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SUBGROUP COLLECTIONS CONTROLLING THE HOMOTOPY
TYPE OF A p-LOCAL COMPACT GROUP

EVA BELMONT, NATALIA CASTELLANA, AND KATHRYN LESH

ABSTRACT. Let (S, F, L) be a p-local compact group. We prove that the (un-
completed) homotopy type of the nerve of the linking system £ is determined
by the collection of subgroups of S that are F-centric and F-radical. This
result generalizes the result for the case of p-local finite groups, which is in
the literature.

1. INTRODUCTION

The structure of a “p-local compact group” was introduced by Broto, Levi, and
Oliver in [BLOO07] and provides a common framework for the study of the mod p
homotopy type of various types of classifying spaces. Examples include classical
objects such as p-completed classifying spaces of finite groups and compact Lie
groups. More broadly, one can use the framework to study classifying spaces of
homotopy-theoretic generalizations of groups, such as p-compact groups [DW94].
For example, the p-completed classifying space of a finite loop space is the classi-
fying space of p-local compact group [BLO14]. Other examples constructed from
exotic p-local finite groups are described in [GLR19).

To describe a p-local compact group, one begins with a “discrete p-toral” group S
(Definition 2.1). A “fusion system” over S (Definition 2.2) is a subcategory of
the category of groups, with objects given by all subgroups of S. “Saturated”
fusion systems (Definition 2.4) satisfy additional axioms requiring S to behave like
a Sylow p-subgroup of the hypothetical supergroup G, and require the morphism
sets of the fusion system to behave as though they were homomorphisms induced
by conjugation in G (even though such a supergroup may not exist).

Associated to a fusion system F is a “centric linking system” £ (Definition 2.6).
While morphism sets in F mimic homomorphisms induced by conjugation, an as-
sociated linking system £ for F has morphism sets that mimic group elements of a
hypothetical supergroup G that induce the homomorphisms in F via conjugation.
The nerve ‘£| is analogous to the classifying space of a group, BG. And indeed, if
a p-local compact group arises from a compact Lie group, then the p-completion
of the nerve of £ is a model for the p-completion of BG [BLO07, Thm. 9.10], and
the same is true if £ arises from a p-compact group [BLOO07, Thm. 10.7].

Classifying spaces of compact Lie groups and finite groups admit mod p homol-
ogy decompositions in terms of orbit categories with respect to certain families of
subgroups. Such decompositions are a key tool in the study of homotopy uniqueness
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and of maps between classifying spaces [Dwy97, JM0O92, JM92]. Similar decompo-
sitions exist for p-local compact groups [BLOO7, Prop. 4.6]. The two taken together
are key ingredients in the proofs that the p-local compact groups associated to Lie
groups and finite groups model the p-completion of the groups’ classifying spaces.

Centric and radical subgroups of a group G play a key part in the homotopy
type of BG. For example, Dwyer [Dwy97] showed that the collection of p-radical,
p-centric subgroups of a finite group G are enough to recover the p-completed
homotopy type of BG for any of the classical homology decompositions, and later
the same was established for compact Lie groups ([JMO92], [Lib11]).

In fusion systems over finite p-groups, the result that centric and radical sub-
groups determine the homotopy type of the classifying space was proved in [BCGT05,
Thm. 3.5], using an induction via “pruning subgroups.” The corresponding result
for p-local compact groups is not in the literature, and that is the gap that we fill
with this paper.

We make use of the “bullet construction” of [BLO07]: L£* C L is a full sub-
category of the centric linking system such that the inclusion £* C £ induces an
homotopy equivalence on nerves [BLOO7, Prop. 4.5]. Attractively for computa-
tion, Obj(L®) contains finitely many S-conjugacy classes of subgroups ([BLOO07,
Lemma 3.2]) and contains all subgroups that are both centric and radical.

Theorem 1.1. Let F be a saturated fusion system over a discrete p-toral group S,
and let L be a centric linking system associated to F. Let H be a collection of F-
centric subgroups of S that is closed under F-conjugacy and contains all subgroups
of S that are both F-centric and F-radical. Let H* = {P*|P € H} and assume
that H®* C H. Let L* C L denote the full subcategory of L whose objects are
in H. Then the inclusion of L™ in L induces a homotopy equivalence of nerves
1| ~ |2

Our proof follows the same general strategy as [BCGT05] but we clarify and
streamline their argument, and handle some extra obstacles that occur because
the linking system is not finite. Theorem 1.1 is also closely related to results in
Appendix A of [BLO14], in which the authors study the mod p homotopy type
of transporter systems, another type of category used to describe the classifying
space of a p-local compact group. Corollary A.10 of [BLO14] is similar to Theo-
rem 1.1, but assumes that the collection of subgroups being considered is closed
under supergroups, which is not the case when dealing with F-centric F-radical
subgroups.

Another advantage of our approach is that Theorem 1.1 gives a genuine homo-
topy equivalence of nerves, whereas the techniques of [BLO14, Cor. A.10] necessarily
can only give equivalences after p-completion because there is a mod p homology
argument involved. It is true that results such as [BLO03, Prop. 1.1] for the p-local
finite group (5, Fs(G), Ls(G)) associated to a finite group G, along with the similar
result [BLOO07, Thm 9.10] for compact Lie groups, only tell us that |Ls(G)| agrees
with BG after p-completing both sides. However, more precise versions of this
statement have been obtained in some cases without p-completion. For example,
Libman and Viruel [LV09] give conditions on a p-local finite group (S, F, L) such
that ‘E‘ ~ BT for some discrete group I'. See also [COS08] for a different example
identifying the uncompleted nerve, this time in the simply-connected case.

Work of Stomiriska [Slo91] allows one to describe the homotopy type of |£| as
a homotopy colimit indexed on a poset. This approach was taken by Libman
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[Lib06] to describe a “normalizer decomposition” for p-local finite groups, which
in particular gives a decomposition of the uncompleted nerve of the linking sys-
tem. In forthcoming work [BCG™], the current authors, together with Grbi¢ and
Strumila, prove an analogous theorem for p-local compact groups. In this context,
Theorem 1.1 reduces the size of the indexing category for the decomposition and al-
lows for explicit computations, in some cases giving homotopy pushout descriptions
for ‘£| For example, the general normalizer decomposition recovers the homotopy
pushout descriptions for BSU(2) and BSO(3) originally due to Dwyer, Miller, and
Wilkerson [DMW87].

Organization. Section 2 gathers background material on p-local compact groups.
Section 3 discusses normalizer fusion and linking systems, adapting results from
[BCG105]. In Section 4, for an arbitrary fully normalized P in JF, we construct 16,
the largest supergroup of P over which all F-automorphisms of P extend, and we
show that P coincides with the group P used in [BCGT05]. In Section 5 we prove
the main theorem.
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tute in Spring 2022.

2. BACKGROUND

In this section, we gather definitions and preparatory results. We review the
definition of a p-local compact group, and we also review some lemmas on linking
systems.

Definition 2.1. A discrete p-toral group is a group P given by an extension
1— (2)p>)" — P — mgP —> 1,
where k is a nonnegative integer which we call the rank, and 7 P is a finite p-group.
e The group (Z/poo)k is the identity component of P, denoted Fj.
e The size of a discrete p-toral group P is an ordered pair size(P) := (k, c),

where k is the rank of P and ¢ = |mgP|. The pairs (k,c) are given the
lexicographic order (see [CLNO7, A.5]).

Subgroup inclusions respect size as in the finite group case: if P, C P, are
discrete p-toral groups, then size(P;) < size(P), with equality if only if P, = Py
(see [BLOO7, Sec. 1]).

Definition 2.2. [BLOO07, Defn. 2.1] A fusion system F over a discrete p-toral
group S is a subcategory of the category of groups, defined as follows. The objects
of F are all of the subgroups of S. The morphism sets Hom (P, Q) contain only
group monomorphisms, and satisfy the following conditions.

(a) Homg(P, Q) C Homz(P,Q) for all P,QQ C S. In particular, all subgroup
inclusions and conjugations by elements of S are in F.
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(b) Every morphism in F factors as the composite of an isomorphism in F
followed by a subgroup inclusion.

We think of the homomorphisms of a fusion system F as mimicking the idea of
conjugation in a supergroup G of S. Accordingly, two groups P and P’ that are
objects of F are called F-conjugate if they are isomorphic as objects of F.

Definition 2.3. Let F be a fusion system over the discrete p-toral subgroup S.
(1) We say that P C S is fully centralized if for all @ C S that are F-conjugate
to P, we have size(CsP) > size(CsQ).
(2) We say that P C S is fully normalized if for all Q C S that are F-conjugate
to P, we have size(NgP) > size(NsQ).

The following definition, of “saturation,” is intended to axiomatize the conse-
quences of the group S being a Sylow p-subgroup of G, together with morphisms
coming from conjugation by elements of G. This is a technical condition that is
assumed in order to guarantee good group-like properties, as in Definition 2.7.

Definition 2.4. [BLOO07, Defn. 2.2] A fusion system F is saturated if the following
three conditions hold:

(I) If P C S is fully normalized in F, then P is fully centralized in F, the
group Outz(P) := Autx(P)/ Autp(P) is finite, and the group Outg(P) :=
Autg(P)/ Autp(P) is a Sylow p-subgroup of Outz(P).

(IT) If P C S and ¢ € Homz(P, S) are such that ¢(P) is fully centralized, and
if we set

Ny = {g € Ng|¢cy¢™" € Auts(s(P)) },

then there exists ¢ € Homz(Ny, S) such that E‘P = ¢.

(III) If P, C P, C P; C ... is an increasing sequence of subgroups of S with the
property that Po, = |J,—; P, and if ¢ € Hom(Px, S) is any homomor-
phism such that (b}Pn € Homgz(P,,S) for all n, then ¢ € Homz (P, S).

The goal of this paper is to show one can safely restrict to a sub-collection of
subgroups of S; the objects we consider are exactly those that satisfy both of the
following two conditions.

Definition 2.5. Let F be a fusion system over a discrete p-toral group S.

(1) A subgroup P C S is called F-centric if P contains all elements of S that
centralize it, and likewise all F-conjugates of P contain their S-centralizers.

(2) A subgroup P C S is called F-radical if Outz(P) contains no nontrivial
normal p-subgroup.

A linking system, whose definition we recall next, has more morphisms than the
fusion system. The motivating example satisfies }£|: ~ }BG |;\ for a compact Lie
group G, though linking systems are more general than this.

Definition 2.6. [BLOO07, Defn. 4.1] Let F be a fusion system over a discrete p-toral
group S. A centric linking system associated to F is a category £ whose objects are
the F-centric subgroups of S, together with a functor £ - F and “distinguished”
monomorphisms P e, Aut £(P) for each F-centric subgroup P C S satisfying the
following conditions.
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(A) = is the identity on objects and surjective on morphisms. More precisely, for
each pair of objects P,@Q € L, the center Z(P) acts freely on Hom (P, Q)
by composition (upon identifying Z(P) with §p(Z(P)) C Aut.(P)), and 7
induces a bijection

Hom, (P, Q)/Z(P) — Homz(P,Q).

(B) For each F-centric subgroup P C S and each g € P, the functor 7 sends
dp(g) € Autz(P) to ¢y € Autz(P).
(C) For each f € Homg (P, Q) and each g € P, the following square commutes
in L:
f

P——0Q
5P(9)L l&z(ﬂ(f)(g))
r—.q
With these definitions in place, we arrive at the object of study.

Definition 2.7. A p-local compact group is a triple (S, F, L), where F is a sat-
urated fusion system over the discrete p-toral group S, and £ is a centric linking
system associated to F. The classifying space of (S, F, L) is defined as BF := |£‘:.

A priori, computing the classifying space of a p-local compact group requires
handling an infinite number of isomorphism classes of objects of £. However, Broto,
Levi, and Oliver constructed a functorial retraction (—)®: F — F that lifts to the
associated linking system, and whose image contains a finite number of conjugacy
classes.

Proposition 2.8. [BLO07, Defn. 3.1, Lemma 3.2, Prop. 3.3, Prop. 4.5] Let F be
a saturated fusion system over a discrete p-toral group S. There is an idempotent
endofunctor (-)*: F — F, the bullet functor, such that the full subcategory F* C
F with Obj(F*®) := {P*|P C S} is closed under F-conjugacy, contains finitely
many S-conjugacy classes, and contains all subgroups P C S that are both F-
centric and F-radical. If L is a linking system associated to F, then (—)® lifts to
an idempotent endofunctor of L, and the inclusion L£L* C L induces a homotopy
equivalence of nerves.

Proposition 2.8 says that, for computational purposes, we can restrict to the
category L°®, which has a finite number of isomorphism classes of objects. Our goal
in this paper is to show that one can restrict to a yet smaller collection of objects,
namely those that are both F-centric and F-radical, without changing the nerve of
the associated linking system.

The remainder of this section gathers lemmas related to lifting morphisms from
a fusion system to the associated linking system. In a fusion system, all of the
morphisms between subgroups are actual group homomorphisms, but morphisms
in a linking system cannot be viewed in this way. Given a morphism ¢ in L,
there is an associated homomorphism of groups, namely the homomorphism ()
in F. But the morphisms in F are analogous to group homomorphisms induced by
conjugation in a supergroup G 2 S, while the morphisms in £ itself are analogous
to the group elements that induce the homomorphism.
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Nevertheless, the last three lemmas of this section establish that several common
features of group homomorphisms also exist for morphisms in £. First, we can
uniquely complete liftings from F to L.

Lemma 2.9. [BLO07, Lemma 4.3] Given morphisms ¢ € Homz(P, Q) and ¢ €
Homx(Q, R), and lifts zz and @ of ¥ and o, respectively, to L, there is a unique
compatible lift of p to L making the diagram on the right a commuting lift to L of
the diagram in F on the left.

P—2.0 P-.0
idl » id b
P——R P——R
Yoy e

Next we need an analogue in £ of inclusions. Given P C @), there is a preferred
morphism ¢ : P — @ in F, namely the subset inclusion. In £ there is no natural
notion of subgroup inclusion, but the next lemma says that we can make a coherent
choice of lifts of the subgroup inclusions in F to morphisms in L.

Lemma 2.10. [JLL12, Prop. 1.5, Rem. 1.6] The poset of inclusions of subgroups
in F lifts to a compatible sub-poset {Lg : P — Q} of L. In particular, 15 is the
identity morphism of P, and given inclusions P C QQ C R we have Lg ) Lg = Lg.

Lastly, we need restriction and corestriction of morphisms in fusion and linking
systems. In a fusion system, a morphism ¢: P — @ can be restricted to a subgroup
A C P because the subgroup inclusion A < P is necessarily a morphism of F
(Definition 2.2(a)). Similarly, if P, := im(¢: P — @), then the isomorphism
P % P, is a morphism of F (Definition 2.2(b)), and we call it the corestriction
of ¢ to P,.

Once we have fixed a compatible subposet of inclusions in £ as in Lemma 2.10,
we can also define restrictions and corestrictions in the linking system. For A C P,
a morphism ¢ € Hom, (P, Q) has a restriction gp‘A := @ o in Homg(A, Q). The
first part of the next lemma says that there is also a unique corestriction ¢ to
P, :=im(n(p): P — Q). The same reference that we cite shows that morphisms
in £ can be corestricted to any subgroup containing P,, but we do not need this
generality.

Lemma 2.11.
(1) [JLL12, Lemma 1.7(i)] Let ¢ € Hom, (P, Q) and let P, := mw(¢)(P). There
is a unique map @ € Homg (P, P,) such that ¢ = L% op, giving a commuting
lift to L (on the right) of the commuting diagram in F (on the left).

m(e) ¢
P——P, P——PF,
idl lc idl ng‘P

P——-s P—
() @ ® @

(2) [BLO14, Prop. A.2, Cor. A.5] Given an isomorphism ¢ : P — P’ in F,
every lift of ¢ to L is an isomorphism.
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(3) Given a diagram in F on the left, and a lift ¢ of ¢ to L, there is a unique
lift @|P of @‘P making the diagram on the right commute in L, and if @‘P

is an isomorphism, so is @|P.

o, 7,
P——Q P——
RN
P ¥ Q/ P @ Q/

Proof. For the first statement in (3), apply (1) to $o 5’ (see also [Lib06, Prop. 2.11]).
The second statement in (3) follows from (2). O

3. NORMALIZER FUSION SUBSYSTEMS

Quillen’s Theorem A allows the establishment of a homotopy equivalence be-
tween the nerve of a category and the nerve of a subcategory by studying the
nerves of overcategories or undercategories for the inclusion. The proof of The-
orem 1.1 relies on undercategories for its inductive strategy. In this section, we
establish the first of a sequence of equivalences necessary for the proof.

Suppose that (S, F, L) is a p-local compact group, and P C S. Let P | L be
the undercategory of P: objects are morphisms P — @ in £, and morphisms are
commuting triangles. Let P |4 £ denote the full subcategory of P | £ consisting
of objects P — @ that are non-isomorphisms of £. To analyze P |. £, whose
nerve will be one stage in a sequence of equivalences, we use the “normalizer fusion
subsystem” P | NP described in [BLO14, Sec. 2] for p-local compact groups.
We follow [BCG105], where the analogue of Theorem 1.1 is established for p-local
finite groups. The goal of the section is to prove the following.

Proposition 3.1. Let (S, F,L) be a p-local compact group, and let P be a fully
F-normalized subgroup of S. There is a retraction r: (P | L) — (P lu N P)
that induces a homotopy equivalences of nerves.

We give the definition of a normalizer subsystem and basic lemmas, and then
follow [BCGT05] in defining a retraction functor. The proof of Proposition 3.1
concludes the section. Most of the section consists of suitable specialization or
generalization of results of [BLO14] and [BCGT05].

Definition 3.2. Let F be a saturated fusion system over a discrete p-toral group .S,
and let P C S a fully F-normalized subgroup. The normalizer of P in F, denoted
NxP, is a fusion system over the discrete p-toral group NgP. If Q, R C NgP, then
Homp,p(Q, R) is given by

{p € Homz(Q, B)| 3 ¢' € Homz(Q - P, R- P)with/|, = ¢ and ¢/(P) = P }.

Note that the objects @ and R in Definition 3.2 are subgroups of Ng P, but do not
have to contain P itself. If they happen to contain P, then Homy,p(Q, R) is just
the subset of Homz(Q, R) of consisting of morphisms that take P to P. Otherwise,
the definition is requiring that morphisms extend to the smallest subgroups that
do contain P, namely @) - P and R - P, in a way that takes P to P.

Saturation is a key technical requirement, and fortunately is inherited by the
normalizer fusion system.
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Lemma 3.3. [BLO14, Thm. 2.3] If F is a saturated fusion system, then so is Nz P.

We would like an associated centric linking system. If £ is a centric linking
system associated to F, there is a candidate linking system N P associated to
NxP that is given by a subcategory of £. In the following definition, note that
subgroups of NgP that are F-centric are necessarily Nz P-centric as well.

Definition 3.4. The category NP, the normalizer in £ of P, is defined as a
subcategory of L. The object set of Ny P is given by NxP-centric subgroups. The
morphism sets Homy, p(Q, R) are given by

{cp € Hom(Q - P,R - P) ‘w(cp)’Q € Homp, p(Q, R) and 7 (p)(P) = P} ,
where 7w: £ — F is the projection from the linking system to the fusion system.

Lemma 3.5. [Gonl6, Lemma 1.21] If P is a fully normalized subgroup in F, then
the category N, P is a centric linking system associated to Ny P.

Before we go on to undercategories, we pause to note easy properties of NrP.
Lemma 3.6. If p: P — Q is a morphism in NxP, then P<1@Q and o(P) = P.

Proof. If ¢: P — @) is a morphism in Nz P, then the definition says that there is
a morphism ¢’: P — @ - P such that gp’|P = ¢ and ¢'(P) = P. Hence p(P) = P.
Since @ C NgP, we know P is normal in Q. (I

Next we define the categories used for the proof of the main result.

Definition 3.7.

(1) We write P | NP to denote the undercategory (or “coslice category”) of
P in N (P), i.e. the category whose objects are morphisms P — Q of Nz P
and whose morphisms are commuting triangles under P.

(2) We write P lou NP (resp., P s L) to denote the full subcategory of
P | NP (resp. P | L) whose objects are maps P — @ that are not
isomorphisms in L.

The bulk of the work of this section is to construct a retraction functor r from
P | L to P NgP and show that the retraction restricts to a functor from P | £
to P |y NyP (following the model of [BCGT05]). Let P <+ @Q be an object in
P | L. In an ideal world, we would like to construct an object P — @, of P | NoP
that depends only on ¢. Sometimes this works: if ¢(P) = P, then we will indeed
be able to take @, = Q N NgP. In general, however, we only have ¢(P) = P; we
would like to twist everything by this isomorphism, but it turns out that such a
twist requires making a choice, and unfortunately, the group (), is not uniquely
defined by . However there will still be coherent maps between the outcomes for
all of the objects ¢ in P | £, making the retraction into a functor.

Construction 3.8. For a fully normalized subgroup P and a morphism P RN
Q in L, let P, = im(n(¢): P — Q). By Lemma 2.11, there exists a unique
morphism ¢ in £ such that ¢ = L% oy (the “corestriction” of ¢ to P,). Then P, is
necessarily F-isomorphic to P, so there exists a morphism f,: Ng(P,) — NgP in
F whose restriction to P, corestricts to an isomorphism to P C NgP (see [BLO14,
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Lemma 2.2(b)] with K = Aut P). If ¢ happens to be a morphism in NP, i.e. if
P, = P, then we choose f, to be the identity map. Then define

Qy, :==im [f,: Ns(P,) N Q — NsP].

In F we have a diagram with restriction/corestriction morphisms of f, labelled
with underlines:

o

P P — ij Ns(P

N
N

(3.9)

Iﬁ

P, — Ns(P,) N Q — Ns(P,).
We want to lift diagram (3.9) to £, as shown in (3.10) below. We first choose
a lift F, for f, (using the identity for F, if P = P,), and then we lift the subset
containments of (3.9) as the preferred inclusion maps of £, all marked simply as ¢
to declutter the diagram. By Lemma 2.11, there are unique isomorphisms & and
F, to fill in the other vertical arrows. We define 7)(¢) = 1o Fy, ~! to fill in the dotted

arrow. Further, we already have a lift of the diagonal arrow w P — P,, and we fill in
P — P with the composite of isomorphisms F, o ¢:

o

P P——=Q, : Ns(P)
> (p)=toF,
(3.10) ~| Fe ~|F, 0 F,

P@?NS(P%?)QQ

Ng(P,).

Given ¢ and choices of f, and F, the rest of the diagram is uniquely determined.
We define

(3.11) r(p) =12 o (&o g) € Obj(P | N P)
and we observe that

Q -1
(3.12) n(p) = LN;%(P yoF,

is a morphism in P | £ from r(p) to ¢.

Remark 3.13.
(1) If p: P — Qis in £ and 7(p)(P) = P, then Qy, = NqP.
(2) 7(P — Q) = (P — NoP)

We extract some further details of from the construction of r for later use. One
result we need is that the retraction r preserves the property of not being F-
isomorphic to P.
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Lemma 3.14. If : P — Q is not an isomorphism, then Qy,, properly contains P.

Proof. In the bottom row of diagram (3.9), the middle entry is actually Ng(P,).
If ¢ is not an isomorphism, then @ properly contains P,, so Ng(P,) properly
contains P, as well ([BLO07, Lemma 1.8]). It follows that in the top row, Qy,
properly contains P, as required. (Il

We also need to know that r actually is a retraction.

Lemma 3.15. If ¢: P — Q is a morphism in No.P, then r(p) = ¢, i.e., r is a
retraction.

Proof. By Lemma 3.6, we know that P C Q C NgP and 7(p)(P) = P. Hence we
have P, = P and Ng(P,) N Q = Q, since Q C NgP. Because F, is the identity,

WeﬁHdewzQandLgf¢O(&O£):Lgogzgp' O

Lastly, we must still establish that r is actually a functor, despite the choices
that were made during its construction.

Lemma 3.16.

(1) The retraction r is a functor from P | L to P | N.P.
(2) Leti: (P ) NgP)— (P L) denote the inclusion functor. Then there is a
natural transformation n from i or to the identity on P | L.

Proof. To prove that r is a functor, we must establish that, despite having to make
choices in defining r(p) for each object ¢ of P | £, we can choose compatible
morphisms in P | Nz P between the objects P — Qy, for different ¢, making r
into a functor.

Our strategy is to prove that a morphism $ in P | £ (which is a commuting
diagram in £ under P as on the left), together with choices of f, and f,, gives
rise to a unique Bin N.P making a commutative ladder in £ (on the right):

P—¢>Q p r(p) va n(p) 0
[
(3.17) _l 5l = l— 1313 lﬂ
\
PH / /! !
@ r(¢') Qf%' n(e’)

While 3 depends not only on 3 but also on the choices of f, and f, (and their
lifts to the linking system), we omit that dependence from the notation.

Our setup allows us to construct the commuting diagram (3.18) in £ below,
working from right to left. (The notation is as in diagram (3.10).) Once again we
denote the preferred “inclusions” in £ simply by ¢ to reduce clutter. We are given 3
and the commutativity of the outermost rectangle by hypothesis. The composites
P — Qy, and Qy, — Q across the top row are 7(¢) and 7(yp), respectively, and
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similarly are r(¢’) and n(¢’) for the second row.

@
Pe P——Qs, ——=Ns(P,)NQ—=0Q

I<®

P ¥
(3.18) —L . lB él l@
P © ® ~

L

— P«p’ P - qu,, r )71NS(P¢’)QQ/ Ql
Zel

’

©

First, 3 o ¢ corestricts uniquely to 3 so that the rightmost square commutes. The

map B is then uniquely defined by requiring commutativity of the next square to
the left.

To test if the left rectangle commutes, we use the result that every morphism in
L is a categorical monomorphism ([BLO14, Prop. A.2(d), Cor. A.5]). It is sufficient
to check that composing both ways around the left square with the composite ¢ o
Fo:Q for = Q' are the same. The two compositions are the same by commutativity
of the other two squares and the outer rectangle.

Lastly, uniqueness of B guarantees functoriality of r despite the choices made in
the construction.

For (2), observe that (3.17), thought of as a diagram in P | L, is exactly the
diagram required to show that 7 is a natural transformation from i o r to the
identity. (I

We can now put together the proof of Proposition 3.1, whose statement we
reproduce for convenience.

Proposition 3.1. Let (S, F,L) be a p-local compact group, and let P be a fully
F-normalized subgroup of S. There is a retraction r: (P lu L) — (P lu N2 P)
that induces a homotopy equivalences of nerves.

Proof. The function r: (P | £) — (P | N.P) of Construction 3.8 is a retrac-
tion functor by Lemmas 3.15 and 3.16, and it preserves non-isomorphisms by
Lemma 3.14. The natural transformation 7 from Lemma 3.16 restricts to a natural
transformation from ¢ o r to the identity on P |. £. Hence r induces a homotopy
equivalence between nerves. ([

4. THE SUBGROUP P

The overall strategy for proving Theorem 1.1 is to study a sequence of under-
categories in order to apply Quillen’s Theorem A. In Section 3, we established a
homotopy equivalence between the nerves of P | £ and P | Nz P. In this section,
we construct a supergroup P of P inside of N, 5P, and a functor from P |, NP to
P J Nz P. Our goal is the following proposition.

Proposition 4.1. If P is fully normalized, F-centric, and not F-radical, then
|P luNeP|~|P | N.P|.

The first part of the section leads up to the definition of P and its elementary
properties (equation (4.6) and Lemma 4.7). The second part of the section sets
up and proves the key extension property of P (Lemma 4.11), and the section
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concludes with the proof of Proposition 4.1. We begin with an observation about
conjugation by images of an extension of a morphism.

Lemma 4.2. Let « € Autz(P), and assume that o extends to a: QQ — S in F,
where P C Q@ C NgP and a|P =a. If y € Q, then as automorphisms of P,

Qocyo a = Ca(y)-
Proof. Remembering that « itself cannot be applied to y, we compute
aocyoat(p)=aly-(a'p) -y ")
=a(y-(a'p)y)
=a(y)-p-ay™). O
Motivated by Lemma 4.2, one makes the following definition.
Definition 4.3. Let a € Autz(P). We define
N, :={y € NsP|aoc,oa* € Autg(P)}.

As a corollary of Lemma 4.2 and Definition 4.3, we find that N, is the largest
subgroup of NgP over which « could possibly extend.

Corollary 4.4. If a € Autz(P) extends to a: Q — S where P C Q C NgP, then
Q C Na.

There is also a uniqueness property for extensions of elements of Autrz(P), as
described by the following lemma. The lemma considerably strengthens what one
could conclude just from Lemma 4.2.

Lemma 4.5. [BLOO07, Prop. 2.8] Let P be F-centric, and suppose P C Q. If
a € Autx(P), and @ and & are extensions of « to morphisms Q — S, then there
exists z € Z(P) C Q such that & = @ oc,. In particular, a(Q) = &' (Q).

We are interested in the largest supergroup of P over which all F-automorphisms
of P must extend. If P is a fully normalized subgroup, let P be defined by

(4.6) P= () N
acAutry(P)

Lemma 4.7. If P is fully normalized, then P <P < NgP, and Cs(P) C P.

Proof. The centralizer of P is contained in every N,, and therefore in P.
Let x € NgP. We claim that

-1
Nox™" = Naoc, ;-

To see the inclusion from left to right, suppose that a: N, — S is an extension
of a. Then @oc, 1: 1 N,z ! — S is an extension of @ oc,-1 € Autz(P), and so
xNyz™' C Naoc, , by Corollary 4.4. The reverse inclusion is the same argument.

The preceding paragraph proves that conjugation by elements of NgP permutes
the groups N, for various a € Autg(P) and therefore stabilizes their intersection,
namely P. (I

With the basic properties of P in place, we consider its extension properties.
The goal is Lemma 4.11, which establishes the existence and uniqueness of certain
extensions of automorphisms of P over subgroups of NgP containing P.
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Lemma 4.8. Let P be fully normalized, let o € Autz(P), and let &: No — S be
an extension of a. Then im (15 = S) = P.

Proof. 1t suffices to show that &(P) C P because we then have a subgroup con-
tainment between groups of equal size (in the sense of Definition 2.1), which are
therefore equal. Let y € P. First we check that a(y) € NgP. By Lemma 4.2, we
know that
Ca(y) = QO0Cy O 04_1,

which stabilizes P because y € NgP, and therefore a(y) is in NgP.

To finish the proof, we must show that a(y) € Ng for all 8 € Autz(P). Applying
Lemma 4.2 again, we find

ﬁoca(y)0671Zﬁo(aocyoafl)oﬁfl
=(Boa)ocyo(Boa)

Since y € ]5, we know y € Npgon, so the last automorphism is in Autg(P) as
required. (I

Recall that for a finite group H, we write Op(H) for the largest normal p-
subgroup of H, i.e. the intersection of all Sylow p-subgroups of H. Only the first
half of the proof of the following proposition is necessary for Corollary 4.10, but the
equality statement shows that our P agrees with the group P that plays a similar
role in the proof of [BCG'05, Prop. 3.11].

Proposition 4.9. Let P be fully normalized. The image of P under the natural
map c¢: NgP — Outxz(P) equals O,(Outz(P)).

Proof. First we prove that O,(Outz(P)) C ¢(P). Because P is fully normalized,
we know that Op(Outx(P)) C Outg(P), so any element of Op,(Outx(P)) can be
represented by ¢, for some w € NgP. We would like to show that for any S €
Autz(P), we have w € Ng, so as to conclude that w € P.

Because O,(Outz(P)) is contained in Outs(P) and is normal in Outz(P), for
any [0] € Outz(P), there exists s € NgP such that

6] - lew] - 1871 = [es]
and by adjusting the choice of s using an element of P if necessary, we can assume
that 3-c, - 871 = ¢s. Therefore w € Ng. Since 3 was arbitrary, we find that w € ]5,
as required.

Next we show that ¢(P) € O,(Outz(P)). It suffices to show that ¢(P) is a
normal subgroup of Outz(P), and since the quotient map Autxz(P) — Outx(P) is
surjective, it suffices to show that the image of P in Aut #(P) is normal in Aut z(P).
Let y € P and B € Autx(P); we must show that 8oc, o071 = ¢, for some z € P.
By Lemma 4.2 we know that Boc, 037! = Chy) B8 automorphisms of P, where

B is the extension of 8 to Ng guaranteed by Axiom (II) of saturation. Moreover,
B(y) is in P by Lemma 4.8. O

The following corollary is the first of two critical ingredients in the proof of
Proposition 4.1, the other being the extension property proved in Lemma 4.11.

Corollary 4.10. Let P be a fully normalized subgroup. If P is not F-radical, then
P properly contains P.
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Proof. If P is not F-radical, then by definition O,(Outz(P)) is nontrivial. By
Proposition 4.9, the inverse image of O,(Outz(P)) along NsP — Outz(P) is P,
which therefore properly contains P. ([

Finally, we establish that for F-centric subgroups, we can extend maps in the
L-normalizer of P.

Lemma 4.11. Let P be F-centric, and let Q,Q" C NsP with P C QN Q. Given
¢ € Homp, (py(Q,Q'), there exists a unique p € Homy,p(P-Q, P - Q") such that
AT

Q

¥

Proof. Observe first that Q,Q’ C NgP, so they both normalize P by Lemma 4.7;
thus P - Q@ and p. Q' are groups, contained in NgP. Let a € Autz(P) be the
restriction to P of 7(¢) € Hompy,p(Q,Q’). Then Q@ C N, and also P C N,
by Corollary 4.4. Hence P. @ C N,, and by axiom (II) of saturation, there
exists fq: P. Q — S in F with f,|, = a. Further, by Lemma 4.8 we know that
fa(P) C P.

By definition, 7(p) : @ — @', like f,, is an extension of a. By Lemma 4.5, there
exists z € Z(P) such that fa|Q = m(p) o ¢z, so by replacing f, with f, o c,-1 if

= 7(y) and still satisfies f,(P) = P. Hence

l

necessary, we can assume that f,

fa S HOIIIN}.P(P : Q,P : QI)

Choose a lift @ of f, to Nz(P). We now have the commutative diagram below
in NxP (on the left) and a proposed lifting of that diagram to NP on the right
that may or may not commute:

o

ﬁ.Qgﬁ.Q/ ﬁ.Q_$>ﬁ.Q/
1
QTQ/ QT>Q/-

Both compositions around the right-hand square project to the same map in F,
because the left-hand square commutes in F. Since P C @, we know that @ is
F-centric, so by the axioms of a linking system there exists z € Cs(Q) = Z(Q)
such that

P.Q ~ P

LQ/Q op= chLQQoég(:v)

_ B

where the second line uses property (C) in the definition of a linking system. Since
p:i=@o (513,62(:6) restricts to ¢ and ¢ preserves P, so does ¢, and hence ¢ is in

N, P. Lastly, ¢ is unique because LS'Q is an epimorphism in a categorical sense

([BLO14, Prop. A.2]). O
The proof of Proposition 4.1 is now a routine matter of checking diagrams.

Proof of Proposition 4.1. We exhibit functors in both directions between P | NP
and P | NgP, with appropriate natural transformations. We define a functor G :
(P | NzP) — (P l. N P) by precomposing with the distinguished inclusion P

P, which is a morphism of NoP. The image of G is P |. NP by Corollary 4.10.
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In the other direction, to define F' : (P |x Nz P) — (ﬁ 1 N P), suppose that
P %5 Q is an object of P b Nz P. Then P is a subgroup of @), so by Lemma 4.11

there exists a unique morphism ¢: P — p. Q of P | NP that extends ¢, and we
define F(p) = ¢. We define F' on a morphism S by

P—*.0 P—%P.Q

(4.12) F \lﬂ = \ l@
¥ ¥’

Q' P-Q

where 3 is the (unique) extension of § guaranteed by Lemma 4.11.

We want a natural transformation v from the identity functor on P | NoP to
the composite GF. To define v(P LN @), we need a morphism @ — p. Q of L
under P, and we use

P—*2 .0

5 v ::Lﬁ'Q
GF(ga)—A l(“") Q

P.Q.
where the diagram commutes because 327} p =

To check naturality of v for the morphism 8 shown in (4.12), consider the diagram
below, where the front triangle is v(p) : ¢ — GF(yp), the back triangle is v(¢’) :

¢ — GF(¢'), and 3 = GF(B). The unlabelled map is GF(f o ¢) = B/c;\go 0B =
5% 0o

p—* Q'
S
5 N
(4.13) ) . Sy P.Q
pouk ¢ B
P.-Q

The rectangle on the right commutes by the construction of 3 (Lemma 4.11). The
back rectangle commutes because the other faces commute, establishing naturality
of v.

The natural transformation Id = FG : (P | NzP) — (P | N:P) applied to
¢ : P — Q (where Q C NgP) is the morphism

[

/x lLme
pok N ¥ °
P-Q.
The diagram commutes by the uniqueness in Lemma 4.11, since both ways around

P ~ ~ ~
the diagram are extensions of the composite P £, p 5 Q@ toamap P — P- Q.
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Naturality follows from a diagram similar to (4.13) with P replaced by P and the
slanted maps adjusted accordingly. O

5. PROOF OF THEOREM 1.1

In this section, we prove the main theorem of the paper, which we reproduce for
the reader’s convenience.

Theorem 1.1. Let F be a saturated fusion system over a discrete p-toral group .5,
and let £ be a centric linking system associated to F. Let H be a collection of F-
centric subgroups of S that is closed under F-conjugacy and contains all subgroups
of S that are both F-centric and F-radical. Let H®* = {P*|P € H} and assume
that H®* C H. Let £ C L denote the full subcategory of £ whose objects are
in H. Then the inclusion of £* in £ induces a homotopy equivalence of nerves
™| =~ |].

First we note that we can work within the subcategory L£® of £ (see Proposi-
tion 2.8).

Lemma 5.1. With the notation of Theorem 1.1, L* < L induces a homotopy
equivalence of nerves if and only if L% < L£* induces a homotopy equivalance of
nerves.

Proof. Because H® C H, there is a commuting diagram

EH' — s

()

L —s [

where the downward vertical arrows are given by inclusion of subcategories and
the upward arrows are given by the functor P — P®. The vertical arrows induce
homotopy equivalences of categories because the down-and-up composite is the
identity on the top row, and the distinguished inclusions Lg. provide a natural
transformation from the identity functor on the bottom row to the up-and-down

composite [BLOO07, Prop. 4.5 (a)]. O

The proof of Theorem 1.1 follows the general argument of [BCGT05, Thm. 3.5],
while dealing with the changes needed for the infinite situation. By Lemma 5.1, it is
sufficient to assume that H = H®, i.e. that £* is a (full) subcategory of £*. Hence
we can start with £°, and get to £ by inductively pruning conjugacy classes of
subgroups that are not in A, starting with the smallest subgroups. Since £® has a
finite number of conjugacy classes, this process terminates in £7.

Proof of Theorem 1.1. By Lemma 5.1, it is sufficient to assume that £* C L°.
Since L£® has a finite number of conjugacy classes of objects, we can make a finite
list of conjugacy classes (Py), ..., (P,) of L* such that

e Py, ..., P, are fully normalized representatives of distinct conjugacy classes
of objects of L, and represent all conjugacy classes that are in £* but not
in H.

e The list of sizes is non-increasing: size(P;) > size(P;41) fori=1,..,n — 1.
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Let Lo = £, and for each i = 0,...,n — 1, let £;;1 be the full subcategory of £*
whose objects are Obj(L;) U (P;41). Thus

(52) CHZﬁogﬁlg---Qﬁn:L',

and each subcategory in the sequence contains one more isomorphism class of
Obj(L) than the one before it.

We seek to prove that for all ¢, the inclusion £; € £;11 induces a homotopy
equivalence of nerves, and we wish to apply Quillen’s Theorem A. We must show
that for all Q € Obj(L;11), the nerve of @ | L; is contractible. If @ is actually
an object of £;, then the desired statement is true because the identity map of @
is an initial object. Thus, we need only consider @ € (P;41). For all such @, the
undercategories @ | L£; are isomorphic, so we need only prove that the nerve of
Piy1 | L; is contractible (where we have assumed that P;;q is fully normalized).
To simplify notation, let P := P;11, which remains fixed for the remainder of the
proof.

First we assert that we have an isomorphism of categories

(P4 L) (PLaL).

To see this, note that if P — R is a morphism of £® that is not an isomorphism,

then R € Obj(L;), because size(R) > size(P). Hence it is sufficient to prove that

for all fully normalized subgroups P, the nerve of P | L® is contractible.
Consider the sequence of categories

(-)* ) (—)oik
VRS VS =
Pl.LCe Pl.LC Pl NP P | N.P.
S~ 7 N~ T e~ 7
c r @

We assert that each adjacent pair has homotopy equivalent nerves. For the first
pair, the map from right to left takes a non-isomorphism P — @ to the composite
P — @Q — Q°, which is likewise a non-isomorphism, since size(Q®) > size(Q) >
size(P). Hence the composite (—)® o (C) is the identity on P | £*, and the natural
map ¢ — Q° is a natural transformation from the identity on P |. £ to the
composite (C) o (—)°.

The middle pair has homotopy equivalent nerves by Proposition 3.1. Lastly,
because P is fully normalized, F-centric, and not F-radical (because P is not in H),
the third pair also has homotopy equivalent nerves by Proposition 4.1. However,
the identity map P — P is an initial object of P J N, P, which therefore has
contractible nerve, so we conclude that

|PLLy|2|PlaL®|~|P| NP|~x

We have proved that in the sequence (5.2), each successive pair of categories has
homotopy equivalent nerves by Quillen’s Theorem A. Since the inclusion £* C L
induces a homotopy equivalence of nerves [BLO07, Prop. 4.5], the proof is finished.

O
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