ℓp-balls admit robust
versions (recall also Theorem 14).

Theorem 19 (Chasapis-Nayar-Tkocz [42]). For every p > 0, there is a positive constant cp such that
for every n ≥ 1 and every unit vector a = (a1, . . . , an) in R

n with a1 ≥ a2 ≥ · · · ≥ an ≥ 0, we have

voln−1(B
n
p ∩ a⊥)

voln−1(Bn
p ∩ e⊥1 )

≥ 1 + cp|a− e1|2, 2 < p ≤ ∞,

voln−1(Bn
p ∩ a⊥)

voln−1(Bn
p ∩ (e1+···+en√

n
)⊥)

≥ 1 + cp

n∑

j=1

(a2j − 1/n)2, 0 < p < 2,

voln−1(B
n
p ∩ a⊥)

voln−1(Bn
p ∩ e⊥1 )

≤
(

ap1 + (1 − a21)
p/2
)−1/p

, 0 < p < 2.

We finish this subsection with Vaaler’s conjecture on general rather precise lower bounds which have
been verified to a large extent for ℓp-balls.

Conjecture 3 (Vaaler [135]). Let K be a symmetric isotropic convex body in R
n. Then for every

nonzero subspace H in R
n of dimension 1 ≤ k ≤ n, we have

volk(K ∩H) ≥ 1.

Noteworthy, if true, it implies the slicing conjecture (made independently of it), see Hensley’s Theorem
3. Vaaler’s theorem confirms this inequality for the cube (which is tight). Meyer and Pajor’s sharp
lower bound gives this inequality for K = Bn

p with 2 < p < ∞ and all subspaces (see [105]), as well
as 1 < p < 2 and all hyperplanes (see Schmuckenschläger’s note [130]), however these are not tight
anymore.

2.3. Simplex. Here we discuss results concerning sections of regular simplices. It will be most con-
venient to consider a regular n-dimensional simplex of side length

√
2 embedded in R

n+1,

∆n =






x ∈ R

n+1, x1, . . . , xn+1 ≥ 0,

n+1∑

j=1

xj = 1






.

Central sections will refer to those by (affine) subspaces passing through the barycentre
(

1
n+1 , . . . ,

1
n+1

)

of ∆n. In particular, if a is a unit vector in R
n+1 with

∑n+1
j=1 aj = 0 (so parallel to the hyperplane

containing ∆n), then ∆n ∩ a⊥ is a central hyperplane section of ∆n. Such sections of maximal volume
have been determined by Webb in [137].

Theorem 20 (Webb [137]). For every unit vector a in R
n+1 with

∑n+1
j=1 aj = 0, we have

voln−1(∆n ∩ a⊥) ≤ 1√
2

√
n+ 1

(n− 1)!
.

This is attained if and only if a⊥ passes through some n− 1 vertices of ∆n.
11



Webb gave two proofs, both based on an elegant probabilistic formula,

voln−1(∆n ∩ a⊥) =

√
n+ 1

(n− 1)!
fa(0),

where fa is the probability density of
∑n+1

j=1 ajXj with the Xj being i.i.d. standard exponential random

variables, that is with density e−x supported on (0,+∞). Thus, his result becomes fa(0) ≤ 1√
2

with

equality if and only if n−1 of the aj vanish. His first proof mimicked Ball’s Fourier analytic approach
with the crucial bound coming from Hölder’s inequality and an integral inequality. His second proof
was probabilistic, exploiting log-concavity.

Webb has also found that the 1 and 2-dimensional central sections of ∆n of maximal volume are
attained at lines and planes passing through a vertex and an edge of ∆n respectively (see his PhD
thesis [136], as well as [97] for a different argument in the line case).

For general upper bounds on central sections, following the approach involving Ball’s geometric form
of the Brascamp-Lieb inequality, Dirksen in [45] has obtained the following result.

Theorem 21 (Dirksen [45]). For every k-dimensional subspace of Rn+1 passing through the barycentre
of the simplex ∆n, we have

volk−1(∆n ∩H) ≤ k
k

2(n+1)

(k − 1)!
.

Moreover, if dist(H, ej) ≤
√

n+1−k
n+2−k for each j ≤ n+ 1, then

volk−1(∆n ∩H) ≤ 1

(k − 1)!

√

n+ 1

n+ 2 − k

which is sharp, attained when H contains k − 1 vertices of ∆n.

As opposed to symmetric convex bodies for which maximum volume sections by all affine subspaces
of a fixed dimension always occur when they pass through the barycentre (by the Brunn-Minkowski
inequality), for the simplex such a question becomes nontrivial. Webb pointed out in [137] that
combining two results of Ball yields that for fixed 1 ≤ k ≤ n, we have

volk(∆n ∩H) ≤ volk(Fk),

for all (k+ 1)-dimensional affine subspaces H in R
n+1, where Fk is a k-dimensional face of ∆n, that is

the k-dimensional slices of ∆n of maximal volume are exactly the k-dimensional faces. To explain this,
fix H, and consider the maximum volume ellipsoid, say E

∗ contained in the convex body K = ∆n∩H.
Ball has found in [11] that the n-simplex has maximal volume ratio among all convex bodies in R

n.

The volume ratio of a convex body C in R
n is vr(C) = (voln(C)/ voln(E))1/n, where E is the maximum

volume ellipsoid in C. Thus,

volk(∆n ∩H) = vr(K)k volk(E∗) ≤ vr(Fk)k volk(E∗),

Moreover, Ball has shown in [12] that among all k-dimensional ellipsoids in ∆n, the Euclidean balls
inscribed in k-faces have maximal volume, thus they are the maximal volume ellipsoids in Fk. There-
fore,

vr(Fk)k volk(E∗) ≤ volk(Fk).

In [55], Fradelizi has given a different argument, deriving this fact from a more general result for cones
in isotropic position.

Lower bounds are much less understood.

Conjecture 4. For every unit vector a in R
n+1 with

∑n+1
j=1 aj = 0, we have

voln−1(∆n ∩ a⊥) ≥
(

n

n+ 1

)n−1/2 √
n+ 1

(n− 1)!

which is attained when a⊥ is parallel to a face of ∆n.
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This has been confirmed in low dimensions n ≤ 4 by Dirksen in [45]. Brzezinski in [36] noticed that a
bound of the correct order but off by a multiplicative constant follows by applying Fradelizi’s theorem
from [55] to Webb’s result stated above.

2.4. Complex analogues. If we consider Cn as Hilbert space equipped with the standard (complex)
inner product and volume (Lebesgue measure after the natural identification C

n ≃ R
2n), most of

the results about extremal-volume sections (of real spaces) considered thus far beg for their natural
complex counterparts. Vaaler’s theorem as well as its generalisation of Meyer and Pajor admit such
extensions, with almost the same proofs, as was pointed out in their papers.

Theorem 22 (Vaaler [135], Meyer-Pajor [105]). Let 1 ≤ k ≤ n and let H be a (complex) k-dimensional
subspace in C

n. Then

vol2k(Bn
p,C ∩H) ≥ vol2k(Bk

p,C),

when 2 ≤ p ≤ ∞. The reverse inequality holds when 0 < p ≤ 2.

Here,

Bn
p,C =







z ∈ C
n,





n∑

j=1

|zj |p




1/p

≤ 1







is the unit ball of the complex ℓp(C
n) space, in particular B∞

∞,C is the polydisc (the Cartesian product

of the unit discs in C). In fact, their proofs yield a further extension from Bn
p,C to bodies which are

ℓp-sums of Euclidean spaces of arbitrary dimensions, which has been in turn significantly generalised
by Eskenazis in [48] (see Theorem 26 below).

Ball’s cube-slicing result of Theorem 6 has been extended to the complex setting by Oleszkiewicz and
Pe lczyński in [117], who have proved the following sharp polydisc-slicing bound.

Theorem 23 (Oleszkiewicz-Pe lczyński [117]). For every unit vector a in C
n, we have

vol2n−2(Bn
∞,C ∩ a⊥) ≤ 2π2n−2.

Equality holds if and only if a = (ξei + ηej)/
√

2 for some 1 ≤ i < j ≤ n and ξ, η ∈ C with |ξ|, |η| = 1.

The proof strategy follows the same path of the Fourier analytic formula and defactorisation by means
of Hölder’s inequality, however new technical challanges arise: the heart of the proof is the following
analytical inequality

(6)

∫ ∞

0

∣
∣
∣
∣

2J1(t)

t

∣
∣
∣
∣

p

tdt ≤ 4

p
, p ≥ 2,

cf. (5), where J1 is the Bessel function of the first kind of order 1. Its proof rests on precise pointwise
bounds on J1 as well as an interpolation argument. A new different proof has been very recently
given in [104]. Moreover, the upper bounds for higher codimensions of Theorem 7 can be transfered
almost verbatim to the complex case as well (as was remarked by Barthe and Koldobsky, see [117]).
A stability version has been recently established in [59].

The exact analogue of the sharp upper bound on the perimeter from Theorem 10 also holds, as shown
by König and Koldobsky in [81].

Sharp upper bounds even on hyperplane (complex codimension 1) sections in the range 2 < p < ∞
remain open. For the same reasons as in the real case, the range 0 < p < 2 is more tractable and we
have the following analogue of Koldobsky’s Theorem 16.

Theorem 24 (Koldobsky-Zymonopoulou [89]). Let 0 < p < 2. For every two unit vectors a and b in
C
n such that (|b1|2, . . . , |bn|2) majorises (|a1|2, . . . , |an|2), we have

vol2n−2(Bn
p,C ∩ a⊥) ≤ vol2n−2(B

n
p,C ∩ b⊥).
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Finally, a complex version of Busemann’s Theorem 1 has been developed by Koldobsky, Paouris and
Zymonopoulou in [86], whereas a full solution to the complex Busemann-Petty problem is due to
Koldobsky, König and Zymonopoulou, [85].

2.5. Miscellanea. We finish this section with a brief account on various results related to and moti-
vated by sharp bounds on volumes of sections.

Slabs. For a unit vector a in R
n and t > 0, we set

Ha,t = {x ∈ R
n, | 〈x, a〉 | ≤ t}

to be the (symmetric) slab of width 2t orthogonal to the direction a (in other words, a thicken-
ing/enlargement a⊥ + tBn

2 of the hyperplane a⊥). Answering a question of V. Milman, Barthe and
Koldobsky in [24] have established the following extension of Hadwiger and Hensley’s Theorem 4.

Theorem 25 (Barthe-Koldobsky [24]). For every unit vector a in R
n and 0 ≤ t ≤ 3

8 , we have

voln(Qn ∩Ha,t) ≥ voln(Qn ∩He1,t).

They have derived this from a sharp inequality for unimodal log-concave densities in one dimension,
expanding on Hensley’s approach.

In words, Hadwiger and Hensley’s result is stable in that, independent of the dimension, coordinate
slabs contain least volume of the unit cube among all symmetric slabs of fixed width at most 3/4. This
bound is in the spirit of the concentration of measure (see [30, 92, 93]), providing a sharp lower bound
of small enlargements on the volume 1/2 half-spaces {x ∈ R

n, 〈x, a〉 ≥ 0} in Qn. The threshold 3
8 is

suboptimal: in dimension 2, a direct calculation from [24] shows that at t =
√

2 − 1 the extremising
slab changes from the coordinate one to the diagonal one. The sharp behaviour in higher dimensions
is not clear. The paper [24] provides asymptotic results that the slabs orthogonal to the main diagonal
are optimal for large t of the order

√
n as n → ∞ (developing en route very interesting conditions

for convexity properties of Laplace transforms), with a precise nonasymptotic result for the range
1
2

√
n− 1 ≤ t ≤ 1

2

√
n obtained recently by Moody, Stone, Zach and Zvavitch in [108].

A detailed analysis of the (local as well as global) extremal slabs in dimensions 2 and 3 has been done
by König and Koldobsky in [78], whereas in [79], they have obtained a complex analogue of Theorem
25. A sharp probabilistic extension of Theorem 25 has recently been obtained in [63].

Block subspaces. Eskenazis in [48] has gathered under one umbrella the results on slicing ℓp-balls, both
real and complex, when 0 < p < 2, thus significantly generalising and unifying Theorems 16, 22 and
24.

Theorem 26 (Eskenazis [48]). Let m,n be positive integers and let 0 < p < 2. Suppose X = (Rm, ‖·‖)
is a quasi-normed space which admits an isometric embedding into Lp. For every two unit vectors a
and b in R

n such that (b21, . . . , b
2
n) majorises (a21, . . . , a

2
n), we have

volmn−m(Bn
p (X) ∩Ha) ≤ volmn−m(Bn

p ∩Hb).

Here,

Bn
p (X) =







x = (x1, . . . , xn) ∈ R
m × · · · ×R

m,





n∑

j=1

‖xj‖p




1/p

≤ 1







is the unit ball of the ℓp sum of X, whereas

Ha =






x = (x1, . . . , xn) ∈ R

m × · · · × R
m,

n∑

j=1

ajxj = 0







is a block subspace of codimension m in (Rm)n. In particular X = ℓm2 with m = 1, 2 recovers Theorems
16 (when p < 2), 22 and 24. The point is that there is a plethora of non-Hilbertian examples treated
by this general result, most notably X = ℓmq with p ≤ q ≤ 2.
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Eskenazis’ argument builds on [49], with the key new ingredient being Lewis’ representation guaran-
teeing that the norm on X which embeds isometrically into Lp, p > 0, admits a form

‖x‖ =

(∫

Sm−1

| 〈Ux, θ〉 |pdµ(θ)

)1/p

, x ∈ R
m,

for some invertible linear map U : Rm → R
m and an isotropic Borel measure µ on the unit sphere

Sm−1, [94, 129]. The restriction p < 2 is not needed here, but to bring about Gaussian mixtures (as
highlighted after Theorem 16).

For the regime p > 2, only the case p = ∞, X = ℓm2 has been considered, i.e. sections of

Bn
∞(ℓm2 ) = Bm

2 × · · · ×Bm
2

︸ ︷︷ ︸

n

,

for which Brzezinski in [36] has obtained that for every n,m ≥ 2 and every unit vector a in R
n, we

have

(7) volmn−m(Bn
∞(ℓm2 ) ∩Ha) ≤ (m + 2)m/2

2m/2−1mΓ(m/2)
.

This is asymptotically sharp as n→ ∞ because the right hand side equals exactly limn→∞ volmn−m(Bn
∞(ℓm2 )∩

H( 1√
n
,..., 1√

n
)). The case m = 2 is special in that this limit also equals Am,n = volmn−m(Bn

∞(ℓm2 ) ∩
H( 1√

2
, 1√

2
,0,...,0), whilst for every m > 2, the limit is strictly larger than Am,n. In other words, Ball’s

upper bound from Theorem 6 does not generalise to block-subspace sections of Bm
2 ×· · ·×Bm

2 for any
m > 2 (but it does when m = 2 as we have seen in Oleszkiewicz and Pe lczyński’s Theorem 23).

We finish with Eskenazis’ conjecture on sharp lower bounds by block subspaces, generalising Hadwiger
and Hensley’s Theorem 4.

Conjecture 5 (Eskenazis [48]). Let m,n ≥ 1. Let K be a symmetric convex body in R
m. For every

unit vector a ∈ R
n, we have

volmn−m(K × · · · ×K ∩Ha) ≥ volm(K)n−1.

Noncentral sections. In this context, perhaps the most natural question to ask is about extremal
volume sections by affine subspaces at a fixed distance t > 0 from the origin. This has arguably
proved to be more difficult than the question of central sections, even for the cube. Sharp results for
line sections have been found in [108] for the cube and in [97] for the cross-polytope. For hyperplane
sections, we have the following conjecture of V. Milman (see [78]).

Conjecture 6 (V.Milman). The minimum and maximum of voln−1(Qn∩H) over the affine hyperplanes
H at a fixed distance t > 0 from the origin is attained when H is orthogonal to a diagonal direction
(1, . . . , 1, 0, . . . , 0) with a suitable number of 1s depending on t.

There are several partial results supporting it. König and Koldobsky have verified that it holds in
low dimensions n = 2, 3, [78]. Moody, Stone, Zach and Zvavitch have established that in the range
1
2

√
n− 1 < t < 1

2

√
n the main diagonal direction gives the maximal section, [108], later extended to all

t > 1
2

√
n− 2 by Pournin in [120], where one of the key ideas was to employ a noteworthy combinatorial

formula for sections of the cube,

voln−1

(

[0, 1]n ∩ {x ∈ R
n, 〈x, a〉 = b}

)

=
∑

v

(−1)
∑

vj |a|(b− 〈v, a〉)n−1

(n− 1)!
∏
aj

,

where the sum is over the vertices v of the cube [0, 1]d such that 〈v, a〉 ≤ b (see also [26]). In a
recent preprint [121], Pournin has also showed that the main diagonal direction is strictly locally

maximal for t = Ω(
√
n

logn), derived from general local conditions for all diagonal directions. König and

Rudelson in [82] have obtained dimension-free lower bounds on noncentral sections of the cube as well
as the polydisc. König in [77] has treated noncentral extremal volume as well as perimeter sections of
the regular simplex, cube and cross-polytope, when distance t is fairly large, also investigating local
behaviour for the entire range of t.
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Probabilistic extensions. There is a natural link between the volume of sections and negative moments
of linear forms, which goes back at least to Kalton and Koldobsky’s work [70]. To illustrate it, first
note that the value at say x = 0 of a probability density f on R which is continuous at 0 can be
obtained by taking the limit of its negative moments,

(8) f(0) = lim
q→−1+

1 + q

2

∫

|x|qf(x)dx.

In view of this and the basic probabilistic formula for sections (2), the sharp bounds for hyperplane
sections of the cube from Theorems 4 and 6 can be phrased as

1 ≤ lim
q→−1+

1 + q

2
E

∣
∣
∣
∣
∣
∣

n∑

j=1

ajUj

∣
∣
∣
∣
∣
∣

q

≤
√

2

for all unit vectors a in R
n, where U1, U2, . . . are i.i.d. random variables uniform on [−1

2 ,
1
2 ]. Do such

inequalities remain true with a fixed q? The answer is known for the cube and polydisc, where a sharp
phase transition of the extremiser occurs for the upper bound with diagonal directions entering the
picture

Theorem 27 (Chasapis-König-Tkocz [41]). Let −1 < q < 0. Let U1, U2, . . . be i.i.d. random variables
uniform on [−1

2 ,
1
2 ]. For every n ≥ 1 and unit vectors a in R

n, we have

E|U1|q ≤ E

∣
∣
∣
∣
∣
∣

n∑

j=1

ajUj

∣
∣
∣
∣
∣
∣

q

≤
{

E|(U1 + U2)/
√

2|q, −1 < q ≤ q0,

limm→∞ E|(U1 + · · · + Um)/
√
m|q, q0 ≤ q < 0.

The constant q0 = −0.79.. is given uniquely by equating the two expressions on the right hand side.

A similar behaviour has been established for the polydisc slicing by Chasapis, Singh and Tkocz in
[43], with the phase transition “moving to the left” where the negative moments recover volume.

3. Projections

We turn our attention to Question (II) from the introduction about projections of extremal volume
of basic convex bodies such as the cube, simplex and cross-polytope, as well as the family of ℓp-balls.
As we will see, the understanding of hyperplane projections of ℓp-balls is at the same level as for
sections (see Tables 1 and 2), whilst in general much less is known, particularly for lower-dimensional
projections. The methods also seem to shift from analytic to more of algebraic and combinatorial
nature.

3.1. Cube. Thanks to Cauchy’s formula from Theorem 2, extremal volume projections on hyperplanes
are easy to determine, for the surface area measure of the cube Qn is the counting measure

∑n
j=1 δ±ej

of the set of the 2n vectors {±ej , j ≤ n} outer normal to the facets of Qn, thus for every unit vector
a in R

n, we have

voln−1(Proja⊥(Qn)) =
n∑

j=1

|aj|.

Therefore,

1 ≤ voln−1(Proja⊥(Qn)) ≤
√
n,

by squaring and neglecting the off-diagonal terms for the lower bound and simply applying the Cauchy-
Schwarz inequality for the upper bound. The former is attained if and only if Qn is projected onto a
coordinate hyperplane and the latter if and only if Qn is projected onto a hyperplane orthogonal to a
main diagonal.

A zonotope is the Minkowski sum of intervals. Orthogonal projections of the unit cube Qn = [−1
2 ,

1
2 ]

are zonotopes and, conversely, every zonotope can be obtained as such a projection (of a possibly
rescaled and translated cube in a sufficiently high dimension). Shephard’s decomposition of zonotopes
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into parallelopipeds led him in [132] to the following classical formula for volume: if v1, . . . , vn are
vectors in R

k, then the volume of the zonotope Z =
∑n

j=1[0, vj ] is expressed as

volk(Z) =
∑

1≤j1<···<jk≤n

|det[vj1 . . . vjk ]|,

where [vj1 . . . vjk ] is the k× k matrix with columns vj1 , . . . , vjk . For the orthogonal projection of the
cube Qn onto a k-dimensional subspace H, the vectors vj can be taken as columns of the k×n matrix
whose rows form an orthonormal basis of H, leading to the constraint

∑

1≤j1<···<jk≤n

|det[vj1 . . . vjk ]|2 = 1,

by the Cauchy-Binnet formula. Then, exactly as in the codimension 1 case, we obtain upper and lower
bounds on the volume. This argument goes back to Chakerian and Filliman’s work [40].

Theorem 28 (Chakerian-Filliman [40]). Fix 1 ≤ k ≤ n. For every k-dimensional subspace H in R
n,

we have

1 ≤ voln−1(ProjH(Qn)) ≤ min

{√(
n

k

)

,
volk−1(B

k−1
2 )k

volk(Bk
2 )k−1

(n

k

)k/2
}

The lower bound is clearly sharp, attained at coordinate subspaces. It also instantly follows from

Vaaler’s Theorem 5 upon observing that projections contain sections. The first upper bound
√
(n
k

)
is

sharp only when k = 1, n− 1. The second upper bound is obtained differently, by invoking quermass-
integrals (which are additive under Minkowski sums, so go hand in hand with zonotopes), combined
with Urysohn’s inequality. A simpler version of the same idea is to note that every k-dimensional
projection has diameter at most the diameter of the cube

√
n, thus by the isodiametric inequality, its

volume is at most volk(Bk
2 )(

√
n/2)k. All these bounds are of the order nk/2 for a fixed k as n → ∞,

which is tight. The second of the upper bounds in Theorem 28 is asymptotically better than the first
one. Ivanov in [66] has developed local conditions for maximisers of k-dimensional projections.

In [40], using the isoperimetric inequality for polygons, Chakerian and Filliman additionally obtained
a sharp bound for two-dimensional projections (and thus also n − 2-dimensional ones – see Theorem
31 below).

Theorem 29 (Chakerian-Filliman [40]). For n ≥ 2 and for every 2-dimensional subspace H in R
n,

we have

voln−1(ProjH(Qn)) ≤ 1

tan
(

π
2n

) .

Soon after, Filliman in [51] discovered a general principle that maximising volume of the larger class of
zonotopes Z =

∑n
j=1[−1

2vj,
1
2vj ] with the constraint

∑n
j=1 |vj |2 = n on the vectors vj in R

k amounts
to maximising it over all zonotopes which are k-dimensional projections of the cube. This allowed him
to extend the previous estimate to 3-dimensional projections.

Theorem 30 (Filliman [51]). For n ≥ 3 and for every 3-dimensional subspace H in R
n, we have

vol3(ProjH(Qn)) ≤
√

n/3

tan
(

π
2n−2

) .

This is trivially sharp for n = 3, but also for n = 4 with the extremal projection being the rhombic
dodecahedron and for n = 6 with the extremal projection being the triacontahedron.

We finish with a striking and remarkable feature of the cube: its projections onto orthogonal comple-
mentary subspaces have the same volume.

Theorem 31 (McMullen [102], Chakerian-Filliman [40]). Let 1 ≤ k ≤ n. For every k-dimensional
subspace H in R

n, we have

volk(ProjH(Qn)) = voln−k(ProjH⊥(Qn)).
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This has been found by McMullen and independently by Chakerian and Filliman, using the same
approach based on Shephard’s formula. In particular, sharp bounds on volumes of k-dimensional
projections are equivalent to those on (n− k)-dimensional ones.

3.2. Simplex. Recall that ∆n is the n-dimensional regular simplex with edge length
√

2, assuming
for convenience in this section that ∆n is embedded in R

n. The projections of the regular simplex onto
certain orthogonal complementary subspaces are conjectured to yield minimal and maximal volume,
in huge contrast to the cube, where we have seen in Theorem 31 that such projections always have
the same volume.

Conjecture 7 (Filliman [54]). Fix 1 ≤ k ≤ n. Let H∗ be a k-dimensional subspace in R
n such that

T∗ = ProjH∗(∆n) is a k-dimensional simplex, with the vertices of ∆n projecting only onto the vertices
of T∗, as evenly as possible: for each i ≤ k + 1, letting wi be the number of vertices of ∆n projecting
onto vertex i of T∗, we have that

wi =

{

ℓ+ 1, 1 ≤ i ≤ r,

ℓ, r < i ≤ k + 1,

where we divide n+ 1 by k + 1 with the remainder r ∈ {0, . . . , k}, n+ 1 = (k + 1)ℓ + r. Then

min
H⊂Rn

dimH=k

volk(ProjH(∆n)) = volk(T∗).

Moreover, the polytope T ∗ = ProjH⊥
∗

(∆n) is conjectured to maximise the volume of projections onto
the n− k dimensional subspaces,

max
H⊂Rn

dimH=n−k

volk(ProjH(∆n)) = voln−k(T ∗).

Filliman developed exterior algebra techniques in [53] and used them in [54] to confirm this conjecture
in the following cases, for the minimum: k = 1, 2, n−1 and arbitrary n, as well as n ≤ 6 and arbitrary
k, and for the maximum: k = 1, 2, n − 1 and arbitrary n, k = n− 2 and n ≤ 8, as well as k = 3 and
n = 6.

3.3. Cross-polytope. In view of Cauchy’s formula from Theorem 2, the volume of hyperplane pro-
jections of the cross-polytope Bn

1 admits a natural probabilistic expression. Since it has 2n congruent

(simplicial) facets of (n− 1)-dimensional volume
√
n

(n−1)! with outer-normals 1√
n

(±1, . . . ,±1), for every

unit vector in R
n, we have

voln−1(Proja⊥(Bn
1 )) =

1

2(n − 1)!

∑

ε∈{−1,1}n
| 〈a, ε〉 | =

2n−1

(n − 1)!
E

∣
∣
∣
∣
∣
∣

n∑

j=1

ajεj

∣
∣
∣
∣
∣
∣

,

where the expectation is over independent random signs εj , P (εj = ±1) = 1
2 . Given the constraint

|a| = 1, the question about extremal volume projections thus becomes that of finding best constants
c, C in the homogeneous inequalities

(9) c

(

E

∣
∣
∣

∑

ajεj

∣
∣
∣

2
)1/2

≤ E

∣
∣
∣

∑

ajεj

∣
∣
∣ ≤ C

(

E

∣
∣
∣

∑

ajεj

∣
∣
∣

2
)1/2

.

Such Lp-moments comparison inequalities go back to Khinchin’s work [73] on the law of the iterated
logarithm. This motivated and should be contrasted with an analogous probabilistic view-point on
sections from Theorem 27, where instead of the L1-norm, we have the limit of Lq-norm as q ↓ −1. A
sharp upper bound follows easily from Jensen’s inequality,

E

∣
∣
∣

∑

ajεj

∣
∣
∣ ≤

(

E

∣
∣
∣

∑

ajεj

∣
∣
∣

2
)1/2

= |a| = 1,

attained if and only if a = ±ei for some i ≤ n, that is the maximum-volume projection occurs at
precisely coordinate subspaces. The reverse inequality is much deeper: in a different context, a sharp

lower bound had been conjectured to be attained at vectors a =
±ei±ej√

2
, i 6= j by Littlewood in [96] (cf.

Ball’s extremiser from Theorem 6), proved much later by Szarek in [133], with subsequently simplified
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and quite different proofs [61, 91, 134]. We state it here rephrased in terms of volumes of projections,
together with the simple upper bound.

Theorem 32 (Szarek [133]). Let n ≥ 2. For every unit vector in R
n, we have

1√
2

voln−1(B
n−1
1 ) ≤ voln−1(Proja⊥(Bn

1 )) ≤ voln−1(B
n−1
1 ).

The lower bound is attained if and only if a =
±ei±ej√

2
for some i 6= j, whilst the upper bound, if and

only if a = ±ei for some i.

A stability version has been derived by De, Diakonikolas and Servedio in [44] (see also [103] for a local
statement with explicit constants).

Much less is known in higher codimensions. In analogy to Vaaler’s Theorem 5 for the cube, it is
natural to conjecture that maximal-volume projections of the cross-polytope Bn

1 occur at coordinate
subspaces.

Conjecture 8. Fix 1 ≤ k ≤ n. For every k-dimensional subspace H in R
n, we have

volk(ProjH(Bn
1 )) ≤ volk(Bk

1 ).

This conjecture has appeared in this generality in Ivanov’s work [67], who has confirmed it for k = 2, 3
and arbitrary n, using perturbation methods for frames (see also [66]). Earlier, Filliman in [52],
established the same for k = 2, using different, more algebraic methods of his work [53], also reducing
the case of k = 3 with arbitrary n to n ≤ 42. For minimal-volume projections, we have the following
dual analogue of Conjecture 1 for the cube.

Conjecture 9 (Ivanov [67]). Fix 1 ≤ k ≤ n. Let H∗ be the k-dimensional subspace from Conjecture 1.
For every k-dimensional subspace H in R

n, we have

volk(ProjH(Bn
1 )) ≥ volk(ProjH∗(Bn

1 )).

This has been confirmed for k = 2 by Ivanov in [67]. As for the cube, the conjectured maximiser is
an affine cross-polytope.

3.4. Balls of p-norms. The sharp results on hyperplane projections of the cross-polytope have been
extended by Barthe and Naor in [25] to ℓp-balls (with p ≥ 2), thereby bringing the knowledge on
extremal volume hyperplane projections to the same level as for sections (see Tables 1 and 2).

Theorem 33 (Barthe-Naor [25]). For every unit vector a in R
n, the function

p 7→
voln−1(Proja⊥(Bn

p ))

voln−1(B
n−1
p )

is nondecreasing on [1,+∞).

This can be viewed as a counterpart of Meyer and Pajor’s Theorem 15 for hyperplane projections.
It is an interesting open question to find such a monotonicity result for all subspaces. As for the
cross-polytope, it is Cauchy’s formula that allows to obtain a probabilistic expression for the volume
in the hyperplane case. Barthe and Naor’s argument goes as follows.

First, the surface area measure is related to the cone volume measure, by a general relation of Naor
and Romik from [110]. To sketch this, let σK be the normalized surface area measure on ∂K and let
S be the not normalized surface are measure, that is S(A) = voln−1(∂K ∩A)/ voln−1(∂K). Let µK be
the normalized cone volume measure, that is, for A ⊆ ∂K let µK(A) = voln(conv({0} ∪A))/ voln(K).
Let C denote its not normalized version.

19



Lemma 34. If K is a symmetric convex body in R
n, then σK is absolutely continuous with respect to

µK and for almost all x ∈ ∂K one has

dσK
dµK

(x) =
n voln(K)

voln−1(∂K)
|∇(‖ · ‖K)(x)|.

Sketch of the proof. For points x such that x is perpendicular to the surface of K one has |x| ·dS(x) =
ndC(x). If the angel between the surface and x is α, then | cosα|·|x|·dS(x) = ndC(x). We clearly have
| cosα| = | 〈n(x), x/|x|〉 |. Let z = ∇‖ · ‖K(x). If x ∈ ∂K then 1 + ε = ‖x + εx‖K ≈ ‖x‖K + ε 〈z, x〉 =
1 + ε 〈z, x〉, which gives 〈z, x〉 = 1. Also, z is a vector perpendicular to ∂K. Thus n(x) = z/|z|. We

obtain | cosα| = 1
|x| · | 〈n(x), x〉 | = |〈z,x〉|

|x|·|z| . This gives

voln−1(∂K)dσK(x)

|∇(‖ · ‖K)(x)| =
dS(x)

|∇(‖ · ‖K)(x)| =
| 〈z, x〉 |

|z| dS(x) = ndC(x) = n voln(K)dµK(x).

�

From Lemma 34 we therefore get

(10) |Proja⊥ K| =
n

2
voln(K)

∫

∂K
| 〈(∇‖ · ‖K)(x), a〉 |dµK(x),

since (∇‖ · ‖K)(x) = n(x)|(∇‖ · ‖K)(x)|.

Second, the cone volume measure µBn
p

enjoys a probabilistic representation in terms of i.i.d. random

variables, discovered by Rachev and Rüschendorf in [123] and independently by Schechtman and Zinn
in [128]. We shall also later need a modification of the representation of the uniform measure on Bn

p

obtained in [23] by Barthe, Guédon, Mendelson and Naor. Let us formulate a generalization of these
results discussed in [122].

Lemma 35. Let K be a symmetric convex body and let Z be any random vector in R
n with density

of the form f(‖x‖K) for some continuous f : [0,∞) → [0,∞). Let U be a random variable uniform in
[0, 1], independent of Z. Then

(a) Z
‖Z‖K has distribution µK and U1/n Z

‖Z‖K is uniformly distributed on K,

(b) Z
‖Z‖K and ‖Z‖K are independent.

In particular, for K = Bn
p one can take Z = (Y1, . . . , Yn) where Yi are i.i.d. random variables having

densities (2Γ(1 + 1
p))−1e−|t|p.

Proof. We first claim that for any integrable h : Rn → R the following identity holds

(11)

∫

h = n|K|
∫ ∞

0
rn−1

∫

∂K
h(rz)dµK(z)dr.

To show it one can assume that h = 1A, where A = [a, b] ·A0, where A0 ⊂ ∂K, as these sets generate
the sigma algebra of Borel sets in R

n. For z ∈ ∂K and r > 0 we then have h(rz) = 1[a,b](r)1A0(z).
Thus (11) reduces to

(12) |A| = |K|
(∫ b

a
nrn−1dr

)

µK(A0) = |K|(bn − an)µK(A0) = |[a, b]A0|

and is therefore true. Now, let us notice that for φ : Rn → R and ψ : R → R we have

E

[

φ

(
Z

‖Z‖K

)

ψ(‖Z‖K)

]

=

∫

Rn

φ

(
x

‖x‖K

)

ψ(‖x‖K)f(‖x‖K)dx = n|K|
∫ ∞

0
ψ(r)f(r)rn−1dr

∫

∂K
φ(z)dµK(z)

Taking φ,ψ ≡ 1 we learn that n|K|
∫∞
0 f(r)rn−1dr = 1. Thus taking ψ ≡ and next φ ≡ 1 we arrive at

E

[

φ

(
Z

‖Z‖K

)]

=

∫

∂K
φ(z)dµK(z), E [ψ(‖Z‖K)] = n|K|

∫ ∞

0
ψ(r)f(r)rn−1dr.
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The first equation shows that Z
‖Z‖K has distribution µK . Moreover, we get

E

[

φ

(
Z

‖Z‖K

)

ψ(‖Z‖K)

]

= E

[

φ

(
Z

‖Z‖K

)]

E [ψ(‖Z‖K)] ,

which shows (b). Finally (12) to gether with the fact that U1/n has density nrn−1 on [0, 1] shows that

|A|
|K| = P

(

U1/n ∈ [a, b]
)

P

(
Z

‖Z‖K
∈ A0

)

= P

(

U1/n Z

‖Z‖K
∈ A

)

,

which shows the second part of point (a).

�

We can now prove the probabilistic formula for the volume of hyperplane projection of Bn
p .

Lemma 36. For p > 1 and every unit vector a ∈ R
n, we then have

(13) voln−1(Proja⊥(Bn
p )) =

voln−1(B
n−1
p )

E|X1|
E

∣
∣
∣
∣
∣
∣

n∑

j=1

ajXj

∣
∣
∣
∣
∣
∣

,

where here X1, . . . ,Xn are i.i.d. random variables with density fp(x) = p
2(p−1)Γ(1/p) |x|

2−p
p−1 e−|x|

p
p−1

.

Proof. By (10) and Lemma 35 (a) for some constant cp,n we have

voln−1(Proja⊥ B
n
p ) = C(p, n)E

∣
∣
∣
∣
∣

n∑

i=1

ai

∣
∣
∣
∣

Yi
S

∣
∣
∣
∣

p−1

sgn

(
Yi
S

)
∣
∣
∣
∣
∣

= C(p, n) · ES
p−1

ESp−1
· E
∣
∣
∣
∣
∣

n∑

i=1

ai

∣
∣
∣
∣

Yi
S

∣
∣
∣
∣

p−1

sgn (Yi)

∣
∣
∣
∣
∣

=
C(p, n)

ESp−1
· E
∣
∣
∣
∣
∣

n∑

i=1

ai |Yi|p−1 sgn (Yi)

∣
∣
∣
∣
∣
.

It now suffices to observe that Xi = |Yi|p−1 sgn (Yi) for p > 1 have densities fp. We then compute Cp,n

by taking a = e1. �

Next, Meyer and Pajor’s arguments involving peakedness are replaced by the stochastic convex (Cho-
quet) ordering, where the independence of the Xj is crucial. For p > 2, additional structure emerges:
the Xj are Gaussian mixtures. This leads to an analogue of Koldobsky’s Theorem 16, the proof of
which was later simplified in [49] by bypassing the Fourier analytic arguments (we shall discuss the
arguments in Section 4).

Theorem 37 (Barthe-Naor [25]). Let p > 2. For every two unit vectors a and b in R
n such that

(b21, . . . , b
2
n) majorises (a21, . . . , a

2
n), we have

voln−1(Proja⊥(Bn
p ) ≥ voln−1(Projb⊥(Bn

p )).

In the range 0 < p < 1, Cauchy’s formula cannot be applied due to the lack of convexity and no
nontrivial bounds are known. When 1 < p < 2, the maximal-volume hyperplane projection is onto
a coordinate subspace, as follows from Theorem 33, whereas the minimal one is not known. Barthe
and Naor in [25] have shown that the cross-polytope minimiser ( 1√

2
, 1√

2
, 0, . . . , 0)⊥ is beaten by the

diagonal one for every p > p0 = 4
3 in large enough dimensions (in particular, as Oleszkiewicz has

pointed out in [116], there is no “formal duality” with sections, for there is not such a phase transition
at p0

p0−1 = 4).

For higher codimensions than 1, plainly Meyer and Pajor’s Theorem 15 gives a sharp lower bound:
for every p ≥ 2, 1 ≤ k ≤ n and k-dimensional subspace in R

n, we have

volk(ProjH(Bn
p )) ≥ volk(Bn

p ∩H) ≥ volk(Bk
p ),

attained at coordinate subspaces. For 0 < p < 2, using his reverse form of the Brascamp-Lieb
inequality from [21], Barthe in [22] has established the following lower bound.
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Theorem 38 (Barthe [22]). Let 0 < p < 2. Fix 1 ≤ k ≤ n. For every k-dimensional subspace H in
R
n, we have

volk(ProjH(Bn
p )) ≥

(
k

n

)k(1/p−1/2)

volk(Bk
p ).

This is optimal when k divides n and p ≥ 1 (attained at subspaces from Conjecture 1).

4. Methods

We would like to present and emphasise one particular probabilistic point of view which gathers the
major results for both sections and projections under the same umbrella. The point is that as it is very
natural to set up hyperplane projection problems as sharp L1−L2 comparison inequalities (thanks to
Cauchy’s formula, see, e.g. (13)), the same probabilistic picture captures sections upon changing the
L1 norm to Lq norms with negative exponents q.

4.1. Sections. This is a straighforward extension to higher codimensions of Kalton and Koldobsky’s
observation made in [70], recall (8).

Lemma 39 ([42]). Let K be a body in R
n of volume 1, star-shaped with respect to the origin. Let H

be a k-codimensional subspace in R
n and let X be a random vector uniform on K. Let ‖ · ‖ be a norm

in H⊥ with the unit ball B. Then

voln−k(K ∩H) = lim
q→−k+

k + q

k volk(B)
E‖ProjH⊥ X‖q.

Proof. If we let f : H⊥ → [0,+∞) be the density of ProjH⊥ X, as in (2), we have

voln−k(K ∩H) = f(0).

The function x 7→ k−q
k volk(B)‖x‖−q as q → −k+ behaves like the Dirac delta at 0: if f is continuous at

0 and integrable, then

lim
q→−k+

k + q

k volk(B)

∫

H⊥
‖x‖−qf(x)dx = f(0)

and the lemma follows. To justify the last identity, for simplicity we identify H⊥ with R
k and fix

ε > 0. The set {x, f(x) < f(0) + ε} contains a neighbourhood of 0, say δB. Then

k + q

k volk(B)

∫

Rk

‖x‖qf(x)dx ≤
(
f(0) + ε

) k + q

k volk(B)

∫

δK
‖x‖qdx+

k + q

k volk(B)
δq
∫

Rk

f

=
(
f(0) + ε

)
δk+q +

k + q

k volk(B)
δq
∫

Rk

f

(the last equality by the homogeneity of volume and the layer cake representation). Taking lim sup
as q ↓ −k gives an upper bound by f(0) + ε. A lower bound is obtained similarly (the second term
above can be dropped). �

For hyperplane sections of the cube, the limit can be evaluated which leads to a particularly handy
expression.

Lemma 40 (König-Koldobsky [78]). Let ξ1, ξ2, . . . be i.i.d. random vectors uniform on the sphere S2

in R
3. For a unit vector a in R

n, we have

voln−1(Qn ∩ a⊥) = E

∣
∣
∣
∣
∣
∣

n∑

j=1

ajξj

∣
∣
∣
∣
∣
∣

−1

.
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Proof. Lemma 39 yields

voln−1(Qn ∩ a⊥) = lim
q→−1+

1 + q

2
E

∣
∣
∣
∣
∣
∣

n∑

j=1

ajXj

∣
∣
∣
∣
∣
∣

q

,

where X = (X1, . . . ,Xn) is uniform on Qn, that is the components Xj are independent uniform on
[−1

2 ,
1
2 ]. By Archimedes’ hat-box theorem, 〈ξj, e1〉 has the same distribution as 2Xj , which allows to

get for every fixed q > −1

1 + q

2
E

∣
∣
∣
∣
∣
∣

n∑

j=1

ajXj

∣
∣
∣
∣
∣
∣

q

= 2−1−q
E

∣
∣
∣
∣
∣
∣

n∑

j=1

ajξj

∣
∣
∣
∣
∣
∣

q

(see, e.g. [41] for all details). Taking the limit finishes the proof. �

Remark 41. Replacing the ξj by i.i.d. random vectors uniform on a higher dimensional sphere say Sd+1

and the exponent −1 by −d results with a formula for sections of balls in ℓ∞(ℓ2) by block-subspaces
(see Proposition 3.2 in [36]).

To illustrate the applicability of this lemma, we sketch the proof of the lower bound of Theorem 14,
the Hadwiger-Hensley bound with an optimal deficit.

Proof (Sketch). The key is to write
∣
∣
∣
∣
∣
∣

n∑

j=1

ajξj

∣
∣
∣
∣
∣
∣

2

=
∑

i,j

aiaj 〈ξi, ξj〉 = 1 + 2
∑

i<j

aiaj 〈ξi, ξj〉 .

The random variable R = 2
∑

i<j aiaj 〈ξi, ξj〉 has mean 0. Thus by convexity,

E(1 +R)−1/2 ≥ E(1 −R/2) = 1.

To improve upon this, it suffices to use a more precise pointwise inequality, say

(1 + r)−1/2 ≥ 1 − 1

2
r +

1

3
r2 − 5

24
r3, r > −1

and estimate ER2, ER3 which are explicitly expressed in terms of the aj. �

For Bn
p balls, a direct application of Lemma 39 leaves us with a random vector uniform on Bn

p with
mildly dependent components. This however can be circumvented thanks to the homogeneity of Lq

norms.

Lemma 42 ([42]). Let p > 0 and Y1, Y2, . . . be i.i.d. random variables with density e−βp
p |x|p, βp =

2Γ(1 + 1/p). Let H be a subspace in R
n of codimension k such that the rows of a k×n matrix U form

an orthonormal basis of H⊥. Let v1, . . . , vn ∈ R
k denote the columns of U . Then

voln−k(Bn
p ∩H) = voln−k(Bn−k

p ) lim
q→−k+

k + q

k volk(B‖·‖)
E

∥
∥
∥
∥
∥
∥

n∑

j=1

Yjvj

∥
∥
∥
∥
∥
∥

q

,

where ‖ · ‖ is a norm on R
k with unit ball B‖·‖.

Proof. Let X = (X1, . . . ,Xn) be a random vector uniform on Bn
p . Lemma 39 then gives the desired

formula with the Xj in place of Yj and without the factor voln−k(Bn−k
p ). To pass to Y we shall use

Lemma 35, which ensures that for Y = (Y1, . . . , Yn) and S = (
∑n

i=1 |Yi|p)1/p the random vector Y
S is

independent of S and moreover U1/n Y
S is uniformly distributed in Bn

p if U is independent of Yi and
uniform on [0, 1]. Therefore

E

∥
∥
∥
∥
∥
∥

n∑

j=1

Xjvj

∥
∥
∥
∥
∥
∥

q

= E

∥
∥
∥
∥
∥
∥

n∑

j=1

U1/nYj
S
vj

∥
∥
∥
∥
∥
∥

q

= E[U q/n] · E[Sq]

E[Sq]
· E

∥
∥
∥
∥
∥
∥

n∑

j=1

Yj
S
vj

∥
∥
∥
∥
∥
∥

q

=
E[U q/n]

E[Sq]
· E

∥
∥
∥
∥
∥
∥

n∑

j=1

Yjvj

∥
∥
∥
∥
∥
∥

q

.

�
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This has been instrumental in the proof of Theorem 19. For a simpler application, the Meyer-Pajor
monotonicity result from Theorem 15 holds in fact for Lq norms. In view of the previous lemma, this
readily implies their theorem.

Theorem 43. For p > 0, let Y
(p)
1 , Y

(p)
2 , . . . be i.i.d. random variables with density e−βp

p |x|p, βp =

2Γ(1 + 1/p). For every vectors v1, . . . , vn in R
k and −k < q < 0, we have that the function

(p1, . . . , pn) 7→ E

∥
∥
∥
∥
∥
∥

n∑

j=1

Y
(pj)
j vj

∥
∥
∥
∥
∥
∥

q

is nondecreasing in each variable.

Proof. Following Kanter, [71], we say for two probability measures µ and ν on R
n that ν is more

peaked than µ if ν(K) ≥ µ(K) for every symmetric convex set K in R
n. Crucially, this is preserved

by taking products and convolutions of even log-concave measures (see Corollaries 3.2 and 3.3 in [71]).

If 0 < p < p′, then the density of Y
(p′)
1 intersects the density of Y

(p)
1 exactly once and dominates it

(pointwise) near the origin. Thus Y
(p′)
1 is more peaked than Y

(p)
1 and consequently

∑
Y

(p′j)

j vj is more

peaked than
∑
Y

(pj)
j vj , if pj ≤ p′j. In particular, for every t > 0,

P





∥
∥
∥
∥
∥
∥

n∑

j=1

Y
(pj)
j vj

∥
∥
∥
∥
∥
∥

≤ t



 ≤ P





∥
∥
∥
∥
∥
∥

n∑

j=1

Y
(p′j)

j vj

∥
∥
∥
∥
∥
∥

≤ t





and the result follows by integrating in t. �

The measure with density e−βp
p |x|p from Lemma 39 enjoys a Gaussian mixture form when 0 < p < 2.

This in turn provides good convolution properties, allowing in particular to evaluate the limit from
Lemma 39. We say that a random variable X is a (symmetric) Gaussian mixture, if X has the
same distribution as RG for some nonnegative random variable R and a standard Gaussian random
variable G, independent of R. Gaussian mixtures are continuous, i.e. have densities and X is a
Gaussian mixture if and only if its density f is of the form

f(x) =

∫ ∞

0
e−tx2

dν(t)

for a Borel measure ν on [0,+∞). By Bernstein’s theorem, this is equivalent to g(x) = f(
√
x)

being completely monotone, that is (−1)ng(n)(x) ≥ 0 for all n ≥ 0 and x > 0, which gives a practical
condition. We refer to [49] for further details and more examples. Thus, if X1, . . . ,Xn are independent
Gaussian mixtures, say Xj = RjGj and v1, . . . , vn are vectors in R

k, then, conditioned on the values

of the Rj,
∑
Xjvj is a centred Gaussian random vector in R

k with covariance matrix
∑
R2

jvjv
⊤
j .

Lemma 44 ([49, 112]). Let 0 < p < 2. There are nonnegative i.i.d. random variables R1, R2, . . . such
that for every subspace H in R

n of codimension k, we have

voln−k(Bn
p ∩H) = voln−k(Bn−k

p )E



det





n∑

j=1

Rjvjv
⊤
j









−1/2

,

where v1, . . . , vn are vectors in R
k such that the rows of the k×n matrix with columns v1, . . . , vn form

an orthonormal basis of H⊥.

Remark 45. To describe the distribution of the Rj , for 0 < α < 1, we let gα be the density of a standard
positive α-stable random variable Wα, i.e. with the Laplace transform Ee−uWα = e−uα

, t > 0 and let

V1, V2, . . . be i.i.d. random variables with density
√
π

2Γ(1+1/p) t
−3/2gp/2(t−1). Then Rj = (EV

−1/2
j )2Vj ,

see [49]

Proof of Lemma 44. The Yj from Lemma 39 are Gaussian mixtures, say Yj = TjGj for some nonneg-
ative random variables Tj and standard Gaussians Gj , all independent. Then, conditioned on the Tj ,
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the limit in Lemma 39 gives the density at 0 of the random variable
∑
Yjvj which, as we said is centred

Gaussian in R
k with covariance

∑
T 2
j vjv

⊤
j , thus its density at 0 equals (2π)−k/2

(

det
[
∑n

j=1 T
2
j vjv

⊤
j

])−1/2
.

�

For hyperplane sections, this formula directly explains Koldobsky’s Schur-convexity result from The-
orem 16.

Proof of Theorem 16. We first observe that if F : R
n → R is convex and permutation symmetric,

then F is Schur convex, namely x ≺ y implies F (x) ≤ F (y). Indeed, it is a standard fact (see [27])
that there exist (λσ)σ∈Sn where Sn stands for the set of permutations of {1, . . . , n} such that λσ ≥ 0,
∑

σ∈Sn
λσ = 1 and x =

∑

σ∈Sn
λσyσ, where yσ = (yσ(1), . . . , yσ(n)). Thus

F (x) = F

(
∑

σ∈Sn

λσyσ

)

≤
∑

σ∈Sn

λσF (yσ) =
∑

σ∈Sn

λσF (y) = F (y).

For a unit vector a in R
n, Lemma 44 yields

voln−1(Bn
p ∩ a⊥) = voln−1(B

n−1
p )E





n∑

j=1

a2jRj





−1/2

.

Since (·)−1/2 is convex, the right hand side is clearly convex and permutation symmetric (Rj are i.i.d.)
as a function of (a21, . . . , a

2
n) and thus it is also Schur convex.

�

4.2. Projections. Somewhat analogous to the Fourier-analytic approach to sections, there is a for-
mula for the volume of hyperplane projections of a convex body as the Fourier transform of its
curvature function, as discovered by Koldobsky, Ryabogin and Zvavitch in [88] (see also their survey
[87]). We do not touch upon this connection here at all. Instead, we focus on a probabilistic perspec-
tive and highlight two approaches to the L1 − L2 moment comparison inequalities like (9), arising in
hyperplane projections.

As we have just seen for sections, for Gaussian mixtures, thanks to their good additive structure, we
readily get precise Schur-majorisation type results. This proof is from [49].

Proof of Theorem 37. Recall formula (13) for hyperplane projections. For p > 2, the density fp(t)
of Xi is completely monotone, thus the Xj are Gaussian mixtures, say Xj = RjGj for some i.i.d.
nonnegative random variables Rj and standard Gaussians Gj , all independent. Then, adding the
Gaussians first conditioning on the Rj yields

(14) E

∣
∣
∣
∣
∣
∣

n∑

j=1

ajXj

∣
∣
∣
∣
∣
∣

= E





n∑

j=1

a2jR
2
j





1/2

E|G1|.

As in the proof for sections, the Schur-concavity result follows from the concavity of (·)1/2. �

The same argument bluntly extends to arbitrary Lq norms, giving sharp Khinchin inequalities (see [6]
and [49]).

When 1 ≤ p < 2, the density of the Xj in (13) is bimodal and understanding the L1 norm of their
weighted sums is elusive, mainly due to complicated cancellations – the problem which completely
disappears in (14). For p = 1 the Xj become discrete (symmetric random signs). We present two
completely different Fourier-analytic proofs. The first proof, due to Haagerup, is in the same spirit as
Ball’s proof from [7] for hyperplane cube-sections.
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Proof of Theorem 32 (Haagerup [61]). We want to minimise E|∑ ajεj | subject to
∑
a2j = 1. We can

assume that all aj are positive. If at least one exceeds 1√
2
, say a1 >

1√
2
, we get by averaging over the

other coefficients that

E

∣
∣
∣

∑

ajεj

∣
∣
∣ ≥ Eε1

∣
∣
∣
∣
∣
∣

a1ε1 + E

∑

j>1

ajεj

∣
∣
∣
∣
∣
∣

= a1 >
1√
2
,

as desired. Now we assume that for all j, aj ≤ 1√
2
. A starting point is the Fourier-analytic formula,

|x| =
1

π

∫

R

(1 − cos(tx))t−2dt, x ∈ R.

Thus, for an integrable random variable X,

E|X| =
1

π

∫

R

(
1 − Re(EeitX)

)
t−2dt

(see also Lemmas 2.3 and 4.2 in [61] as well as Lemma 3 in [60]). In particular, using independence
and Eeitεj = cos t, we get

E

∣
∣
∣

∑

ajεj

∣
∣
∣ =

1

π

∫

R

(

1 −
∏

cos(taj)
)

t−2dt

By the AM-GM inequality, this gives the following bound

E

∣
∣
∣

∑

ajεj

∣
∣
∣ ≥

∑

a2jF (a−2
j )

with

F (s) =
1

π

∫

R

(

1 −
∣
∣
∣
∣
cos

(
t√
s

)∣
∣
∣
∣

s)

t−2dt, s > 0,

cf. (4) and the ensuing function Ψ in Ball’s proof. Here however, function F can be expressed
explicitly. Using

∑∞
n=−∞

1
(t+nπ)2 = 1

sin2 t
, we arrive at

F (s) =
1

π
√
s

∫

R

(1 − |cos t|s) t−2dt =
1

π
√
s

∞∑

n=−∞

∫ π/2

−π/2
(1 − (cos t)s) (t + nπ)−2dt

=
1

π
√
s

∫ π/2

−π/2
(1 − (cos t)s) sin−2 tdt

=
2√
πs

Γ
(
s+1
2

)

Γ
(
s
2

) .

Claim. F (s) increases on (0,+∞).

Using this claim and that aj ≤ 1√
2

for all j, we finish the proof,

E

∣
∣
∣

∑

ajεj

∣
∣
∣ ≥

∑

a2jF (a−2
j ) ≥

∑

a2jF (2) = F (2) =
1√
2
.

Noteworthy, this is tight when n = 2 and a1 = a2 = 1√
2
.

To show the claim, we note that lims→∞ F (s) =
√

2
π (e.g. by Stirling’s formula) and that

F (s+ 2) =

√
s

s+ 2

s+ 1

s
F (s) =

(
1 − 1/(s + 1)2

)−1/2
F (s)

which iterated yields F (s+ 2n) = F (s)
∏n−1

k=0

(
1 − 1/(s + 2k + 1)2

)−1/2
, so letting n→ ∞,

F (s) =

√

2

π

∞∏

k=0

(
1 − 1/(s + 2k + 1)2

)1/2
.

�

The second proof uses the machinery of Fourier analysis on the discrete cube {−1, 1}n. We refer for
instance to Chapter 1 in [114] for basic background.
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Proof of Theorem 32 (Kwapień-Lata la-Oleszkiewicz [90, 91, 115]). We work with L2({−1, 1}n,R) equipped
with the product probability measure on the cube {−1, 1}n, i.e. the distribution of (ε1, . . . , εn) and
the inner product 〈f, g〉 = E

[
f(ε)g(ε)

]
, f, g : {−1, 1}n → R. Let

f(x) =

∣
∣
∣
∣
∣
∣

n∑

j=1

ajxj

∣
∣
∣
∣
∣
∣

, x ∈ {−1, 1}n.

We write its discrete Fourier expansion with respect to the orthonormal system of the Walsh functions
wS(x) =

∏

j∈S xj indexed by the subsets S ⊂ {1, . . . , n} with w∅(x) ≡ 1. We have,

f(x) =
∑

S

bSwS(x), bS = 〈f,wS〉 .

Since f is even, bS = 0 provided |S| is odd. The crux is to consider the Laplace operator L acting on
L2({−1, 1}n,R),

(Lg)(x) =
1

2

∑

y∼x

(g(y) − g(x))

where the sum is over all neighbours y of x, i.e. the points in {−1, 1}n differing from x by one
component. As can be checked, the Walsh functions are its eigenfunctions, LwS = −|S|wS and for
even functions g, we have the following Poincaré-type inequality,

〈g,−Lg〉 ≥ 2 Var(g).

Claim. (−Lf)(x) ≤ f(x) for every x ∈ {−1, 1}n.

Using this claim in the Poincaré inequality,

2
(
Ef2 − (Ef)2

)
≤ 〈f,−Lf〉 ≤ 〈f, f〉 = Ef2

which gives Ef ≥ 1√
2
(Ef)2, as desired. The claim follows from rearranging the following consequence

of the triangle inequality,

| − a1x1 + a2x2 + · · · + anxn| + |a1x1 − a2x2 + · · · + anxn|
+ · · · + |a1x1 + a2x2 + · · · − anxn| ≥ (n − 2)|a1x1 + · · · + anxn|.

�

We stress out that this proof is extremely robust: it only uses the triangle inequality and hence extends
verbatim to the case where the coefficients aj are vectors in an arbitrary normed vector space.

The history of this argument is a bit convoluted. Lata la and Oleszkiewicz’s work [91] contains all the
crucial ideas of the modern proof presented above, however, it is not written in a Fourier analytic
language. The proof presented here was devised by Kwapień and is based on the Walsh functions (the
characters of {−1, 1}n). As we have seen, one of its main components is a strengthened Poincaré-type
inequality in the presence of symmetry, the idea of which appeared first in [90] (in the continuous
case), extended to the discrete case in [115] (perhaps the first place where this proof appears in print).
Oleszkiewicz presented this proof in 1996 at MSRI (during a workshop in harmonic analysis and convex
geometry).

We finish with a sketch of the Barthe-Naor proof from [25] of the monotonicity result from Theorem
33 featuring yet another tool, useful in proving Khinchin-type inequalities: the stochastic convex
ordering. This circle of ideas was further developed in [50].

In the simplest setting sufficient for our purposes, for two symmetric random variables X and Y , we say
that Y dominates X in the convex (or often called Choquet) stochastic ordering, if Eφ(X) ≤ Eφ(Y )
for every even convex function φ : R → [0,+∞]. It is clear that this tensorises and is preserved by
convolution: if Y dominates X and Z is a symmetric random variable, independent of them, then
Y + Z dominates X + Z. We will only need the following sufficient condition.

Lemma 46. If random variables X and Y satisfy E|X| = E|Y |, have even densities f and g respec-
tively and there are 0 < x1 < x2 such that {t ≥ 0, g(t) < f(t)} is the interval (x1, x2) (f and g
intersect twice), then Y dominates X in the convex stochastic ordering.
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Proof. Let φ : R → [0,+∞] be an even convex function. Thanks to the symmetry of X,Y and the
constraint E|X| = E|Y |, the desired inequality

∫
φf ≤

∫
φg is equivalent to

∫ ∞

0

(
φ(x) − αx− β

)(
g(x) − f(x)

)
dx ≥ 0

with some (any) α, β ∈ R. We choose α, β as the unique parameters such that the convex function
ψ(x) = φ(x)−αx−β vanishes at x1 and x2. Then, by convexity, ψ ≤ 0 on (x1, x2) and ψ ≥ 0 outside
that interval. Thus the integrand is pointwise nonnegative. �

Proof of Theorem 33. In view of (13), we aim at showing that the function

p 7→ 1

E|X(p)
1 |

E

∣
∣
∣

∑

ajX
(p)
j

∣
∣
∣

is nondecreasing on [1,+∞), where the X
(p)
j are i.i.d. random variables with density proportional

to |x|
2−p
p−1 exp

{

−|x|
p

p−1

}

. By the tensorisation property, it suffices to prove that for 1 ≤ p < q,

X
(q)
1 /E|X(q)

1 | dominates X
(p)
1 /E|X(p)

1 |. This readily follows from Lemma 46. �

5. Other connections

We close this survey with two tangential topics related to sections: an application of Ball’s cube
slicing inequality to entropy power inequalities and a reformulation of the conjectural logarithmic
Brunn-Minkowski inequality in terms of sections of the cube.

5.1. Entropy power inequalities. Recall (2), viz. the volume of central hyperplane section by a⊥

is the maximum value of the density of the marginal 〈a,X〉 =
∑
ajXj (there f(0) = ‖f‖∞ by the

symmetry and log-concavity of X). The maximum density functional

M(X) = ‖f‖∞
of a random vector X in R

n with density f is closely related to classical topics in probability such as
the Lévy concentaration function, small ball estimates and anticoncentration, as well as information
theory, particularly the entropy power inequalities. We refer to the comprehensive surveys [99, 113].
The entropy power inequality originated in Shannon’s seminal work [131] and asserts that the entropy
power

N(X) = exp

{
2

n
h(X)

}

, h(X) = −
∫

Rn

f log f

is superadditive: for independent random vectors X and Y in R
n, we have

N(X + Y ) ≥ N(X) +N(Y ),

and plainly, by induction, the same for arbitrarily many independent summands. In analogy, we let

N∞(X) = exp

{
2

n
h∞(X)

}

= M(X)−2/n, h∞(X) = − log ‖f‖∞

be the ∞-entropy power of X, sometimes called the min-entropy power (because for a fixed distribu-
tion, it is the smallest entropy power across the family of all Rényi entropies). The min-entropy power
inequality in dimension 1 reads as follows.

Theorem 47 (Bobkov-Chistyakov [29], Melbourne-Roberto [103]). Let X1, . . . ,Xm be independent
random variables with bounded densities. Then,

N∞ (X1 + · · · +Xm) ≥ 1

2

m∑

j=1

N∞(Xj)

with equality if and only if two of these variables are uniform on A, c−A respectively for some set A
in R of finite measure and some c ∈ R, while the other variables are constant.
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Bobkov and Chistyakov proved this inequality with the sharp constant 1
2 using Ball’s cube-slicing

inequality, whereas the equality conditions have recently been established by Melbourne and Roberto
using their robust version (see Theorem 14).

The argument rests on the following subtle comparison due to Rogozin.

Theorem 48 (Rogozin [125]). Let X1, . . . ,Xm be independent random variables with bounded densities
and let U1, . . . , Um be independent uniform random variables on intervals chosen such that M(Xj) =
M(Uj) for each j. Then

M(X1 + · · · +Xm) ≤M(U1 + · · · + Um).

Theorem 47 then follows by invoking Ball’s Theorem 6 which, after incorporating the variance con-
straint amounts to

M(U1 + · · · + Um) ≤
√

2
(
M(U1)−2 + · · · +M(Um)−2

)−1/2
.

In [100], Madiman, Melbourne and Xu have developed multivariate generalisations of Rogozin’s re-
sult where the extremal distributions are uniform on Euclidean ball. They have combined it with
Brzeziński’s bound (7) to obtain an extension of Theorem 47 to R

n-valued random vectors with the

sharp constant 1
2 replaced by Γ(1+n/2)2/n

(1+n/2) , asymptotically sharp (as m → ∞). Previously, using a dif-

ferent argument exploiting Young’s inequalities with sharp constants, Bobkov and Chistyakov in [28]
obtained such an extension with a slightly worse constant 1

e (“attained” as n→ ∞), whereas in [124],
Ram and Sason have obtained constants dependent on the number of summands. Another direction,
related to higer dimensional marginals, have been explored by Livshyts, Paouris and Pivovarov in [98].

We end this subsection with a conjectural entropic Busemann-type result.

Conjecture 10 (Ball-Nayar-Tkocz [15]). Let X be a symmetric log-concave random vector in R
n. Then

v 7→
√

N(〈v,X〉) = eh(〈v,X〉)

defines a norm on R
n.

Note that Busemann’s Theorem 1 is equivalent to this statement with N∞(·) in place of the entropy
power N(·) (for uniform distributions on symmetric convex bodies which generalises to all symmetric
log-concave distributions by Ball’s results from [8]). What supports this conjecture is the fact that
√

N(〈v,X〉) defines an e-quasinorm which is also a 1
5 -seminorm (see [15]), as well as the conjecture

holds for the Rényi entropy power of order 2 (see [95]). For extensions to κ-concave measures, see [99].

5.2. The logarithmic Brunn-Minkowski conjecture. In [32], Böröczky, Lutwak, Yang and Zhang
have conjectured a strengthening of the Brunn-Minkowski inequality in the presence of symmetry and
convexity, namely

voln(Mλ(K,L)) ≥ voln(K)λ voln(L)1−λ.

for every symmetric convex sets K and L in R
n and every 0 ≤ λ ≤ 1, whereMλ(K,L) is the intersection

of the symmetric strips

Sθ = {x ∈ R
n, | 〈x, θ〉 | ≤ hK(θ)λhL(θ)1−λ}

over all unit vectors θ in Sn−1. Here, as usual hK(θ) supy∈K 〈θ, y〉 denotes the support functional of K.
Still resisting significant efforts of many reseachers over a decade, this far reaching conjecture stems
from the so-called logarithmic Minkowski problem (see [33]) and we refer to E. Milman’s recent work
[106] for further comprehensive background, references and best results up to date. Relevant to us is
an equivalent formulation in terms of a certain convexity property of volumes of sections of rescaled
cubes.

Conjecture 11. Let 1 ≤ k ≤ n. For every k-dimensional subspace H in R
n, the function

(t1, . . . , tn) 7→ volk
(
diag(et1 , . . . , et1)Bn

∞ ∩H
)

is log-concave on R
n.
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For precise statements and explanations of equivalences for this and similar formulations, we refer to
[112, 126, 127]. Here, as usual diag(et1 , . . . , etn) is the n×n diagonal matrix with the diagonal entries
et1 , . . . , etn , so that diag(et1 , . . . , et1)Bn

∞ = [−et1 , et1 ]×· · ·× [−etn , etn ]. In fact, we conjecture that the
conjecture remains true with Bn

p in place of the cube Bn
∞ for every p ≥ 1 and have been able to verify

this for p = 1 in [112] using Lemma 44.
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