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Phase transition threshold and stability of magnetic skyrmions

Slim Ibrahim, Ikkei Shimizu

Abstract

We examine the stability of vortex-like configuration of magnetization in magnetic ma-
terials, so-called the magnetic skyrmion. These correspond to critical points of the Landau-
Lifshitz energy with the Dzyaloshinskii-Moriya (DM) interactions. In an earlier work of
Döring and Melcher, it is known that the skyrmion is a ground state when the coefficient of
the DM term is small. In this paper, we prove that there is an explicit critical value of the
coefficient above which the skyrmion is unstable, while stable below this threshold. More-
over, we show that in the unstable regime, the infimum of energy is not bounded below, by
giving an explicit counterexample with a sort of helical configuration. This mathematically
explains the occurrence of phase transition observed in some experiments.
Keywords: skyrmion, Landau-Lifshitz energy, Dzyaroshinskii-Moriya interaction, phase
transition

1 Introduction

We consider the Landau-Lifshitz energy functional of the form

Ep[n] = D[n] + rH[n] + Vp[n], n : R2 → S
2 (1.1)

where r > 0, p ≥ 2 are constants, and

D[n] :=
1

2

∫

R2

|∇n|2dx; Dirichlet energy,

H[n] :=

∫

R2

(n− e3) · ∇ × ndx; helicity,

Vp[n] :=
1

2p−1

∫

R2

|n− e3|pdx =
1

2p/2−1

∫

R2

(1− n3)
p/2dx; potential energy.

First we point out that ∇× n can be defined as

∇× n =





∂1
∂2
0



× n,

which is the there-dimensional curl acting on maps depending only on x1 and x2. The Landau-
Lifshitz energy arises in micromagnetics, where n represents magnetization vector in a magnetic
material. The equilibrium state of magnetization is characterized by the stable critical points of
Ep (see [11] for the general theory). In the energy Ep,D represents the exchange interaction, while
Vp arises from the external field and crystalline structure which produces the easy-axis anisotropy
perpendicular to the planar material. H[n] stands for the Dzyaloshinskii-Moriya interaction of
magnetization, which emerges in some particular crystalline structure [4, 5]. When this kind
of magnetic material is analyzed under the effect of strong external field, then localized vortex-
like configuration of magnetization, called magnetic skyrmion, appears. This has actually been
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observed in experiments [20, 15], and theoretically justified in [14, 6, 13, 9]. On the other hand,
when the effect of the external field is weak, then some helical shape different from skyrmion
state are observed [20, 15]. This suggests the occurrence of a phase transition of the equilibrium
state. There is, however, no result on the rigorous study justifying the above phenomena so
far. The purpose of this paper is to establish the rigorous proof of phase transition through the
analysis of the Landau-Lifshitz energy.

In Ep, the parameter r measures the strength of external fields; larger values of r correspond
to weaker field strength. Before going any further, let us explain that putting different weights
on H and V , the energy can be formulated through two parameters as follows:

D[n] + κH[n] + µVp[n].

However, one can always normalize the coefficient of Vp using the rescaling n(x) 7→ n(
√
µx),

which reduces the problem to (1.1) with r = κµ−1/2.

In the present paper, we are especially interested in the case p = 4, where the energy has some
special structure of a nice factorization, discussed later in details. Define the function space of
maps n by

M4 := {n : R2 → S
2 : D[n] + V4[n] <∞}

endowed with the metric d(n,m) := ‖n−m‖L4(R2) + ‖∇(n−m)‖L2(R2) for n,m ∈ M4. Recall
that the energy functional E4 is well-defined on M4 (see [6, Page 7] for the proof). In addition,
thanks to the well-known inequality of Wente [19], the topological degree

Q[n] :=
1

4π

∫

R2

n · ∂1n× ∂2ndx

is also a well-defined, integer-valued functional on M4. Q[n] represents the total number of
skyrmions, and its sign gives an idea about their directions of rotation. In this paper, we will
restrict ourselves to the case Q = −1 corresponding to a single skyrmion, which is known to be
the most stable homotopy class (see [14]). Moreover, solutions in this class are known to enjoy
additional properties.

The critical points of E4 satisfy the Euler-Lagrange equation

−∆n+ 2r∇× n− (1− n3)e3 − Λ(n)n = 0 (1.2)

where
Λ(n) := |∇n|2 + 2rn · (∇× n)− (1− n3)n3.

Then (1.2) has an explicit solution:

h
2r(x) := h

( x

2r

)

, h(x) :=

( −2x2
1 + |x|2 ,

2x1
1 + |x|2 ,−

1− |x|2
1 + |x|2

)

. (1.3)

Note that h
2r is a harmonic map, with h

2r ∈ M4 and Q[h2r] = −1. In the work of Döring and
Melcher [6], it is shown that when 0 < r ≤ 1, h2r is a global minimizer of the energy;

min
n∈M4

Q[n]=−1

E4[n] = E4[h
2r] = 4π(1− 2r2).

In particular, their result explains the formation of skyrmion since the h
2r has the desired

configuration. The essence of this result is that E4 can be factorized as

E4[n]− 4πr2Q[n] =
r2

2

∫

R2

|Dr
1n+ n×Dr

2n|2dx+ (1− r2)D[n] (1.4)
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where the helical derivatives Dr
j are defined by

Dr
j := ∂j −

1

r
ej × ·.

When r ≤ 1, then the minimality immediately follows from (1.4) because h
2r is a minimizer of

D with Q = −1, and satisfies Dr
1h

2r + n × Dr
2h

2r = 0. However, this argument clearly breaks
down when r > 1, where even the stability of h2r has not been understood so far.

Our main result is the instability of E4 around h
2r when r > 1.

Theorem 1. If r > 1, then the critical point h2r of the energy E4 is unstable, in the sense that

for any neighborhood of h2r there exists n ∈ M4 such that E4[n]− E4[h
2r] < 0.

Theorem 1 rigorously explains why the phase transition occurs; the stability of skyrmions ceases
to hold when the external field is weak. Moreover, Theorem 1, together with Döring-Melcher’s
results, explicitly quantifies the threshold of phase transition at r = 1.

For the proof of Theorem 1, we follow the framework of [13]; We rewrite the quadratic form
of Hessian in terms of the coordinates of moving frame, and then decompose it with respect to
Fourier modes of argument variable. To unveil unstable factors, we apply a rescaling argument
by following the strategy of [12]. Then we can find negative directions of Hessian in the Fourier
modes higher than or equal to 2. It is quite worth to note that as long as this strategy, the
criticality of r = 1 is shown through the third Fourier mode; namely the unstable mode can
only be observed via Hessian at third Fourier mode when r is close to 1+. We also observe
that the Hessian at 0-th and first Fourier modes is always positive definite, regardless of r. This
mechanism has already been observed in that of the Ginzburg-Landau energy [12].

Next, it is natural to ask about the existence of minimizer of E4 in the unstable regime. We
show that if r > 1, then the energy is unbounded from below.

Theorem 2. If r > 1, then

min
n∈M4

Q[n]=−1

E4[n] = −∞.

This theorem suggests that (1.1) on M4 is not well-suited to characterize equilibrium states in
the regime of weak field. Nevertheless, it is worth mentioning that our example of the unbounded
sequence has the same helical structure as observed in experiments of [20]. Moreover, our con-
struction is by stretching a skyrmion in one direction, which roughly gives us the information
of how the instability of skyrmions occurs. Note that this cannot happen when the domain is
bounded, as minimizers may exist as expected by experiments. This is beyond the scope of this
paper.

We conclude this introduction by mentioning some known related studies. The minimizing
problem of Ep is first addressed by [14] when p = 2, and the analysis is extended to various
settings in [6, 13, 9]. Recently, the geometric interpretation of the integrand of the first term
in the left hand side of (1.4) is given in [18, 1], which yields a family of formal solutions to the
corresponding Bogomol’nyi-type equation. The dynamical equation corresponding to the energy
related to (1.1) is also investigated with the Gilbert damping by [6], or without damping by the
second author [17]. It is worth noting that in the latter case, the equation is closely related to
the nonlinear Schrödinger equation, and in fact, when the energy only consists of D[n], then a
sort of dispersive properties are observed [7, 8, 2, 3].

The organization of this paper is as follows. In Section 2, we first derive the Hessian of E4,
then reduce the problem to its analysis. The main part is Section 3 where we construct an
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unstable direction of the Hessian, which concludes Theorem 1. In Section 4, we prove Theorem
2 by constructing a sequence which gives infinitely negative energy. In Section 5, we prove the
technical lemmas used in the main argument.

2 Hessian

First of all, we observe that the difference of energy from h
2r can be written as a quadratic form.

Lemma 1. Let n ∈ M4 and ξ := n− h
2r. Then,

E4[n]− E4[h
2r] =

1

2
〈Lξ, ξ〉L2 (2.1)

where

Lξ := −∆ξ + 2r∇× ξ + ξ3e3 − Λ(h2r)ξ.

Proof. By the criticality of h2r for E4, we have

E4[n]− E4[h
2r] =

∫

Λ(h2r)h2r · ξ − 1

2

∫

∆ξ · ξ + r

∫

∇× ξ · ξ +
1

2

∫

ξ23 .

The constraint |n| = |h2r| = 1 yields

2ξ · h2r + |ξ|2 = 0.

Thus
∫

Λ(h2r)h2r · ξ = −1

2

∫

Λ(h2r)|ξ|2,

which completes the proof.

Let us focus on the quadratic form defined by the right hand side of (2.1). Now we claim that
the perturbation φ may be linearized into the tangent space.

Proposition 1 (Reduction of the theorem). Suppose that there is φ ∈ H1(R2) with φ · h2r =
0 such that 〈Lφ,φ〉 < 0, then for any neighborhood of h

2r, there exists n ∈ M4 such that

E4[n]− E4[h
2r] < 0.

Proof. For t > 0, let nt := h2r+tφ
|h2r+tφ|

. Since |h2r + tφ| =
√

1 + t2|φ|2, nt is well-defined. By

calculation, we have

nt − h
2r =

tφ
√

1 + t2|φ|2
− t2|φ|2h2r

√

1 + t2|φ|2
(

1 +
√

1 + t2|φ|2
) ,

∂j
(

nt − h
2r
)

=
t∂jφ

√

1 + t2|φ|2
− t2|φ|2∂jh2r

√

1 + t2|φ|2
(

1 +
√

1 + t2|φ|2
) − t3(φ · ∂jφ)φ

(1 + t2|φ|2)3/2 ,

which implies nt → h
2r in M4 as t→ 0+. Moreover, (2.1) yields

E4[nt]− E4[h
2r] = 〈L(nt − h

2r),nt − h
2r〉 = t2〈Lφ,φ〉+ o(t2),

which is negative if t is sufficiently small. This completes the proof.
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3 Proof of Theorem 1

In this section, we show Theorem 1. By Proposition 1, it suffices to find φ ∈ H1(R2) with

φ · h2r = 0, and 〈Lφ,φ〉 < 0.

Following [13], one can rewrite the Hessian via several steps, using moving frame, Fourier expan-
sion, and the Hardy decomposition.

3.1 Rescaling

For φ ∈ H1(R2), we consider the Ḣ1(R2) rescaling φ2r(·) := φ
(

·
2r

)

. Then a simple calculation
shows that the rescaled Hessian Hr(φ) := 〈Lφ2r,φ2r〉 can be written as

Hr(φ) = ‖∇φ‖2L2 + 4r2〈∇ × φ,φ〉L2 + 4r2 ‖φ3‖2L2 −
∫

R2

Λr(h)|φ|2dx (3.1)

with
Λr(h) := |∇h|2 + 4r2h · ∇ × h− 4r2(1− h3)h3.

Note that the coefficients become balanced, and the dependence of the Hessian on r gets more
explicit. Our goal is now to find φ ∈ H1(R2) with

φ · h = 0, and Hr(φ) < 0. (3.2)

3.2 Moving frame

Let (ρ, ψ) be the polar coordinates in R
2. Then by (1.3), we can write

h =





− sinψ sin θ(ρ)
cosψ sin θ(ρ)

cos θ(ρ)



 (3.3)

where θ : [0,∞) → R is the non-decreasing function defined using

sin θ(ρ) =
2ρ

ρ2 + 1
, θ(0) = π, θ(∞) = 0.

In particular, θ satisfies the following relations:

cos θ =
ρ2 − 1

ρ2 + 1
, sin θ − ρ(1− cos θ) = 0,

θ′ = − 2

ρ2 + 1
= −sin θ

ρ
, θ′′ +

θ′

ρ
− sin θ cos θ

ρ2
= 0.

(3.4)

Based on (3.3), we introduce the moving frame in the tangent space at h
2r as

J1 :=





cosψ
sinψ
0



 , J2 :=





− sinψ cos θ(ρ)
cosψ cos θ(ρ)
− sin θ(ρ)



 .

For φ ∈ ThS2, one can write

φ = u1J1 + u2J2, and then define u = t(u1, u2).
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Let us rewrite Hr(φ) in terms of u1 and u2 following [13]. First note that

∂ρh = θ′J2, ∂ψh = −(sin θ)J1, ∂ρJ1 = 0,

∂ψJ1 = (cos θ)J2 + (sin θ)h, ∂ρJ2 = −θ′h, ∂ψJ2 = −(cos θ)J1.

Hence, each component of the integrand in (3.1) can be reexpressed as

|∇φ|2 = |∂ρφ|2 +
1

ρ2
|∂ψφ|2 = |∇u|2 + 2cos θ

ρ2
u× ∂ψu+

u21
ρ2

+

(

(θ′)2 +
cos2 θ

ρ2

)

u22,

φ · ∇ ×φ = φ ·
[

J1 × ∂ρφ+
1

ρ
((cos θ)J2 + (sin θ)h)× ∂ψφ

]

= −sin θ

ρ
u× ∂ψu+

(

θ′ − sin θ cos θ

ρ

)

u22,

φ23 = u22 sin
2 θ, Λr(h) = (θ′)2 +

sin2 θ

ρ2
+ 4r2

(

θ′ +
sin θ cos θ

ρ

)

− 4r2(1− cos θ) cos θ.

Hence by (3.4), we have

Hr[φ] =

∫

R2

|∇u|2 +
(

2 cos θ

ρ2
− 4r2 sin θ

ρ

)

u× ∂ψu

+

(

−(θ′)2 +
cos2 θ

ρ2
+

4r2 sin θ

ρ

)

(u21 + u22)dx

(3.5)

3.3 Fourier splitting

Next we apply Fourier expansion of uj with respect to ψ:

uj(ρ, ψ) = α
(0)
j (ρ) +

∞
∑

k=1

(

α
(k)
j (ρ) cos(kψ) + β

(k)
j (ρ) sin(kψ)

)

, j = 1, 2.

Then Hr[φ] can be split in the following way:

Hr[φ] = 2πHr
0[α

(0)
1 , α

(0)
2 ] + π

∞
∑

k=1

(

Hr
k[α

(k)
1 , β

(k)
2 ] +Hr

k[β
(k)
1 ,−α(k)

2 ]
)

(3.6)

where

Hr
k[α, β] :=

∫ ∞

0

[

(α′)2 + (β′)2 +

(

k2

ρ2
− (θ′)2 +

cos2 θ

ρ2
+

4r2 sin θ

ρ

)

(α2 + β2)

+4k

(

cos θ

ρ2
− 2r2 sin θ

ρ

)

αβ

]

ρdρ.

(3.7)

In order to find φ ∈ H1(R2) satisfying (3.2), it suffices to show that one of Hr
k can take negative

value. In fact, it can be shown that Hr
0, Hr

1 are always non-negative definite for all r > 0. (See
Appendix for the proof.) Thus we need to focus only on Hr

k with k ≥ 2.
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3.4 Instability at higher mode

We show the following:

Proposition 2 (Instability at higher mode). For k ≥ 2, there exists rk,c ≥ 1 such that the

following holds: If r > rk,c, then there exist α, β ∈ C∞
0 (0,∞) such that Hr

k[α, β] < 0. Moreover,

if k = 3, then we can take r3,c = 1.

For the proof, we change variables in the Hessian following the idea of [13]. We use the following
lemma:

Lemma 2. Let A : (0,∞) → R be nonnegative C1 function, let V ∈ L1
loc((0,∞) : R), and let

L = − d
dρA(ρ)

d
dρ + V . Let f, g ∈ C∞

0 (0,∞) be functions satisfying f = ψg with some positive

smooth function ψ : (0,∞) → (0,∞). Then,

∫ ∞

0
(Lf)fdρ =

∫ ∞

0
ψ2A(g′)2 +

∫ ∞

0
(Lψ)ψg2dρ.

Lemma 2 plays a role of simplification of quadratic forms
∫∞
0 (Lf)fdρ, especially when L has

a kernel as the ground state. Indeed, this is the case when k = 1, and applying Lemma 2
immediately concludes that Hr

1 is positive definite (see the proof of Proposition 3 in Appendix).
Although Hr

k for k ≥ 2 does not have such kernel, we will apply Lemma 2 with ψ being the
kernel of Hr

1, which enables us to find the unstable factors.

Proof of Proposition 2. First, let us set α = β. Then we have

Hr
k[α,α] =2

∫ ∞

0

[

ρ(α′)2 +

(

(k + cos θ)2

ρ
− ρ(θ′)2 + 4r2(1− k) sin θ

)

α2

]

dρ

= 2

∫ ∞

0

[

(L1α)α+

(

k2 − 1

ρ
+

2(k − 1) cos θ

ρ
+ 4r2(1− k) sin θ

)]

dρ

where L1 := − d
dρρ

d
dρ + (1+cos θ)2

ρ + 4r2(1 − k) sin θ. Noting that L1

(

sin θ
ρ

)

= 0, we transform

α = sin θ
ρ ξ. Applying Lemma 2 with A = ρ, ψ = sin θ

ρ , V = (1+cos θ)2

ρ − ρ(θ′)2, we have

Hr
k

[

sin θ

ρ
ξ,

sin θ

ρ
ξ

]

=

∫ ∞

0

[

2 sin2 θ

ρ
(ξ′)2 + f rk(ρ)ξ

2

]

dρ

where

f rk(ρ) := 2(k2 − 1)
sin2 θ

ρ3
+ 4(k − 1)

sin2 θ cos θ

ρ3
+ 8(1− k)r2

sin3 θ

ρ2
.

Since

sin θ =
2

ρ
+ o(ρ−1), cos θ = 1 + o(ρ−1)

as ρ→ ∞, we have

f rk(ρ) = −8(k − 1)(8r2 − k − 3)ρ−5 + o(ρ−5).

Now we consider the rescaling

ξλ(ρ) :=
1

λ2
ξ(λρ), λ > 0.
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Then for ξ ∈ C∞
0 (0,∞), we have

Hr
k

[

sin θ

ρ
ξλ,

sin θ

ρ
ξλ

]

=

∫ ∞

0

[

8

ρ3
(ξ′)2 − 8(k − 1)(8r2 − k − 3)

ρ5
ξ2
]

dρ+ o(λ).

as λ→ 0+. Thus we obtain

lim
λ→0+

Hr
k

[

sin θ

ρ
ξλ,

sin θ

ρ
ξλ

]

=

∫ ∞

0

[

8

ρ3
(ξ′)2 − 8(k − 1)(8r2 − k − 3)

ρ5
ξ2
]

dρ,

which we denote Irk[ξ]. Hence for Lemma 2, it suffices to show that Irk[ξ] < 0 for some ξ ∈
C∞
0 (0,∞). This problem is concerned with the optimization of the constant of the Hardy-type

inequality:

CH := inf

{

C

∣

∣

∣

∣

∫ ∞

0

ξ2

ρ5
dρ ≤ C

∫ ∞

0

(ξ′)2

ρ3
dρ for all ξ ∈ C∞

0 (0,∞).

}

. (3.8)

In fact, it is known that CH = 1
4 , and thus for any ε > 0, there exists ξε ∈ C∞

0 (0,∞) \ {0} such
that

∫ ∞

0

ξ2ε
ρ5
dρ >

(

1

4 + ε

)∫ ∞

0

(ξ′ε)
2

ρ3
dρ.

This fact is shown in [10] (see also [16]), while in Appendix we will reproduce the proof for
reader’s convenience. Using ξε, we have

Irk[ξε] <
∫ ∞

0

[

8(4 + ε)

ρ5
ξ2ε −

8(k − 1)(8r2 − k − 3)

ρ5
ξ2ε

]

dρ

= 8[4 + ε− (k − 1)(8r2 − k − 3)]

∫ ∞

0

1

ρ5
ξ2εdρ.

If k ≥ 2, then the right hand side is negative for sufficiently large r. Especially when k = 3, it
holds that

Ir3 [ξε] < 128
(

1− r2 +
ε

16

)

∫ ∞

0

1

ρ5
ξ2εdρ

which is negative when r > 1 if ε is sufficiently small. Thus the proof of Lemma 2 is complete.

Proof of Theorem 1. According to Lemma 2, if r > 1, then there exist α, β ∈ C∞
0 (0,∞) such

that Hr
3[α, β] < 0. Now define

u1(ρ, ψ) := α(ρ) cos(3ψ), u2(ρ, ψ) := −β(ρ) sin(3ψ). (3.9)

Then by (3.5) and (3.6), φ := u1J1 + u2J2 satisfies Hr[φ] < 0, which completes the proof by
Proposition 1.

Remark 1. Note that α, β is taken such that α = β = sin θ
ρ ξ for a specific ξ ∈ C∞

0 (0,∞). Thus
φ in the proof can be written in the form

φ =
sin θ(ρ)

ρ
ξ(ρ) cos(3ψ)J1 −

sin θ(ρ)

ρ
ξ(ρ) sin(3ψ)J2 = ξ(ρ)

(

−cos(3ψ)

ρ
∂ψh+ sin(3ψ)∂ρh

)

.

4 Proof of Theorem 2

Let r > 1. In this section we construct a sequence {nν}∞ν=1 with

nν ∈ M4, Q[nν ] = −1, and lim
n→∞

E4[nν ] = −∞. (4.1)
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The key ingredient is the specific map defined as

b(x) :=

(

0,
2rx1

r2(x1)2 + 1
,
r2(x1)

2 − 1

r2(x1)2 + 1

)

.

Note that b(x) = h
1/r(x1, 0) where h is as in (1.3), and b satisfies an equation similar to the

Beltrami field:

∇× b = − b2

x1
b.

If we calculate the integrand of E4, then

1

2
|∇b|2 + r(b− e3) · ∇ × b+

1

2
(b3 − 1)2 =

2(1 − r2)

(r2x21 + 1)2
. (4.2)

Thus the energy of b is −∞ if r > 1. Our construction of {nν} with (4.1) is based on the cut-off
of b.

Define

nL(x) :=











b(x) if |x2| ≤ L,

h
1/r(x1, x2 − L) if x2 > L,

h
1/r(x1, x2 + L) if x2 < −L.

Then nL ∈ M4 ∩C(R2), and we have Q[nL] = −1 since nL is homotopic to h
r by the homotopy

with L shrinking to 0. Moreover, (4.2) gives

E4[nL] =

∫

{|x2|≤L}

(

1

2
|∇b|2 + r(b− e3) · ∇ × b+

1

2
(b3 − 1)2

)

dx

+

∫

{x2>L}

[

1

2
|∇h

1/r|2 + r(h1/r − e3) · ∇ × h
1/r +

1

2
(h

1/r
3 − 1)2

]

(x1, x2 − L)dx

+

∫

{x2<−L}

[

1

2
|∇h

1/r|2 + r(h1/r − e3) · ∇ × h
1/r +

1

2
(h

1/r
3 − 1)2

]

(x1, x2 + L)dx

=

∫

{|x2|≤L}

2(1 − r2)

(r2x21 + 1)2
dx+ E4[h

1/r] = (1− r2)CrL+ E4[h
1/r]

where Cr is positive constant independent of L. Hence we have

lim
L→∞

E4[nL] = −∞

which concludes the proof of Theorem 2.

5 Appendix

5.1 Positivity of the Hessian at lower modes

We show that Hr
k defined as (3.7) is positive definite.

Proposition 3. For all r ≥ 0, we have Hr
0[α, β] ≥ 0, Hr

1[α, β] ≥ 0 for all α, β ∈ C∞
0 (0,∞).

Proof. Our proof essentially follows [13]. We first see the case k = 0:

Hr
0[α, β] =

∫ ∞

0

[

(α′)2 + (β′)2 +

(

−(θ′)2 +
cos2 θ

ρ2

)

(α2 + β2) + 4r2
sin θ

ρ
(α2 + β2)

]

ρdρ.
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Clearly it suffices to show the case r = 0. Now we can write

H0
0[α, β] =

∫ ∞

0
[(L0α)α + (L0β)β] dρ

with L0 := − d
dρρ

d
dρ − ρ(θ′)2 + cos2 θ

ρ . Noting that L0(sin θ) = 0, we transform

α = (sin θ)ξ, β = (sin θ)η, (ξ, η ∈ C∞
0 (0,∞)).

Applying Lemma 2 with A = ρ, ψ = sin θ, V = −ρ(θ′)2 + cos2 θ
ρ , we obtain

H0
0[(sin θ)ξ, (sin θ)η] =

∫ ∞

0
sin2 θ[(ξ′)2 + (η′)2]ρdρ ≥ 0.

Next we consider the case k = 1. We can write

Hr
1[α, β] =

∫ ∞

0

[

(α′)2 + (β′)2 +

(

1

ρ2
− (θ′)2 +

cos2 θ

ρ2

)

(α2 + β2) +
4 cos θ

ρ2
αβ

+
4r2 sin θ

ρ
(α− β)2

]

ρdρ.

Thus it also suffices to show the case r = 0. Then we can write

H0
1[α, β] =

∫ ∞

0

[

(L1α)α + (L1β)β − 2 cos θ

ρ
(α− β)2

]

dρ

with L1 := − d
dρρ

d
dρ +

(1+cos θ)2

ρ − ρ(θ′)2. Noting that L1(
sin θ
ρ ) = 0, we transform

α =
sin θ

ρ
ξ, β =

sin θ

ρ
η, (ξ, η ∈ C∞

0 (0,∞)).

Applying Lemma 2 with A = ρ, ψ = sin θ
ρ , V = (1+cos θ)2

ρ − ρ(θ′)2, and using (3.4), we have

H0
1

[

sin θ

ρ
ξ,

sin θ

ρ
η

]

=

∫ ∞

0

sin2 θ

ρ
(ξ′2 + η′2) +

2 sin θ cos θ(θ′)

ρ2
(ξ − η)2dρ

=

∫ ∞

0

sin2 θ

ρ
(ξ′2 + η′2) +

(sin2 θ)′

ρ2
(ξ − η)2dρ

=

∫ ∞

0

sin2 θ

ρ
(ξ′2 + η′2)− sin2 θ

(

2(ξ − η)(ξ′ − η′)

ρ2
− 2(ξ − η)2

ρ3

)

dρ

=

∫ ∞

0

sin2 θ

ρ

[

(

ξ′ − ξ − η

ρ

)2

+

(

η′ +
ξ − η

ρ

)2
]

≥ 0.

Hence the proof is complete.

5.2 The optimality of the Hardy-type inequality

In this section we give a proof of the optimality CH = 1
4 . (For the proof of CH > 1

4 , see [10].)
More precisely, we show the following:

Lemma 3. For any ε > 0 there exists ξε ∈ C∞
0 (0,∞) \ {0} such that

(

1

4 + ε

)∫ ∞

0

(ξ′ε)
2

ρ3
dρ <

∫ ∞

0

ξ2ε
ρ5
dρ.
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Proof. As given in [10], CH is formally optimized by ξ = ρ2. To seek the compactness of support,
we take a cut-off of this function. Given A > 1, let χ = χA ∈ C∞

0 (0,∞) be a function with
χ(ρ) = 1 if ρ ∈ [1, A], χ(ρ) = 0 if ρ 6∈ [12 , 2A], |χ′(ρ)| ≤ 2

A for ρ ∈ [A, 2A], and 0 ≤ χ(ρ) ≤ 1 for
all ρ ∈ (0,∞). Then define

ξA(ρ) := ρ2χA(ρ)

for ε > 0. Then calculation gives

∫ ∞

0

ξ2A
ρ5
dρ =

∫ ∞

0

1

ρ
χ2
A(ρ)dρ,

∫ ∞

0

(ξ′A)
2

ρ3
dρ = 4

∫ ∞

0

1

ρ
χ2
Adρ+ 4

∫ ∞

0
χAχ

′
Adρ+

∫ ∞

0
ρ(χ′

A)
2dρ

= 4

∫ ∞

0

1

ρ
χ2
Adρ+

∫ ∞

0
ρ(χ′

A)
2dρ.

Thus it suffices to show that given ε > 0, there exists A > 0 such that

∫ ∞

0
ρ(χ′

A)
2dρ ≤ ε

∫ ∞

0

1

ρ
χ2
Adρ. (5.1)

For (5.1), we can estimate as

∫ ∞

0

1

ρ
χ2
Adρ ≥

∫ A

1

1

ρ
= logA,

∫ ∞

0
ρ(χ′

A)
2dρ ≤ C

∫ 1

1

2

ρdρ+
4

A2

∫ 2A

A
ρdρ ≤ C

where C is independent of A. Thus we have

[
∫ ∞

0

1

ρ
χ2
Adρ

]−1 ∫ ∞

0
ρ(χ′

A)
2dρ

A→∞−−−−→ 0

which implies (5.1) for sufficiently large A.
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