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Abstract

It is proved that the normalized L
2 metric on the moduli space of n-vortices on a

two-sphere, endowed with any Riemannian metric, converges uniformly in the Bradlow
limit to the Fubini-Study metric. This establishes, in a rigorous setting, a longstanding
informal conjecture of Baptista and Manton.

1 Introduction

Vortices are the simplest class of topological solitons arising in gauge theory, making them
interesting objects of mathematical study, independent of their phenomenological applications
in condensed matter physics and cosmology. At critical coupling, they satisfy a self-duality
(or Bogomol’nyi) type condition which implies that static vortices exert no net force on one
another. The moduli spaceMn of static n-vortex solutions is thus exceptionally large, forming
a complex n-manifold. There is a well-developed programme for studying their low energy dy-
namics in this regime, comprehending classical, quantum and statistical mechanics, originally
proposed by Manton. The key object underpinning this programme is a natural Rieman-
nian metric g on Mn, called the L2 metric, obtained by restricting the model’s kinetic energy
functional to TMn. Vortex dynamics is modelled by geodesic motion in (Mn, g). For a com-
prehensive review of the geodesic approximation to vortex dynamics, see [15, ch. 3].

The L2 metric on Mn is, then, the object of strong and sustained mathematical interest.
There are very few situations in which g can be computed exactly, however. Other than the
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rather trivial case of M1 when physical space is homogeneous, Strachan has exactly computed
the metric on M2 on the hyperbolic plane [17]. Samols [16] adapted this calculation to obtain
a semi-explicit localization formula for the metric on an arbitrary surface (for example the
Euclidean plane) which is useful for numerics, and can be used to prove many interesting
global and qualitative properties of g, but it does not yield explicit formulae. Even the metric
on M1 is nontrivial if physical space is not homogeneous [12].

This paper examines one case where explicit progress is possible, at least in a certain
parametric limit: vortices on a two-sphere. Bradlow [7] observed that, on a compact Riemann
surface Σ, there is a lower bound, proportional to n, on the area |Σ| required for the surface
to accommodate n-vortices. Above this bound, Mn is biholomorphic to SymnΣ, the n-fold
symmetric product of Σ, since vortices are uniquely determined by the collection of n points
on Σ at which their Higgs field vanishes. As |Σ| approaches the bound from above, the
vortices spread out and lose their spatial localization. Precisely at the bound, they delocalize
entirely: the Higgs field vanishes identically and the magnetic field is uniform. Such vortex
solutions are sometimes called “dissolved” vortices, and the limit in which they appear called
the “dissolving” limit. The moduli space of dissolved vortices is precisely the moduli space
of constant curvature connexions on the line bundle of which the Higgs field is a section. If
the genus r of Σ is positive this is a torus of dimension 2r which may naturally be identified
with the Jacobian variety of Σ. It also has an L2 metric, to which the L2 metric g on Mn

conjecturally degenerates (more precisely, g conjecturally degenerates to the pullback of the
metric on the torus by the Abel-Jacobi map SymnΣ → Jac(Σ)), a scenario studied in detail
in [14]. If r = 0, that is, Σ = S2, the moduli space of dissolved vortices is a point, while
Mn ≡ CP n. To understand the metric g in the dissolving limit we must rescale it by (for
example) demanding that (Mn, g) has some normalized volume. In this context, Baptista and
Manton [4] made the remarkable conjecture (on the round two-sphere), that g converges in the
dissolving limit to the Fubini-Study metric on CP n, implying an enormous gain in symmetry
in this limit.

The purpose of this paper is to give a precise formulation and rigorous proof of a slight
generalization of Baptista and Manton’s conjecture: we will show that, in the dissolving
limit, the normalized L2 metric on Mn(S

2) converges uniformly to the Fubini-Study metric,
regardless of the metric on S2 (that is, we remove the assumption that the domain sphere
is round). The L2 geometry in the dissolving limit is thus unreasonably simple: a family of
metrics with (generically) no nontrivial isometries at all converges uniformly to a homogeneous
metric of constant holomorphic sectional curvature. The convergence established implies [2]
that the spectrum of the Laplacian on Mn converges uniformly to the spectrum of the Fubini-
Study Laplacian, which is easily computed [5]. The theorem thus has immediate consequences
for the quantum dynamics of vortices on S2 in the dissolving limit.

The paper is structured as follows. In section 2 we formulate the model and give a precise
statement of the theorem. In section 3 we review the notion of pseudo-vortices, introduced by
Baptista and Manton, and prove that vortices converge uniformly to pseudo-vortices in the
dissolving limit. In section 4, we establish convergence of the metric, finishing the proof of the
main theorem, while in section 5 we study the convergence of the spectrum of the Laplacian.
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2 Statement of the theorem

Let (Σ, gΣ) be an oriented Riemannian manifold diffeomorphic to S2 and (L, h) be a hermitian
line bundle over Σ of degree n ≥ 0. To any section ϕ of L and unitary connexion A on L we
associate the energy

E(ϕ,A) =

∫

Σ

(
1

2
|dAϕ|2 +

1

2
|FA|2 +

1

8
(τ − |ϕ|2)2

)
(2.1)

where τ > 0 is a constant parameter and FA is the curvature of A. If we choose a local section
η of L with |η|2 = h(η, η) = 1, we may identify the connexion A locally with the real one-form
h(idAη, η) which, in a slight abuse of notation, we also denote A. Then for a general local
section fη, where f is smooth and complex valued,

dA(fη) = (df − iAf)η. (2.2)

We adopt the convention that the curvature FA is real, coinciding (globally) with dA. The
energy functional is invariant under gauge transformations,

(ϕ,A) 7→ (eiχϕ,A+ dχ), (2.3)

where χ : Σ → R is smooth.
It is well known [6, 7] that E(ϕ,A) ≥ τπn with equality if and only if

∂Aϕ = 0 (2.4)

∗FA =
1

2
(τ − |ϕ|2), (2.5)

where ∂A denotes the 0, 1 part of dA (with respect to the complex structure on Σ defined by
its orientation and metric) and ∗ is the Hodge isomorphism defined by gΣ. Solutions of this
system of equations are called vortices. Since they attain a topological lower bound on E,
they are automatically global minima of E.

A necessary condition for existence of vortices was obtained by Bradlow [7] by integrating
(2.5) over Σ:

2πn =
1

2
τ |Σ| − 1

2

∫

Σ

|ϕ|2 ≤ 1

2
τ |Σ| (2.6)

where |Σ| denotes the area of Σ. Hence, if vortices exist,

ε := τ |Σ| − 4πn ≥ 0. (2.7)

We refer to ε ց 0 as the Bradlow limit. More precisely, we shall consider the limit where
the metric gΣ (and hence |Σ|) is fixed, and τ ց 4πn/|Σ|. This is more convenient for our
purposes than the limit considered by Baptista and Manton (τ ≡ 1 and gΣ varying through
round metrics, with |Σ| approaching 4πn from above) because it allows us to define Sobolev
spaces with fixed norms determined by gΣ. That our limit includes theirs follows from the
observation that, if (ϕ,A) solves the vortex equations on (Σ, gΣ) at coupling τ = τ0, then
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(τ
−1/2
0 ϕ,A) satisfies the vortex equations on (Σ, τ0gΣ) at coupling τ = 1. Note that at ε = 0

any vortex must have ϕ = 0 and ∗FA constant, so that vortices completely lose their spatial
localization, which is why this is often called the dissolving limit. For ε > 0, every vortex has
‖ϕ‖2L2 = ε.

The moduli space of vortices Mn is the space of gauge equivalence classes of solutions
of (2.4), (2.5). This is a complex n-manifold canonically diffeomorphic to SymnΣ, the n-fold
symmetric product of Σ, the canonical diffeomorphism F :Mn → SymnΣ being the map which
sends the (gauge equivalence class of a) vortex solution (ϕ,A) to the set of points at which ϕ
vanishes, counted with multiplicity. That is, we map the gauge equivalence class of solutions
[(ϕ,A)] to the degree n effective divisor F ([(ϕ,A)]) = (ϕ) in Σ. In this way we identify the
ε-dependent family of manifolds Mn with the single fixed manifold SymnΣ which, in a slight
abuse of notation, we will also denote Mn.

Since Σ = S2, we may specify a degree n effective divisor D by giving a polynomial

a0 + a1z + · · ·+ anz
n (2.8)

vanishing on D, where z is a stereographic coordinate. Two such polynomials define the same
divisor if and only if one is a constant multiple of the other, so we identify (ϕ,A), up to gauge,
with [a0, a1, . . . , an] ∈ CP n. Hence Mn ≡ CP n.

For our purposes, an alternative identification Mn ≡ CP n is more convenient, however.
Let us choose and fix, once and for all, a unitary connexion Â on L of constant curvature. This
is unique up to gauge. We equip L with the holomorphic structure whose Dolbeault operator
∂L = ∂Â. Then H0(L), the space of holomorphic sections of L, is a complex vector space of
dimension n + 1. Each nonzero section in H0(L) defines an effective divisor of degree n (on
which it vanishes), and two sections define the same divisor if and only if one is a constant
nonzero multiple of the other. Hence we have an identification of Mn with the complex
projective space of lines through 0 in H0(L). In other words, we identify Mn with CP n via
the bijective map

f :Mn → P(H0(L)), [(ϕ,A)] 7→ {ψ ∈ H0(L) : (ψ) = (ϕ)} (2.9)

which identifies [(ϕ,A)] with the line in H0(L) consisting of holomorphic sections vanishing on
the same divisor as ϕ. This allows us to equip Mn with a Fubini-Study metric as follows. The
L2 inner product on Γ(L) defines a hermitian inner product on H0(L). Denote by S the unit
sphere in (H0(L), ‖ · ‖L2), and by π : S → P(H0(L)), π(ψ) = [ψ], the Hopf fibration. Then
the Fubini-Study metric of constant holomorphic sectional curvature 2 is precisely the metric
gFS on P(H0(L)) with respect to which π is a Riemannian submersion. By the Fubini-Study
metric on Mn we will always mean

g0 := f ∗gFS. (2.10)

A priori, there is no reason to expect g0 to have any relevance to vortex dynamics, which
is controlled [15, ch. 3] by a natural Riemannian metric g on Mn called the L2 metric. This
is defined as follows. Any smooth curve (ϕ(t), A(t)) of vortex solutions through (ϕ(0), A(0))
tautologically defines a tangent vector to Mn at [(ϕ(0), A(0))], to which we associate the
squared length ∫

Σ

(
|P (ϕ̇(0), Ȧ(0))|2

)
(2.11)
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where P denotes projection L2 orthogonal to the gauge orbit through (ϕ(0), A(0)). No explicit
formula for the L2 metric is known (except in the trivial case that n = 1 and Σ is round), but
it is known to be kähler, and a formula for its kähler class was obtained by Baptista [3]. From
this, it follows that the volume of Mn is

|Mn| =
πn

n!
(τ |Σ| − 4πn)n =

πnεn

n!
, (2.12)

which vanishes in the Bradlow limit. Hence g degenerates in this limit so, to discuss its
convergence, we must rescale. We define the normalized L2 metric on Mn to be

gε :=
1

ε
g. (2.13)

This is a one-parameter family of metrics on Mn of fixed volume πn/n!. The purpose of this
paper is to establish

Theorem 1 In the limit ε ց 0, the normalized L2 metric gε converges in C0 to g0, the
Fubini-Study metric on Mn.

A result of this kind was conjectured by Baptista and Manton in the case that Σ is round,
motivated by the approximation of vortices by what they called pseudo-vortices [4]. These are

pairs (ϕ, Â) consisting of a connexion of constant curvature, and a section holomorphic with
respect to ∂Â satisfying a normalization condition. Our proof proceeds by generalizing this
approximation to arbitrary spheres, and rigorously controlling its errors.

3 Convergence of vortices to pseudo-vortices

Since we are concerned with the limit ε ց 0, we assume henceforth that

4πn

|Σ| < τ <
1 + 4πn

|Σ| , (3.1)

so ε ∈ (0, 1). Recall we have fixed a connexion Â on L of constant curvature ∗FÂ = 2πn/|Σ|,
and used this to equip L with a holomorphic structure. Given a divisor D ∈ SymnΣ, let
us denote by ϕ̂D ∈ H0(L) a holomorphic section of L with ‖ϕ̂D‖L2 = 1 and ϕ̂−1(0) = D.
This is unique up to multiplication by a constant in U(1). Let us define the pseudo-vortex

corresponding to the divisor D to be the pair (
√
εϕ̂D, Â), unique up to ϕ̂D 7→ eicϕ̂D where

c ∈ R is constant. This pair satisfies the first vortex equation (2.4), but not the second (2.5).
It does satisfy (2.5) “on average,” however, that is, it satisfies the constraint (2.6) obtained
by integrating (2.5) over Σ. This observation led Baptista and Manton to conjecture that, for
small ε, the actual vortex with divisor D should be well approximated by its corresponding
pseudo-vortex [4]. In this section we will prove that this intuition is correct in the following
precise sense:
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Proposition 2 There exists a constant C > 0, depending only on (L, h) and gΣ, such that,
for all vortex solutions [(ϕ,A)] ∈Mn,

‖ε−1/2|ϕ| − |ϕ̂D|‖C0 ≤ Cε, ‖FA − FÂ‖C0 ≤ Cε,

where D = (ϕ) and ‖ · ‖C0 denotes the sup norm.

The proof relies on the following observation. Choose and fix D, some effective divisor of
degree n on Σ. Then any section ϕ of L with (ϕ) = D has a unique representative in its gauge
equivalence class of the form

ϕ =
√
εeu/2ϕ̂D (3.2)

where u : Σ → R is a smooth function. If we define the connexion A to be

A = Â− 1

2
∗ du, (3.3)

then the pair (ϕ,A) satisfies the first vortex equation (2.4) [9]. The connexion A has curvature

∗FA = ∗FÂ − 1

2
∗ d ∗ du =

2πn

|Σ| +
1

2
∆u. (3.4)

Hence, (ϕ,A) satisfies the second vortex equation (2.5) if and only if

∆u− ε

|Σ| + ε|ϕ̂D|2eu = 0. (3.5)

It follows from the main theorem of [7], or by direct appeal to [11], that the solution to (3.5)
exists and is unique and smooth. In this way we reduce the problem of constructing the vortex
with divisor D to a semilinear elliptic PDE for u.

The error in the approximation

(ϕ,A) = (
√
εeu/2ϕ̂D, Â− 1

2
∗ du) ≈ (

√
εϕ̂D, Â) (3.6)

is controlled by u, and hence we seek bounds on this function. We will use four different norms
on C∞(Σ), namely,

‖f‖2L2 :=

∫

Σ

|f |2

‖f‖2H1 :=

∫

Σ

(|f |2 + |df |2)

‖f‖2H2 :=

∫

Σ

(|f |2 + |df |2 + |∇df |2)

‖f‖C0 := sup{|f(x)| : x ∈ Σ} (3.7)

and will denote by 〈·, ·〉L2 the L2 inner product. In the defintion of the H2 norm, ∇ denotes
the Levi-Civita connexion associated to gΣ. We will also make frequent use of two standard
analytic facts which, for convenience, we collect here [8, 1]:
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Proposition 3 There exists a constant c > 0, depending only on gΣ, such that

1. For all f ∈ C∞(Σ), ‖f‖C0 ≤ c‖f‖H2 (Sobolev embedding);

2. For all f ∈ C∞(Σ) with
∫
Σ
f = 0, ‖f‖H2 ≤ c‖∆f‖L2 (standard elliptic estimate for ∆).

Proposition 2 will quickly follow once we have shown that ‖u‖C0 ≤ Cε uniformly in D.
We begin by bounding the average of u in terms of its zero-average component.

Lemma 4 Let u be a solution of (3.5) and u0 = u− u, where

u :=
1

|Σ|

∫

Σ

u.

Then |u| ≤ ‖u0‖C0.

Proof: Substituting u = u+ u0 into (3.5) and integrating over Σ we find (by the Divergence
Theorem)

0− ε+ ε

∫

Σ

|ϕ̂D|2eueu0 = 0, (3.8)

which may be solved for u,

u = − log

(∫

Σ

|ϕ̂D|2eu0

)
. (3.9)

Now −‖u0‖C0 ≤ u0 ≤ ‖u0‖C0 and exp is increasing, so

e−‖u0‖C0 = e−‖u0‖C0

∫

Σ

|ϕ̂D|2 ≤
∫

Σ

|ϕ̂D|2eu0 ≤ e‖u0‖C0

∫

Σ

|ϕ̂D|2 = e‖u‖C0 , (3.10)

where we have used the fact that ‖ϕ̂D‖L2 = 1. But log is also increasing, so

−‖u0‖C0 ≤ log

(∫

Σ

|ϕ̂D|2eu0

)
≤ ‖u0‖C0 (3.11)

whence the claim immediately follows. ✷

This observation quickly yields a crude bound on ‖u‖C0.

Lemma 5 There exists C > 0, depending only on n and gΣ, such that, for all D, the solution
u of (3.5) satisfies ‖u‖C0 ≤ C.

Proof: As before, let u = u+ u0 with u = |Σ|−1
∫
Σ
u. Now, by (3.4),

1

4
‖∆u0‖2L2 = ‖ ∗ FA − 2πn|Σ|−1‖2L2

= ‖FA‖2L2 − (2πn)2

|Σ|
< ‖FA‖2L2

≤ 2E(ϕ,A)

= 2πτn ≤ 2πn(1 + 4πn)/|Σ|. (3.12)

7



Hence, ‖∆u0‖L2 ≤ C1, some constant depending only on n and gΣ. Now
∫
Σ
u0 = 0 so, by the

standard elliptic estimate for ∆ (Proposition 3),

‖u0‖H2 ≤ c‖∆u0‖L2 ≤ cC1, (3.13)

and hence, by the Sobolev embedding (Proposition 3),

‖u0‖C0 ≤ c2C1. (3.14)

Hence, by Lemma 4,
‖u‖C0 ≤ |u|+ ‖u0‖C0 ≤ 2‖u0‖C0 ≤ 2c2C1. (3.15)

✷

Equation (3.5) allows us to improve this crude bound.

Lemma 6 There exists C > 0, depending only on (L, h) and gΣ, such that, for all D, the
solution u of (3.5) satisfies ‖u‖C0 ≤ Cε.

Proof: Once again, by Proposition 3 and Lemma 4, it suffices to show that

‖∆u0‖L2 ≤ Cε, (3.16)

where u0 is the zero-average part of u. It is convenient to define

α := sup{|ϕ̂D(p)| : (p,D) ∈ Σ× SymnΣ}, (3.17)

noting that this number certainly exists, by continuity and compactness of Σ, and is, by
definition, dependent only on (L, h) and gΣ. Now, by equation (3.5),

‖∆u0‖L2 ≤ ε

|Σ|1/2 + εα2e‖u‖C0 |Σ|1/2 ≤ Cǫ, (3.18)

by Lemma 5. ✷

Proof of Proposition 2: By definition of u,

ϕ√
ε
− ϕ̂D = ϕ̂D(1− eu/2). (3.19)

By the mean value theorem, for each x ∈ Σ, there exists q(x) between u(x) and 0 such that

eu(x)/2 − e0/2 =
1

2
eq(x)/2(u(x)− 0). (3.20)

Hence

‖1− eu/2‖C0 ≤ 1

2
e‖u‖C0/2‖u‖C0, (3.21)

and so, ∥∥∥∥
ϕ√
ε
− ϕ̂D

∥∥∥∥
C0

≤ 1

2
α‖u‖C0e‖u‖C0/2, (3.22)
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where α is the constant defined in (3.17). Similarly, ∗(FA − FÂ) = ∆u/2, so by (3.5),

‖FA − FÂ‖C0 ≤ ε

2

(
1

|Σ| + α2e‖u‖C0

)
. (3.23)

The claimed inequalities now follow immediately from Lemma 6. ✷

4 Convergence of the metric

Consider a smooth curve of solutions of the vortex equations, (ϕ(t), A(t)), and denote by v the
tangent vector to Mn at [(ϕ(0), A(0))] that it generates. Given any such curve, there exists a
smooth curve ϕ̂(t) in the unit sphere S ⊂ (H0(L), ‖ · ‖L2) such that

ϕ(t) =
√
εϕ̂(t)e

1

2
u(t)+iχ(t) (4.1)

A(t) = Â +
1

2
∗ du(t) + dχ(t) (4.2)

where u(t), χ(t) are smooth curves in C∞(Σ) and, at each time t, u(t) satisfies the PDE (3.5).
We may choose χ(t) freely: changing it merely gauge transforms each solution (ϕ(t), A(t)).
Note that ‖ϕ̂(t)‖2L2 ≡ 1, so

〈ϕ̂(t), ˙̂ϕ(t)〉L2 ≡ 0, (4.3)

where here and henceforth an overdot denotes differentiation with respect to t. Without loss
of generality, we may also assume that

〈iϕ̂(t), ˙̂ϕ(t)〉L2 ≡ 0. (4.4)

If not, we gauge transform
ϕ̂(t) 7→ eic(t)ϕ̂(t) (4.5)

by a suitable curve of space-independent functions c(t) and redefine χ(t) 7→ χ(t)− c(t). This
is convenient because ϕ̂(t) then moves orthogonal to the fibres of the Hopf fibration, so by
definition of the Fubini-Study metric,

g0(v, v) = gFS([ ˙̂ϕ(0)], [ ˙̂ϕ(0)]) = ‖ ˙̂ϕ(0)‖2L2. (4.6)

This, then, is the squared length assigned to v by the Fubini-Study metric g0. We wish to
compare this with the squared length of the same vector with respect to the L2 metric. For
this purpose, it is convenient to choose χ(t) so that (ϕ̇(0), Ȧ(0)) is L2 orthogonal to the gauge
orbit through (ϕ(0), A(0)), and hence P (ϕ̇(0), Ȧ(0)) = (ϕ̇(0), Ȧ(0)). We may take χ(0) = 0.
A general gauge transform is

(ϕ,A) 7→ (eisϕ,A+ ds), s ∈ C∞(Σ), (4.7)

so a general tangent vector to the gauge orbit through (ϕ,A) takes the form

v = (isϕ, ds) ∈ Γ(L)⊕ Ω1(Σ), s ∈ C∞(Σ). (4.8)

9



The tangent vector to our curve is

(ϕ̇(0), Ȧ(0)) = (
√
ε( ˙̂ϕ(0) + ϕ̂(0)(

1

2
u̇(0) + iχ̇(0)))eu(0)/2,

1

2
∗ du̇(0) + dχ̇(0)). (4.9)

Hence we require that, for all s ∈ C∞(Σ),

0 = 〈is
√
εϕ̂(0)eu(0)/2,

√
ε( ˙̂ϕ(0) + ϕ̂(0)(

1

2
u̇(0) + iχ̇(0))eu(0)/2)〉L2 + 〈ds, 1

2
∗ du̇(0) + dχ̇(0)〉L2

=

∫

Σ

sεeu(0)h(iϕ̂(0), ˙̂ϕ(0) +
1

2
u̇(0)ϕ̂(0) + iχ̇(0)ϕ̂(0)) + 〈s, 1

2
δ ∗ du̇(0) + δdχ̇(0)〉L2

= 〈s,∆χ̇(0) + ε|ϕ̂(0)|2χ̇(0) + εeu(0)h(iϕ̂(0), ˙̂ϕ(0))〉L2. (4.10)

Thus, the gauge orthogonality condition is

∆χ̇(0) + εeu(0)|ϕ̂(0)|2χ̇(0) = −εeu(0)h(iϕ̂(0), ˙̂ϕ(0)). (4.11)

Since u(t) satisfies (3.5) at each t, we find, by differentiating with respect to t, that

∆u̇(0) + εeu(0)|ϕ̂(0)|2u̇(0) = −2εeu(0)h(ϕ̂(0), ˙̂ϕ(0)). (4.12)

The conditions on our curve of solutions imply that χ̇(0) and u̇(0) satisfy the driven linear
PDEs (4.11) and (4.12), and, conversely, given (ϕ̂(0), ˙̂ϕ(0)), these PDEs uniquely determine
χ̇(0) and u̇(0). From now on, we restrict attention to the time t = 0 and drop the parameter
t from our notation.

The squared length of the velocity vector with respect to the L2 metric is

g(v, v) = ‖ϕ̇‖2L2 + ‖Ȧ‖2L2

= ε

∫

Σ

eu
{
| ˙̂ϕ|2 + h( ˙̂ϕ, ϕ̂)u̇+ 2h( ˙̂ϕ, iϕ̂)χ̇+ |ϕ̂|2

(
u̇2

4
+ χ̇2

)}

+
1

4
‖du̇‖2L2 + ‖dχ̇‖2L2 . (4.13)

Our aim is to show that the normalized L2 metric gε = ε−1g satisfies a bound of the form

|gε(v, v)− ‖ ˙̂ϕ‖2L2| ≤ Cε‖ ˙̂ϕ‖2L2, (4.14)

where C is independent of v. Comparing with (4.13) it is clear that we must control suitable
norms of u̇ and χ̇.

Note that both v = χ̇ and v = u̇/2 satisfy a PDE of the form

∆v + av = b (4.15)

where a, b ∈ C∞(Σ),

a = ε|ϕ̂|2eu, b =

{
−εeuh(iϕ̂, ˙̂ϕ), v = χ̇,

−εeuh(ϕ̂, ˙̂ϕ), v = u̇/2.
(4.16)
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An obvious strategy at this point would be to use the standard elliptic estimate for the operator
∆ + a to bound ‖v‖H2 in terms of ‖b‖L2 . Indeed, since a ≥ 0 and vanishes only on a finite
set, it is clear that the kernel of ∆ + a is trivial, so a bound of the form ‖v‖H2 ≤ C(a)‖b‖L2

is immediately available. The problem with this approach is that the dependence of the
coercivity constant C(a) on the function a (hence on ϕ̂) is unknown, so it does not yield a
uniform bound as we require.

To proceed further, we appeal to an estimate obtained from the Lax-Milgram Lemma
which gives a bound on ‖v‖H1 (not ‖v‖H2) in terms of a and b. This estimate is likely to be
useful in a wide variety of contexts, so we state and prove it in some generality. At first sight,
the bound looks (perhaps needlessly) elaborate, and one is tempted to replace the right hand
side by a simpler but less sharp expression. Our argument will require the full detail of the
bound as stated, however.

Lemma 7 Let M be a compact Riemannian manifold. Then there exists a constant C > 0,
depending only on M , such that, for all a, b, v ∈ C∞(M) with a ≥ 0 and

∫
M
a > 0, if

∆v + av = b,

then

‖v‖H1 ≤ C

{(
1 +

‖a‖L2∫
M
a

)(
‖b‖L2 +

‖a‖L2∫
M
a

∣∣∣∣
∫

M

b

∣∣∣∣
)
+

|
∫
M
b|∫

M
a

}
.

Proof: Decompose v = v + v0 where

v =
1

|M |

∫

M

v, (4.17)

so v0 ∈ X = {f ∈ H1 :
∫
M
f = 0}. We note that X is a Hilbert space with respect to the

H1 inner product. Substituting (4.17) into the PDE for v we find that

∆v0 + av0 = b− av, (4.18)

which, on integration over M yields,

v =

∫
M
b− 〈a, v0〉L2∫

M
a

. (4.19)

Substituting (4.19) back into (4.18), one finds that

∆v0 + a

{
v0 −

〈a, v0〉L2∫
M
a

}
=

{
b−

∫
M
b∫

M
a
a

}
. (4.20)

It is to (4.20) that we apply the Lax-Milgram Lemma.
Define the bilinear and linear forms

A : X × X → R, A(p, q) = 〈dp, dq〉L2 + 〈ap, q〉L2 − 1∫
M
a
〈a, p〉L2〈a, q〉L2 (4.21)

B : X → R, B(q) = 〈b−
∫
M
b∫

M
a
a, q〉L2. (4.22)
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Then, since v0 satisfies (4.20), for all q ∈ X ,

A(v0, q) = B(q). (4.23)

But A is coercive (with respect to the H1 norm on X ) with coercivity constant λ1/(1 + λ1),
where λ1 > 0 is the smallest positive eigenvalue of ∆, that is, for all q ∈ X ,

A(q, q) ≥ λ1
1 + λ1

‖q‖2H1. (4.24)

To see this, note that

A(q, q) = ‖dq‖2L2 + ‖
√
aq‖2L2 − 1∫

M
a
〈
√
a,
√
aq〉2L2

≥ ‖dq‖2L2 + ‖
√
aq‖2L2 − 1∫

M
a
‖
√
a‖2L2‖

√
aq‖2L2

= ‖dq‖L2 (4.25)

by Cauchy-Schwarz. But ‖dq‖2L2 ≥ λ1‖q‖2L2 by the Poincaré inequality, so

‖q‖2H1 = ‖dq‖2L2 + ‖q‖2L2 ≤ (1 + λ−1
1 )‖dq‖2L2, (4.26)

and (4.24) immediately follows.
Hence, by the Lax-Milgram Lemma [10, p. 78],

‖v0‖H1 ≤ 1 + λ1
λ1

‖B‖X ∗ (4.27)

where

‖B‖X ∗ = sup
q∈X ,‖q‖

H1=1

|B(q)|

= sup
q∈X ,‖q‖

H1=1

∣∣∣∣〈b−
∫
M
b∫

M
a
a, q〉L2

∣∣∣∣

≤ sup
q∈X ,‖q‖

H1=1

‖q‖L2

∥∥∥∥b−
∫
M
b∫

M
a
a

∥∥∥∥
L2

≤
∥∥∥∥b−

∫
M
b∫

M
a
a

∥∥∥∥
L2

≤ ‖b‖L2 +
‖a‖L2∫

M
a

∣∣∣∣
∫

M

b

∣∣∣∣ . (4.28)

But then, by (4.19),

|v| ≤ |
∫
M
b|∫

M
a

+
‖a‖L2∫

M
a
‖v0‖L2 , (4.29)
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so

‖v‖H1 = ‖v0 + v‖H1 ≤ ‖v0‖H1 +
√
|M ||v|

≤
(
1 +

√
|M |‖a‖L2∫

M
a

)
‖v0‖H1 +

√
|M | |

∫
M
b|∫

M
a
. (4.30)

Defining C := (1 + λ−1
1 )max{1,

√
|M |}, the claimed estimate now follows from inequalities

(4.27), (4.28) and (4.30). ✷

We next apply Lemma 7 to the PDEs for χ̇, u̇, (4.11), (4.12), to obtain order ε bounds on
their H1 norms. The last term in the inequality in Lemma 7, namely |

∫
Σ
b|/

∫
Σ
a, looks fatal

to this endeavour, since both a and b are of order ε. It will turn out, however, that
∫
Σ
b is

actually of order ε2 due to subtle cancellations in the integral.

Proposition 8 There exists a constant C > 0, depending only on (L, h) and gΣ, such that

‖χ̇‖H1, ‖u̇‖H1 ≤ Cε‖ ˙̂ϕ‖L2.

Proof: Throughout this proof, c will denote a positive constant depending (at most) on gΣ
and (L, h). The value of c may vary from line to line. Let a = ε|ϕ̂|2eu ≥ 0, as defined in
(4.16). Since ϕ̂−1(0) is finite, it is clear that

∫
Σ
a > 0. By Lemmas 5 and 6 and the Mean

Value Theorem,
eu = 1 + U (4.31)

where ‖U‖C0 ≤ ‖u‖C0e‖u‖C0 ≤ cε. Hence
∫

Σ

a = ε

∫

Σ

|ϕ̂|2(1 + U)

= ε+ ε

∫

Σ

|ϕ̂|2U

≥ ε− ε‖U‖C0

∫

Σ

|ϕ̂|2

≥ ε− cε2 ≥ cε. (4.32)

Furthermore,

‖a‖2L2 = ε2
∫

Σ

|ϕ̂|4e2u

≤ 2ε2
∫

Σ

|ϕ̂|4(1 + U2)

≤ 2ε2α2(1 + ‖U‖2C0)

≤ cε2. (4.33)

Consider now the function b defined in (4.16). Note that

b = −εeuk, k :=

{
h(iϕ̂, ˙̂ϕ), v = χ̇,

h(ϕ̂, ˙̂ϕ), v = u̇/2,
(4.34)
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and, crucially, in either case
∫
Σ
k = 0 by (4.3) or (4.4). Hence

∫

Σ

b = ε

∫

Σ

(1 + U)k = ε

∫

Σ

Uk, (4.35)

and so
∣∣∣∣
∫

Σ

b

∣∣∣∣ ≤ ε‖U‖C0

∫

Σ

|k|

≤ ε‖U‖C0

∫

Σ

|ϕ̂|| ˙̂ϕ|

≤ ε‖U‖C0‖ϕ̂‖L2‖ ˙̂ϕ‖L2

= ε‖U‖C0‖ ˙̂ϕ‖L2

≤ cε2‖ ˙̂ϕ‖L2 . (4.36)

Furthermore

‖b‖L2 = ε‖euf‖L2

≤ εe‖u‖C0‖ϕ̂‖C0‖ ˙̂ϕ‖L2

≤ cε‖ ˙̂ϕ‖L2 (4.37)

by Lemma 5. Hence
‖a‖L2∫

Σ
a

≤ c, and
|
∫
Σ
b|∫

Σ
a

≤ cε‖ ˙̂ϕ‖L2 . (4.38)

Hence, by Lemma 7, both v = χ̇ and v = u̇/2 satisfy

‖v‖H1 ≤ c

(
‖b‖L2 + |

∫

Σ

b|+ |
∫
Σ
b|∫

Σ
a

)

≤ cε‖ ˙̂ϕ‖L2 , (4.39)

whence the claim follows. ✷

Proposition 9 There exists a constant C > 0, depending only on (L, h) and gΣ, such that

∣∣∣‖ϕ̇‖2L2 + ‖Ȧ‖2L2 − ε‖ ˙̂ϕ‖2L2

∣∣∣ ≤ Cε2‖ ˙̂ϕ‖2L2.

Proof: Again, c will denote a positive constant depending (at most) on gΣ and (L, h), whose
value may change from line to line. Differentiating (4.1) and (4.2) with respect to t, we see
that

‖ϕ̇‖2L2 = ε‖ ˙̂ϕ‖2L2 + ε

∫

Σ

U | ˙̂ϕ|2 + ε

∫

Σ

{
h( ˙̂ϕ, (u̇+ 2iχ̇)ϕ̂) +

(
1

4
u̇2 + χ̇2

)
|ϕ̂|2

}
eu

‖Ȧ‖2L2 =
1

4
‖du̇‖2L2 + ‖dχ̇‖2L2 , (4.40)
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where, as before, eu =: 1 + U with ‖U‖C0 ≤ cε. Hence
∣∣∣‖ϕ̇‖2L2 + ‖Ȧ‖2L2 − ε‖ ˙̂ϕ‖2L2

∣∣∣ ≤ ε‖U‖C0‖ ˙̂ϕ‖2L2 + ε‖ϕ̂‖C0e‖u‖C0‖ ˙̂ϕ‖L2(‖u̇‖L2 + 2‖χ̇‖L2)

+εe‖u‖C0‖ϕ̂‖2C0

(
1

4
‖u̇‖2L2 + ‖χ̇‖2L2

)
+

1

4
‖u̇‖2H1 + ‖χ̇‖2H1

≤ cε2 + εαc‖ ˙̂ϕ‖L23cε‖ ˙̂ϕ‖L2 + εcα23C2ε2‖ ˙̂ϕ‖2L2 +
3

4
c2ε2‖ ˙̂ϕ‖2L2

= cε2‖ ˙̂ϕ‖2L2, (4.41)

where we have used Lemma 5 to bound e‖u‖C0 and Proposition 8.
✷

Our main theorem immediately follows.
Proof of Theorem 1: We must show that the symmetric bilinear form σε := gε−g0 converges
uniformly to zero, as εց 0, on the unit tangent bundle of any fixed reference metric for Mn.

Given any tangent vector X ∈ T[(ϕ,A)]Mn we may choose a representative curve (ϕ(t), A(t))
of the form (4.1), (4.2) to compute

gε(X,X) =
1

ε
(‖ϕ̇‖2L2 + ‖Ȧ‖2L2), (4.42)

and
g0(X,X) = ‖ ˙̂ϕ‖2L2. (4.43)

Proposition 9 implies that

|gε(X,X)− g0(X,X)| ≤ Cεg0(X,X) (4.44)

where the constant C is independent of X and ε. Hence, for all unit length vectors X, Y
tangent to (Mn, g0),

|σε(X, Y )| =
1

4
|σε(X + Y,X + Y )− σε(X − Y,X − Y )|

≤ 1

4
Cε(g0(X + Y,X + Y ) + g0(X − Y,X − Y ))

= Cε. (4.45)

This establishes uniform convergence with respect to the reference metric g0.
✷

5 Convergence of the spectrum

Recall that the spectrum of a closed Riemannian manifold (M, g) is the spectrum of its Laplace-
Beltrami operator ∆g = δd, arranged in non-decreasing order,

0 = λ0(g) < λ1(g) ≤ λ2(g) ≤ λ3(g) ≤ · · · , (5.1)
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a sequence of numbers that diverges to infinity. In the case of (Mn, gε), this spectrum has a
direct physical interpretation in terms of the quantum dynamics of n-vortices. The Hamil-
tonian operator governing this dynamics is (conjecturally) H = 1

2
∆g, where g = εgε is the

(non-normalized) L2 metric. Hence, the energy spectrum of n quantum vortices moving on Σ
is

Ek(ε) =
λk(gε)

2ε
, k = 0, 1, 2, . . . . (5.2)

Note that, in local coordinates,

∆gε = −gijε
(

∂

∂xi∂xj
− Γε,k

ij

∂

∂xk

)
, (5.3)

where Γε denotes the Christoffel symbols of the metric gε. Since Γε involves derivatives of gε,
the C0 convergence proved in Theorem 1 does not imply that ∆gε converges to ∆g0. Rather
remarkably, we can still conclude, by work of Bando and Urakawa [2], that the spectrum of
∆gε converges uniformly to the spectrum of ∆g0, in the sense that

λk(gε)

λk(g0)

ε→0−→ 1 (5.4)

uniformly in k. More precisely:

Corollary 10 Let C > 0 be the constant, depending only on (L, h) and gΣ, whose existence
is established in Proposition 9. Then for all ε ∈ [0, 1/C) and all k ≥ 1,

(1− Cε)n

(1 + Cε)n+1
≤ λk(gε)

λk(g0)
≤ (1 + Cε)n

(1− Cε)n+1
.

Proof: Given a Riemannian metric g onMn, and a finite dimensional subspace V of C∞(Mn),
let

Λg(V ) := sup{‖df‖2L2,g/‖f‖2L2,g : f ∈ V \{0}}. (5.5)

Then, by Proposition 2.1 of [2],

λk(g) = inf{Λg(V ) : V < C∞(Mn), dimV = k + 1}, (5.6)

the infimum of Λg over all (k + 1)-dimensional subspaces of C∞(Mn).
At a given point p ∈ Mn, let E1, . . . , E2n be an orthonormal frame for (TpMn, g0), Gε be

the matrix with entries gε(Ei, Ej), Sε the matrix with entries σε(Ei, Ej) (where, as before,
σε = gε − g0) and Hε be the inverse of Gε. Then the volume form defined by gε is

volgε = vεvolg0 , (5.7)

where vε(p) = (detGε)
1/2. Now, by (4.44), every eigenvalue µ of Sε satisfies |µ| ≤ Cε, so the

eigenvalues 1 + µ of Gε = I2n + Sε lie in [1− Cε, 1 + Cε]. Hence, for all ε < 1/C,

(1− Cε)n ≤ vε(p) ≤ (1 + Cε)n. (5.8)
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Furthermore, the eigenvalues ν = (1+µ)−1 of Hε lie in [(1+Cε)−1, (1−Cε)−1]. Now defining,
for any given smooth function f , v to be the column matrix with entries dfp(Ei),

|dfp|2gε = vTHεv, |dfp|2g0 = vTv. (5.9)

Hence
|dfp|2g0
(1 + Cε)

≤ νmin|dfp|2g0 ≤ |dfp|2gε ≤ νmax|dfp|2g0 ≤
|dfp|2g0

(1− Cε)
. (5.10)

The bounds (5.8) and (5.10) are independent of p ∈ Mn, so hold globally. Hence, for all
f ∈ C∞(Mn),

(1− Cε)n‖f‖2L2,g0
≤ ‖f‖2L2,gε

≤ (1 + Cε)n‖f‖2L2,g0
,

(1− Cε)n

1 + Cε
‖df‖2L2,g0

≤ ‖df‖2L2,gε
≤ (1 + Cε)n

1− Cε
‖df‖2L2,g0

, (5.11)

and so, for all f 6= 0,

‖df‖2L2,gε

‖f‖2L2,gε

≤ (1 + Cε)n

(1− Cε)n+1

‖df‖2L2,g0

‖f‖2L2,g0

‖df‖2L2,g0

‖f‖2L2,g0

≤ (1 + Cε)n+1

(1− Cε)n
‖df‖2L2,gε

‖f‖2L2,gε

. (5.12)

Hence, for any (k + 1) dimensional subspace V of C∞(Mn),

Λgε(V ) ≤ (1 + Cε)n

(1− Cε)n+1
Λg0(V ),

Λg0(V ) ≤ (1 + Cε)n+1

(1− Cε)n
Λgε(V ), (5.13)

and so

λk(g0) ≥ (1− Cε)n+1

(1 + Cε)n
λk(gε),

λk(gε) ≥ (1− Cε)n

(1 + Cε)n+1
λk(g0), (5.14)

which completes the proof. ✷

The spectrum of g0 is known explicitly [5],

λk(g0) = 4k(n + k), dk(g0) = n(n + 2k)

(
n− 1 + k

k

)2

, (5.15)

where we have changed our labelling convention so that 0 = λ0 < λ1 < λ2 < · · · and dk is
the degeneracy of λk. In order to extract explicit bounds on λk(gε) from Corollary 10, we
need an explicit upper bound on the constant C. Such a bound should be obtainable when
Σ is given the round metric, since explicit formulae for ϕ̂ are available in this case [4]. A
particularly important issue, if one is to apply Corollary 10 to the study of the quantum
statistical mechanics of vortices [13], is the n dependence of C.
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