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Extended commonality of paths and cycles via Schur convexity

Jang Soo Kim∗ Joonkyung Lee†

Abstract

A graph H is common if the number of monochromatic copies of H in a 2-edge-colouring of
the complete graph Kn is asymptotically minimised by the random colouring, or equivalently,
tH(W ) + tH(1−W ) ≥ 21−e(H) holds for every graphon W : [0, 1]2 → [0, 1], where tH(.) denotes
the homomorphism density of the graphH . Paths and cycles being common is one of the earliest
cornerstones in extremal graph theory, due to Mulholland and Smith (1959), Goodman (1959),
and Sidorenko (1989).

We prove a graph homomorphism inequality that extends the commonality of paths and
cycles. Namely, tH(W ) + tH(1−W ) ≥ tK2

(W )e(H) + tK2
(1−W )e(H) whenever H is a path or

a cycle and W : [0, 1]2 → R is a bounded symmetric measurable function.
This answers a question of Sidorenko from 1989, who proved a slightly weaker result for

even-length paths to prove the commonality of odd cycles. Furthermore, it also settles a recent
conjecture of Behague, Morrison, and Noel in a strong form, who asked if the inequality holds
for graphons W and odd cycles H . Our proof uses Schur convexity of complete homogeneous
symmetric functions, which may be of independent interest.

1 Introduction

Given a bounded measurable symmetric function W : [0, 1]2 → R and a graph H, let

tH(W ) :=

∫

[0,1]V (H)

∏

ij∈E(H)

W (xi, xj)
∏

i∈V (H)

dxi,

where the integration is taken with respect to the Lebesgue measure. This functional tH(.) is often
called the (weighted) homomorphism density of H, which generalises normalised homomorphism
counts from H to another graph G.

Various results in extremal graph theory can be interpreted by using homomorphism densities,
especially by using graphons W , i.e., measurable symmetric functions W : [0, 1]2 → [0, 1], although
extensions to general real-valued functions [7, 16] or even to complex-valued functions [14, 22] are
certainly possible. We refer the reader to the modern theory of graph limits [24] for more examples.

One of the central concepts that can be rephrased conveniently by using homomorphism densi-
ties is the commonality of graphs. A graph H is common if the number of monochromatic H-copies
in a 2-edge-colouring of the complete graph Kn is asymptotically minimised by the random colour-
ing. The modern language rewrites the commonality of H as the simple inequality

tH(W ) + tH(1−W ) ≥ 21−e(H)

for every graphon W , where e(H) denotes the number of edges in H.
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Since Goodman’s formula [12] and the famous conjectures of Erdős [9] and of Burr–Rosta [5],
later disproved by Thomason [33] and by Sidorenko [27], respectively, common graphs have been
extensively studied [11, 13, 15, 18, 20, 30]. Amongst many, perhaps the most fundamental examples
of common graphs are paths and cycles. Our main result is to prove a new homomorphism density
inequality for paths and cycles, which extends their commonality. For brevity, a bounded symmetric
measurable function W : [0, 1]2 → R is said to be a kernel.

Theorem 1.1. Let H be a path or a cycle and let W be a kernel. Then

tH(W ) + tH(1−W ) ≥ tK2(W )e(H) + tK2(1−W )e(H). (1)

As an immediate consequence, Theorem 1.1 extends the commonality of paths and cycles to
kernels.

Corollary 1.2. Let H be a path or a cycle and let W be a kernel. Then

tH(W ) + tH(1−W ) ≥ 21−e(H). (2)

As tK2(1−W ) = 1−tK2(W ), the substitution tK2(W ) = x+1/2 gives tK2(W )m+tK2(1−W )m =
(1/2 + x)m + (1/2 − x)m. For m > 1, this polynomial attains its global minimum at x = 0 and
hence, the corollary follows. In [27, 30], Sidorenko proved Corollary 1.2 for cycles, even-length
paths, and paths of length m = r2t + 1, r ≤ 9, but left the general odd-length paths case as a
question. Corollary 1.2 thus completes the result of Sidorenko and answer his question in the affir-
mative. Furthermore, the proof technique allows us to obtain stability results for both Theorem 1.1
and Corollary 1.2; see Section 4 for more details.

Theorem 1.1 can also be interpreted as a ‘convexity-type’ homomorphism inequality, as the
proof uses convexity of certain functions and deduction of commonality from it also uses convexity.
The inequality (2) for kernels was even called ‘convexity’ by Sidorenko [27, 30]. More generally,
both local and global convexity of the functional tH(.) has been extremely useful in proving various
graph homomorphism inequalities including instances for Sidorenko’s conjecture [8, 29], common-
ality of graphs [13], graph norms [21], and density increment argument for the celebrated regularity
lemma [31]. Hence, Theorem 1.1 adds a new example to the encyclopedia of fundamental homo-
morphism inequalities.

In particular, when H is the m-edge path Pm, (1) can be seen as a partial extension of the so-
called Blakley–Roy inequality [3], also obtained by Mulholland and Smith [26] and by London [23],
which proves tPm

(W ) ≥ tK2(W )m for every graphon W . In fact, it is impossible to fully extend the
Blakley–Roy inequality to kernels W , as tPm

(−W ) = −tPm
(W ) for odd m. For grahons W , even

stronger generalisations are known; see, for example, [4].
For cycles H, Theorem 1.1 settles a conjecture of Behague, Morrison, and Noel [2, Conjec-

ture 9.7], which states that the inequality (1) holds for all odd cycles H and graphons W . They
proposed the conjecture as a natural extension of the commonality of cycles and proved it for the 5-
cycle H. We remark that some cases of the Behague–Morrison–Noel conjecture or the inequality (1)
for kernels and some cycles have been well-known for decades, although the conjecture appeared
only very recently. For example, the smallest case when H is a triangle is essentially Goodman’s
formula [12] and the case whenH is an even cycle follows from the fact that even cycles are norming,
observed by Chung, Graham, and Wilson [6] and later rephrased by Hatami [16].

Our proof uses Schur convexity of complete homogeneous symmetric functions. The study of
complete homogeneous symmetric functions is a central area in algebraic combinatorics, although
their Schur convexity received attention only recently [19, 32]. On the other hand, in extremal
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graph theory, the theory of symmetric functions rarely appears to be useful, to the best of our
knowledge. Our method therefore bridges between the seemingly distant areas in a novel way,
which may be of independent interest.

2 Preliminaries

When considering kernels U and W , the notation U = W always means the equality holds almost
everywhere. We suppress the expression ‘almost everywhere’ in what follows for brevity.

Denote by E+(H) the set of all subgraphs F of H on V (H) with positive even number of edges.
For a kernel W , let U := 2W −1. Then U is again a kernel. By the standard multilinear expansion
of tH(1 + U) and tH(1− U),

tH(W ) + tH(1−W ) = 2−e(H)
(

tH(1 + U) + tH(1− U)
)

= 21−e(H)



1 +
∑

F∈E+(H)

tF (U)



 . (3)

Analogously, one can also expand tK2(.) to obtain

tK2(W )e(H) + tK2(1−W )e(H) = 2−e(H)
(

tK2(1 + U)e(H) + tK2(1− U)e(H)
)

= 21−e(H)

⌊e(H)/2⌋
∑

k=0

(
e(H)

2k

)

tK2(U)k

= 21−e(H)



1 +
∑

F∈E+(H)

tK2(U)e(F )



 . (4)

Thus, we obtain the following statement equivalent to Theorem 1.1.

Proposition 2.1. Let H be a path or a cycle and let U be a kernel. Then
∑

F∈E+(H)

(
tF (U)− tK2(U)e(F )

)
≥ 0. (5)

For an integer d > 0, let E+
2d(H) be the set of even subgraphs with exactly 2d edges. Then

∑

F∈E+(H)

(tF (U)− tK2(U)e(F )) =

⌊e(H)/2⌋
∑

d=1

∑

F∈E+
2d(H)

(tF (U)− tK2(U)2d). (6)

When H is a path, we shall prove (5) directly by showing that
∑

F∈E+
2d(H)(tF (U) − tK2(U)2d) ≥ 0

for each d = 1, 2, . . . , ⌊e(H)/2⌋.
Now consider the case H = Cm, a cycle of length m. Suppose first that e(H) = m is odd. Then

each F ∈ E+(Cm) must be a proper subgraph; consider each F ∈ E+(Cm) as a subgraph of Cm \ e
for every choice of e ∈ E(H) \E(F ). By doing so, each F counts exactly e(H)− e(F ) times. Thus,

∑

F∈E+(H)

(tF (U)− tK2(U)e(F )) =
∑

e∈E(H)

∑

F∈E+(H\e)

1

e(H)− e(F )
(tF (U)− tK2(U)e(F ))

=
∑

e∈E(H)

⌊(e(H)−1)/2⌋
∑

d=1

1

e(H)− 2d

∑

F∈E+
2d(H\e)

(tF (U)− tK2(U)2d). (7)
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If e(H) = m is even, then one extra term (tH(U)− tK2(U)e(H)) adds to (7).
If H is a cycle of length m+1, then H \e is always a path of length m. Therefore, the following

theorem, which will be shown in the next section, implies Theorem 1.1 for odd cycles H.

Theorem 2.2. Let U be a kernel. Then for all integers m and d with 1 ≤ d ≤ m/2,

∑

F∈E+
2d(Pm)

tF (U) ≥
(
m

2d

)

tK2(U)2d.

For even cycles H, we need an extra inequality

tH(U) ≥ tK2(U)e(H) (8)

for each kernel U to deduce Theorem 1.1. This is reminiscent of Sidorenko’s conjecture, which
states that (8) holds for every bipartite graph H and every graphon U . Even cycles are well-known
to satisfy Sidorenko’s conjecture [28], but (8) for kernels U is slightly stronger than this fact. Even
so, it is not hard to verify it and a short proof will be given at the end of this section. In fact, the
inequality (8) for kernels U is well-known since Chung, Graham, and Wilson’s quasirandomness
characterisation [6]; also see [16] for its modern interpretation in terms of graph limits.

We shall use some spectral properties of kernels. Following [24, Section 7.5], a kernel U can be
seen as a Hilbert–Schmidt operator

(Uf)(x) :=

∫ 1

0
U(x, y)f(y)dy,

on L2[0, 1]. This operator then has countable real eigenvalues (λi)
∞
i=1, where |λi| ≥ |λj | whenever

i < j. Let fi be the orthonormal eigenfunction corresponding to nonzero λi, i.e., 〈fi, fj〉 = δi,j and
Ufi = λifi. Then U admits the spectral decomposition U(x, y) =

∑∞
i=1 λifi(x)fi(y). Hence,

tPm
(U) =

∞∑

i=1

λm
i

(∫ 1

0
fi(x)dx

)2

and moreover, by the Parseval identity,

∞∑

i=1

(∫ 1

0
fi(x)dx

)2

=

∥
∥
∥
∥
∥

∞∑

i=1

(∫ 1

0
fi(x)dx

)

fi

∥
∥
∥
∥
∥

2

2

=

∥
∥
∥
∥
∥

∞∑

i=1

〈fi, 1〉fi

∥
∥
∥
∥
∥

2

2

≤ ‖1‖22 = 1,

which was also observed in [20, (13)]. The inequality above becomes an equality if and only if the
constant function 1 can be expressed as a linear combination of fi’s, i.e., 1 =

∑

i≥1〈fi, 1〉fi. Let

pi := (
∫ 1
0 fi(x)dx)

2 for each i ≥ 1, p0 := 1 −∑i≥1 pi, and λ0 := 0. Then for each integer m ≥ 0,
tPm

(U) =
∑

i≥0 piλ
m
i . This rephrases as

Lemma 2.3. Let U be a kernel. Then there exists a discrete random variable XU such that
P[XU = λi] = pi, i = 0, 1, . . . , and hence, tPm

(U) = E[Xm
U ].

We remark that a ‘discrete’ analogue of this lemma was already observed by Erdős and Si-
monovits [10, Theorem 4]. The spectral technique is also useful in proving the inequality (8) for
even cycles H and a kernel U . Indeed, as tC2m(U) =

∑

i λ
2m
i [24, (7.22)],

tC2m(U)1/2m ≥ |λ1| ≥
∣
∣
∣

∑

i≥0

piλi

∣
∣
∣ = |tK2(U)|,

which is (8) for even cycles H. Thus, Theorem 2.2 implies Theorem 1.1 for even cycles H too,
although the result is already known due to the fact that even cycles are norming. For more
discussions about the norming property, we refer the reader to [24, Chapter 14].
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3 Proof of the main theorem

Our goal in this section is to prove Theorem 2.2, which implies Theorem 1.1. For a kernel U , let
qm,d(U) denote the left-hand side of the inequality in Theorem 2.2, i.e.,

qm,d(U) :=
∑

F∈E+
2d(Pm)

tF (U).

Let us first have a look at a small example that illustrates what qm,d(U) is. If d = 1, then the
corresponding E+

2d(Pm) consists of the subgraphs of Pm with two edges and m + 1 vertices. That
is, either a 2-edge path or a matching of size two plus isolated vertices. Hence,

qm,1(U) = (m− 1)E[X2
U ] +

(
m− 1

2

)

E[XU ]
2,

where XU is defined in Lemma 2.3. This can be rewritten as

qm,1(U) = E





m−1∑

i=1

X2
i +

∑

1≤i<j≤m−1

XiXj



 ,

where Xi’s are i.i.d. copies of XU .

Let hd(x1, . . . , xk) be the k-variable complete homogeneous symmetric function of degree d.
That is,

hd(x1, . . . , xk) =
∑

xℓ11 · · · xℓkk ,

where the sum is taken over all the nonnegative integer solutions of ℓ1 + · · ·+ ℓk = d. For example,
h2(x1, . . . , xk) =

∑k
i=1 x

2
i +

∑

1≤i<j≤k xixj and hence, qm,1(U) = E[h2(X1, . . . ,Xm−1)].

By generalising this observation, we express qm,d(U) in terms of the expectation of the homo-
geneous polynomials h2d(X1, . . . ,Xk) of degree 2d, where Xi is an i.i.d. copy of XU in Lemma 2.3.

Lemma 3.1. Let U be a kernel. For all integers m and d with 1 ≤ d ≤ m/2,

qm,d(U) = E
[
h2d(X1, . . . ,Xm−2d+1)

]
,

where Xi’s are i.i.d. copies of XU given in Lemma 2.3.

Proof. Let F ∈ E+
2d(Pm). Recall that V (F ) = V (Pm). Enumerate the m−2d edges in E(Pm)\E(F )

by e1, . . . , em−2d from left to right in the m-edge path Pm. Let ℓi be the number of edges in the
component of F that contains the leftmost vertex of ei. In particular, if the left-intersecting
component to ei is an isolated vertex, then ℓi = 0. Denote by ℓm−2d+1 the number of edges in the
component of F that contains the rightmost vertex of Pm. Clearly,

∑m−2d+1
i=1 ℓi = 2d.

Conversely, every nonnegative integer solution to the equation
∑m−2d+1

i=1 ℓi = 2d uniquely de-
termines the corresponding F ∈ E+

2d(Pm), which satisfies

tF (U) =

m−2d+1∏

i=1

tPℓi
(U) =

m−2d+1∏

i=1

E[Xℓi
U ] = E

[
m−2d+1∏

i=1

Xℓi
i

]

,
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where Xi’s are i.i.d. copies of XU . Therefore,

qm,d(U) =
∑

F∈E+
2d(Pm)

tF (U) =
∑

E

[
m−2d+1∏

i=1

Xℓi
i

]

= E

[
∑m−2d+1∏

i=1

Xℓi
i

]

,

where the last two sums are taken over all nonnegative integers ℓi’s such that ℓ1+· · ·+ℓm−2d+1 = 2d.
Thus, qm,d(U) = E[h2d(X1, . . . ,Xm−2d+1)].

Note that h2d(x1, . . . , xk) =
(
k+2d−1

2d

)
x2d if xi = x for all i. Letting x = E[XU ] = tK2(U)

and k = m − 2d + 1 then gives h2d(E[X1], . . . ,E[Xm−2d+1]) =
(m
2d

)
tK2(U)2d, which, together with

Lemma 3.1, suggests that some convexity of h2d may prove Theorem 2.2.
To formalise this idea, we need an easy consequence of Schur convexity of h2d. A real k-tuple

(x1, . . . , xk) majorises another k-tuple (y1, . . . , yk) if
∑j

i=1 xi ≥
∑j

i=1 yi for every j = 1, . . . , k with
equality for j = k. A k-variable real polynomial h is Schur convex if h(x1, . . . , xk) ≥ h(y1, . . . , yk)
whenever (x1, . . . , xk) majorises (y1, . . . , yk). One can deduce from the classical Schur–Ostrowski
theorem [25, Chapter 3, A.4. Theorem] that h2d(x1, . . . , xk) is Schur convex (see, e.g., [32]), whose
immediate consequence is the following lemma. For self-containedness, we give a brief probabilistic
proof which essentially rephrases Barvinok’s argument [1, Lemma 3.1] and pushes it slightly further;
see also [19, Remark 6.4] and an anonymous comment in [32].

Lemma 3.2. Let d, k > 0 be integers. Then for all real numbers x1, . . . , xk,

h2d(x1, . . . , xk) ≥ h2d(

k
︷ ︸︸ ︷

x, . . . , x) =

(
k + 2d− 1

2d

)

x2d,

where x = (x1 + · · ·+ xk)/k and the equality holds if and only if x1 = · · · = xk.

Proof. Let Zi, i = 1, . . . , k, be i.i.d. exponential random variables with rate parameter λ = 1. We
shall use the well-known fact that E[Zt

i ] = t!. Let S2d(x1, . . . , xk) := (
∑k

i=1 xiZi)
2d/(2d)!. Then

E
[
S2d(x1, . . . , xk)

]
= E




∑

ℓ1+···+ℓk=2d

k∏

i=1

xℓii Z
ℓi
i

ℓi!



 = h2d(x1, . . . , xk). (9)

Let S+j
2d (x1, . . . , xn) := (

∑k
i=1 xi+jZi)

2d/(2d)! be the function obtained by a cyclic permutation
of the variables in S2d, where the addition in the index of xi+j is taken modulo k. As (9) is

symmetric in x1, . . . , xn, we have E[S+j
2d ] = E[S2d] = h2d. By convexity of the function x 7→ x2d,

(2d)!

k

k∑

j=1

S+j
d (x1, . . . , xk) =

1

k

k∑

j=1

(
k∑

i=1

xi+jZi

)2d

≥




1

k

k∑

j=1

k∑

i=1

xi+jZi





2d

=

(
k∑

i=1

xZi

)2d

= (2d)!S2d(

k
︷ ︸︸ ︷

x, . . . , x).

Taking expectation on both sides then concludes the proof.

We are now ready to prove Theorem 2.2.
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Proof of Theorem 2.2. Let X := 1
k

∑k
i=1Xi, where k = m− 2d+ 1 and Xi’s are i.i.d. copies of XU

in Lemma 2.3. Then by Lemmas 3.1 and 3.2,

qm,d(U) = E[h2d(X1, . . . ,Xm−2d+1)] ≥ E

[(
m

2d

)

X2d

]

.

By Jensen’s inequality and the fact E[X] = E[Xi] = E[XU ] = tK2(U) from Lemma 2.3,

E

[(
m

2d

)

X2d

]

≥
(
m

2d

)

E[X ]2d =

(
m

2d

)

tK2(U)2d.

Combining the two inequalities then completes the proof.

Without relying on Theorem 1.1, one may also directly prove Corollary 1.2 by using the non-
negativity of complete homogeneous symmetric polynomials. Namely,

qm,d(U) =
∑

F∈E+
2d(Pm)

tF (U) ≥ 0 (10)

for each kernel U and 1 ≤ d ≤ m/2, a weaker inequality than Theorem 2.2, is enough. The global
nonnegativity of h2d(x1, . . . , xk), a classical result of Hunter [17] and also an easy consequence
of Lemma 3.2, together with Lemma 3.1 therefore proves Corollary 1.2 directly.

4 Stability

One advantage of our proofs in the previous sections is that they also give a stability analysis, which
has not been known for odd cycles H other than the triangle in Sidorenko’s theorem. Roughly
speaking, if the inequality in Theorem 1.1 is ‘close’ to be an equality, then the graphon W must be
‘almost’ regular. We begin by showing a stability result corresponding to Corollary 1.2.

Theorem 4.1. Let H be a path with at least 2 edges or a cycle and let W be a kernel. For any
ε ≥ 0, if

tH(W ) + tH(1−W ) ≤ 21−e(H)(1 + ε), (11)

then
tP2(2W − 1) ≤ ε

e(H) − 1
. (12)

Proof. Let U = 2W − 1. First, suppose H = Pm. By (3) and (10), the assumption (11) implies

ε ≥
∑

F∈E+(Pm)

tF (U) =

⌊m/2⌋
∑

d=1

qm,d(U) ≥ qm,1(U) ≥ (m− 1)tP2(U),

which gives (12). Indeed, qm,1(U) = (m− 1)tP2(U) +
(m−1

2

)
tK2(U)2 proves the last inequality.

Suppose now that H = Cm. By (3), (10), and the argument for (7), the assumption (11) implies

ε ≥
∑

F∈E+(Cm)

tF (U) = τ +
∑

e∈E(Cm)

⌊(m−1)/2⌋
∑

d=1

qm−1,d(U)

m− 2d
≥ mqm−1,1(U)

m− 2
≥ m · tP2(U), (13)

where τ = tCm
(U) if m is even and τ = 0 otherwise. This proves (12).

7



Theorem 4.1 concludes that tP2(2W − 1) is ‘small’ whenever the inequality in Corollary 1.2 is
close to be an equality. To elaborate on the meaning of tP2(2W − 1) being small, suppose that W
is the indicator graphon of an n-vertex graph G and recall that U = 2W − 1. As

tP2(U) =

∫

[0,1]3
U(x, y)U(y, z)dxdydz =

∫ 1

0
dU (y)

2dy,

where dU (y) :=
∫ 1
0 U(x, y)dx, the inequality tP2(U) ≤ ε together with Markov’s inequality gives

√
ε · P

[
dU (y)

2 ≥
√
ε
]
≤
∫ 1

0
dU (y)

2dy ≤ ε.

That is, all but
√
εn vertices in G have degree between (1− ε1/4)n/2 and (1 + ε1/4)n/2.

If H = Cm with m even in Theorem 4.1, the conclusion becomes even stronger. Namely, instead
of the lower bound m · tP2(U) in (13), one may use τ = tCm

(U) to simply obtain tCm
(U) ≤ ε. It

is well-known, e.g., [6, 24], that this implies ‖U‖� ≤ ε1/m, where ‖.‖� is the cut norm. For the
other cases, one cannot expect such a result, as the inequality in Theorem 1.1 attains the equality
whenever W is a ‘regular’ graphon with density 1/2, i.e., dW (x) = 1/2 almost everywhere.

An analogous stability result for Theorem 1.1 can also be obtained.

Theorem 4.2. Let H be a path with at least 2 edges or a cycle and let W be a kernel. For any
ε ≥ 0, if

tH(W ) + tH(1−W ) ≤ tK2(W )e(H) + tK2(1−W )e(H) + 21−e(H)ε. (14)

then for U = 2W − 1,

tP2(U) ≤ tK2(U)2 +
ε

e(H) − 1
. (15)

Proof. Suppose that H = Cm. By (3), (4), (7), and Theorem 2.2, the assumption (14) implies

ε ≥
∑

F∈E+(H)

(
tF (U)− tK2(U)e(F )

)
≥ m

m− 2

(

qm−1,1(U)−
(
m− 1

2

)

tK2(U)2
)

= m
(
tP2(U)− tK2(U)2

)
,

which gives (15). The case H = Pm follows in an analogous way.

The inequality (15) again implies that W is ‘almost’ regular with respect to the edge density
tK2(W ) instead of 1/2, as tP2(U) − tK2(U)2 translates to the variance of dU . That is, if W is the
indicator graphon of an n-vertex graph G, then all but

√
εn vertices of G have degree between

(p − ε1/4)n and (p+ ε1/4)n, where p = tK2(W ). If H = Cm with m even, then we have a stronger
conclusion ‖U − tK2(U)‖� ≤ ε1/2m, i.e., U is ε1/2m-close to be quasirandom.
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graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), volume 260 of Colloq. Internat.
CNRS, pages 399–401. CNRS, Paris, 1978.

[32] Terence Tao’s blog. Schur convexity and positive definiteness of the even degree complete ho-
mogeneous symmetric polynomials. URL: https://terrytao.wordpress.com/2017/08/06/.

[33] Andrew Thomason. A disproof of a conjecture of Erdős in Ramsey theory. J. London Math.
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