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STRONG NON-VANISHING OF COHOMOLOGIES AND STRONG

NON-FREENESS OF ADJOINT LINE BUNDLES ON n-RAYNAUD SURFACES

YONGMING ZHANG

Abstract. We formally give the definition of n-Tango curve and n-Raynaud surface. Then we
study the pathologies on n-Raynaud surfaces and as a corollary we give a simple disproof of Fujita’s
conjecture on surfaces in positive characteristics.

1. Introduction

In [5] Raynaud constructed a surface X in positive characteristic with an ample line bundle L
such that H1(X,L−1) 6= 0, a counter example to Kodaira vanishing. Generally speaking, we know
that vanishing theorem is a key factor in the proof of the following famous conjecture proposed by
T. Fujita in [1] in characteristic zero:

Conjecture 1.1 (Fujita’s conjecture). Let X be a smooth projective variety of dimension n over
an algebraically closed field k and A an ample divisor on X. Then

(1) when m ≥ n+ 1, the adjoint linear system |KX +mA| is base point free and
(2) when m ≥ n+ 2, the adjoint linear system |KX +mA| is very ample.

Nevertheless vanishing theorem is not a necessary condition of Fujita’s conjecture since there
indeed exist some cases where Fujita’s conjecture holds while vanishing theorem is false such as
quasi-elliptic surfaces. So, many people insisted that Fujita’s conjecture should hold in positive
characteristic and a lot of work has been done on how to produce global sections of adjoint line
bundles in positive characteristic. However, exceeding one’s expectations, Fujita’s conjecture has
been disproved in positive characteristic recently by the author with the cooperators in [3].

In this paper we formally give the definition of n-Tango curves and n-Raynaud surfaces, and find
that some pathologies of an n-Raynaud surface are determined by the associated vecter bundle E
on the base n-Tango curve. We will see that the larger the number n is the more pathologies the
surface catches, such as strong Kodaira non-vanishing (Theorem 4.2) which is only depended on the
degree of the associated divisor L (or N ) on the base n-Tango curve; But the strong non-freeness
of adjoint line bundles is even more related with the degree sub-bundles in E with a fixed quotient
line bundle L0 and a non-trivial parametrise space P(H0(C, E∨ ⊗ L0)) (Theorem 3.4). And as a
corollary, we give a simple disproof of Fujita’s conjecture avoiding so many tedious computations
in [3].

Acknowledgement: The author would like to thank Jie Shu for useful discussions.

2. n-Tango curve and n-Raynaud surface

Through the paper, k will denote an algebraically closed field with char(k) = p > 0.

2.1. n-Tango curve. Let C be a smooth projective curve defined over k and K(C) be the function
field of C. Denote by K(C)p = {fp|f ∈ K(C)} the subfield of p-th powers. Let F be the absolute
Frobenius morphism. In [5, 7] the following exact sequence

0 → OC → F∗OC → B1 → 0
1
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is used to construct Tango curves, where B1 is the exact 1-form on C. More generally, we consider
the following exact sequence

0 → OC → Fn∗ OC → Fn∗ OC/OC → 0

and give the following definition.

Definition 2.1. Let C be a smooth projective curve over k satisfying the following conditions.

(1) There is a rational function f ∈ K(C)\K(C)p such that (df) = pnD for some divisor D on
C with degD > 0 and some integer n > 0. Denote the associated line bundle L = OC(D),
then ωC ≃ Lpn

and we have a nonzero section s0 ∈ H0(C,Fn−1
∗ B1 ⊗ L−1).

(2) Moveover, we assume that this section can be lift to a section s ∈ H0(C, (Fn∗ OC/OC)⊗L−1)
through the quotient Fn∗ OC/OC ։ Fn−1

∗ B1.

Then the curve C is called n-Tango curve and the triple (C, f,D) is called n-Tango data.

Let (C, f,D) be an n-Tango data, then by definition we have a nonzero section
s0 ∈ H0(C,Fn−1

∗ B1 ⊗ L−1). Now let’s take an open affine covering C = U1 ∩ U2 such that
L|Ui

is free with the generators ηi ∈ H0(Ui,L|Ui
) and the transition relation η1 = αη2 for some

α ∈ Γ(U1 ∩ U2,OC)∗. From the nature morphism

Fn∗ OC

ψ
։ Fn∗ OC/OC

φ
։ Fn−1

∗ B1,

we can find two regular functions zi ∈ Γ(O, Ui) such that the section s0 can be locally written
as s0|Ui

= φ ◦ ψ( pn√zi) ⊗ 1
ηi

and then we have the relation φ ◦ ψ( pn√z1) = αφ ◦ ψ( pn√z2). By

(2) this section can be lift to a section s ∈ H0(C, (Fn∗ OC/OC) ⊗ L−1) through φ, so we have
s|Ui

= ψ( pn√zi) ⊗ 1
ηi

and the relation ψ( pn√z1) = αψ( pn√z2). Hence we have the relation

pn√
z1 = α pn√

z2 + β

for some β ∈ Γ(U1 ∩ U2,OC).
Moreover, we get a sub-sheaf L →֒ Fn∗ OC/OC and then a locally free sub-sheaf of rank two

E := ψ−1(L) ⊂ Fn∗ OC from the diagram

0 // OC
// Fn∗ OC

ψ // Fn∗ OC/OC
// 0

0 // OC
// E?
�

OO

// L?
�

OO

// 0.

If it is locally written as
E|Ui

= OUi
· 1 ⊕ OUi

· pn√
zi,

then the translation relation is pn√z1 = α pn√z2 + β for some β ∈ Γ(U1 ∩ U2,OC). I.e. the vector

bundle E is defined by the transition matrix

(
1 β
0 α

)
∈ GL(2,OU1∩U2) .

From the above argument we have the following relation of rational functions

z1 = αp
n

z2 + βp
n

with zi ∈ OUi
, α ∈ Γ(U1 ∩ U2,OC)∗ and β ∈ Γ(U1 ∩ U2,OC). If we take the differential then

dz1 = αp
n

dz2, which means that ωC contains a sub-sheaf which is locally generated by dzi and
isomorphic to Lpn

. Note that ωC ≃ Lpn

, so we see that ωC is locally generated by dzi and zi is a
local parameter on Ui. And hence we see that the nature map Symm(E) → Fn∗ OC is an embedding
when m < n and isomorphism when m = n.

To sum up, we get an equivalent description of n-Tango data: there is a cover C = U1 ∩ U2 and
relation of rational functions

z1 = αp
n

z2 + βp
n
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where zi ∈ OUi
, α ∈ Γ(U1 ∩ U2,OC)∗ and β ∈ Γ(U1 ∩ U2,OC) such that ωC is locally generated by

dzi on Ui.
The following argument is another viewpoint on the motivation of the definition of n-Tango

curve.

0 // (Fn−1
∗ OC/OC) ⊗ L−1 // (Fn∗ OC/OC) ⊗ L−1 // Fn−1

∗ B1 ⊗ L−1 // 0

0 // Fn−1
∗ OC ⊗ L−1

OOOO

// Fn∗ OC ⊗ L−1

OOOO

// Fn−1
∗ B1 ⊗ L−1 // 0

OC ⊗ L−1
?�

OO

OC ⊗ L−1
?�

OO

Let C be an n-Tango curve and s0 ∈ H0(C,Fn−1
∗ B1 ⊗ L−1) be the associated section. By the

second exact column of the above diagram, we have long exact sequence

0 → H0(C, (Fn−1
∗ OC/OC) ⊗ L−1)

α→ H1(C,L−1)
F ∗n

→ H1(C,Fn∗ OC ⊗ L−1) →
and get a nonzero element α(s) ∈ H1(C,L−1) with F ∗n(α(s)) = 0, which is corresponding to the
locally free sheaf E and will be used to construct the ruled surface in the next section; while by the
exact sequence

0 → H0(C,Fn−1
∗ B1 ⊗ L−1)

β→ H1(C,Fn−1
∗ OC ⊗ L−1)

F ∗

→ H1(C,Fn∗ OC ⊗ L−1) →
obtained from the second exact row of the above diagram, we see that F ∗n−1(α(s)) = β(s) 6= 0, i.e.
n is the smallest integer such that F ∗n(α(s)) = 0.

Remark 2.2. When n = 1, condition (2) is satisfied automatically by (1) and this is the usual
definition of Tango curve (see [4, 5, 7]). When n > 1 condition (2) is necessary since there are
indeed such triples (C, f,D) only satisfying condition (1) without condition (2) (see example 2.4).

As the base curve in [3, section 2.2], the following example is obtained by a slight modification
of the example 1.3 in [4], which was first found by Gieseker [2] in the case e = n = 1 and p = 3.

Example 2.3. Let Q(X,Y ) be a homogeneous polynomial of two variable of degree e with a nonzero
coefficient of Y e and C ⊂ P2 = Proj k[X,Y,Z] be a curve defined by the homogeneous equation of
degree pne:

Q(Xpn

, Y pn

) −Xpne−1Y = Zp
ne−1X.

Note that C is smooth and intersects with X = 0 exactly at one point ∞ with multiplicity pne.
So

U1 := C \ ∞ = Spec k[y1, z1]/(Q(1, yp
n

1 ) − y1 − zp
ne−1)

where y1 = Y
X and z1 = Z

X . and we have the relation −dy1 = −(z1)p
ne−2dz1 on U . So ωC |U1 is

generated by dz1. On the other hand, deg(dz1) = degωC = pne(pne−3), so (dz1) = pne(pne−3)∞.
Denote by D := e(pne − 3)∞ and L = OC(D), then we get a triple (C, z1,D), a sub-line bundle
Lpn−1 →֒ B1 and hence a nonzero section s0 ∈ H0(C,Fn−1

∗ B1 ⊗ L−1).
Next we will check that it also satisfies (2). Let U2 = C ∩ {Z 6= 0} ⊂ C be an open affine subset

containing ∞ defined by the equation

Q(xp
n

, yp
n

) − xp
ne−1y = x

where y = Y/Z and x = X/Z. By taking differential on this equation we have −xpne−1dy =
(1 − yxp

ne−2)dx. Note that the special point ∞ is given by x = y = 0 and we could take U2 to be
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a small enough neighborhood of ∞ such that 1 − yxp
ne−2 6= 0 on U2, then ωC |U2 is generated by dy

and y is a local parameter at ∞ = [0, 0, 1]. Note that the ideal (x) = (yp
ne) ⊂ OC,∞ and we have

v∞(x) = pne = v∞(yp
ne) = v∞(Q(xp

n

, yp
n

)).

Next we set

z2 :=
xp

ne−2

Q(xpn , ypn)ypne(pne−3)
· y

and then

dz2 =
xp

ne−2 + yx2pne−4

Q(xpn , ypn)ypne(pne−3)(1 − yxpne−2)
dy.

It is easy to check that

v∞(
xp

ne−2

Q(xpn , ypn)ypne(pne−3)
) = v∞(

xp
ne−2 + yx2pne−4

Q(xpn , ypn)ypne(pne−3)(1 − yxpne−2)
) = 0.

So dz2 is a generator of ωC |U2 if we shrink U2 suitably, for example, such that

xp
ne−2

Q(xpn , ypn)ypne(pne−3)
and

xp
ne−2 + yx2pne−4

Q(xpn , ypn)ypne(pne−3)(1 − yxpne−2)
∈ OC(U2)∗.

And fortunately we get the following relation

z1 − 1

Q(xpn , ypn)
=

1

x
− 1

Q(xpn , ypn)
=

xp
ne−1y

xQ(xpn , ypn)
= yp

ne(pne−3)z2,

or equivalently,
z1 = (ye(p

ne−3))p
n

z2 + (Q−1(x, y))p
n

.

We shrink U2 again such that ye(p
ne−3) ∈ O(U1 ∩ U2)∗ and Q−1(x, y) ∈ O(U1 ∩ U2). Finally we

obtain a cover C = U1 ∩U2 and the above relation of rational functions and ωC is locally generated
by dz1 and dz2 on U1 and U2 respectively. Therefore, triple (C, z1,D) is an n-Tango data.

Next we will give a special example which just satisfies (1) but does not satisfies (2).

Example 2.4. Let C ⊂ P2 = Proj k[X,Y,Z] be a curve defined by a homogeneous equation of
degree p2:

Xp2−pY p + Y p2 −Xp2−1Y = Zp
2−1X.

Note that Xp2−pY p + Y p2
is not of the form Q(Xp2

, Y p2
) for some polynomial Q.

With the same argument as above, we see that C is smooth and it intersects with X = 0 at exactly
one point ∞ with multiplicity p2. Set U1 := C \ ∞ = Spec k[y1, z1]/(yp1 + yp

2

1 ) − y1 − zp
2−1

1 ) where
y1 = Y

X and z1 = Z
X . and we have the following relation −dy1 = −(z1)p

2−2dz1 on U1. So ωC |U1

is generated by dz1. On the other hand, deg(dz1) = degωC = p2(p2 − 3), so (dz1) = p2(p2 − 3)∞.
Denote by D := (p2 − 3)∞ and L = OC(D), then we get a triple (C, z1,D), a sub-line bundle
Lp →֒ B1 and hence a nonzero section s0 ∈ H0(C,F∗B1 ⊗ L−1).

Next we will check that it does not satisfies (2). Let U2 = C ∩ {Z 6= 0} ⊂ C be an open affine
subset containing ∞ defined by the equation

xp
2−pyp + yp

2 − xp
2−1y = x

where y = Y/Z and x = X/Z. By taking differential on this equation we have −xp2−1dy =

(1 − yxp
2−2)dx. Note that the special point ∞ is given by x = y = 0 and we could take U2 to be a

small enough affine neighborhood of ∞ such that 1 − yxp
2−2 6= 0 on U2, then ωC |U2 is generated by

dy and y is a local parameter at ∞ = [0, 0, 1]. Note that the ideal (x) = (yp
2
) ⊂ OC,∞ and we have

v∞(x) = v∞(yp
2
) = p2 = v∞(xp

2−pyp + yp
2
).
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Next we set

z2 :=
xp

2−2

(xp
2−pyp + yp

2
)yp

2(p2−3)
· y

and then we have

dz2 =
xp

2−2 + yx2p2−4

(xp
2−pyp + yp

2
)yp

2(p2−3)(1 − yxp
2−2)

dy.

It is easy to check that

v∞(
xp

2−2

(xp2−pyp + yp2)yp2(p2−3)
) = v∞(

xp
2−2 + yx2p2−4

(xp2−pyp + yp2)yp2(p2−3)(1 − yxp2−2)
) = 0.

So dz2 is a generator of ωC |U2 if we shrink U2 suitably, for example, such that

xp
2−2

(xp
2−pyp + yp

2
)yp

2(p2−3)
and

xp
2−2 + yx2p2−4

(xp
2−pyp + yp

2
)yp

2(p2−3)(1 − yxp
2−2)

∈ OC(U2)∗.

On the other hand, we have the following relation

z1 − 1

(xp2−pyp + yp2)
=

1

x
− 1

(xp2−pyp + yp2)
=

xp
2−1y

x(xp2−pyp + yp2)
= yp

2(p2−3)z2,

or equivalently,

z1 = y(p2−3)p2
z2 + (xp

2−pyp + yp
2
)−1.

We shrink U2 again such that y ∈ O(U1 ∩ U2)∗ and (xp
2−pyp + yp

2
)−1 ∈ O(U1 ∩ U2). Finally we

obtain a cover C = U1 ∪U2 and the above relation of rational functions, and ωC is locally generated
by dz1 and dz2 on U1 and U2 respectively.

Suppose L is locally written as L|Ui
≃ OUi

· ηi with generators ηi ∈ H0(Ui,L|Ui
), then the

transition equation is η1 = yp
2−3η2. From the above argument and the nature morphism F 2

∗ OC

ψ
։

F 2
∗ OC/OC

φ
։ F∗B1, the section s0 can be locally written as s0|Ui

= φ ◦ ψ( p2√zi) ⊗ 1
ηi

. Considering

the connected morphism δ : H0(C,F∗B1 ⊗ L−1) → H1(C,F∗OC/OC ⊗ L−1), we use the Čech
cohomology to obtain δ(s0) = ψ(xp

2−pyp+yp
2
)−1 ⊗ 1

ηi
6= 0 since xp

2−pyp+yp
2

does not have a p2-th

root in OU1∩U2 . Therefore, this section can’t be lift to a section in H0(C, (Fn∗ OC/OC) ⊗ L−1) and
the triple (C, z1,D) is not a 2-Tango data.

2.2. Ruled surface over n-Tango curve. Let C be an n-Tango curve with an associated divisor
D on C and L = O(D). And let s0 ∈ H0(C,Fn−1

∗ B1 ⊗ L−1) be the associated section, which can
be lift to a section s ∈ H0(C, (Fn∗ OC/OC) ⊗ L−1). By the argument before Remark 2.2, we get an
element 0 6= α(s) ∈ H1(C,L−1) with F ∗n(α(s)) = 0 and F ∗n−1(α(s)) 6= 0. So α(s) ∈ H1(C,L−1)
gives a non-trivial extension

0 → OC → E → L → 0. (∗),

and n is the smallest integer such that

0 // OC
// Fn∗E // Fn∗L //

τrr
0 (∗∗)
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splits under the pull back by Fn∗. Write E(pn) = Fn∗E , then we have the following diagram

P(E)

π

  

Fn

''
F1

$$

P(E(pn))

π1

��

F2

// P(E)

π

��
C

Fn
// C.

(∗ ∗ ∗)

Let S ⊆ P(E) be the section corresponding to the exact sequence (∗). And the splitting of (∗∗)

yields a section T ′ ⊆ P(E(pn)) determined by τ with

O(T ′) = O(1)P(E(pn)) ⊗ π∗
1L−pn

,

which is disjoint from section S′ = F−1
2 (S). Let T = F−1

1 (T ′) be the (scheme-theoretic) inverse
image of T ′ by the relative n-th Frobenius morphism F1, which is a smooth curve by a local
calculation. Then T is disjoint with S and

O(T ) = OP(E)(p
n) ⊗ π∗L−pn

.

2.3. n-Raynaud surface. With the same notations as above subsecion, we have O(S + T ) =
O(pn + 1) ⊗ π∗L−pn

. Suppose that there is a positive integer l satisfying l | pn + 1 and l | deg L,
and let L = O(lN) for some divisor N on C. Denote by

d =
pn + 1

l
.

Then we can write

Ml = O(pn + 1) ⊗ π∗L−pn

for the line bundle

M = O(d) ⊗ π∗O(−pnN)

on P(E), and the global section

S + T ∈ Γ(P(E),Ml)

defines an l-cyclic cover over P(E) branched along the divisor S + T :

ψ : X = Spec
l−1⊕

i=0

M−i −→ P(E).

Then X is called n-Raynaud surface, and when n = 1 it is the usual Raynaud surface.
Let S̃ and T̃ be the reduced pre-images of the ramification curves S and T respectively, then

ψ∗(T ) = lT̃ , ψ∗(S) = lS̃, O(S̃ + T̃ ) = ψ∗(M) and O(T̃ ) = O(pnS̃) ⊗ ψ∗O(−pnN).(1)

Next, we list some properties of a Raynaud surface X. Write the composition

φ : X
ψ−→ P(E)

π−→ C,

then we have

Proposition 2.5. Let X be an n-Raynaud surface over an n-Tango curve C, with the same notion
in this section then we have

• (S̃2) = 2g−2
pnl ;

• ωX = OX((pnl − l − pn − 1)S̃) ⊗ φ∗OC((pn + l)N);
• when (p, n, l) = (2, 1, 3) or (p, n, l) = (3, 1, 2), X is a quasi-elliptic surface and ωX is ample

in the other cases;
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• φ : X → C is a singular fibration with every fibre F having a cuspidal singularity at F ∩ G̃
locally of the form xl = yp

n

.

The following lemma is from [8] and we will give a proof for reader’s convenience.

Lemma 2.6. [8, Prop3.3] For any integer m = ql + r ≥ 0 with 0 ≤ r ≤ l − 1, we have

(1) ψ∗OX(−mS̃) =
(⊕r−1

i=0 M−i(−(q + 1)S)
)

⊕
(⊕l−1

i=r M−i(−qS)
)

and

(2) ψ∗OX(mS̃) =
(⊕l−r−1

i=0 M−i(qS)
)

⊕
(⊕l−1

i=l−r M−i((q + 1)S)
)

Proof. First, by definition of l-cyclic cover we know that π∗OX = M0⊕, · · · ,⊕M−l+1 is an OP(E)-
algebra with the multiplication described as:

M−i1 ⊗ M−i2 → M−i1−i2 and M−l = M0(−S − T ) →֒ M0.

Let’s push down the following diagram by ψ

0 // OX(−m(S̃ + T̃ ))

Id
��

// OX(−mS̃)

��

// OX |mT̃

��

// 0

0 // OX(−m(S̃ + T̃ )) // OX

��

// OX |m(S̃+T̃ )

��

// 0

OX |mS̃
≃ // OX |mS̃ .

By (1) and projection formula we get

0 // M−m ⊗ ψ∗OX

��

// ψ∗OX(−mS̃)

��

// ψ∗(OX |mT̃ )

��

// 0

0 // M−m ⊗ ψ∗OX
~ // ψ∗OX

��

// ψ∗(OX |m(S̃+T̃ ))

��

// 0

ψ∗(OX |mS̃) // ψ∗(OX |mS̃)

where all the morphisms are ψ∗OX -mod homomorphisms.
In fact, the map ~ can be described as below:

M−ql−r ⊕

++❳❳❳❳
❳❳

❳❳
❳❳

❳❳
❳❳

❳❳
❳❳

❳❳
❳❳

❳❳
❳❳

❳❳
❳❳

❳❳
· · · ⊕

,,❳❳❳❳❳
❳❳

❳❳
❳❳

❳❳
❳❳

❳❳
❳❳

❳❳
❳❳

❳❳
❳❳

❳❳
❳❳

❳❳
❳❳

❳❳ M−ql−l+1 ⊕

,,❳❳❳❳❳
❳❳

❳❳
❳❳

❳❳
❳❳

❳❳
❳❳

❳❳
❳❳

❳❳
❳❳

❳❳
❳❳

❳❳
M−(q+1)l⊕

ss❢ ❢
❢
❢
❢
❢
❢
❢
❢
❢
❢
❢
❢
❢
❢
❢

· · · ⊕

rr❢ ❢
❢
❢
❢
❢
❢
❢
❢
❢
❢
❢
❢
❢
❢
❢
❢
❢
❢ M−(q+1)l−r+1

rr❢ ❢
❢
❢

❢
❢
❢

❢
❢
❢
❢

❢
❢
❢

❢
❢

OP(E)
⊕ · · · ⊕ M−r+1 ⊕ M−r ⊕ · · · ⊕ M−l+1.

So we obtain

ψ∗OX |m(S̃+T̃ ) =

(
r−1⊕

i=0

M−i|(q+1)(S+T )

)
⊕
(
l−1⊕

i=r

M−i|q(S+T )

)
.

On the other hand, since S ∩ T = ∅ we get the two direct summands of ψ∗O|m(S̃+T̃ ):

ψ∗OX |mS̃ =

(
r−1⊕

i=0

M−i|(q+1)S

)
⊕
(
l−1⊕

i=r

M−i|qS
)
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and

ψ∗OX |mT̃ =

(
r−1⊕

i=0

M−i|(q+1)T

)
⊕
(
l−1⊕

i=r

M−i|qT
)
.

Then by the second column in the second diagram, we get

ψ∗OX(−mS̃) =

(
r−1⊕

i=0

M−i(−(q + 1)S)

)
⊕
(
l−1⊕

i=r

M−i(−qS)

)
.

For the second equality, note that ψ∗OX(mS̃) = ψ∗OX(((q + 1)l − (l − r))S̃) = OX((q + 1)S) ⊗
ψ∗OX(−(l − r)S̃), then it follows from the first equality.

�

3. Base point of adjoint line bundle

We will use all the notations in the last section and won’t say more than needed. Let C be an
n-Tango curve with an associated effective divisor L = O(D) = O(lN) and X is an n-Raynaud
surface over C.

We will consider the linear system of the form |mS̃ + φ∗Q| in this section, where m ∈ N+ and
degQ > 0 is an ample divisor on C.

Suppose that m = lq + r with 0 ≤ r < l, then by Lemma 2.6 it follows that

ψ∗OX(mS̃ + φ∗Q) = ψ∗OX(mS̃) ⊗ π∗(Q)

∼=

(

l−r−1⊕

i=0

M−i(qS)) ⊕ (
l−1⊕

i=l−r

M−i((q + 1)S))


 ⊗ π∗(Q)

, M0 ⊕ M1 ⊕ · · · ⊕ Ml−1,

where Mi = M−i((q + [ i+rl ])S) ⊗ π∗(Q).

Note that it is a ψ∗OX -module where ψ∗OX = M0 ⊕ · · · ⊕ M−l+1. And by the proof of Lemma
2.6 we see that the module structure can be described as:

Mi2 ⊗ M−1 → Mi2+1

with the inclusion
M−l = M0(−S − T ) ⊂ M0.

Consider the natural decomposition

H0(X,OX (mS̃ + φ∗Q)) ∼=
l−1⊕

i=0

H0(P(E),Mi)

then we have the following observation.

Lemma 3.1. With the above decomposition, the sections

s ∈
l−1⊕

i=1

H0(P(E),Mi) ⊂ H0(X,OX (mS̃ + φ∗Q))

can not generate ψ∗OS(mS̃ + φ∗Q) as ψ∗OX -module along the divisor T . Moreover, if the line
bundle M0 has a base point x ∈ T as OP(E)-module, then all the sections

s ∈
l−1⊕

i=0

H0(P(E),Mi) = H0(X,OX (mS̃ + φ∗Q))

can not generate ψ∗OX(mS̃+φ∗Q) as ψ∗OX -module at the point x ∈ T , i.e. ψ−1(x) is a base point
of the line bundle OX(mS̃ + φ∗Q) on X.
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Proof. By the above argument, we see that

ψ∗OX(mS̃ + φ∗Q) ∼= M0 ⊕ M1 ⊕ · · · ⊕ Ml−1

is a ψ∗OX =
⊕l−1
i=0 M−i-module and the action of the OP(E)-algebra ψ∗OX on the components of

ψ∗OS(mS̃ + φ∗Q) into the first term can be described as follows:

• Mi ⊗ Mi−l = O(−S − T ) ⊗ M0 ⊂ M0 as a sub-sheaf determine by tensor with the ideal
sheaf O(−S − T ), when 0 ≤ i ≤ l − r − 1;

• Mi⊗ Mi−l = O(−T )⊗ M0 ⊂ M0 as a sub-sheaf determined by tensor with the ideal sheaf
O(−T ), when l − r ≤ i ≤ l − 1.

So the sections in any component of ψ∗OS(mS̃+φ∗Q) but the first one can’t generate ψ∗OS(mS̃+
φ∗Q) as ψ∗OX -module along the divisor T . �

Lemma 3.2. Let C be a smooth projective curve over an algebraically closed field k with dualizing
sheaf ωC and E a vector bundle of rank 2 on C. Suppose that there is a surjective morphism
σ0 : E ։ L0 with L0 being a line bundle on C satisfying

(1) dimH0(C, E∨ ⊗ L0) ≥ 2 and
(2) H0(C,ωC ⊗ L−q

0 (−Q)) 6= 0 for some divisor Q of positive degree on C and some integer q.

Then there exists a nonempty open subset C0 ⊂ C such that the base locus of | OP(E)(q) ⊗π∗O(Q+

P ) | contains the fibre F = π−1(P ) for any closed point P ∈ C0, where π : P(E) → C is the
projection from the ruled surface P(E) to C.

Proof. Note that P(H0(C, E∨ ⊗ L)) parametrises all the morphisms MorC(E ,L) up to scalar iso-
morphisms of L. Since the surjectivity is an open condition, there is a non-empty open subset
U0 ⊂ P(H0(C, E∨ ⊗ L0)) such that the corresponding morphisms are surjective. So those sections
σ of π : P(E) → C with σ∗O(1) ≃ L0 are parametrised by U0. Since dimU0 > 0, we take another

section (σ0 6=)σ1 ∈ U0 and let Ũ0 be the intersection of U0 with the line P1 ⊂ P(H0(C, E∨ ⊗ L))

generated by σ0 and σ1. Then Ũ0 is an affine curve or P1. Since all the sections in Ũ0 are of the

form k0σ0 + k1σ1 with k0, k1 ∈ k, the intersection of any two sections in Ũ0 on the ruled surface is
the set σ0 ∩ σ1 by a local calculation on the ruled surface.

Now Let’s consider the restriction σ∗(O(q) ⊗ π∗(O(Q))) ≃ Lq0(Q) onto those sections in Ũ0.

Since H0(C,ωC ⊗ L−q
0 (−Q)) 6= 0, by Lemma 3.3 there exists a nonempty open subset C0 ⊂ C such

that the base locus of | Lq0(Q + P ) | contains the point P for any P ∈ C0. Hence there exists a
nonempty open subset C0 ⊂ C such that the base locus of | O(q)⊗π∗O(Q+P ) | contains the point

π−1(P ) ∩ σ(C) for any P ∈ C0 and any σ ∈ Ũ0. Note that any two sections in Ũ0 do not intersect
out of the set σ0 ∩ σ1 on the ruled surface. We may shrink C0 such that π(σ0 ∩ σ1) ∩ C0 = ∅, so

the base locus of | O(q) ⊗ π∗(Q+ P ) | contains infinite many points {π−1(P ) ∩ σ(C) | σ ∈ Ũ0} on
the fibre π−1(P ) and hence the entire fibre π−1(P ). �

Lemma 3.3. Let C be a smooth projective curve over an algebraically closed field with a line bundle
L on it.

(1) If H0(C,L) 6= 0, then there exists a nonempty open subset U ⊂ C such that

h0(C,L ⊗ O(−x)) = h0(C,L) − 1

for any closed point x ∈ U .
(2) If H0(C,ωC ⊗ L−1) 6= 0, then there exists a nonempty open subset U ⊂ C such that

h0(C,L ⊗ O(x)) = h0(C,L)

for any closed point x ∈ U .
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Proof. Note that H0(C,L) 6= 0 and H0(C,ωC ⊗ L−1) 6= 0 imply that the base locus Bs(|L|) & C
and Bs(|ωC ⊗ L−1|) & C respectively. Let U = C \ Bs(|L|) and U = C \ Bs(|ωC ⊗ L−1|) in (1) and
(2) respectively, then the two statements follow from Riemann-Roch formula immediately. �

Theorem 3.4. Let C be an n-Tango curve, E an associated vector bundle of rank 2 on it and

ψ : X
l:1→ P(E) an n-Raynaud surface as described in last section. Set m = lq + r ∈ N+ with

0 ≤ r < l. Suppose that there is a surjective morphism σ0 : E ։ L0 with L0 being a line bundle on
C satisfying

(1) dimH0(C, E∨ ⊗ L0) ≥ 2 and
(2) H0(C,ωC ⊗ L−q

0 (−Q)) 6= 0 for some divisor Q of positive degree on C.

Then q < pn and there exists a nonempty open subset C0 ⊂ C such that φ−1(P ) ∩ T̃ is a base point
of the ample line bundle OX(mS̃ + φ∗(Q + P )) on X for any point P ∈ C0. In particular, if the
condition (2) is replaced by

(2*) H0(C,ωC ⊗ L−(pn−1−d)
0 (−(pn + l)N −Q)) 6= 0 for some divisor Q of positive degree,

then there exists a nonempty open subset C0 ⊂ C such that φ−1(P )∩ T̃ is a base point of the adjoint
line bundle OX(KX + rS̃ + φ∗(Q+ P )) on X for any point P ∈ C0.

Proof. First we claim that the surjectivity implies that deg L0 ≥ deg L. Indeed, by pulling back
the non-split sequence

0 → OC → E → L → 0

obtained in subsection 2.2 by n-th iterated Frobenius map we get the splitting sequence

0 // OC
// Fn∗E // Lpn //

τqq
0 .

Composing τ with the quotient Fn∗(σ0) : Fn∗E ։ Lpn

0 we get a map Lpn → Lpn

0 . If deg L0 < deg L
then it must be a zero map and Lpn

= Ker(Fn∗(σ0)) by the saturation of Lpn

, hence L0 ≃ OC .
So this sequence already splits which leads to a contradiction. Then note that ωC ≃ Lpn

, and by
condition (2) we get q < pn.

For any closed point P ∈ C, let’s push down OX(mS̃ + φ∗(Q+ P )) onto the ruled surface P(E)

ψ∗OX(mS̃ + φ∗(Q+ P )) ∼= M0 ⊕ M1 ⊕ · · · ⊕ Ml−1.

Note that the first term is M0 = OP(E)(q)⊗π∗O(Q+P ) and by Lemma 3.2 there exists a nonempty
open subset C0 ⊂ C such that the base locus of | OP(E)(q) ⊗ π∗O(Q + P ) | contains the fibre

F = π−1(P ) for any closed point P ∈ C0, where π : P(E) → C is the projection from the ruled

surface P(E) to C. Then by Lemma 3.1, ψ−1(F ∩ T ) = φ−1(P ) ∩ T̃ is a base point of the ample
line bundle OX(mS̃ + φ∗(Q+ P )) on X.

For the last statement, we just note that KX = (pnl − l − pn − 1)S̃ + φ∗(pn + l)N . �

Remark 3.5. One may wonder how to check those conditions in Theorem 3.4 for an associated
vector bundle E on an n-Tango curve. Here we introduce a method how to find a line bundle L0

satisfying those conditions in Theorem 3.4.

Let C be an n-Tango curve, E an associated vector bundle on it and ψ : X
l:1→ P(E) an n-

Raynaud surface as those notations in last section. First, by OC ⊂ E ⊂ Fn∗ OC we see that
H0(C, E) = H0(C,OC) = k.

As described in subsection 2.1 , E|Ui
= OUi

· 1 ⊕ OUi
· pn√zi and the transition matrix of E is(

1 β
0 α

)
∈ GL(2,OU1∩U2) . Let (β) =

∑
Dj /∈U1

ajDj + others, (α) =
∑

Dj /∈U1

bjDj + others and

D0 = − ∑
Dj /∈U1

min{aj , bj , 0}Dj>0. Suppose the divisor D0 ∈ Γ(X,O(D0)) is locally defined by the

functions 1 ∈ Γ(U2,OU2) and γ ∈ Γ(U2,OU2). Then O(D0)|U1 = OU1 · 1 and O(D0)|U2 = OU2 · 1
γ .
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And hence L(D0)|U1 = OU1 · η1 and L(D0)|U2 = OU2 · 1
γ η2, where ηi are local bases of L as in

subsection 2.1. Therefore there is a section s ∈ Γ(X,L(D0)), which is locally written as s|U1 = 1 ·η1

and s|U2 = γα · 1
γ η2, since γα ∈ Γ(U2,OU2) by the construction of D0. Moreover we see this

section can be lift to a section s ∈ Γ(X, E(D0)), which is locally written as s|U1 = 1 · pn√z1 and

s|U2 = γα · 1
γ

pn√z2 + γβ · 1
γ , since γα, γβ ∈ Γ(U2,OU2) by the construction of D0. So we have

dimH0(C, E∨ ⊗ L(D0)) = dimH0(C, E(D0)) ≥ dimH0(C,OC (D0)) + 1 ≥ 2. Moreover, by the
construction of D0, we see that (γα, γβ) = 1 in the local ring OC,x for any closed point x /∈ U1. So
the inclusion OC(−D0) →֒ E determined by s is saturated and there is a quotient σ0 : E ։ L(D0).
Next, in order to obtain such an L0 := L(D0) that also satisfies (2) or (2*) in Theorem 3.4, we
should find such a divisor D0 of degree as small as possible by chosen of U1.

At last of this section, let’s consider Example 2.3 again to show the strong non-freeness of adjoint
bundles on n-Raynaud surfaces.

Corollary 3.6. [3, Theorem 1.2] For any r > 0, there exist a smooth projective surface X with an
ample divisor A on it such that the adjoint linear system

|KX + rA|
has base points on X.

Proof. For simplicity, we set Q(X,Y ) = Y e in Example 2.3. Then α = ye(qe−3) and β = Q−1(x, y) =
y−e. Note that C \ U1 = {∞}. By the argument in Remark 3.5, set D0 = e∞ and L0 =
L(D0), then there is a surjective morphism σ0 : E ։ L0 satisfying the condition (1) in Theorem
3.4. For the convenience of calculation, let l = pn + 1 and e = kl for some integer k, so ωC ⊗
L−(pn−1−d)

0 (−(pn + l)N) = O(k(q(q + 1)k − 3 − (q − 2)(q + 1))∞). For any r > 0, we can take
n ≫ 0 such that l = pn + 1 > r and take k ≫ 0 such that k(q(q + 1)k − 3 − (q − 2)(q + 1)) > r.

Let Q = (r− 1)∞ then H0(C,ωC ⊗ L−(pn−1−d)
0 (−(pn + l)N −Q)) = H0(C, (k(q(q + 1)k− 3 − (q−

2)(q + 1)) − r + 1)∞) 6= 0. By Theorem 3.4, there exists a nonempty open subset C0 ⊂ C such

that φ−1(P ) ∩ T̃ is a base point of the adjoint line bundle OX(KX + rS̃+φ∗(Q+P )) for any point
P ∈ C0. If we write Q + P = rQ0 for some divisor Q0 of degree 1 on C and let A = S̃ + φ∗(Q0)
which is ample, then we get our result. �

4. Strong Kodaira non-vanishing

Although the Kodaira vanishing does not hold in positive characteristic, there is a weak version
of vanishing theorem.

Theorem 4.1. [6, Corollary 17] Let H be a nef and big line bundle on a smooth projective surface
X over k, then H0(X,H−pm

) = 0 for all m ≫ 0.

However, The strong non-vanishing claims that there is no universal bound for this m.

Theorem 4.2. For any m > 0, there exist a smooth projective surface X and an ample line bundle
H on X such that H0(X,H−pm

) 6= 0

Proof. In this proof, we will use all those notations in section 2. Let X be an n-Raynaud surface
over an n-Tango curve C

φ : X
ψ−→ P(E)

π−→ C

and we consider the ample line bundle H = O(S̃ + φ∗Q) where Q is a divisor on C of positive
degree.

By the Leray spectral sequence Ep,q2 = Hp(C,Rqφ∗H−pm

) ⇒ Hp+q(X,H−pm

), we have the
following exact sequence

0 → H1(C,φ∗H−pm

) → H1(X,H−pm

) → H0(C,R1φ∗H−pm

) → H2(C,φ∗H−pm

) = 0.
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Write pm = lq + r for some 0 ≤ r ≤ l − 1. By Lemma 2.6, we have

φ∗H−pm

= π∗ψ∗OX(−pm(S̃ + φ∗Q))

∼=
(
r−1⊕

i=0

π∗M−i((−q − 1)S) ⊗ O(−pmQ)

)
⊕
(
l−1⊕

i=r

π∗M−i(−qS) ⊗ O(−pmQ)

)

∼=
(
r−1⊕

i=0

Sym−id−q−1(E) ⊗ O(ipnN − pmQ)

)
⊕
(
l−1⊕

i=r

Sym−id−q(E) ⊗ O(ipnN − pmQ)

)
= 0

since the exponents of symmetric powers are negative. So the leftmost term H1(C,φ∗H−pm

) = 0
and it is reduced to compute H0(C,R1φ∗H−pm

).
Note that

ωX/C = OX((pnl − l − pn − 1)S̃) ⊗ φ∗OC((pn + l − pnl)N),

then by the relative Serre duality, we have

(R1φ∗H−pm

)∨ ≃ φ∗(Hpm ⊗ ωX/C)

≃ π∗ψ∗OX((pm + pnl − l − pn − 1)S̃ + φ∗(pmQ+ (pn + l − pnl)N))

≃ (
l−r−1⊕

i=0

π∗M−i((pn − d+ q − 1)S) ⊗ O(pmQ+ (pn + l − pnl)N))⊕

(
l−1⊕

i=l−r

π∗M−i((pn − d+ q)S) ⊗ O(pmQ+ (pn + l − pnl)N))

≃ (
l−r−1⊕

i=0

Sym−id+pn−d+q−1(E) ⊗ O(pmQ+ (pn + l + ipn − pnl)N))⊕

(
l−1⊕

i=l−r

Sym−id+pn−d+q(E) ⊗ O(pmQ+ (pn + l + ipn − pnl)N)).

For the first direct summand, there is a quotient

Sympn−d+q−1(E) ⊗ O(pmQ+ (pn + l − pnl)N)) ։ O(pmQ+ (lq − 1)N))

by the construction of E . For any m > 0, we take n = mm0 for some odd integer m0 > 0 and we set
l = pm+1 then l | pn+1 and q = 0. Moreover we could take an n-Tango curve C with degN > pm,
then there is a divisor Q of degree 1 such that N − pmQ > 0. For instance, the n-Tango curves in
example 2.3 satisfy those conditions by taking e = l and Q = ∞. So there is a nonzero section in
H0(X,R1φ∗H−pm

), hence H0(X,L−pm

) 6= 0 �
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