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Bernstein-Sato Polynomials of Semi-weighted-homogeneous
Polynomials of nearly Brieskorn-Pham Type

Morihiko Saito

Abstract. Let f be a semi-weighted-homogeneous polynomial having an isolated singularity
at 0. Let αf,k be the spectral numbers of f at 0. By Malgrange and Varchenko there are
non-negative integers rk such that the αf,k−rk are the roots up to sign of the local Bernstein-
Sato polynomial bf (s) divided by s+1. However, it is quite difficult to determine these shifts
rk explicitly on the parameter space of µ-constant deformation of a weighted homogeneous
polynomial. Assuming the latter is nearly Brieskorn-Pham type, we can obtain a very simple
algorithm to determine these shifts, which can be realized by using Singular (or even C)
without employing Gröbner bases. This implies a refinement of classical work of M. Kato
and P. Cassou-Noguès in two variable cases, showing that the stratification of the parameter
space can be controlled by using the (partial) additive semigroup structure of the weights of
parameters. As a corollary we get for instance a sufficient condition for all the shiftable roots
of bf (s) to be shifted. We can also produce examples where the minimal root of bf (s) is quite
distant from the others as well as examples of semi-homogeneous polynomials with roots of
bf (s) nonconsecutive.

Introduction

Let f ∈C{x} be a convergent power series of n variables having an isolated singularity at 0,
where f(0)=0 and n> 2. Set (X, 0) := (Cn, 0). The local Bernstein-Sato polynomial bf (s)
(see [Be 72], [SaSh 72], [Bj 73], [Sat 75], [Kas 76]) is called the BS polynomial for short in
this paper. (This is a factor of the global BS polynomial in the f polynomial case using
finite determinacy of holomorphic functions with isolated singularities, since f may have
singularities outside the origin.) Let R̃f ⊂R>0 be the set of roots up to sign of the reduced

BS polynomial b̃f (s) := bf(s)/(s+1), see [Kas 76] for negativity of the roots of bf (s). Let αf,k

(k ∈ [1, µf ]) be the spectral numbers of f counted with multiplicities, where µf is the Milnor
number, see [St 77b] (and also [DiSa 14]). We assume that the αf,k are weakly increasing.
As a consequence of theorems of Malgrange [Ma 75] and Varchenko [Va 81], it is well known
to specialists that there are non-negative integers rk (k ∈ [1, µf ]) such that

(1) R̃f = {αf,k−rk}k with min{αf,k}k = min{αf,k−rk}k,

forgetting the multiplicities. We say that αf,k−rk is a shifted root up to sign of the reduced

BS polynomial b̃f (s) if rk > 1. It is, however, quite nontrivial to determine these shifts
rk on the base space of the miniversal µ-constant deformation of a weighted homogeneous
polynomial. This is a very interesting problem, see for instance [Kat 81], [Kat 82], [Ca 87],
[NaTa 21]. (Recall that the spectral numbers are invariant by µ-constant deformations, and

coincide with the roots of b̃f (s) up to sign in the weighted homogeneous case.)

The above assertion (1) is easily recognized if we define the saturated Hodge filtration

F̃ on the λ-eigenspaces of the vanishing cohomology Hn−1(Ff ,C)λ :=Ker(Ts−λ) (with Ff
the Milnor fiber and T =TsTu the Jordan decomposition of the monodromy) replacing the
Brieskorn lattice

H
′′

f :=Ωn
X,0/df∧dΩ

n−2
X,0 ,

(see [Br 70]) by its saturation H̃ ′′
f :=

∑
i>0 (∂tt)

iH ′′
f (see [Ma 75]) in the formula for the

Hodge filtration F in [ScSt 85, (4.5)] (or [Sa 89, (2.6.3)], see (1.1.8) below) and considering
the meaning of the bigraded pieces Grp+r

F̃
GrpFH

n−1(Ff ,C)λ, since r corresponds to the shift.

Here Hn−1(Ff ,C)λ is identified with GrαV Gf for λ= e−2πiα with Gf :=H ′′
f [∂t] the localization

of H ′′
f by the action of ∂−1

t , which is called the Gauss-Manin system (see for instance
1
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[Sa 89]), and V denotes the filtration of Kashiwara and Malgrange on the regular holonomic
DC,0-module Gf indexed by Q. (This filtration was originally indexed by Z, see also [Sa 83],
[Sa 84, §3.4] about the reason for which V must be indexed by Q.)

We assume in the introduction that the monodromy T is semisimple, that is, N := log Tu

vanishes. Let ωk (k ∈ [1, µf ]) be free generators of the Brieskorn lattice H ′′
f over C{{∂−1

t }}

(see for instance [Sa 89] for C{{∂−1
t }}). We assume that the ωk give a C-basis of the quotient

space
Ωn

f :=Ωn
X,0/df∧Ω

n−1
X,0 =H

′′
f /∂−1

t H
′′

f ,

in a compatible way with the V -filtration (that is, inducing a C-basis of Gr•VΩ
n
f ); for instance,

the ωk are associated with an opposite filtration in the sense of [Sa 89]. Using the semi-

simplicity of T , we can set

G
(α)
f :=Ker(∂tt−α)⊂Gf (α ∈ Q),

so that we have the asymptotic expansions

(2) ωk =
∑

α>αf,k
ω
(α)
k (k∈ [1, µf ]),

with ω
(α)
k ∈G

(α)
f and vk :=ω

(αf,k)
k 6=0 (renumbering the ωk if necessary). The vk form a free

basis of Gf over C{{∂−1
t }}[∂t], and we have the power series expansions

(3) ωk =
∑µf

l=1 gk,lvl with gk,l ∈C{{∂−1
t }}[∂t].

Assume furthermore the ωk give a C-basis of Gr•
F̃
Gr•FH

n−1(Ff ,C)λ (inducing a bisplitting of

F, F̃ ), where the above identification of Hn−1(Ff ,C)λ with GrαV Gf is used. This condition
is not always satisfied in the semi-weighted-homogeneous case if we consider only monomial

bases. It is, however, trivially satisfied if the spectral numbers have multiplicity 1, that is,

(M1) αf,k 6=αf,l (k 6= l).

The last condition holds if every eigenvalue of the monodromy has multiplicity 1, that is,

(M1)′ dimHn−1(Ff ,C)λ 6 1 (∀λ),

for instance, if f is a Brieskorn-Pham type polynomial with mutually prime exponents. The

above argument is not appropriate for explicit calculations of H̃ ′′
f unless condition (M1) is

satisfied at least partially, since it is not easy to find free generators ωk satisfying the condition

related to Gr•
F̃
Gr•F written after (3) before determining the saturation H̃ ′′

f in general.

We can easily verify the following.

Proposition 1. Under the above assumptions, the saturation H̃ ′′
f is generated over C{{∂−1

t }}

by the ω
(α)
k for k∈ [1, µf ], α ∈ [αf,k, n−α̃f ], where α̃f =αf,1 (the minimal spectral number).

Combining this with the expansions in (3), we get the following.

Corollary 1. With the above notation and assumptions, let mk,l be the pole order of gk,l as
a power series of τ := ∂−1

t with a pole of finite order. Set rl := max{mk,l}k∈[1,µf ] (l∈ [1, µf ]).

Then the αf,k−rk (k∈ [1, µf ]) are the roots of b̃f (s) up to sign forgetting the multiplicities.

Assume that f is a semi-weighted-homogeneous polynomial
∑

β>1 fβ, where the fβ are
weighted homogeneous polynomials of weighted degree β, which vanish except for a finite
number of β. (Recall that convergent power series with isolated singularities have finite

determinacy, see for instance [GLS 07].) We assume that the lowest weighted degree part f1
is a polynomial of Brieskorn-Pham type (abbreviated as BP type)

∑n
i=1 x

ei
i with exponents

ei > 3; in particular, f has an isolated singularity at 0, and the weight wi of xi is 1/ei.

By [St 77a], [Va 82a], the spectral numbers αf,k (k∈ [1, µf ]) are given by

(4)
Σf =

{
αw(ν) | ν = (νi)∈Ef

}
with

αw(ν) :=
∑n

i=1 νi/ei, Ef :=
∏n

i=1Z∩ [1, ei−1].
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Set ων := [xν−1dx]∈H ′′
f for ν ∈ Zn

>0. Here dx := dx1∧ · · · ∧dxn and 1 := (1, . . . , 1) (with
w=(w1, . . . , wn)). It is easy to see that the ων for ν ∈Ef form a free basis of H ′′

f and we
have the equalities αw(ν) =αw(ω

ν) (ν ∈Ef ) using an argument similar to [Sa 88], where

αw(ω) :=αV (ω) = max{α∈Q | ω ∈V α
Gf} (ω ∈Gf).

We now assume that condition (M1) holds, for instance, the ei are mutually prime. We
may restrict the condition to αf,k /∈Z in the case α̃f >

n
2
−1. Let hj (j ∈ J) be the monomials

such that hj is not contained in the Jacobian ideal (∂f1) and moreover αw(hj)> 1. The
first condition is equivalent to that ν+1∈Ef , and the second may be replaced with to the
non-strict inequality αw(hj)> 1 by condition (M1) assuming the first. We have the equality
αw(hj) =αw(ν) if hj =xν . So αw(hj) =αw([hjdx])− α̃f with α̃f =αf,1=αw([dx]) =αw(1).

For the calculation of the BS polynomial, we may assume that f is written as

(5) f = f1+
∑

j∈J ujhj (uj ∈C),

using [Va 82b] together with Remark 1.3 below. (The latter is related to a problem on the
difference between small and global deformations.) Here f1 is assumed to be BP type. In the
case n=2, however, we can also allow that f1 is nearly Brieskorn-Pham type (abbreviated as
nearly BP type), that is, a linear combination of n monomials having an isolated singularity
at 0, which is called a non-degenerate invertible polynomial in mirror symmetry, see for
instance [Kr 94], [EbGZ11]. (Here J must be modified slightly, see Remark 1.1d below.)
Condition (M1) implies that |J |=modf1 , the modality of f1. (The latter coincides with the
inner modality by [Va 82b], see also [NaTa 21].) The uj are identified with the coordinates
of the parameter space of the miniversal µ-constant deformation of f1, and have weights
γj :=αw(hj)−1 for j ∈ J . (Here the minus sign may be used in some papers.) We assume
that the αf,k and γj are increasing by identifying J with {1, . . . ,modf1} so that

(6) γj =αf,k−α̃f−1 if k= j+δf (j ∈ J) with δf :=µf−modf1 .

Note that αf,k =αf1,k and α̃f = α̃f1 . We can calculate the Gauss-Manin connection quite
explicitly, and get the following.

Theorem 1. Let f be a semi-weighted-homogeneous polynomial whose lowest weighted degree

part f1 is nearly BP type (which is BP if n> 3) as in (5). Then there is an efficient algorithm

(without employing Gröbner bases) to calculate the theoretically lowest coefficients of the

gk,l ∈C{{∂−1
t }}[∂t] in (3).

If α̃f >
n
2
−1 (for instance, if n=2), we have either rj =1 or 0 (∀ j ∈ J). It is then enough

to calculate the coefficients g
(1)
k,l of ∂1

t in the gk,l ∈C{{∂−1
t }}[∂t].

Theorem 2. Assume α̃f >
n
2
−1. With the notation and assumption of Theorem 1, the

coefficients g
(1)
k,l are weighted homogenous polynomials in the parameters uj (with weight γj)

of the miniversal µ-constant deformation, and their weighted degrees are given by

(7) deg
w
g
(1)
k,l = deg

w
ωl− deg

w
ωk−1=αf,l−αf,k−1.

Moreover the coefficient in g
(1)
k,l of every monomial of the above weighted degree (which is

determined combinatorially) is nonzero. Its sign depends only on whether the usual degree is

even or odd (that is, we get the positivity by replacing the uj with the −uj). The coefficient

of uj in g
(1)
k,l is −1 if γj coincides with the weighted degree of g

(1)
k,l .

The last three assertions do not seem to follow easily from a general theory of Gauss-

Manin connections. Note that deg
w
g
(1)
1,l = γj (=αw(hj)−1) in the case ωk = [dx] (that is,

k=1) and ωl = [hjdx] (that is, l= j+δf ). By (2) the weighted degrees deg
w
ωk (k∈ [1, µf ])

coincide with the spectral numbers αf,k, and these are increasing.

It is not difficult to realize the above algorithm using Singular [DGPS20] (or even C),
see A.1-2 in Appendix. The computation of necessary terms takes only a few seconds if the
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(usual) polynomial degree of f1 is at most 8 in the two variable case. We have, however,
a problem of integer overflow (even for f1= x9+y7), and this may be eased to some extent

by employing C which can treat 64 bit integers. This is rather a structural problem, since
iterations of ∂t involve successive derivations of monomials of high degrees producing huge
integers easily.

It is well known that there is a stratification of the parameter space V of the miniversal
µ-constant deformation of f1 such that the BS polynomial is constant on each stratum. This
stratification, called the BS stratification in this paper, can be describes as follows: We
identify Ef with Z∩ [1, µk] in such a way that the spectral numbers αf,k (k ∈ [1, µk]) are
increasing; in particular 1∈Nn corresponds to 1∈ [1, µk]. For ν, ν ′ ∈Nn, we say that ν ′ (or
xν′) is over ν (or xν), and note ν ′ ≻ ν, if ν ′

i > νi (∀ i), and similarly for under and ≺. For

j ∈ J , there is a unique ν(j) ∈Ef with xν(j) = hj (assuming condition (M1) for αf,k /∈Z with
α̃f >

n
2
−1). For j, k ∈ J , we note j ≻ k when ν(j) ≻ ν(k) (similarly for ≺). If K ⊂ J , set

K≻j := {k ∈K | k ≻ j} (similarly for K≺j).

We say that j ∈K ⊂ J is ≺-minimal if K≺j = {j}. Set

VK := {u=(uj)∈CJ | uj =0 (j /∈K)}.

Let V (j)⊂V be the subspace on which rj+δf =1 (and rj+δf =0 outside V (j)). Theorem 2 and
Corollary 1 imply the following.

Corollary 2. Assume condition (M1) for αf,k /∈Z with α̃f >
n
2
−1.

(i) If k= j+δf so that ωk = [hjdx] (see (6)), the shift of αf,k =αw([hjdx]) in Corollary 1
depends only on the uj′ for j′ 6 j.

(ii) For j ∈ J , the subspace V (j)⊂V is defined by the equations uj′ = pj′ for j
′ ∈ J≺j. Here the

pj′ are weighted homogeneous polynomials in variables uj′′ for j
′′ <j′ with weighted degree γj′,

and are given by g
(1)
k,l +uj′ with k= j′′′+δf , l= j+δf , and ν(j′)+ν(j′′′)= ν(j). In particular,

the V (j) are smooth with codimension |J≺j|.

Note that V (j) ∩ V (j′) is not necessarily smooth. This implies that the closure of each
stratum may have singularities, see 1.5 below.

Let SG(K)⊂Q>0 be the semigroup generated additively by the γk ∈Q>0 (k∈K). From
Theorem 2 we can deduce the following.

Proposition 2. Assume condition (M1) for αf,k /∈Z with α̃f >
n
2
−1. Let j ∈K⊂ J .

(i) We have rj′+δf =1 for any j′ ∈ J ≻j, if γj /∈ SG(K\{j}) and u∈VK with uj 6=0.

(ii) We have rj′+δf =1 for any j′ ∈ J ≻j, if γj ∈ SG(K\{j}) and the uk for k∈K\{j} are

sufficiently general with ul for l /∈K\{j} fixed (even if j′ /∈K and uj′ =0).

(iii) We have rj+δf =0 for some u ∈ VK with uj 6=0 in the case γj ∈ SG(K\{j}) and j ∈K
is ≺-minimal. (Recall that δf =µf−modf1, see (6).)

Here “sufficiently general” means that it is contained in a non-empty Zariski-open subset.
Proposition 2 shows the importance of the (partial) additive semigroup structure of the
weights γj (j ∈ J) for the determination of the rj+δf . It gives the (first) affine stratification
of the parameter space of the miniversal µ-constant deformation of f1 with coordinates uj

(j ∈ J). Its strata correspond to bistable subsets K ⊂ J (where K may be J or ∅). Here a
subset K⊂ J is called bistable if the following two conditions are satisfied:

(a) If j ∈ J , k∈K, and j ≻ k, then j ∈K.

(b) If j ∈ J with γj ∈ SG(K), then j ∈K.

These are called respectively the upper and semigroup stability conditions. The closure of
the stratum corresponding to K coincides to VK (see Corollary 3 below), and we delete
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the closed subspaces corresponding to bistable proper subsets of K, that is, the stratum
corresponding to K is given by

V ◦
K :=VK \

⋃
K ′⊂KVK ′,

whereK ′ ⊂K runs over bistable proper subsets ofK. Note that bistable subsets are stable by
intersections, and the closure of the corresponding stratum is compatible with intersections.

Remark 1. We can determine the bistable subsets K of J by decreasing induction on |K|.
We first determine those with |K|= |J |−1 by deleting each element from J and verifying the
two conditions of bistability, where the obtained bistable subsets are ordered increasingly
using the identification J = {1, . . . ,modf1} such that the γj are increasing. We say that an
element is removable if its complement is bistable. There is at least one removable element,
since the two conditions are satisfied by deleting j with γj minimal. We apply the same to
the obtained bistable subsets. If we get an already obtained bistable subset, it is of course
neglected. We can then proceed by decreasing induction on |K|. Note that for any proper
bistable subset K ′ of a bistable subset K, there is a removable element of K not contained
in K ′. (Take an element j ∈K \K ′ with γj minimal.) This implies that the strata of the
first stratification are affine varieties.

As a consequence of Theorem 2 and Proposition 2, we have the following.

Corollary 3. Assume condition (M1) for αf,k /∈Z with α̃f >
n
2
−1. If K⊂ J is a bistable

subset, we have at a sufficiently general point of VK

(8) rj+δf =1 ⇐⇒ j ∈K.

On certain locally-closed subspaces of VK , however, the equivalence (8) can hold only after
replacing K with a suitable subset of K. We thus have to consider a further stratification of
each stratum of the first affine stratification, depending on the (partial) additive semigroup

structure of the corresponding bistable subset K ⊂ J . In simple cases as in [Kat 81], [Kat 82],
[Ca 87], where the semigroup structure is not quite complicated, one can easily verify that
the BS stratification of the parameter space V of the miniversal µ-constant deformation is
described completely by using the bistable subsets of J , see 2.1–2 below. In general it does
not seem very clear whether each stratum is smooth. (The relation to the stratification by
Tjurina numbers seems unclear.)

We say that a root of a BS polynomial of a weighted homogeneous polynomial f1 with an
isolated singularity is shiftable if it is not a root of the BS polynomial of some µ-constant
deformation of f1, which is given by a semi-weighted-homogeneous polynomial f , see [Va 82b].
It is well known (and easy to show) that this condition is equivalent to that the root up to
sign is strictly greater than α̃f+1, assuming condition (M1) for αf,k /∈Z with α̃f >

n
2
−1, see

also [Sa 22b]. (This does not hold without assuming (M1), for instance if f1= x7y+xy5.)

We denote by R sh
f1

(∼= J) the set of shiftable roots up to sign of bf1(s). (Here R
sh
f1

⊂ R̃f1, since
1 is unshiftable.)

Let γj (j ∈ Jmg) be the minimal generators of SG(J). The subset Jmg ⊂ J is unique
considering the minimal element of SG(J) not contained in the subsemigroup

∑
j∈Jmg, j<k Z>0γj,

by induction on k. (Note that SG(J) is an ordered semigroup such that γj+γj′ > γj for any
j, j′ ∈ J .)
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By Theorem 2 and Proposition 2 we get the following.

Corollary 4. Assume condition (M1) for αf,k /∈Z with α̃f >
n
2
−1. Then all the shiftable

roots of bf (s) are shifted if uj < 0 (j ∈ Jmg) and uj 6 0 (j ∈ J \ Jmg). In particular, the

shiftable roots are all shifted by adding to f1 only one monomial h1 corresponding to γ1 in the

case all the γj (j ∈ J) are contained in the additive semigroup generated by γ1, for instance,

if α̃f+1+ 1
Ord(T )

is a spectral number of f1, where Ord(T ) is the order of the monodromy T .

Here the coefficient of h1 in f can be changed using the C∗-action in case only one monomial
is added to f1. To verify the last hypothesis on the spectral number, one can calculate the
spectral numbers of f1 using only the weights wi of variables xi, see (1.1.20) and Remark 2.8b
below for such an example.

We are interested in the following.

Problem 1. Is it possible that only one shiftable root up to sign α is unshifted and all the
other shiftable ones are shifted, although α is close to the maximal spectral number?

This kind of phenomenon is often observed if α is close to α̃f+1, for instance, if the
root is associated with a removable element of J . In general it can happen in the following
case: there is j0 ∈ J which is not under jα ∈ J corresponding to α, and if γj/γj0 ∈Z for
any j ∈ J not over j0. In this case we get the inductive relation that the value of the
variable uj corresponding to each j ∈ J under jα is equal to the value of a certain weighted

homogeneous polynomial in variables of strictly lower weights (given by some g
(1)
k,l ), see for

instance Conjecture 1 below, where j0=1, γ1=
1

ab−1
. Note that all the examples in this

paper are computed by using this kind of relation.

The main problem here is that some of the other shiftable roots could be unshifted. This
actually occurs in the case of deformations of polynomials of BP type, see for instance 2.3
below, where the subspace for 83

56
is contained in that for 75

56
. This can happen since the

action of ∂t is defined by using only the division by f1,x= axa−1 with the action of ∂x or the
one by f1,y = byb−1 with ∂y. If f1 is nearly BP type which is not BP, this problem does not
usually occur, since the action of ∂t is defined in a more complicated way, although there
still remains a certain problem, see Conjecture 1 below. Note that it is not easy to get an
explicit expression of f because of the integer overflow problem especially when α is close
to the maximal spectral number.

In the case where α is the unique unshifted shiftable root up to sign of bf(s), we define

SR(f, α) := |R sh,<α
f1

|/|R sh
f1
|, called the solitude ratio, where R sh,<α

f1
= R sh

f1
∩ (0, α). Since one

cannot get this ratio by computing only the BS polynomial of f (here one has to compare it
with that of f1), one may also consider the solitude distance SD(f, α) which is the difference
between α and the nearest root up to sign of bf (s). As these numbers become large, we
have more complexity of the defining equations of the subspace on which α is the unique
unshifted shiftable root up to sign of the BS polynomial. We have the following.

Problem 2. For any ε> 0, is there a µ-constant deformation f of a weighted homogeneous
polynomial with an isolated singularity which has the unique unshifted shiftable root α up
to sign of bf (s) with SR(f, α)> 1−ε? (Similarly for SD(f, α).)

Examples with SR(f, α) = 1
2
are known, see 2.1 and 2.4 below. We can find an example

with SR(f, α) = 9
16
> 1

2
for n=3, see 2.7 below. Extending the algorithm to polynomials of

nearly BP type, we can get an example with SR(f, α) = 2
3
for n=2, see 2.6 below. This can

be extended to the following.

Conjecture 1. Let f1= xay+xyb, f = f1+xby2+
∑

i<b, j<b, i+j>a ui,jx
iyj with a= b+1. For

infinitely many b> 5, the rational number α′ := b(2b−1)
ab−1

is the unique unshifted shiftable root

up to sign of bf (s) choosing the ui,j ∈C appropriately, where SR(f, α′) = 1− 2
(b−1)(b−2)/2

and

SD(f, α′) = 1− 5b−4
ab−1

.
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The number α′ is the second largest spectral number of f , and is associated with xb−1yb−1,
which is not over xby2, see (1.1.16) below. It is easy to see that α′ is unshifted if the ui,j

coincide with certain rational numbers ci,j which are determined inductively by using certain
weighted homogeneous polynomials hi,j of variables with lower weights (defined by a linear

function ℓ(i, j)). Here hi,j is given by g
(1)
k,l in Theorem 2 with monomial of degree 1 deleted

(and k, l correspond respectively to xb−1−iyb−1−j and xb−1yb−1). In this case it is very much
expected that the other shiftable roots are shifted. It is, however, rather difficult to prove
the last assertion (or to find a counterexample). Indeed, we have to verify that ci,j is different
from the value c̃i,j of a weighted homogeneous polynomial h′

i,j (which is given by g1,l′ with

monomial of degree 1 deleted, where l′ corresponds to xiyj) at the ci′,j′ (but not c̃i′j′) for
(i′, j′)∈ J with ℓ(i′, j′)<ℓ(i, j). (So the c̃i,j are not defined inductively using the h′

i,j.) The
possibility of coincidence seems apparently very slim considering their definitions, but it is
quite difficult to show exactly this non-coincidence. One difficulty comes from signs, and
this cannot be avoided by replacing uj with −uj , since signs reappear after substitutions.

(Note that all the shiftable roots are shifted in case every ui,j vanishes, since the γk (k ∈ J)
are contained in the additive semigroup generated by γ1 and we have the non-vanishing of
the coefficient in f of the monomial xby2, which has the lowest weight in J .) There is a
similar conjecture for the case f1= xa+xyb with a= b+2, see also Remark 2.6 below.

Note finally that the above argument can be extended to the homogeneous case where
condition (M1) fails. We get an example of a semi-homogeneous polynomial such that the
roots of its local BS polynomial are nonconsecutive (that is, not given by the intersection of
a connected interval in R and 1

d
Z with d the degree of the lowest homogeneous part of f),

for instance,
f = 1

10
x10+ 1

10
y10+x3y8+x8y3+8x6y6−128x7y7,

where R̃f =
{

2
10
, . . . , 14

10

}
∪
{

16
10

}
according to Singular [DGPS20], see 2.5 below. Note that

R̃f ⊂
1
d
Z∩(0, n) if f is semi-homogeneous and d is the degree of the lowest homogeneous part

which has an isolated singularity. (It does not seem easy to find an example as above with
d6 9, n=2.) This situation is entirely different from the case of homogeneous polynomials
with non-isolated singularities, where the roots supported at the origin are consecutive as
far as calculated, see [Sa 16a], [Sa 20].

In Section 1 we describe the algorithm after reviewing some basics of Brieskorn lattices.
In Section 2 we explain some interesting examples. In Appendix we give some sample codes

to compute the g
(1)
k,l and the bistable subsets.

This work was partially supported by JSPS Kakenhi 15K04816.

1. Description of the algorithm

In this section we describe the algorithm after reviewing some basics of Brieskorn lattices.

1.1. Brieskorn lattices. Let f ∈ C{x} be a convergent power series of n variables having
an isolated singularity at 0 with f(0)= 0 and n> 2. Set (X, 0) := (Cn, 0). The Brieskorn
lattice H ′′

f (see [Br 70]) is defined by

(1.1.1) H
′′

f := Ωn
X,0/df∧dΩ

n−2
X,0 .

This is a free module of rank µf (with µf the Milnor number of f) over C{t} and also over
C{{∂−1

t }}, see for instance [Sa 89]. We can define the actions of t and ∂−1
t respectively by

multiplication by f and

(1.1.2) ∂−1
t [ω] = [df∧η] if dη=ω for ω ∈Ωn

X,0, η ∈Ωn−1
X,0 .

The Gauss-Manin system can be defined by

Gf := H
′′

f [∂t],
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which is the localization of H ′′
f by the action of ∂−1

t . This is a regular holonomic DX,0-module
with quasi-unipotent monodromy, and has the V -filtration of Kashiwara and Malgrange
indexed by Q so that ∂tt−α is nilpotent on the graded quotients GrαV Gf (Q∈Q). The latter
is identified with

(1.1.3) G
(α)
f :=Ker

(
(∂tt−α)i :Gf →Gf

)
(i ≫ 0),

and we have the inclusion (see for instance [Sa 89]):

(1.1.4) Gf →֒
∏

α∈Q G
(α)
f .

This implies for ω ∈Gf the asymptotic expansion

(1.1.5) ω =
∑

α∈Q ω(α) with ω(α) ∈G
(α)
f (α∈Q).

Set

(1.1.6) αV (ω) := min{α ∈ Q | ω(α) 6=0}, GrVω := ω(αV (ω)).

We have the canonical isomorphism

(1.1.7) GrαV Gf = Hn−1(Ff ,C)λ (λ= e−2πiα),

with Ff the Milnor fiber, and moreover

(1.1.8)
GrαV H

′′
f = F n−1−pHn−1(Ff ,C)λ

for α= β+p, β ∈ (0, 1], p∈Z,

see [ScSt 85, (4.5)], [Va 81] (and also [Sa 89, (2.6.3)]).

Remark 1.1a. In the weighted homogeneous case, the variable xi has weight ωi so that
the weighted degree of f is 1, and the filtration V is induced by the filtration on Ωn

X,0

by the weighted degree, where the weight of dxi is wi. Indeed, we have the Euler field
ξ=

∑n
i=1wixi∂xi

such that ξ(f) = f , and

(1.1.9) d(ιξω) = Lξω, df∧ιξω = fω (ω ∈Ωn
X,0),

where Lξ, Lξ denote respectively the interior product and the Lie derivation respectively,
see also [Sa 22b, 1.1.7]. This calculation implies that the action of t∂t on Gf is semisimple.

Remark 1.1b. Assume f = f1+f>1 is a semi-weighted-homogeneous deformation of a
weighted homogeneous polynomial f1 having an isolated singularity at 0. Let V be the
decreasing filtration on Ωn

X,0 defined by the condition that the weighted degree is at least
α. This induces the V -filtration on the Gauss-Manin system Gf , see for instance [Sa 22b].
Moreover we have the canonical isomorphism as graded Gr•V DC,0-modules:

(1.1.10) Gr•V Gf = Gr•V Gf1 .

(This can be shown for instance considering Gr•VΩ
n
X,0/Gr1V df∧dGr•VΩ

n−2
X,0 .) This isomorphism

makes the calculation of GrV ∂t simple in the case f1 is BP or nearly BP type with n=2 as
in Remark 1.1c just below.

Remark 1.1c. Set ωi,j := xi−1yj−1dx∧dy (i, j ∈Z>0) with n=2.

For f1=xa+yb, the graded images ∂tGrαV [ω
i,j ] =Grα−1

V ∂t[ω
i,j ]∈G

(α−1)
f are given by

(1.1.11) ∂tGrαV [ω
i,j ] =

{
a−1(i−a)Grα−1

V [ωi−a,j ] (i > a),

b−1(j−b)Grα−1
V [ωi,j−b ] (j > b),

with α := (bi+aj)/ab. Here a−1, b−1 are omitted in the case f1=
1
a
xa+ 1

b
yb.

In the chain type case, that is, for f1=xa+xyb, we have

(1.1.12) ∂tGrαV t[ω
i,j ] =

{
a−1(i−a− j

b
)Grα−1

V [ωi−a,j ] (i > a),

b−1(j−b)Grα−1
V [ωi−1,j−b ] (j > b),
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with α := (bi+(a−1)j)/ab. Here a−1, b−1 are omitted in the case f1 =
1
a
xa+ 1

b
xyb.

In the loop type case, that is, for f1=xay+xyb, we have

(1.1.13) ∂tGrαV [ω
i,j ] =

{
(ab−1)−1(b(i−a)−j+1)Grα−1

V [ωi−a,j−1 ] (i > a),

(ab−1)−1(a(j−b)−i+1)Grα−1
V [ωi−1,j−b ] (j > b),

with α := ((b−1)i+(a−1)j)/(ab−1), see (1.1.4) just below. They are multiplied respectively
by a and b in the case f1=

1
a
xay+ 1

b
xyb. Here we assume that (i, j) is a linear combination of

(a, 1) and (1, b) with positive coefficients, and moreover this holds after replacing (i, j) with
(i−a, j−1) or (i−1, j−a) so that the coefficients in (1.1.13) are non-negative. We assume a
similar condition for (1.1.11-12).

Remark 1.1d. Assume f is a polynomial of nearly BP loop type in two variables, that is,
f =xay+xyb. Let ℓ be the weighted degree function on Z2 such that ℓ(a, 1)= ℓ(1, b) = 1. It
is easy to see that ℓ is defined by

(1.1.14) ℓ(i, j) = (b′i+a′j)/(ab−1) (a= a′+1, b= b′+1).

We have µf = ab, see [Sa 16b, A.1]. The Jacobian ring is spanned over C by the monomials
xiyj for i < a, j < b. (In the chain type case, that is, for f1 =xa+xyb, the Jacobian ring is
spanned by the monomials xiyj for i < a, j < b−1 and yb−1, where µf = a(b−1) + 1.)

In the case a= b+1, one can verify that

(1.1.15) dimH1(Ff ,C)λ =





1 (λab−1=1, λ 6=1),

2 (λ=1),

0 (λab−1 6=1).

with γ1=1/(ab−1), where the minimal, maximal, and second largest spectral numbers are
given respectively by

(1.1.16) (2b−1)/(ab−1), (2b2−1)/(ab−1), (2b2−b)/(ab−1).

Remark 1.1e. In general, a polynomial f is called a polynomial of nearly BP loop type if

f =
∑n

i=1 cix
ai
i xi+1 (ci ∈C∗, ai ∈Z>2),

where {1, . . . , n} is identified with Z/nZ. (It is called a non-degenerate invertible polynomial
or potential of loop type in mirror symmetry, see for instance [Kr 94], [EbGZ11].)

For n=3, we have µf = abc and T abc+1=1 with T the monodromy, where the ai are
denoted by a, b, c. The weights multiplied by abc+1 are given by

(b−1)c+1, (c−1)a+1, (a−1)b+1.

In case their greatest common divisor is 1, an assertion similar to (1.1.15) seems to hold
replacing ab−1 by abc+1 and 2 by 0 for λ=1.

Indeed, for n> 2, let v(i) ∈Nn with f1 :=
∑n

i=1 x
v(i) a polynomial of nearly BP loop type.

It is easy to see that the (n−1)-th exterior product

ξ(k) :=
∧

i 6=k (v
(i)−v(k))∈

∧n−1
Zn ∼= Zn

is independent of k ∈ [1, n] up to sign. It is a primitive vector, that is, the greatest common
divisor of its components is 1, if and only if the parallelotope spanned by the v(i)−v(k) (i 6= k)
has no lattice point except for the vertices, since the condition is equivalent to the existence
of v∈Zn such that v∧ξ(k) generates

∧n
Zn, that is, the determinant of

(
v, v(i)−v(k) (i 6= k)

)

is equal to ±1. This seems to imply condition (M1)′ for λ 6=1 using some projection to Zn−1.
(This may be known to some specialist.) Note that the components of ξ(k) are given up to



10

sign by the above numbers and the modified exponents (see A.3 in Appendix) in the case
n=3 and 2 respectively.

Remark 1.1f. Let αf,1, . . . , αf,µf
be the spectral numbers of f , see [St 77b] (and also

[DiSa 14], [JKSY22]). They are assumed to be weakly increasing. It is well known (see
for instance [ScSt 85], [Sa 89], [Va 81] and also (1.1.8) that we have the equality

(1.1.17) dimC GrαVΩ
n
f = #{k ∈ [1, µf ] | αf,k =α} (∀α∈Q),

with

(1.1.18) Ωn
f := Ωn

X,0/df∧Ω
n−1
X,0 = H

′′
f /∂

−1
t H

′′
f .

We have the symmetry of spectral numbers as is well known (see [St 77b]):

(1.1.19) αf,k+αf,l =n (k+l=µf+1).

In the case f is a weighted homogeneous polynomial of weights wi, the spectral numbers
can be computed by

(1.1.20)
∑µf

k=1 t
αf,k =

∏n
i=1 (t

wi−t)/(1−twi),

see [St 77b], [JKSY22, Section 1.5].

Remark 1.1g. By [Ma 75], the reduced BS polynomial bf (s)/(s+1) is equal to the minimal
polynomial of the action of −∂tt on

H̃
′′

f /tH̃
′′

f .

Here tH̃ ′′
f may be replaced by ∂−1

t H̃ ′′
f , see for instance [Sa 22b].

1.2. Proof of Theorems 1 and 2. We have f = f1+
∑

j∈J ujhj as in the introduction,

where the uj are viewed as constants. For ν ∈ Zn
>0, set ω

ν := [xν−1dx]∈H ′′
f . We can easily

verify that

(1.2.1)
(
∂tt−αw(ν)

)
ων = −

∑
j∈J γjuj ∂tω

ν+ν(j),

using (1.1.9), where hj =xν(j) , see also [Sa 22b]. Comparing the asymptotic expansions of
both sides (using (1.1.10)), we can determine the theoretically lowest term of the asymptotic
expansion of ων by decreasing induction on αw(ν). Here what is important is the ratio of the
weight of the variable in which one is interested and the minimal weight of the variables, since
this gives the maximal number of procedures to which one applies (1.2.1) inductively, see
also the sample codes in A.1-2 of Appendix for more details. The last assertion of Theorem 2
also follows from the above argument. This finishes the proof of Theorems 1 and 2.

Remark 1.2. To calculate the weighted homogeneous polynomials g
(1)
k,l with weighted degree

given in Theorem 2 in the two variable case, we can apply the iteration of (1.2.1), where we

get sequences {ji}∈Jr with
∑r

i=1 γji the weighted degree of g
(1)
k,l . The contribution of this

sequence to the coefficient of
∏r

i=1 uji in g
(1)
k,l is given by

(1.2.2) (−1)r
∏r

i=1

(∑r
j=i γj

)−1∏r
i=1 γi,

multiplied by

(1.2.3)
∏[(p+1)/a]

j=1 (p+1−ja)/a
∏[(q+1)/b]

j=1 (q+1−jb)/b,

(which vanishes if p+1∈ aZ or q+1∈ bZ), where xpyq = g
∏r

i=1 hji if ωk = gdx∧dy. (Here
p, q cannot be determined by ωk, ωl in general.) Note that

∑r
j=i γj comes from the action of

the differential operator on the left-hand side of (1.2.1), and (1.2.3) is obtained by calculating
the action of ∂t, where (1.1.10) is used in an essential way. The divisions by a and b must
be omitted if we consider f1=

1
a
xa+ 1

b
yb instead of xa+yb. Here we have to consider all the
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possible sequences with various lengths, and we usually get a combinatorial problem. This
formula is used in [Sa 22b].

1.3. Proof of Proposition 1. The maximal spectral number αf,µf
is equal to n− α̃f

by the symmetry of spectral numbers, see (1.1.19). The assertion then follows from the
generalized Jordan decomposition, see for instance [Sa 22a, Rem.A.7c]. This finishes the
proof of Proposition 1.

Remark 1.3. Let f =
∑

β>1 fβ be a semi-weighted-homogeneous polynomial, where the fβ
have weighted degree β and f1 has an isolated singularity at 0. Letm∈Z>0 such thatmβ ∈Z

if fβ 6=0. Then we have the one-parameter family gu :=
∑

β>1 u
m(β−1)fβ such that g0= f1,

g1= f , and bgu(s) is constant for u 6=0.

1.4. Proof of Proposition 2. This follows by applying (1.2.1) inductively to the asymptotic

expansion of [xν̃dx] with ν̃ = ν(j′)−ν(j). Recall that the sign of the coefficients of g
(1)
k,l depends

only on the total degree of the uj, and we have the positivity if the uj are replaced by −uj.
Here we use (1.1.10) in an essential way. This finishes the proof of Proposition 2.

Remark 1.4. The minimal root of bf1(s) is not a root of bf (s) if uj 6=0 for some j ∈ J .
Indeed, let j0 ∈ J with uj0 6=0 and γj0 minimal. Let hj0 be the corresponding monomial. Set
g :=

∏n
i=1 x

ei−2
i /hj0. Consider the asymptotic expansion of [gdx], and apply (1.2.1)

1.5 Singularities of the closures of BS strata. In the notation of the introduction, the
closure of each stratum of the BS stratification of V is not necessarily smooth. For instance,
let f1= x9y+xy8. With the notation of Corollary 2, the intersection V (10) ∩ V (11) has non-
isolated singularities whose transversal slice is a surface singularity of type A4. This can be
verified by typing BC9 8 11 for ./a.out of the code in A.2 of Appendix and examining the
difference between [2;5,6] and [3;4,7] in the output after the substitution caused by [3;5,6],
where Corollary 2 (ii) is used.

2. Examples

In this section we explain some interesting examples.

2.1. Example I. Let f1=x7+y5 or x9+y4, see [Kat 81], [Kat 82]. The weights γj (j ∈ J)
multiplied by 35 or 36 and the exponents of the corresponding monomials are as follows:

(2.1.1)
1 6 11

4
3, 3 4, 3 5, 3

5, 2
or

2 6 10
1

5, 2 6, 2 7, 2
7, 1

We see that the number of strata of the first affine stratification is 6 or 5, where the nonempty
bistable subsets are as below:

(2.1.2) 1 6 11
4

6 11
4

6 11 11
4

11

or

(2.1.3) 2 6 10
1

2 6 10 6 10 10

The open stratum of the first affine stratification corresponding to K = J contains one or
two subspaces on which the assertion (8) holds with J replaced by J \ {2} or J \ {2} and
J \ {3}, that is,

(2.1.4) 1 6 11
or

6 10
1

and
2 10

1

using Proposition 2. The corresponding subspaces are as follows:

(2.1.5) {u2= cu4
1} or {u2= c′u2

1} and {u2= c′′u2
1, u3= c′′′u6

1}.

These follow from Theorem 2 looking at the weights γj and (2.1.1). Note that γ2=4γ1 or
γ2=2γ1 and γ3=6γ1. (We have to add the minimal spectral number 12

35
or 13

36
plus one to
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the weight γj in order to get the spectral number αf,k corresponding to γj, see (6).) It is not
necessarily easy to determine the constants c, c′, c′′, c′′′ ∈ C∗. Using a computer, we can get
that

(2.1.6) c= 6
175

, c′ = 1
3
, c′′ = 7

18
, c′′′ = 2429

1259712
.

To determine c′′′, we use the vanishing of g
(1)
2,23=−u2+

7
18
u2
1 (which gives c′′) and that of

(2.1.7) g
(1)
1,23=−u3−

7
72
u3
2+

7
27
u2
1u

2
2−

175
1458

u4
1u2+

595
39366

u6
1,

where 23=µf−1. Notice that the sign depends only on the degrees of monomials. This holds

in general applying repeatedly (1.2.1). For c′, we need the vanishing of g
(1)
1,22=−u2+

1
3
u2
1. (For

c with f1= x7+y5, we use the vanishing of g
(1)
1,22=−u2+

6
175

u4
1 with 22=µf−2.)

For a µ-constant deformation f of f1= x9+y4 having the unique unshifted shiftable root
55
36

up to sign of b̃f (s), the distribution of roots up to sign is as below:

❝ ❝ ❝ ❝s s s s s s s ss s s s s s ss s s s s ssss

13
36

47
36

55
36

59
36

50
36

Here the black and white vertices represent respectively the roots of bf (s) up to sign and
those of bf1(s) which are not roots of bf (s) up to sign (that is, shifted). We have SR(f, 55

36
) = 1

2

and SD(f, 55
36
) = 2

9
.

2.2. Example II. Let f1= x7+y6. The weights of parameters multiplied by 42 and the
exponents of the corresponding monomials are as follows:

(2.2.1)
4 10 16

3 9
2

3, 4 4, 4 5, 4
4, 3 5, 3

5, 2

Following Remark 1 in the introduction, we get ten nonempty bistable subsets of J as below:

(2.2.2)

4 10 16
3 9

2

10 16
9

4 10 16
3 9

4 10 16

4 10 16
9
2

10 16

4 10 16
9

16
9

10 16
3 9

16

The first and third subsets have respectively one and two subsets as below, which are not
bistable, but correspond to the sets of shifted roots up to sign of BS polynomial bf (s) by
adding 13 and dividing it by 42:

(2.2.3)
10 16
3 9

2
and

10 16
9
2

4 16
9
2

These are determined by using the (partial) semigroup structure ofK (more precisely, 4= 2 ·2
and 10=5 ·2=4+3 ·2=2 ·4+2). The corresponding subspaces are respectively as follows:

(2.2.4) {u3= cu2
1} and {u2=0, u3= c′u2

1}, {u2=0, u3= c′′u2
1, u5= c′′′u5

1}.

The first subset of (2.2.2) (that is, J) has only one subset, since 5∈J is over 2∈ J with
γ5=

10
42

and γ2=
3
42

/∈ SG(J\{2}). We have

(2.2.5) c= c′ = 2
7
, c′′ = 5

14
, c′′′ =− 5

16464
.

It is not easy to determine c′′′. (There is another method used in [Sa 22b], see Remark 1.2.)

In this paper we calculate it by combining the vanishing of g
(1)
1,38=−u2, g

(1)
2,41=−u3+

5
14
u2
1

(which gives c′′), and that of

(2.2.6) g
(1)
1,41=−u5−

25
84
u2
2u3 −

25
84
u1u

2
3 +

25
98
u2
1u

2
2 +

25
147

u3
1u3 −

95
4116

u5
1,
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see A.1-2 in Appendix. Here 41=µf−1. For c, c′, we use the vanishing of g
(1)
1,39=−u3+

2
7
u2
1.

2.3. Example III. Let f1 =x8+y7. The weights of parameters multiplied by 56 and the
exponents of the corresponding monomials are as follows:

(2.3.1)

5 12 19 26
4 11 18

3 10
2

3, 5 4, 5 5, 5 6, 5
4, 4 5, 4 6, 4

5, 3 6, 3
6, 2

Following Remark 1, we get 24 nonempty proper bistable subsets of J as below:

5 12 19 26
4 11 18

3 10

5 12 19 26
11 18

10

12 19 26
11 18

19 26
18

5 12 19 26
4 11 18

10
2

12 19 26
4 11 18

10

12 19 26
18
10

12 19 26

5 12 19 26
4 11 18

10

12 19 26
11 18
3 10

19 26
11 18

10

26
18
10

5 12 19 26
11 18
3 10

12 19 26
11 18

10

12 19 26
18

19 26

12 19 26
4 11 18

3 10

5 12 19 26
18
10

19 26
11 18

26
18

12 19 26
4 11 18

10
2

12 19 26
4 11 18

19 26
18
10

26

It is not easy to determine the finer stratification of the first affine stratification. We

can verify that three roots of b̃f (s) corresponding to the largest three spectral numbers
αf,42 =

97
56
, αf,41=

90
56
, αf,40 =

89
56

have no proper non-empty closed subspaces of affine strata
on which some of these roots are unshifted. Here αf,k corresponds to j ∈ J = [1, 10] if
k−j=32 (=µf−10). (For instance, if the root 90

56
is unshifted, then we must have u2=0,

u4=0, u6=0 inductively using Proposition 2, where γ2=
3
56
, γ4=

5
56
, γ6=

11
56
. The other

weights smaller than 19
56

are even integers divided by 56, and 19
56

is not contained in the
semigroup generated by them. We thus get that u9=0 with 9=41−32. See Remark 1.4 for
97
56
.) These make the computer calculation quite simple allowing us to avoid integer overflow.

We then see that the roots between 75
56

and 83
56

up to sign (corresponding to j ∈ [3, 7]) are
unshifted on some non-empty proper closed subspaces of certain affine strata. For instance,
the root 83

56
up to sign is unshifted on the subspace defined by the vanishing of

g
(1)
3,39=−u3+

5
16
u2
1, g

(1)
2,39=−u4+

5
8
u1u2,

g
(1)
1,39=−u7+

5
8
u1u5−

5
56
u3
3−

15
28
u2u3u4−

15
56
u1u

2
4+

65
1792

u4
2+

195
448

u1u
2
2u3

+ 195
896

u2
1u

2
3+

195
448

u2
1u2u4−

195
1024

u3
1u

2
2−

195
2048

u4
1u3+

377
32768

u6
1,

(see A.1-2 in Appendix), that is, on the subspace
{
u3=

5
16
u2
1, u4=

5
8
u1u2, u7 =

1
3584

u6
1+

15
1792

u3
1u

2
2+

65
1792

u4
2+

5
8
u1u5

}
.

Similarly the roots 82
56
, 81

56
, 76

56
, 75

56
up to sign are unshifted respectively on the subspaces

{
u2=0, u3 =

3
8
u2
1, u6=− 5

112
u3
1u4

}
,

{
u1= u2=0, u5=

2
7
u2
4

}
,

{
u4=

1
2
u1u2

}
,

{
u3 =

5
16
u2
1

}
.

Indeed, g
(1)
1,38 and g

(1)
1,37 are given respectively by

−u6−
15
56
u2u

2
3−

15
56
u2
2u4−

15
28
u1u3u4+

5
32
u1u

3
2+

15
32
u2
1u2u3+

5
32
u3
1u4−

55
512

u4
1u2,

−u5 +
2
7
u2
4−

1
4
u2
2u3−

1
4
u1u

2
3−

1
2
u1u2u4+

15
64
u2
1u

2
2+

5
32
u3
1u3−

23
1024

u5
1.
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Note that 83
56
, 82
56
, 81
56

cannot be the unique unshifted shiftable root up to sign. (Indeed, in the
latter two cases, the subspace is contained in a coordinate hyperplane. In the first case, it
is contained in the subspace for 75

56
.)

Remark 2.3. One can examine the above computation using Singular [DGPS20] as follows.
LIB "gmssing.lib"; ring R=0,(x,y),ds; poly a=2/3;

poly u_1=a; poly u_2=a; poly u_3=5/16*u_1^2; poly u_4=5/8*u_1*u_2;

poly u_5=a; poly u_6=a; poly u_8=a; poly u_9=a; poly u_10=a;

poly u_7=1/3584*u_1^6+15/1792*u_1^3*u_2^2+65/1792*u_2^4+5/8*u_1*u_5;

poly f=x^8+y^7+u_1*x^6*y^2+u_2*x^5*y^3+u_3*x^4*y^4+u_4*x^3*y^5+

u_5*x^6*y^3+u_6*x^5*y^4+u_7*x^4*y^5+u_8*x^6*y^4+u_9*x^5*y^5+u_10*x^6*y^5;

bernstein(f);

Here the uj for j 6=3, 4, 7 can be arbitrary rational numbers (as long as they are not too
much complicated for Singular). One should always get a root 83

56
up to sign together with

75
56
.

2.4. Example IV. Let f1 =x9+y7. The weights of parameters multiplied by 63 and the
exponents of the corresponding monomials are as follows:

3 10 17 24 31
1 8 15 22

6 13
4

3, 5 4, 5 5, 5 6, 5 7, 5
4, 4 5, 4 6, 4 7, 4

6, 3 7, 3
7, 2

There are 34 nonempty bistable subsets K of J , where the numbers of K with |K|= i are
1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1 for i=12, . . . , 1 respectively. If u1 6=0, the roots corresponding
to j ∈ J over 1 are all shifted by Proposition 2, and the calculation is not very difficult
when u1=0. So we examine the shift of the root up to sign 92

63
corresponding to j=7. We

have γ1=
1
63
, γ7=

13
63
, and their ratio is γ7/γ1=13. Since γ1 is associated with x4y4 and

13 ·4=52 with [52/9]= 5, [52/7]= 7, we get a division by 95 ·77=48629390607 during the
calculation of ∂12

t , but this seems too large for Singular. It may be difficult to calculate this
example without replacing f1 with 1

9
x9 + 1

7
y7 in order to avoid the above division. After

a computer calculation using C (where the computation itself takes less than one second),
we can conclude after a substitution that the subspace V (f1,

92
63
) on which 92

63
is unshifted is

given by
u3 =

44
3
u4
1 + 4 u1u2, u4 =

748
5
u6
1 +

176
3
u3
1u2 − 16u2

1u3 + 2u2
2,

u7= − 1444507328
14175

u13
1 − 20975504

945
u10
1 u2 −

11696
15

u7
1u

2
2 +

676
9
u4
1u

3
2

+ 6424
15

u5
1u5 +

8
3
u1u

4
2 + 48u2

1u2u5 +
176
3
u3
1u6 + 4u2u6.

This can be obtained by looking at [∗,7,3] for ∗=1, 2, 3 in the output of the code in A.2
of Appendix after typing 9 7 7. Setting uj =1 for j=1, 2, 5, 6, we obtain that u3=

56
3
,

u4=−442
5
, u7=−1761450728

14175
, where the last numerator is quite close to the integer limit in

Singular: 2147483647 (=231−1). By a computation using “bernstein” in Singular, however,
it is rather impressive to see that 92

63
is the only unshifted shiftable root up to sign of the BS

polynomial of

f = 1
9
x9+ 1

7
y7+x4y4+x3y5+ 56

3
x7y2 − 442

5
x6y3+x5y4+x4y5− 1761450728

14175
x7y3.

There are six shifted roots up to sign between 92
63

and 79
63
= α̃f+1, since 92

63
corresponds to

j=7. Hence SR(f, 92
63
) = 1

2
and SD(f, 92

63
) = 2

9
. The distribution of roots up to sign is as below

(see 2.1 for the notation):
❜ ❜ ❜❜ ❜ ❜ ❜❜ ❜ ❜ ❜ ❜r r r r r r r rr r r r r r r rr r r r r r rr r r r r rr r r rr r rr r r r rr r r rrr r

16
63

78
63

92
63

80
63

110
63

2.5. Example V. Let f = 1
10
x10+ 1

10
y10+u1x

3y8+u6x
8y3+u9x

6y6+u17x
7y7 (ui ∈C). By a

calculation similar to the weighted homogeneous case, we can see that the unshift condition
for the root 16

10
up to sign is given by

u17=192(u1u
3
6+u3

1u6)−64u1u6u9, u9=4u2
1+4u2

6,
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looking at [1;7,7], [5;7,7] in the output of the code in A.2 of Appendix after typing 10 10 18,
where we use a variation of Proposition 2 assuming u1u6 6=0. For u1= u6=1, we then obtain
that u9=8, u17=−128 as is written at the end of the introduction. By a similar argument,
we can see, assuming u1u6 6=0, that the root 15

10
up to sign is shifted if

u9 6=4u2
1+

7
2
u2
6, u9 6=

7
2
u2
1+4u2

6,

looking at [2;6,7], [3;7,6] in the output of the code in A.2 of Appendix. It is easy to see that
the roots 13

10
, 14
10

up to sign are unshifted. The argument is rather different from the weighted
homogeneous case with condition (M1) satisfied.

Remark 2.5. Setting f = 1
12
x12+ 1

12
y12+x4y10+x10y4+10x8y8, its BS polynomial has roots{

2
12
, . . . , 18

12

}
∪
{

20
12

}
up to sign by Singular. This polynomial has fewer terms than the above

example.

If we set f = 1
14
x14+ 1

14
y14+x4y11+x11y4+11x8y8− 968

3
x9y9+19360x10y10, then its BS

polynomial has roots
{

2
14
, . . . , 19

14

}
∪
{

22
14

}
up to sign, hence 20

14
, 21
14

are not, by Singular. These
were found by studying pictures like below and modifying the code in A.2 of Appendix.

❅
❅
❅
❅
❅
❅
❅❅s

s

s

s

s

s

❏
❏❏❪

❏
❏❏❪

❏
❏❏❪

◗
◗◗s

◗
◗◗s

◗
◗◗s❏
❏❏❪

◗
◗◗s

❅
❅
❅
❅
❅
❅
❅
❅
❅s

s

s

s

s

❆
❆
❆❑

❆
❆
❆❑

❍❍❍❥
❍❍❍❥

❅
❅
❅
❅
❅
❅
❅

❅
❅
❅s

s

s

s

s

s

s

❙
❙

❙♦
❙

❙
❙♦

❙
❙

❙♦

❩
❩
❩⑦

❩
❩
❩⑦

❩
❩
❩⑦❙
❙

❙♦
❙

❙
❙♦❩
❩
❩⑦

❩
❩
❩⑦❙
❙

❙♦

❩
❩
❩⑦

Here all the arrows are not written and there are much more “paths” (except in the second).
This is closely related to Remark 1.2. It seems more difficult to construct an example without
symmetry.

2.6. Example VI. Set f = 1
6
x6y+ 1

5
xy5+x5y2+ 60

29
x4y3+ 1320

841
x3y4− 9504000

594823321
x4y4. One can

get the coefficients by typing lr6 5 5 for the code in A.2 of Appendix and looking at [∗;4,4]
for ∗=1, 2, 3 in the output as is explained before the code. (Here “mixed fractions” may be
used to avoid integer overflow.) The weights of parameters multiplied by 5 ·6−1=29 and
the exponents of the corresponding monomials are as follows:

3 7 11
2 6

1

3, 4 4, 4 5, 4
4, 3 5, 3

5, 2

We have by Singular

Rf =
{

9
29
, . . . , 37

29

}
∪
{

45
29

}
\
{

16
29

}
.

Hence SR(f, 45
29
) = 2

3
and SD(f, 45

29
) = 8

29
. The distribution of roots up to sign is as below

s s s s s s s s s s s s s s s s s s s s s s s s s s s s ❝ ❝ ❝ s❝ ❝

9
29

37
29

39
29

45
29

49
29

Setting f = 1
7
x7y+ 1

6
xy6+x6y2+u2x

5y3+u3x
4y4+u4x

3y5+u6x
5y4+u7x

4y5+u9x
5y5 with

uj ∈C appropriate, we should have SR(f, 66
41
) = 4

5
with 41=7 ·6−1, although it is difficult to

determine u6, u7, u9 by the integer overflow problem. The other uj are given rather easily,
and 66

41
is a root up to sign of bf(s) for some u6, u7, u9∈C, but it is rather complicated

to see that the other shiftable roots are really shifted. These examples are extended to
Conjecture 1.

Remark 2.6. Let f = 1
7
x7+ 1

5
xy5+x6y+ 13

5
x5y2+ 221

75
x4y3+ 547859

196875
x5y3. This is obtained by

typing cr7 5 5 in A.2 of Appendix and looking at [∗;5,3] as is explained before the code.
By Singular we see that 54

35
is the unique unshifted shiftable root up to sign of bf (s) with
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SR(f, 54
35
) = 2

3
and SD(f, 54

35
) = 2

7
. The distribution of roots up to sign is as below (see 2.1

for the notation):

s s s s s s s s s s s s s s s s s s s s s s s s s s s s s❝ ❝ ❝ ❝ ❝

11
35

44
35

47
35

54
35

59
35

2.7. Example VII. Let f1=x7+y5+z3. After x5+y4+z3 and x7+y4+z3, this is the third
simplest example in the three variable case. The weights of parameters multiplied by 105
and the exponents of the corresponding monomials are as follows:

5
11 26

2 17 32 47
8 23 38 53 68 12

3 18 33

5, 0, 1
4, 1, 1 5, 1, 1

2, 2, 1 3, 2, 1 4, 2, 1 5, 2, 1
1, 3, 1 2, 3, 1 3, 3, 1 4, 3, 1 5, 3, 1 5, 2, 0

3, 3, 0 4, 3, 0 5, 3, 0

We study the shift of the root 202
105

up to sign corresponding to j=10 with γ10=
26
105

, where

α̃f+1= 176
105

. By a computer calculation using C, we conclude after a substitution that the

subspace V (f1,
202
105

) on which 202
105

is unshifted is defined by

u3= 2u1u2, u5=−7u4
1u2+4u3

1u3+14u1u
3
2−6u2

2u3+2u2u4−u5,

u10=− 374
27
u13
1 +162u10

1 u2
2−678u7

1u
4
2+

4176
5
u4
1u

6
2+

442
9
u9
1u4−

2223
5
u1u

8
2−285u6

1u
2
2u4

+366u3
1u

4
2u4+26u7

1u6−91u6
2u4−42u5

1u
2
4−142u4

1u
2
2u6+60u2

1u
2
2u

2
4+158u1u

4
2u6

−28u3
1u4u6−4u3

1u2u7−7u4
1u8+

14
3
u1u

3
4+18u2

2u4u6+14u3
2u7+18u1u

2
2u8

−6u1u
2
6+2u4u8+2u2u9.

It does not necessarily seem easy to determine the BS polynomial of f if we put ui =1 for
any j ∈{1, . . . , 9} \ {3, 5}. Setting u1=u2=1 and uj =0 for j=4, 6, 7, 8, 9, we get

f = 1
7
x7+ 1

5
y5+ 1

3
z3+x2y2z+x3y3+2x5z+3x4yz− 18799

135
x5yz.

Its BS polynomial has the unique unshifted shiftable root 202
105

up to sign according to Singular.
We have SR(f, 202

105
) = 9

16
, SD(f, 202

105
) = 29

105
, and the distribution of roots up to sign is as below

(see 2.1 for the notation):

q q q q q qq q q q q qq q q q qq q qq q q q qq q q qq q q ❛❛ ❛ ❛❛ ❛❛ ❛ ❛ ❛❛ ❛ ❛ ❛ ❛qq q qq qq q q qq q q q q q

173
105

178
105

202
105

244
105

2.8. Example VIII. Let f1 =x4y+y4z+xz3. This is a polynomial of nearly BP loop type,
where µf1 =48 with T 49 =1, see Remark 1.1e. The Jacobian ring is spanned by xiyjzk

(i, j < 4, k < 3) with weighted degree function given by

ℓ(i, j, k) = (10i+9j+13k)/49.

The modality of f1 (that is, |J |) is 17. The minimal, maximal, and the second largest spectral
numbers are respectively 32

49
, 115

49
, 106

49
. We see that the last number subtracted by the minimal

exponent 32
49

and γ1=
1
49

added by 1 are associated respectively with the monomials x3y2z2

and xy3z, since ℓ(3, 2, 2)= 74
49
, ℓ(1, 3, 1)= 50

49
. Observe that x3y2z2 is not over xy3z. Setting

f = x4y+y4z+xz3+xy3z+u2x
2y2z+u3x

3yz+u4xy
2z2+u5x

2yz2

+u6x
3z2+u7x

3y2z+u8x
2y2z2+u9x

3yz2+u10x
3y2z2,

with ui ∈ C∗ appropriate (where monomials which are not under x3y2z2 are omitted), it is
expected that 106

49
is the unique unshifted shiftable root up to sign of f with SR(f, 106

49
) = 15

17
.

Here the denominators of u8, u9 may be close to 4915 and 4916, calculating (ℓ(2, 2, 2)−1)/γ1,
etc. It is then quite nontrivial to show that the other shiftable roots are really shifted as in
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Conjecture 1. Note that all the shiftable roots are shifted if all the ui vanish, see Corollary 4.
This can be verified by using Singular for this example.

Remark 2.8a. It is not easy to compute the g
(1)
k,l for polynomials of nearly BP loop type

for n=3, since the action of ∂t is always associated with the division by abc+1 which is very
often a (square of) relatively large prime. This cannot be avoided by adding appropriate
coefficients to f1 as in the BP type case. The denominators tend to be huge even in the case
(a, b, c) = (4, 3, 3) or (5, 3, 2). There is, however, a calculable nontrivial example

(2.8.1) f =x6y+y2z+xz2+x5z− 17
25
x3yz+ 305966

1953125
x4yz.

Here µf =24, Rf = {21
25
, . . . , 45

25
} ∪ {51

25
} \ {26

25
} with SR(f, 51

25
) = 1

2
, SD(f, 51

25
) = 6

25
by Singular

(and R̃f =Rf \ {1} in this case).

Remark 2.8b. If the last two terms of f in (2.8.1) are omitted, we get that

Rf = {21
25
, . . . , 45

25
},

see Corollary 4. This gives an example such that the roots of BS polynomial are consecutive
with common denominator the order of the monodromy and moreover every monodromy
eigenvalue of f has multiplicity 1, see also Remark 1.1e.

Appendix: Sample codes

In this Appendix we give some sample codes to compute the g
(1)
k,l and the bistable subsets.

A.1. Sample code for Singular. For the convenience of the reader we note here a sample
code to calculate Example III using Singular. Since it is written in a condensed way, it may
be better to add line breaks appropriately after copying and pasting it in a text file. One
may modify a,b as long as a+b 6 15 and (a,b)=1. (If “Division Error” appears, one has to
increase the size of the vector iv.) This code cannot be applied to f1= x9+y7, although it
works at least for (a,b)= (7,6), (9,4), (7,5). (Please verify whether the list of weights in the
last line is correct.)

ring R = 0, (u_1,u_2,u_3,u_4,u_5,u_6,u_7), ds;

int a,b,rs,num,i,j,wd,n,p,iq,ir,jq,jr,kk,e,li,lj,rs,maxp,MA,MB,NuM;a=8;b=7;

int k,q,od,di,ip,jp,wp,ie,je,we,pp,rp,MM,mxn,mxk,maxdiv,am,bm,m,mm;poly Sub;m=a*b;

vector iv=[1,1/2,1/3,1/4,1/5,1/6,1/7,1/8,1/9,1/10,1/11,1/12];intvec wt=0,0,0,0,0,0,0;

am=a-1;bm=b-1;mm=am*bm;if(a+b>14){rs=5;}else{rs=4;}mxn=7;MA=2000;MB=am*bm;NuM=1000;

intmat Co[mxn][2];intmat Nu[NuM][NuM];matrix M[MA][MB];intmat O[MA][MB];

vector va=[u_1,u_2,u_3,u_4,u_5,u_6,u_7];mxk=2*(m-a-b);p=1;for(k=m+1;k<mxk&&p<=mxn;k++)

{for(i=1;i<a-1&&k>b*i;i++){j=(k-b*i)div a;if((k-b*i)%a==0&&j<b-1){Co[p,1]=i;Co[p,2]=j;

wt[p]=k-m;p++;}}}num=p-1;rp=wt[num]div wt[1];MM=wt[num]+m*rp;p=0;maxdiv=0;for(wd=MM;

wd>=0;wd--){n=wd div b;for(i=0;i<=n;i++){j=(wd-b*i)div a;if((wd-b*i)%a==0){p++;

Nu[i+1,j+1]=p;ir=i%a;iq=i div a;jr=j%b;jq=j div b;li=1;for(e=1;e<=iq;e++){li=li*(i-e*

a+1);}lj=1;for(e=1;e<=jq;e++){lj=lj*(j-e*b+1);}if(ir!=a-1&&jr!=b-1){M[p,ir+am*jr+1]=

li*lj*iv[a]^iq*iv[b]^jq;O[p,ir+am*jr+1]=iq+jq;}for(q=1;q<=num;q++){ip=i+Co[q,1];jp=j+

Co[q,2];wp=b*ip+a*jp;if(wp<=MM){pp=Nu[ip+1,jp+1];for(e=1;e<=mm;e++){ie=(e-1)%am;je=

(e-1)div am;we=b*ie+a*je;if(M[pp,e]!=0&&ie+je<a+b-rs&&we>m){od=O[pp,e];di=we+m*(od-1)

-wd;if(di<=wt[num]){Sub=M[pp,e]*wt[q]*iv[di]*va[q];if(O[p,e]==od-1){if(di>maxdiv)

{maxdiv=di;}M[p,e]=M[p,e]-Sub;}if(O[p,e]>od-1||(O[p,e]<od-1&&M[p,e]==0)){if(di>maxdiv)

{maxdiv=di;}M[p,e]=0-Sub;O[p,e]=od-1;}}}}}}}}} maxp=p;if(size(iv)<maxdiv){sprintf(

"Division Error %s",maxdiv);} for(i=1;i<=maxp;i++){for(e=1;e<=mm;e++){ie=(e-1)%am;je

=(e-1)div am;we=b*ie+a*je;if(O[i,e]==-1&&ie+je<a+b-rs&&we>m){sprintf("[%s;%s,%s]:",

maxp+1-i,(e-1)%am,(e-1)div am);M[i,e];}}} sprintf("wt=%s",wt);

In case one needs a computation for 1
a
xa+1

b
yb (instead of xa+yb) as in Example IV, one can

do it by removing *iv[a]^iq*iv[b]^jq i.

A.2. Sample code using C. There is also a sample code by C as below. This is possible,
since the algorithm is extremely simple. One may copy and past it in a text file and compile
it using gcc in Unix or clang in Mac, etc. In the first two lines, line breaks must be inserted
before # and “long long”. Do not forget to remove page numbers, etc. (It may be necessary
to replace ’ with a character from keyboard if “Preview” in Mac is used.) When one runs
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./a.out, one is asked to type three numbers (and press the return key), which are 9 7 7 and
10 10 18 in the case of Examples IV and V. The last number is the number of variables of
the parameter space in which one is interested. (It is not assumed that the exponents are
mutually prime. Note however that the code can calculate only the strictly negative grading

part of the parameter space of the miniversal µ-constant deformation unless the exponents
are mutually prime.) One can type n before these numbers if one needs a computation for
f1 =xa+yb instead of f1=

1
a
xa+1

b
yb. So one may enter n7 5 3, n9 4 3, n7 6 5, n8 7 7 for

examples in 2.1–3.
#include<stdio.h> #include<stdlib.h> #define MN 3500 #define MR 85 #define PN 21 #define NuM 5000
long long L0,L1,L2,L3;int P1[PN],P2[PN],P3[PN],PP[PN],AA[PN],BB[PN],DI[PN],Dia[PN][PN],Cn[PN][PN],
J[PN][3],JW[PN][PN],Ad[MN][2],num,maxn,maxp,Md,e,p,cc,M[MN][PN][MR][2*PN],Ord[MN][PN],Mpr[2*PN],
N[MN][PN],Nu[NuM][NuM],Prm[PN],PRMS[10*PN],Cw[PN][PN],O[2*PN][2*PN],S[2*PN][MR][2*PN],Nn[2*PN],
R[2*PN],SG[MR],W[MR],WW[MR],a,b,m,amm,bmm,ss,nump,bg,i,j,ir,jr,gcd,add,bdd,idd,jdd,iq,jq,ee,n;
long long li,lj,L[MN][PN][MR];int GCD(int x,int y);int gtd(void);void prf(long long LLL);
long long summ(void);long long pfac(long long x);void SS(void);void AAA(void);void BBB(void);
void prn(int r);void s(int r);int main(void) {int c,k,l,nn,nnn,q,wd,rp,fl,mw,am,bm,MM,ad,bd,kk,
od,di,aa,bb,ii,jj,ip,jp,wp,ie,je,we,pp;long long ll,lll;for(i=2;i<10*PN;i++){PRMS[i]=1;}for(i=2;
i*i<10*PN;i++){for(j=2;i*j<10*PN;j++){PRMS[i*j]=0;}}for(i=j=0;i<10*PN&&j<PN;i++){if(PRMS[i]==1)
{Prm[j]=i;j++;}}printf("Exponents and Number of members of J: ");for(cc=getchar();cc<’0’||cc>’9’;
cc=getchar()){if(cc==’c’){Md=1;}if(cc==’l’){Md=2;}if(cc==’n’){n=1;}if(cc==’r’){bg=1;}if(cc==’s’)
{ss=1;}if(cc==’w’){ss=2;}}if(n==1){Md=Md+10;n=0;}a=aa=gtd();b=bb=gtd();if(ss!=1)num=gtd();am=a-1;
bm=b-1;if(a>PN||b>PN){printf("Too big exponents\n"),exit(1);}if(Md%10==1){aa=am;}else if(Md%10==
2){aa=am;bb=bm;}pfac(a);for(i=0;i<PN;i++){AA[i]=PP[i];}pfac(b);for(i=0;i<PN;i++){BB[i]=PP[i];}
gcd=GCD(aa,bb);if(Md%10==0){ad=a/gcd;amm=am;bmm=bm;bd=b/gcd;m=a*bd;}else if(Md%10==1){ad=am/gcd;
amm=a;bmm=bm;bd=b/gcd;m=a*bd;}else if(Md%10==2){ad=am/gcd;amm=a;bmm=b;bd=bm/gcd;m=(a*b-1)/gcd;}
for(i=0;i<PN;i++){Dia[i][i]=1;}nump=PN;for(p=0,k=m+1;k<2*m&&p<nump;k++){for(i=1;i<amm&&k>bd*i;
i++){if((k-bd*i)%ad==0&&(j=(k-bd*i)/ad)<bmm){J[p][0]=k-m;J[p][1]=i;J[p][2]=j;W[k-m]=Cn[i][j]=
p+1;Cw[i][j]=k-m;lll=pfac(J[p][0]);if(lll!=1){printf("Wt Error %d\n",J[p][0]),exit(1);}for(l=0;
l<PN;l++){JW[p][l]=PP[l];}p++;}}}if(ss>0){nump=p;SS();if(ss==1)exit(1);}if(num>p||num>PN){printf(
"num=%d is replaced by %d!\n",num,p);num=p;}if(bg>0){bg=num-1;}rp=J[num-1][0]/J[0][0];MM=J[num-1][0]
+m*rp;printf("Weights and exponents:\n");for(i=0;i<num;i++){printf("%d (%d,%d), ",J[i][0],J[i][1]
,J[i][2]);}printf("\nf=");if(Md<3){printf("(1/%d)*",a);}printf("x^%d",a);if(Md%10==2){printf(
"*y");}printf("+");if(Md<3){printf("(1/%d)*",b);}if(Md%10==1||Md%10==2){printf("x*");}printf("y^%d",
b);for(p=0;p<num;p++){printf("+u_%d*x^%d*y^%d",p+1,J[p][1],J[p][2]);}Nu[0][0]=Nu[1][0]=Nu[0][1]=
Nu[2][0]=Nu[1][1]=Nu[0][2]=-1;for(p=wd=0;wd<=MM;wd++){nnn=wd/bd;for(i=0;i<=nnn;i++){j=(wd-bd*i)/ad;
if((wd-bd*i)%ad==0&&Nu[i][j]<0){if(p>=MN){printf("Too many monomials: %d\n",p),exit(1);}Nu[i][j]=p+
1;Ad[p][0]=i;Ad[p][1]=j;for(k=0;k<num;k++){if(Nu[i+J[k][1]][j+J[k][2]]<=0&&i+J[k][1]<NuM&&j+J[k][2]
<NuM){Nu[i+J[k][1]][j+J[k][2]]=-1;}}p++;}}}printf(";\nCalculating %d monomials",p);for(p--;p>=0;p--)
{i=Ad[p][0];j=Ad[p][1];wd=ad*j+bd*i;ir=i%a;iq=i/a;jr=j%b;jq=j/b;for(li=e=1;e<=iq;e++){li=li*(i-e*a+
1);}for(lj=e=1;e<=jq;e++){lj=lj*(j-e*b+1);}if(Md%10==1){ir=(i-jq)%a;iq=(i-jq)/a;}else if(Md%10==2){
iq=(b*i-j)/(a*b-1);jq=(a*j-i)/(a*b-1);ir=i-a*iq-jq;jr=j-iq-b*jq;}ee=Cn[ir][jr]-1;n=N[p][ee];if(ir!=
amm&&jr!=bmm&&ee>=0){if(Md%10==0){L[p][ee][n]=pfac(li*lj);for(l=0;l<PN;l++){M[p][ee][n][l]=0-PP[l];
}}else if(Md%10==1){AAA();}else if(Md%10==2){BBB();}if(Md%20==10){for(l=0;l<PN;l++){M[p][ee][n][l]
=M[p][ee][n][l]+AA[l]*iq+BB[l]*jq;}}Ord[p][ee]=iq+jq;N[p][ee]++;if(N[p][ee]>maxn)maxn=N[p][ee];if(
N[p][e]>=MR){printf("Too many terms %d\n",N[p][e]),exit(1);}}for(q=0;q<num;q++){ip=i+J[q][1];jp=j
+J[q][2];wp=bd*ip+ad*jp;if(wp<=MM){pp=Nu[ip][jp]-1;for(e=0;e<num;e++){nn=N[pp][e];ie=J[e][1];je=
J[e][2];we=bd*ie+ad*je;od=Ord[pp][e];di=we+m*(od-1)-wd;if(nn!=0&&di<=J[num-1][0]){ll=pfac(di);if
(ll!=1){printf("Too large di=%d,ll=%lld,we=%d,od=%d,wd=%d\n",di,ll,we,od,wd);}for(l=0;l<PN;l++){
DI[l]=PP[l];}if(Ord[p][e]==od-1&&N[p][e]!=0){for(cc=0;cc<nn;cc++){n=N[p][e];for(fl=c=0;c<n&&fl==0;
c++){for(l=0;l<num&&M[p][e][c][PN+l]==M[pp][e][cc][PN+l]+Dia[q][l];l++){;}if(l==num){for(l=0;l<PN;
l++){P1[l]=M[p][e][c][l];P2[l]=M[pp][e][cc][l]-JW[q][l]+DI[l];}L1=L0=L[p][e][c];L2=0-L[pp][e][cc];
L[p][e][c]=summ();for(l=0;l<PN;l++){M[p][e][c][l]=P3[l];}fl++;}}if(fl==0){L[p][e][n]=0-L[pp][e][cc];
for(l=0;l<PN;l++){M[p][e][n][l]=M[pp][e][cc][l]-JW[q][l]+DI[l];}for(l=0;l<num;l++){M[p][e][n][l+PN]
=M[pp][e][cc][l+PN]+Dia[q][l];}N[p][e]++;if(N[p][e]>maxn)maxn=N[p][e];if(N[p][e]>=MR){printf(
"Too many terms %d\n",N[p][e]),exit(1);}}}}if(Ord[p][e]>od-1||N[p][e]==0){for(cc=0;cc<N[pp][e];cc++)
{L[p][e][cc]=0-L[pp][e][cc];for(l=0;l<PN;l++){M[p][e][cc][l]=M[pp][e][cc][l]-JW[q][l]+DI[l];}for(l=0;
l<num;l++){M[p][e][cc][l+PN]=M[pp][e][cc][l+PN]+Dia[q][l];}}N[p][e]=N[pp][e];Ord[p][e]=od-1;}}}}}}for
(i=5;i>=0;i--){for(e=bg;e<num;e++){if(Ord[i][e]==-1){printf(";\n[%d;%d,%d]:",i+1,J[e][1],J[e][2]);for
(j=N[i][e]-1;j>=0;j--){for(l=0;l<PN+num;l++){Mpr[l]=M[i][e][j][l];}prf(L[i][e][j]);}}}}printf(";\n");
}void prf(long long LLL){int j,k,l,fl;long long De;fl=0;printf("\n");for(De=1,l=0;l<PN;l++){if(Mpr[l]
>0){for(j=0;j<Mpr[l];j++){De=De*Prm[l];}}}for(l=0;l<PN;l++){if(Mpr[l]<0){for(j=0;j<0-Mpr[l];j++){LLL
=LLL*Prm[l];}}}if(LLL>0&&De>1){printf("+%lld/%lld",LLL,De);fl=1;}else if(LLL>1&&De==1){printf("+%lld"
,LLL);fl=1;}else if(LLL<0&&De>1){printf("%lld/%lld",LLL,De);fl=1;}else if(LLL<-1&&De==1){printf("%lld"
,LLL);fl=1;}else if(LLL==-1&&De==1){printf("-");}else if(LLL==1&&De==1){printf("+");}else if(LLL==0)
{printf("0!!! ");}for(l=0;l<num;l++){if(fl==0&&Mpr[l+PN]!=0){fl=1;}else if(fl!=0&&Mpr[l+PN]!=0){
printf("*");}if(Mpr[l+PN]>1){printf("u_%d^%d",l+1,Mpr[l+PN]);}else if(Mpr[l+PN]==1){printf("u_%d",
l+1);}}}long long summ(void){int l,r,k;for(l=0;l<PN;l++){if(P1[l]>P2[l]){for(k=1,r=0;r<P1[l]-P2[l];
r++){k=k*Prm[l];}L2=L2*k;P3[l]=P1[l];}else if(P1[l]<P2[l]){for(k=1,r=0;r<P2[l]-P1[l];r++){k=k*Prm[l]
;}L1=L1*k;P3[l]=P2[l];}else{P3[l]=P2[l];}}L3=L1+L2;if((L1>0&&L2>0&&L3<0)||(L1<0&&L2<0&&L3>0)){printf
("\nIntOvFl at p=%d (%d,%d)",p,J[e][1],J[e][2]);}L3=pfac(L3);for(l=0;l<PN;l++){P3[l]=P3[l]-PP[l];}
return(L3);}long long pfac(long long x){lldiv_t dvn;int l,flg,fl2,sgn=1;if(x<0){x=-x;sgn=-1;}for(l
=0;l<PN;l++){PP[l]=0;}for(flg=0;x>1&&flg==0;){for(l=fl2=0;l<PN&&fl2==0;l++){dvn=lldiv(x,Prm[l]);if
(dvn.rem==0){fl2++;if(l>maxp){maxp=l;}}}if(fl2==0){flg++;}else{x=dvn.quot;PP[l-1]++;}}if(sgn<0){x=
-x;}return(x);}int gtd(void){int l;while(cc<’0’||’9’<cc){cc=getchar();}for(l=0;’0’<=cc&&cc<=’9’;cc
=getchar()){l=l*10+cc-’0’;}return(l);}int GCD(int x,int y){while(x!=0&&y!=0){if(x>y){x=x%y;}else{y
=y%x;}}if(x==0){return(y);}else{return(x);}}void SS(void){printf("Replace SS!\n");exit(1);}void
AAA(void){printf("Replace AAA!\n");exit(1);}void BBB(void){printf("Replace BBB!\n");exit(1);}

If one replaces the definitions of “void AAA(void)” and “void BBB(void)” at the end of the
above code with the code below, one can type c or l before the numbers in the case f1 is
a polynomial of nearly BP chain or loop type, see 2.6 and Remark 1.1c. For a calculation
using Singular as in Remark 2.3, one can replace the first term “-u_k” (or “-u_k+”) of the
polynomials at “[∗,i,j]:” in the output by “poly u_k=” for a fixed (i,j), and use the expression
of f in the output in order to apply “bernstein(f);” setting “poly u_k=1” (usually at least
for k=1) or “0” appropriately for the k not appearing as the first term of polynomials in
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[∗,i,j], see also 2.6. The value of u_k can be obtained by typing “u_k;”. If one prefers to see
only the data for the last member, one can type r.

void AAA(void){int k,l,ii,jj;long ll;if(pfac(jr+1)!=1){printf("pfac error: jr+1=%d\n",jr+1),exit(1);
}for(l=0;l<PN;l++){if(PP[l]>BB[l]){P3[l]=0;}else{P3[l]=BB[l]-PP[l];}}gcd=GCD(b,jr+1);bdd=b/gcd;jdd=
(jr+1)/gcd;for(l=1,ll=1;l<=iq;l++){ll=ll*(bdd*(i-jq-a*l+1)-jdd);}for(l=0;l<PN;l++){P3[l]=P3[l]*iq;}
L[p][ee][n]=pfac(ll*lj);for(l=0;l<PN;l++){M[p][ee][n][l]=P3[l]-PP[l];}if(Md%20==11){for(l=0;l<PN;
l++){M[p][ee][n][l]=M[p][ee][n][l]+iq*AA[l];}}}void BBB(void){int k,l,ii,jj;long ll;ii=i;jj=j;for
(k=1,ll=1;k<=iq;k++){pfac(jj);for(l=0;l<PN;l++){if(PP[l]>BB[l]){P3[l]=0;}else{P3[l]=BB[l]-PP[l];}}
gcd=GCD(b,jj);bdd=b/gcd;jdd=jj/gcd;ll=ll*pfac(bdd*(ii-a+1)-jdd);for(l=0;l<PN;l++){M[p][ee][n][l]=
M[p][ee][n][l]+P3[l]-PP[l];}ii=ii-a;jj=jj-1;}for(k=1;k<=jq;k++){pfac(ii);for(l=0;l<PN;l++){if(PP[l]
>AA[l]){P3[l]=0;}else{P3[l]=AA[l]-PP[l];}}gcd=GCD(a,ii);add=a/gcd;idd=ii/gcd;ll=ll*pfac(add*(jj-b+
1)-idd);for(l=0;l<PN;l++){M[p][ee][n][l]=M[p][ee][n][l]+P3[l]-PP[l];}ii=ii-1;jj=jj-b;}pfac(a*b-1);
for(l=0;l<PN;l++){if(Md%20==2){M[p][ee][n][l]=M[p][ee][n][l]+(iq+jq)*(PP[l]-AA[l]-BB[l]);}else{
M[p][ee][n][l]=M[p][ee][n][l]+(iq+jq)*PP[l]-jq*AA[l]-iq*BB[l];}}L[p][ee][n]=ll;}

Remark A.2. This algorithm was at first suspected to be too simple to be true. However,
many explicit calculations using the codes in A.1–2 combined with “bernstein” in Singular
seem to show that it is correct. Please inform us in case one gets a different result using
the codes in A.1 and A.2. (Recall that one can modify the code in A.1 as is noted at the
end of it in order to compute examples with coefficients of f1 modified.) Since Gröbner
bases are not used in the second code, the orderings of monomials are different in general,
although they may coincide in simple cases as a consequence of the algorithm. The second
code investigates only the necessary monomials, and this is the main reason for which it is
very fast. To calculate more complicated examples, one may like to change some parameters
defined at the beginning, and this may be possible in case “virtual memory” is available
although the computation might become slow. Anyway it does not seem easy to handle
more than 64 bit integers. Since localization by small prime numbers is used in the code,
integer overflow may occur at the last stage where the conversion to usual rational numbers
is made. These codes are still experimental, and might contain a bug that does not appear
for relatively simple examples.

A.3. Sample code calculating the bistable subsets. We note here a sample code
to compute the bistable subsets in the two variable case with mutually prime modified
exponents, where the modified exponents are (a−1, b) and (a−1, b−1) respectively in the
chain and loop type cases. It is designed to be used by replacing the definition of “void
SS(void)” at the end of the code in A.2 by it, and typing s before the numbers, for instance
s8 7. One can type w (together with the third number) instead of s in case both outputs are
needed. (Here the modified exponents must be mutually prime.) It is not necessary to type
the letters n, r, c, l, s, w in alphabetical order.

void SS(void){int c,i,j,e,k,l,n,p,q,fl,mw;if(GCD(2*a-1-amm,2*b-1-bmm)>1||amm>9||bmm>9){printf(
"Bad exponents\n");exit(1);}mw=m-2*(a+b-2);printf("\n");for(j=bmm-1;j>0;j--){for(i=1;i<amm;i++){if
(Cn[i][j]>0){printf("%d,%d",i,j);s(2);}else s(5);}printf("\n");}for(j=bmm-1;j>0;j--){for(i=1;i<amm;
i++){if(Cn[i][j]>0)prn(Cw[i][j]);else s(3);}printf("\n");}for(i=1;i<=nump;i++){for(j=1;j<=nump;j++)
{if(J[i-1][1]<=J[j-1][1]&&J[i-1][2]<=J[j-1][2])O[i][j]=1;else O[i][j]=0;}}Nn[0]=1;for(i=1;i<=nump;
i++)S[0][0][i]=1;for(k=1;k<nump;k++){n=0;for(e=0;e<Nn[k-1];e++){for(i=1;i<=nump;i++){for(j=1;j<=
nump;j++)R[j]=S[k-1][e][j];if(R[i]!=0){R[i]=0;fl=0;for(p=1;p<nump&&fl==0;p++){if(R[p]!=0){for(q=
p+1;q<=nump&&fl==0;q++){if(R[q]==0&&O[p][q]==1)fl=1;}}}if(fl==0){for(l=1;l<=mw;l++)SG[l]=0;SG[0]
=1;for(q=1;q<=nump;q++){if(R[q]!=0){for(l=0;l<mw;l++){if(SG[l]!=0){for(c=1;l+c*J[q-1][0]<=mw;c++)
SG[l+c*J[q-1][0]]=1;}}}}for(l=0;l<=mw;l++)WW[l]=0;for(p=1;p<=nump;p++){if(R[p]!=0)WW[J[p-1][0]]=1
;}for(l=1;l<=mw;l++){if(SG[l]!=0&&W[l]!=0&&WW[l]==0)fl=1;}}if(fl==0){for(p=0;p<n&&fl==0;p++){for
(l=1;R[l]==S[k][p][l]&&l<=nump;l++){;}if(l>nump)fl++;}if(fl==0){for(l=1;l<=nump;l++)S[k][n][l]=
R[l];n++;}}}}}Nn[k]=n;}n=0;for(k=1;k<nump;k++){for(l=0;l<Nn[k];l++){for(j=bmm-1;j>0;j--){for(i=1;
i<amm;i++){if(Cn[i][j]>0&&S[k][l][Cn[i][j]]!=0)prn(Cw[i][j]);else s(3);}printf("\n");}n++;}}printf
("There are %d nonempty bistable subsets:\n 1",n+1);p=1;for(k=1;k<nump;k++){p=p+Nn[k];printf("+%d"
,Nn[k]);}printf("=%d\n",p);}void prn(int r){if(r>=10)s(1);else s(2);printf("%d",r);}void s(int r)
{int i;for(i=0;i<r;i++)printf(" ");}
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Math., 2 (1970), 103–161.
[Ca 87] Cassou-Noguès, P., Etude du comportement du polynôme de Bernstein lors d’une déformation à
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